534 research outputs found

    VTAC: Virtual Terrain Assisted Impact Assessment for Cyber Attacks

    Get PDF
    Overwhelming intrusion alerts have made timely response to network security breaches a difficult task. Correlating alerts to produce a higher level view of intrusion state of a network, thus, becomes an essential element in network defense. This work proposes to analyze correlated or grouped alerts and determine their ‘impact’ to services and users of the network. A network is modeled as ‘virtual terrain’ where cyber attacks maneuver. Overlaying correlated attack tracks on virtual terrain exhibits the vulnerabilities exploited by each track and the relationships between them and different network entities. The proposed impact assessment algorithm utilizes the graph-based virtual terrain model and combines assessments of damages caused by the attacks. The combined impact scores allow to identify severely damaged network services and affected users. Several scenarios are examined to demonstrate the uses of the proposed Virtual Terrain Assisted Impact Assessment for Cyber Attacks (VTAC)

    Pathfinding in hierarchical representation of large realistic virtual terrains

    Get PDF
    Pathfinding is critical to virtual simulation applications. One of the most prominent pathfinding challenges is the fast computation of path plans in large and realistic virtual terrain environments. To tackle this problem, this work proposes the exploration of a quadtree structure in the navigation map representation of large real-world virtual terrains. Exploring a hierarchical approach for virtual terrain representation, we detail how a global hierarchical pathfinding algorithm searches for a path in a coarse initial navigation map representation. Then, during execution time, the pathfinding algorithm refines regions of interest in this terrain representation in order to compute paths with a higher quality in areas where a large amount of navigation obstacles is found. The computational time of such hierarchical pathfinding algorithm is systematically measured in different hierarchical and non-hierarchical terrain representation structures that are instantiated in the modeling of a small real-world terrain scenario. Then, similar experiments are developed in a large real-world virtual terrain that is inserted in a real-life simulation system for the development of military tactical training exercises. The results show that the computational time required to generate pathfinding answers can be optimized when the proposed hierarchical pathfinding algorithm along with the easy and reliable implementation of the quadtree-based navigation map representation of the large virtual terrain are explored in the development of simulation systems

    Procedural content generation of virtual terrain for games

    Get PDF
    Abstract. Game developers use Procedural Content Generation (PCG) in aid of game development to reduce costs, reach better memory consumption, increase creativity, and augment our limited human imagination by generating content algorithmically. Virtual terrain is one of the main topics of PCG; how well do these techniques support the special needs of game level design? To answer this question, a literature review was conducted to analyse correlation between the capabilities of various PCG-techniques and the needs of level design patterns. We observed that techniques permitting higher degree of local control increased their applicability for virtual terrain in games and that traditional fractal techniques, such as the midpoint displacement method and noise-functions, performed poorly despite their popularity. Our foremost contributions to this field of study were new insights towards more suitable PCG-techniques for use in game development

    Quantifiable isovist and graph-based measures for automatic evaluation of different area types in virtual terrain generation

    Get PDF
    © 2013 IEEE. This article describes a set of proposed measures for characterizing areas within a virtual terrain in terms of their attributes and their relationships with other areas for incorporating game designers\u27 intent in gameplay requirement-based terrain generation. Examples of such gameplay elements include vantage point, strongholds, chokepoints and hidden areas. Our measures are constructed on characteristics of an isovist, that is, the volume of visible space at a local area and the connectivity of areas within the terrain. The calculation of these measures is detailed, in particular we introduce two new ways to accurately and efficiently calculate the 3D isovist volume. Unlike previous research that has mainly focused on aesthetic-based terrain generation, the proposed measures address a gap in gameplay requirement-based terrain generation-the need for a flexible mechanism to automatically parameterise specified areas and their associated relationships, capturing semantic knowledge relating to high level user intent associated with specific gameplay elements within the virtual terrain. We demonstrate applications of using the measures in an evolutionary process to automatically generate terrains that include specific gameplay elements as defined by a game designer. This is significant as this shows that the measures can characterize different gameplay elements and allow gameplay elements consistent with the designers\u27 intents to be generated and positioned in a virtual terrain without the need to specify low-level details at a model or logic level, hence leading to higher productivity and lower cost

    Quantifiable isovist and graph-based measures for automatic evaluation of different area types in virtual terrain generation

    Get PDF
    © 2013 IEEE. This article describes a set of proposed measures for characterizing areas within a virtual terrain in terms of their attributes and their relationships with other areas for incorporating game designers\u27 intent in gameplay requirement-based terrain generation. Examples of such gameplay elements include vantage point, strongholds, chokepoints and hidden areas. Our measures are constructed on characteristics of an isovist, that is, the volume of visible space at a local area and the connectivity of areas within the terrain. The calculation of these measures is detailed, in particular we introduce two new ways to accurately and efficiently calculate the 3D isovist volume. Unlike previous research that has mainly focused on aesthetic-based terrain generation, the proposed measures address a gap in gameplay requirement-based terrain generation-the need for a flexible mechanism to automatically parameterise specified areas and their associated relationships, capturing semantic knowledge relating to high level user intent associated with specific gameplay elements within the virtual terrain. We demonstrate applications of using the measures in an evolutionary process to automatically generate terrains that include specific gameplay elements as defined by a game designer. This is significant as this shows that the measures can characterize different gameplay elements and allow gameplay elements consistent with the designers\u27 intents to be generated and positioned in a virtual terrain without the need to specify low-level details at a model or logic level, hence leading to higher productivity and lower cost

    VTAC: Virtual terrain assisted impact assessment for cyber attacks

    Get PDF
    Recently, there has been substantial research in the area of network security. Correlation of intrusion detection sensor alerts, vulnerability analysis, and threat projection are all being studied in hopes to relieve the workload that analysts have in monitoring their networks. Having an automated algorithm that can estimate the impact of cyber attacks on a network is another facet network analysts could use in defending their networks and gaining better overall situational awareness. Impact assessment involves determining the effect of a cyber attack on a network. Impact algorithms may consider items such as machine importance, connectivity, user accounts, known attacker capability, and similar machine configurations. Due to the increasing number of attacks, constantly changing vulnerabilities, and unknown attacker behavior, automating impact assessment is a non-trivial task. This work develops a virtual terrain that contains network and machine characteristics relevant to impact assessment. Once populated, this virtual terrain is used to perform impact assessment algorithms. The goal of this work is to investigate and propose an impact assessment system to assist network analysts in prioritizing attacks and analyzing overall network status. VTAC is tested with several scenarios over a network with a variety of configurations. Insights into the results of the scenarios, including how the network topologies and network asset configurations affect the impact analysis are discussed

    Syncretia: a virtual geography for narrative playfulness

    Get PDF
    This paper examines the strategies and theories involved in the creation of a virtual habitat; the island Syncretia located in the virtual world of Second Life®. The island is comprised of a series of narrative/play installations, which can also be considered as "artistic environments". Syncretia should be seen as an endeavor for providing a context for play, storytelling and metaphor; involving an examination of virtual geographies, cyberpsychology/Presence studies, ludology and their relationship to objets trouvé or ready-made art/architectural objects which have been utilized to a substantial degree in the structuring of the visual/narrative language of Syncretia

    Virtual Skiing as an Art Installation

    Get PDF
    The Virtual Skiing game allows the user to immerse himself into the skiing sensation without using any obvious hardware interfaces. To achieve the movement down the virtual skiing slope the skier who stands on a pair of skis attached to the floor performs the same movements as on real skis, in particular this is the case on carving skis: tilting the body to the left initiates a left turn, tilting the body to the right initiates a right turn, by lowering the body, the speed is increased. The skier observes his progress down the virtual slope projected on the wall in front of him. The skier’s movements are recorded using a video camera placed in front of him and processed on a PC in real time to drive the projected animation of the virtual slope

    Study on Path Planning Method Considering Localization Accuracy for Exploration Rover

    Get PDF
    学位の種別: 修士University of Tokyo(東京大学
    corecore