145 research outputs found

    Semiautomated 3D liver segmentation using computed tomography and magnetic resonance imaging

    Get PDF
    Le foie est un organe vital ayant une capacité de régénération exceptionnelle et un rôle crucial dans le fonctionnement de l’organisme. L’évaluation du volume du foie est un outil important pouvant être utilisé comme marqueur biologique de sévérité de maladies hépatiques. La volumétrie du foie est indiquée avant les hépatectomies majeures, l’embolisation de la veine porte et la transplantation. La méthode la plus répandue sur la base d'examens de tomodensitométrie (TDM) et d'imagerie par résonance magnétique (IRM) consiste à délimiter le contour du foie sur plusieurs coupes consécutives, un processus appelé la «segmentation». Nous présentons la conception et la stratégie de validation pour une méthode de segmentation semi-automatisée développée à notre institution. Notre méthode représente une approche basée sur un modèle utilisant l’interpolation variationnelle de forme ainsi que l’optimisation de maillages de Laplace. La méthode a été conçue afin d’être compatible avec la TDM ainsi que l' IRM. Nous avons évalué la répétabilité, la fiabilité ainsi que l’efficacité de notre méthode semi-automatisée de segmentation avec deux études transversales conçues rétrospectivement. Les résultats de nos études de validation suggèrent que la méthode de segmentation confère une fiabilité et répétabilité comparables à la segmentation manuelle. De plus, cette méthode diminue de façon significative le temps d’interaction, la rendant ainsi adaptée à la pratique clinique courante. D’autres études pourraient incorporer la volumétrie afin de déterminer des marqueurs biologiques de maladie hépatique basés sur le volume tels que la présence de stéatose, de fer, ou encore la mesure de fibrose par unité de volume.The liver is a vital abdominal organ known for its remarkable regenerative capacity and fundamental role in organism viability. Assessment of liver volume is an important tool which physicians use as a biomarker of disease severity. Liver volumetry is clinically indicated prior to major hepatectomy, portal vein embolization and transplantation. The most popular method to determine liver volume from computed tomography (CT) and magnetic resonance imaging (MRI) examinations involves contouring the liver on consecutive imaging slices, a process called “segmentation”. Segmentation can be performed either manually or in an automated fashion. We present the design concept and validation strategy for an innovative semiautomated liver segmentation method developed at our institution. Our method represents a model-based approach using variational shape interpolation and Laplacian mesh optimization techniques. It is independent of training data, requires limited user interactions and is robust to a variety of pathological cases. Further, it was designed for compatibility with both CT and MRI examinations. We evaluated the repeatability, agreement and efficiency of our semiautomated method in two retrospective cross-sectional studies. The results of our validation studies suggest that semiautomated liver segmentation can provide strong agreement and repeatability when compared to manual segmentation. Further, segmentation automation significantly shortens interaction time, thus making it suitable for daily clinical practice. Future studies may incorporate liver volumetry to determine volume-averaged biomarkers of liver disease, such as such as fat, iron or fibrosis measurements per unit volume. Segmental volumetry could also be assessed based on subsegmentation of vascular anatomy

    Patient-specific anatomical illustration via model-guided texture synthesis

    Get PDF
    Medical illustrations can make powerful use of textures to attractively, effectively, and efficiently visualize the appearance of the surface or cut surface of anatomic structures. It can do this by implying the anatomic structure's physical composition and clarifying its identity and 3-D shape. Current visualization methods are only capable of conveying detailed information about the orientation, internal structure, and other local properties of the anatomical objects for a typical individual, not for a particular patient. Although one can derive the shape of the individual patient's object from CT or MRI, it is important to apply these illustrative techniques to those particular shapes. In this research patient-specific anatomical illustrations are created by model-guided texture synthesis (MGTS). Given 2D exemplar textures and model-based guidance information as input, MGTS uses exemplar-based texture synthesis techniques to create patient-specific surface and solid textures. It consists of three main components. The first component includes a novel texture metamorphosis approach for creating interpolated exemplar textures given two exemplar textures. This component uses an energy optimization scheme derived from optimal control principles that utilizes intensity and structure information in obtaining the transformation. The second component consists of creating the model-based guidance information, such as directions and layers, for that specific model. This component uses coordinates implied by discrete medial 3D anatomical models (m-reps). The last component accomplishes exemplar-based texture synthesis by textures whose characteristics are spatially variant on and inside the 3D models. It considers the exemplar textures from the first component and guidance information from the second component in synthesizing high-quality, high-resolution solid and surface textures. Patient-specific illustrations with a variety of textures for different anatomical models, such as muscles and bones, are shown to be useful for our clinician to comprehend the shape of the models under radiation dose and to distinguish the models from one another

    Virtual colon unfolding for polyp detection

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Bayesian modelling of organ deformations in radiotherapy

    Get PDF
    Moderne strålebehandling mot kreft er skreddarsydd for å gje ein høg stråledose tilpassa svulsten (målvolumet), mens så lite dose som mogleg vert gitt til det friske vevet omkring. Den totale dosen vert levert over nokre veker i daglege "fraksjonar", noko som reduserer biverknader. Under og mellom desse fraksjonane rører dei indre organa på seg heile tida på grunn av pust, fylling av blæra, tarmar si rørsle og ekstern påverknad. Likevel vert posisjonen til målvolumet og relevante risikoorgan bestemt på grunnlag av eit statisk 3D-skann som er tatt før behandlinga startar. Den vanlege måten å sikre seg mot konsekvensar av denne rørsla er å legge til marginar rundt svulsten. Slik sikrar ein å treffe målvolumet, men til gjengjeld får det friske vevet meir dose. Marginane sin storleik er fastsett ved hjelp av statistikk over tidlegare behandla pasienter. Dei statistiske metodane som vert brukte er ofte enkle, og tek berre omsyn til rigid rørsle, altså at heile kroppen rører seg i eitt. Dessutan vert det ikkje teke omsyn til rørsla til risikoorgan. For å berekne dose til risikoorgana er det vanleg å anta at forma til organa i planleggingsskannet er representative for forma deira under behandling. Arbeidet i denne avhandlinga handlar om å bruka teknikkar frå Bayesiansk statistikk for å modellere korleis organ rører og deformerer seg mellom fraksjonane. Målet er å estimere nøyaktig den statistiske fordelinga av rørsle for eit eller fleire organ til ein pasient. Fordelinga gjev innsikt i korleis organa forandre seg medan behandlinga går for seg. Denne innsikta er nyttig for evaluering av stråleterapiplanar, statistisk prediksjon av biverknader, såkalla robust planlegging og å berekna størrelsen på marginar. Metodane som vert presentert er evaluerte for endetarmen (rektum) sine rørsler hjå prostatakreftpasientar. For desse pasientane er rektum eit viktig risikoorgan, som kan bli ramma både av akutte og seine biverknader, som lekkasje, bløding og smerter. Samanlikna med eksisterande metodar har den Bayesianske tilnærminga to fordelar: For det første gir kombinasjonen av populasjonsstatistikk og individuelle data meir nøyaktige anslag av den pasientspesifikke fordelinga. For det andre estimerer dei nye metodane den såkalla systematiske feilen i tillegg til variasjonar frå fraksjon til fraksjon. Den systematiske feilen er forskjellen mellom den estimerte forma på organet under planlegging, og gjennomsnittsforma til organet under bestråling. Denne typen feil var tema for artikkel I. Her fekk vi til å redusere den systematiske feilen til rektum hjå 33 av 37 prostatakreftpasientar ved å bruke ein metode som kombinerer forma på rektum under planlegginga og gjennomsnittsforma i populasjonen. Vi vurderte og om denne forbetringa hadde påverknad på estimering av summert dose til rektum. Metoden gav ikkje signifikant forbetring for to antatt relevante parametrar (ekvivalent uniform dose og D5%), men gav signifikant reduksjon av bias på det estimerte dose-volum-histogrammet i intervallet 52.5 Gy til 65 Gy. Hovudarbeidet i dette prosjektet er publisert i artikkel II. Der presenterer vi to modellar for organrørsle basert på Bayesianske metodar. Inndata til desse metodane er organformer som er henta frå 3D-skanningar. Metodane kan ta ulikt tal slike former, og produserer meir nøyaktige resultat jo fleire former dei får. Dei gjev anslag av gjennomsnittsforma og kor stor uvissa om denne forma er, i tillegg til anslag av fordelinga av variasjon av former frå fraksjon til fraksjon. Vi evaluerte metodane etter kor godt dei kunne berekne "dekningssannsyn", altså sannsynet for at organet skal dekke eit gitt punkt i pasientkoordinatsystemet til ei gitt tid. For denne berekninga måtte titusenvis av organformer gjerast om til såkalla binærmasker, som er 3D-matriser av punkter i pasient-koordinatsystemet der verdien til eit punkt er 1 dersom punktet er inne i organet, og 0 elles. Denne berekninga var mogleg på grunn av programvare som blei implementert for dette prosjektet, og som er presentert i artikkel III. Også her var det prostatakreftpasientar sitt rektum som vart brukt til evaluering. Berekningane til dei nye metodane var likare det sanne dekningssannsynet enn tilsvarande berekningar frå tidlegare metodar, i signifikant grad, i alle fall opp til tre input. Forskjellen mellom dei to nye algoritmane er i hovudsak kompleksiteten og nøyaktigheita, og valet mellom algoritmane i ein gitt bruk vil vere ei avveging mellom desse faktorane. Vi viste ein måte modellane kan verte brukte i artikkel IV, som handlar om pasientar som får re-bestråling for tilbakefall av prostatakreft. Her brukte vi modellane til å berekne forventa akkumulert dose til rektum frå dei to behandlingane, og også uvissa rundt den forventa dosen. Metoden er basert på representative former" av rektum, altså former som rektum kan ta som er sannsynlege, men lite fordelaktige. Desse formene kan brukast som visuell hjelp for onkologar og doseplanleggjarar, og metoden kan implementerast ved hjelp av eksisterande funksjonar i programvaren for behandlingsplanlegging. Overordna gir denne avhandlinga nye løysingar for den sentrale utfordringa med å redusere konsekvensar av organrørsle i stråleterapi. Dei presenterte modellane er dei første som utnyttar statistikk for populasjonen og data frå den enkelte pasienten samstundes, og som tar omsyn til både systematiske og tilfeldige feil.Modern radiotherapy tends to be highly conformal, meaning that a high and uniform dose is delivered to the target volume and as little dose as possible to the surrounding normal tissue. The total radiation dose is delivered across several smaller daily fractions, typically spanning several weeks. During and between these fractions, internal organs are constantly in motion due to factors such as breathing, changes to bladder filling state, intestinal movement and external influences. Nevertheless, the position of the target and relevant organs at risk (OARs) are determined based on a static 3D scan acquired before start of treatment. A common safeguard which is used to take such motion into account is the addition of margins around the target. These margins reduce the chance of missing parts of the target, yet increases dose to the healthy tissue surrounding the target. The margin size is based on statistics from previous patients. However, for the most part, the statistical methods used are very simple, and typically based on an assumption of rigid patient motion. Similarly, motion of the OARs is commonly neglected. For estimation of dose to the OARs, it is common to assume that the organ shape at the static scan is representative for its shape during treatment. The work in this thesis concerns the use of techniques from Bayesian statistics for modelling inter-fraction organ motion and deformation. The goal is to estimate accurately the statistical distribution of shapes for one or more organs for a given patient. The distribution provides knowledge of how the patient's organs might move and deform during the radiotherapy course. This information is useful for the evaluation of radiotherapy plans, prediction of adverse effects, so-called motion-robust radiotherapy planning, the generation of margins and more. The methods presented in this thesis have been evaluated for predicting deformations of the rectum of prostate cancer patients. For these patients, the rectum is a crucial OAR that is affected by both early and late side effects including leakage, bleeding and pain. Compared to existing methods, the Bayesian approach developed and implemented in this thesis offers two advantages: first, combining population statistics and individual data leads to more accurate estimates of the patient-specific distribution. Secondly, the new methods estimate the distribution of the so-called systematic error in addition to variations from fraction to fraction. The systematic error is the difference between the estimated shape/position of an organ at the planning stage and its average shape/position during therapy, and was the subject of paper I. Here, we were able to reduce the systematic error of the rectum in 33 out of 37 prostate cancer patients using a straightforward method to combine the shape of the rectum at the planning CT with the population mean shape. We also evaluated the impact of this improvement on the estimation of dose to the rectum. We found no significant improvement on the estimation of two presumably relevant dose parameters (equivalent uniform dose and D5%). However, we did find significant reduction in the bias of the estimated dose-volume histogram in the range from 52.5 Gy to 65 Gy. Paper II contains the central work of this project. It presents two organ deformation models based on Bayesian methods. The input data to these algorithms are organ shapes derived from 3D scans. The methods can take a varying number of such inputs from a given patient, and will produce more accurate results the more inputs they are given. They provide an estimate of the mean shape of the organ, as well as the uncertainty of this mean, in addition to the distribution of the variation of shapes from fraction to fraction. The methods were evaluated in the task of estimating coverage probabilities, i.e. the probability that the organ will cover a certain point in the patient coordinate system, for the rectum of prostate cancer patients. For this evaluation, tens of thousands of organ shapes needed to be converted to so-called binary masks, which are 3D arrays of points in the patient coordinate system where the value of each point is 1 if the point is inside the organ and 0 if it is outside. This was enabled by the highly efficient point-in-polyhedron software presented in paper III, which was developed for this project. The models were given varying number of scans, from 1 to 10, as input, and compared to two existing (non-Bayesian) models. The estimates of the coverage probability produced by the new models were significantly more similar to the ground truth than those produced by the existing models, at least up to three input scans. The main differences between the two new algorithms are their of conceptual complexity and accuracy, and the choice of method in a given application will therefore come down to a trade-off between these qualities. An application for the models derived in paper II, concerning patients receiving re-irradiation for recurrent prostate cancer, is presented in paper IV. We introduce a way of estimating the expectation and uncertainty of the accumulated dose to the rectum from the two treatment courses. The method is based on "representative shapes" of the rectum, that is, shapes that are probable and also particularly favourable or unfavourable in terms of dose. The advantage is that these shapes can be used as a visual aid for the oncologist or dose planner, and that the method can be implemented using existing features of treatment planning systems. Overall, this thesis provides novel solutions to the central challenge of organ motion mitigation in RT. The presented models are the first to simultaneously exploit population and patient specific organ motion and addressing both systematic and random errors.Doktorgradsavhandlin

    Computer-aided Visualization of Colonoscopy

    Get PDF
    Colonoscopy is the most widely used medical technique to examine the human large intestine (colon) and eliminate precancerous or malignant lesions, i.e., polyps. It uses a high-definition camera to examine the inner surface of the colon. Very often, a portion of the colon surface is not visualized during the procedure. Unsurveyed portions of the colon can harbor polyps that then progress to colorectal cancer. Unfortunately, it is hard for the endoscopist to realize there is unsurveyed surface from the video as it is formed. A system to alert endoscopists to missed surface area could thus more fully protect patients from colorectal cancer following colonoscopy. In this dissertation computer-aided visualization techniques were developed in order to solve this problem:1. A novel Simultaneous Localization and Mapping (SLAM) algorithm called RNNSLAM was proposed to address the difficulties of applying a traditional SLAM system on colonic images. I improved a standard SLAM system with a previously proposed Recurrent Neural Network for Depth and Pose Estimation (RNN-DP). The combination of SLAM’s optimization mechanism and RNN-DP’s prior knowledge achieved state-of-the-art performance on colonoscopy, especially addressing the drift problem in both SLAM and RNN-DP. A fusion module was added to this system to generate a dense 3D surface.2. I conducted exploration research on recognizing colonic places that have been visited based on video frames. This technique called image relocalization or retrieval is needed for helping the endoscopist to fully survey the previously unsurveyed regions. A benchmark testing dataset was created for colon image retrieval. Deep neural networks were successfully trained using Structure from Motion results on colonoscopy and achieved promising results.3. To visualize highly-curved portions of a colon or the whole colon, a generalized cylinder deformation algorithm was proposed to semi-flatten the geometry of the colon model for more succinct and global visualization.Doctor of Philosoph

    Computer-aided detection of polyps in CT colonography

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Automated analysis and visualization of preclinical whole-body microCT data

    Get PDF
    In this thesis, several strategies are presented that aim to facilitate the analysis and visualization of whole-body in vivo data of small animals. Based on the particular challenges for image processing, when dealing with whole-body follow-up data, we addressed several aspects in this thesis. The developed methods are tailored to handle data of subjects with significantly varying posture and address the large tissue heterogeneity of entire animals. In addition, we aim to compensate for lacking tissue contrast by relying on approximation of organs based on an animal atlas. Beyond that, we provide a solution to automate the combination of multimodality, multidimensional data.* Advanced School for Computing and Imaging (ASCI), Delft, NL * Bontius Stichting inz Doelfonds Beeldverwerking, Leiden, NL * Caliper Life Sciences, Hopkinton, USA * Foundation Imago, Oegstgeest, NLUBL - phd migration 201
    corecore