86 research outputs found

    Virtual Trackballs Revisited

    Get PDF

    Intuitive tools for camera manipulation

    Get PDF
    We present an image-space camera manipulation widget that sup-ports visualization of the relationship of the camera with respect tothe scene. The form of the widget presents the user with naturalaffordances for camera manipulation. Visual aids such as ghostingof the scene and preview animations are used to acquaint noviceusers with the functions of different parts of the widget. Mousegestures are used to transition between different perspective viewsof the scene in an intuitive way. Finally, we provide a novel methodfor visualizing camera bookmarks

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Sketching and Composing Widgets for 3D Manipulation

    Full text link

    Collaborative immersive authoring tool for real-time creation of multisensory VR experiences

    Get PDF
    With the appearance of innovative virtual reality (VR) technologies, the need to create immersive content arose. Although there are already some non-immersive solutions to address immersive audio-visual content, there are no solutions that allow the creation of immersive multisensory content. This work proposes a novel architecture for a collaborative immersive tool that allows the creation of multisensory VR experiences in real-time, thus promoting the expeditious development, adoption, and use of immersive systems and enabling the building of custom-solutions that can be used in an intuitive manner to support organizations’ business initiatives. To validate the presented proposal, two approaches for the authoring tools (Desktop interface and Immersive interface) were subjected to a set of tests and evaluations consisting of a usability study that demonstrated not only the participants’ acceptance of the authoring tool but also the importance of using immersive interfaces for the creation of such VR experiences.info:eu-repo/semantics/publishedVersio

    A view-based deformation tool-kit, Master\u27s Thesis, August 2006

    Get PDF
    Camera manipulation is a hard problem since a graphics camera is defined by specifying 11 independent parameters. Manipulating such a high-dimensional space to accomplish specific tasks is difficult and requires a certain amount of expertise. We present an intuitive interface that allows novice users to perform camera operations in terms of the change they want see in the image. In addition to developing a natural means for camera interaction, our system also includes a novel interface for viewing and organizing previously saved views. When exploring complex 3D data-sets a single view is not sufficient. Instead, a composite view built from multiple views may be more useful. While changing a single camera is hard enough, manipulating several cameras in a single scene is still harder. In this thesis, we also present a framework for creating composite views and an interface that allows users to manipulate such views in real-time

    Evaluating 3D pointing techniques

    Get PDF
    "This dissertation investigates various issues related to the empirical evaluation of 3D pointing interfaces. In this context, the term ""3D pointing"" is appropriated from analogous 2D pointing literature to refer to 3D point selection tasks, i.e., specifying a target in three-dimensional space. Such pointing interfaces are required for interaction with virtual 3D environments, e.g., in computer games and virtual reality. Researchers have developed and empirically evaluated many such techniques. Yet, several technical issues and human factors complicate evaluation. Moreover, results tend not to be directly comparable between experiments, as these experiments usually use different methodologies and measures. Based on well-established methods for comparing 2D pointing interfaces this dissertation investigates different aspects of 3D pointing. The main objective of this work is to establish methods for the direct and fair comparisons between 2D and 3D pointing interfaces. This dissertation proposes and then validates an experimental paradigm for evaluating 3D interaction techniques that rely on pointing. It also investigates some technical considerations such as latency and device noise. Results show that the mouse outperforms (between 10% and 60%) other 3D input techniques in all tested conditions. Moreover, a monoscopic cursor tends to perform better than a stereo cursor when using stereo display, by as much as 30% for deep targets. Results suggest that common 3D pointing techniques are best modelled by first projecting target parameters (i.e., distance and size) to the screen plane.
    • …
    corecore