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Virtual Trackballs Revisited
Knud Henriksen, Jon Sporring, and Kasper Hornbæk

Abstract—Rotation of three-dimensional objects by a two-dimensional mouse is a typical task in computer-aided design, operation

simulations, and desktop virtual reality. The most commonly used rotation technique is a virtual trackball surrounding the object and

operated by the mouse pointer. This article reviews and provides a mathematical foundation for virtual trackballs. The first, but still

popular, virtual trackball was described by Chen et al. [1]. We show that the virtual trackball by Chen et al. does not rotate the object

along the intended great circular arc on the virtual trackball and we give a correction. Another popular virtual trackball is Shoemake’s

quaternion implementation [2], which we show to be a special case of the virtual trackball by Chen et al.. Shoemake extends the scope

of the virtual trackball to the full screen. Unfortunately, Shoemake’s virtual trackball is inhomogeneous and discontinuous with

consequences for usability. Finally, we review Bell’s virtual trackball [3] and discuss studies of the usability of virtual trackballs.

Index Terms—Virtual trackball, arcball, 3D rotation, 2D mouse, mathematical foundation, usability review.

�

1 ROTATING 3D OBJECTS

ROTATION of 3D objects is crucial in software for
computer-aided design, operation simulations, and

desktop virtual reality. This paper reviews and provides a
mathematical foundation for one technique for rotating
objects, the virtual trackball. In addition, we discuss how
the usability of virtual trackballs has been evaluated.

User interface techniques for rotating 3D objects are most
often of the following four kinds: In view-based techniques,
several views of the object to be rotated are presented to the
user. In each view, the user may rotate the object on one or
two dimensions using a controller, such as a slider. One
common implementation is to present three views of the
object, corresponding to the xy, xz, and yz projections.
View-based techniques are used in commercial applications
[4] and research prototypes [1]. The drawbacks of view-
based techniques are that the views take up screen real-
estate, that rotation is normally only possible on one
dimension at a time, and that the user may experience
problems in mentally integrating the different views of the
object (as found in interfaces presenting both an overview
and a detail view of an information space [5, p. 634]).

In controller-based techniques, each dimension the object can
be rotated on is manipulated with a controller [6]. Such
controllers may be represented separately in the user inter-
face as sliders or buttons on the keyboard [1],may overlap the
object to be rotated, ormaybe invisible and activated through
gestures, e.g., a circularmotion of themouse rotates the object
around theZ-axis [7]. Theusermayalsouse buttons to choose

what dimension a certain control rotates on. For example,
pressing andholdingdown the leftmouse buttonmay switch
from rotating on the X and Y dimensions to rotating on the
Z-dimension [7]. The drawbacks of controller-based techni-
ques are that they only allow rotation on one dimension, that
the dimensions to be rotated are sometimes fixed to the initial
orientations of the coordinate system, and that switching
between controllers takes time or depends on the user
interface being in a particular mode, which is a known cause
of user difficulties [8].

In virtual trackball techniques, rotation is controlled with a
projection of mouse movement onto a virtual trackball,
which in turn controls the actual rotation of the object [1],
[2], [4]. Virtual trackballs allow rotation along several
dimensions simultaneously and integrate controller and
the object controlled, as in direct manipulation [9]. The main
drawback of virtual trackballs is a lack of thorough
mathematical description of the projection from mouse
movement onto a rotation.

In multiple-degree-of-freedom techniques, input devices with
more than two degrees of freedom are used for rotating
objects. Some of these techniques track translation and
rotation by sensors embedded in devices such as gloves
[10], [11], circular ball-like objects [12], [13], real world
objects such as dolls or handles [14], [15], joysticks [16], and
so-called 3D mice [13]. Using computer vision techniques,
the gestures of a person’s hand have also been used to
rotate objects [17]. The main drawback of multiple-degree-
of-freedom techniques is the need for special devices;
however, these techniques may be more efficient for
rotating 3D objects than other techniques [18], [15].

In addition to these four kinds, other techniques for
rotating 3D objects exist. Two-handed interaction [19] with
3D objects is one promising way of interaction where users
control some dimensions of rotation with one hand and
other dimensions with the mouse [20], [21].

This paper reviews and extends the virtual trackball
technique for rotating a 3D object with a 2D mouse. We
focus on the virtual trackball for three reasons. First, even
though multiple-degree-of-freedom techniques are promis-
ing in terms of usability [18], [15], an ordinary 2D mouse is
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likely to remain the main interaction device for a large user
group. Second, the virtual trackball has established itself as
an industry standard for rotating 3D objects with a
2D mouse. For example, it is used in commercial applica-
tions ranging from Matlab [22] to Maya [6]. Third, as
mentioned above, the virtual trackball has a number of
useful features compared to other techniques that use a
2D mouse. In particular, it shares screen real-estate with the
objects it controls and it allows several dimensions to be
rotated at the same time.

In Sections 2, 3, 4, and 5, we review and extend common
techniques for implementing virtual trackballs. Section 6
discusses usability problems with the four kinds of user
interface techniques and reviews experimental evaluations
of the techniques. Section 7 presents our conclusions.

2 VIRTUAL TRACKBALLS

A virtual trackball is a tool for controlling 3D rotations by
moving a 2D mouse that work by simulating a physical
trackball. Conceptually, a virtual trackball can be thought of
as a 3D sphere with radius r ¼ jrrj located on the negative
z-axis behind the screen, see Fig. 1.

The basic mathematical framework is as follows: The 2D
screen is embedded into a 3D image plane with its own
coordinate system xxyz. A screen coordinate ppa ¼ ðxa; yaÞ> is
thought of as a 3D point ppa ¼ ðxa; ya; 0Þ> in the image plane.
The mapping from the image plane to the 3D sphere is
specified by a function mm : IR3�!IR3. The function mm is
typically chosen to be the orthographic projection. The
motion of the mouse on the screen may thus be projected as
motion of the 3D sphere.

To determine the rotation from the mouse movement,
assume that the mouse is pressed at point ppa ¼ ðxa; ya; 0Þ>
and moved to point ppc ¼ ðxc; yc; 0Þ>, where it is released.
The corresponding points on the sphere are PPa ¼ mmðppaÞ and
PPc ¼ mmðppcÞ, which together with OO define a great circular
arc. This arc is chosen as the rotation, see Fig. 2.

Let us consider the possible rotations that may be
specified by a virtual trackball. Lie algebra [23], [24] is a
well-founded mathematical tool for studying the possible

mappings between motions in the image plane onto

rotational motion; however, we will take a more pictorial

approach: Once the mouse has been pressed at the point ppa,

the possible axes of rotation are given by all the great circles

passing through PPa ¼ mmðppaÞ. Pictorially, PPa is the north

pole and the great circles are the longitudinal lines of the

sphere. A great circle is selected by releasing the mouse at

point PPc ¼ mmðppcÞ. Hence, if ppa is set on a point on the

projected sphere (including its rim), then the realizable axes

of rotation are all perpendicular to the line joining PPa with

OO. With orthographic projection of the sphere, the closest

half of the sphere, the hemisphere, and its projection on the

screen are in one-to-one relation and any point on the

closest hemisphere may therefore be selected by the user.

Hence, any axis of rotation may be specified by two points

ppa and ppc on the orthographically projected sphere since all

great circles extend onto a given hemisphere. This is not the

case for perspective projection of the sphere since less than

half the sphere is visible on the screen. Axes of rotation that

may be obtained are limited to lying outside a cone around

the z-axis, where the size of the cone is proportional to the

distance to the sphere divided by the focal length.
The amount of rotation is specified by the length of the

great circular arc between PPa and PPc. It would appear that

rotation around the z-axis under orthographic projection is

limited to be either positive or negative. However, the sign

of rotation may be flipped by interchanging the positions of

ppa and ppc on the rim of the projected sphere. The length of

the great circular arc is largest when ppc is set on the rim such

that the line joining ppa and ppc passes through oo. The length

of the great circular arc is smallest when ppc is set on the

exact opposite side of the rim of the projected sphere.
In the following, we discuss three popular virtual

trackballs specifying the above projection: Chen et al. [1],

Shoemake [2], and Bell [3].

HENRIKSEN ET AL.: VIRTUAL TRACKBALLS REVISITED 207

Fig. 1. A 2D point on the image plane is mapped to a 3D point on a

sphere which is located behind the image plane.
Fig. 2. A virtual trackball can be thought of as a 3D sphere located

behind the screen. The points pp on the image plane are mapped to

points PP on the 3D sphere by a function mm : IR3�!IR3, i.e., PP ¼ mmðppÞ.



3 THE CHEN ET AL. VIRTUAL TRACKBALL

This section gives a review of the virtual trackball by Chen

et al. [1]. In Fig. 3a, the circular projection of the sphere and

two user selected points inside the projection are shown: ppa
and ppc. The location vector ppa makes an angle ’ with the

x-axis and the displacement vector dd makes the angle � þ ’

with the x-axis,

dd ¼ ppc � ppa ¼ dðcosð� þ ’Þ; sinð� þ ’Þ; 0Þ>: ð1Þ

The scalar d ¼ jddj is the Euclidean length of the displace-

ment vector.
The problem is to find a 3D rotation axis uu through the

center of the sphere OO which rotates the point PPa ¼ mmðppaÞ
to the point PPc ¼ mmðppcÞ along a great circular arc on the

3D sphere. Chen et al. find the axis of rotation uu by first

considering two special cases and then deriving the

general case.

3.1 Deriving the Transformation

Case 1: The Point ppa is at the Origin oo.
Consider the special case where the point ppa is located at

the origin oo ¼ mm�1ðOOÞ, i.e., ppa ¼ ð0; 0; 0Þ>, see Fig. 3c. The

displacement vector dd is the projection by mm�1 of the great

circular arc defined by the points PPa, PPc, and OO. In this

special case, the displacement vector (1) has ’ ¼ 0. The

rotation axis euuuu ¼ ðux; uy; uzÞ> is parallel to the image plane

and perpendicular to dd. That is, the unit rotation axis is

equal to

euuuu ¼ ð� sin �; cos �; 0Þ>: ð2Þ

Case 2: The Point ppa is on the x-axis.
Consider the special case where the point ppa is located on

the x-axis, i.e., ppa ¼ ðxa; 0; 0Þ>, see Fig. 3b. In this case, the

rotation axis uu from (2) is transformed such that the origin oo

becomes the point ppa. This transformation consists of a

rotation around the y-axis by some angle !, which will be

specified later. In this special case, the unit axis of rotation buuuu
will be

buuuu ¼ RRyð!Þeuuuu; ð3Þ

where RRyð!Þ is a matrix representing a rotation around the

y-axis

RRyð!Þ ¼
cos! 0 sin!
0 1 0

� sin! 0 cos!

0@ 1A: ð4Þ

Unfortunately, this is incorrect as it turns out that buuuu is not
necessarily perpendicular to the displacement vector dd (see
Sections 3.2 and 3.3 for a detailed discussion). Before
discussing the correction, we finish the review of the virtual
trackball of Chen et al. in order to introduce the remaining
important concepts.
Case 3: The Point ppa is at a General Position.

In the general case, where the point is neither at the
origin nor on the x-axis, it is rotated around the z-axis by
some angle ’, see Fig. 3a. The actual unit rotation axis can
be obtained by rotating the axis, buuuu, the angle ’ around the z-
axis. The final unit rotation axis uu becomes

uu ¼ RRzð’Þbuuuu ¼ RRzð’ÞRRyð!Þeuuuu ð5Þ

¼
� cos � sin’� cos! cos’ sin �
cos’ cos � � cos! sin’ sin �

sin! sin �

0@ 1A; ð6Þ

where RRzð’Þ is a matrix representing a rotation around the
z-axis

RRzð’Þ ¼
cos’ sin’ 0
sin’ cos’ 0
0 0 1

0@ 1A: ð7Þ

The angle of the location vector ppa ¼ ðxa; ya; 0Þ> with the
x-axis is ’ given by

’ ¼ tan�1

�
ya
xa

�
: ð8Þ

The angle ! might be computed in several ways. In the
paper by Chen et al. [1] the angle is specified as a function
f : IR�!IR of the distances jppaj and jrrj, where rr is the radius
of the projection of the sphere onto the image plane:

! ¼ f

�
jppaj
jrrj

�
: ð9Þ

The function f is monotone and satisfies

fðxÞ ¼ 0 if x � 0
�
2 if x � 1:

�
ð10Þ
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Fig. 3. Screen view where the mouse is pressed at point ppa and moved to point ppc where it is released. (a) The general case (Chen et al. case 3).

(b) The point ppa is located on the xx-axis (Chen et al. case 2). (c) The point ppa is located at the origin, i.e., ppa ¼ oo ¼ ð0; 0; 0Þ> (Chen et al. case 1).



By experiment Chen et al. have found that f is equal to

fðxÞ ¼
0 if x � 0
�
2 x if 0 � x � 1
�
2 if x � 1:

8<: ð11Þ

The actual rotation matrix, which rotates a point the

angle � (shown in Fig. 2) around the axis uu ¼ ðux; uy; uzÞ>, is
given by Foley et al. [25, p. 227].

In the paper by Chen et al. [1] the angle � is chosen by

experiment to be

� ¼ �

2

jddj
jrrj 1� 1� 0:2

�

� �
2!

�
1� j cos � jð Þ

� �
; ð12Þ

where dd is given by (1), ! is given by (9)-(11), and � is as

shown in Fig. 3a.

3.2 Remarks on the Chen et al. Virtual Trackball

Unfortunately, the rotation axis uu computed by (5) is

incorrect because it is not necessarily perpendicular to the

displacement vector (1). Using � þ ’ as the angle between

the displacement vector and the x-axis, the rotation axis (5)

is found to be

uu ¼
� cos � sin’� cos! cos’ sin �
cos’ cos � � cos! sin’ sin �

sin! sin �

0@ 1A: ð13Þ

To see that the displacement vector dd and the rotation axis uu

are not perpendicular, the dot-product of the unit displace-

ment vector dd=jddj and the unit rotation axis uu is computed as

dd

jddj � uu ¼ dd

jddj
>
uu ¼ � sin2

�
!

2

�
sinð2�Þ: ð14Þ

Fig. 4a shows a plot of the angular error cos�1ð dd
jddj � uuÞ as a

function of the angles ! and ’ for � þ ’ ¼ 30�. The plot in

Fig. 4b shows the angular error cos�1ð dd
jddj � uuÞ as a function of

the point ppa ¼ ðxa; ya; 0Þ> for the angle � þ ’ ¼ 30� and the

function f (11).

3.3 Improving the Chen et al. Virtual Trackball

In this section, we will show that the rotation axis by the

corrected Chen et al. virtual trackball is given by:

uu ¼
� cos! sinð� þ ’Þ
cos! cosð� þ ’Þ

sin! sin �

0@ 1A: ð15Þ

Initially, the displacement vector dd is located at point ppa,
see Fig. 3a. To transform it to oo, first we rotate it by the angle
�’ around the z-axis. The angle ’ is equal to
’ ¼ tan�1

�
ya=xa

�
, since ppa ¼ ðxa; ya; 0Þ>. The transformed

displacement vector bdddd is therefore equal to

bdddd ¼ RRzð�’Þdd ¼ d
�
cos �; sin �; 0

�>
: ð16Þ

After this transformation, the displacement vector bdddd is on
the x-axis, see Fig. 3b.

Second, transform the displacement vector bdddd to the origin
oo by a rotation �! around the y-axis. Specifying the angle !
is deferred to Section 3.4.

The original displacement vector dd is transformed to the
origin by

edddd ¼ RRyð�!ÞRRzð�’Þdd ð17Þ

¼ d
�
cos! cos �; sin �; cos � sin!

�>
: ð18Þ

After these two rotations, the displacement vector edddd starts at
the origin oo, see Fig. 3c. It is emphasized that the
z-component in (18) is different from zero and therefore
not in the image plane. This is in contrast to (1) used by the
Chen et al. virtual trackball.

The unknown rotation axis euuuu should be perpendicular to
the displacement vector. Now, the displacement vector has
been transformed to the origin oo, i.e., the transformed
displacement vector edddd is given by (18). Therefore, the
rotation axis might be computed as the cross-product of the
z-axis and edddd.

Given two vectors aa ¼ ðax; ay; azÞ> and bb ¼ ðbx; by; bzÞ>,
the cross-product aa� bb may be written as follows:

aa� bb ¼ MMðaaÞ bb; ð19Þ

where

MMðaaÞ ¼
0 �az ay
az 0 �ax
�ay ax 0

0@ 1A: ð20Þ
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Fig. 4. The angular error cos�1ð dd
jddj � uuÞ in degrees between the displacement vector and the transformed rotation axis as a function of ppa ¼ ðxa; ya; 0Þ>.

Here, f is given by (11) and � þ ’ ¼ 30�. Graph (a) shows the error as a function of ’ and ! and (b) illustrates the same error as a function of x and y.



The z-axis has coordinates ð0; 0; 1Þ>, so the matrix

MM
�
ð0; 0; 1Þ>

�
looks like this

MM
�
ð0; 0; 1Þ>

�
¼

0 �1 0
1 0 0
0 0 0

0@ 1A: ð21Þ

Hence, the rotation axis euuuu can be written as the product of

MM
�
ð0; 0; 1Þ>

�
, (21), and edddd, (18),
euuuu ¼ MM

�
ð0; 0; 1Þ>

�edd ¼
� sin �

cos! cos �
0

0@ 1A: ð22Þ

The vector euuuu is in the image plane with a different

orientation than the rotation axis computed by Chen et al.,

where euuuu ¼ ð� sin �; cos �; 0Þ> by (2).
Because the rotation axis euuuu has been computed as if the

displacement vector was at the origin, euuuu has to be

transformed back to its original position ppa. This is done

by first rotating the axis by the angle ! around the y-axis,

yielding the rotation axis buuuu:
buuuu ¼ RRyð!Þeuuuu ð23Þ

¼
�
� cos! sin �; cos! cos �; sin! sin �

�>
: ð24Þ

The rotation axis has been transformed as if the

displacement vector was on the x-axis using (23). Last, we

transform the rotation axis to the point ppa by rotation ’

around the z-axis

uu ¼ RRzð’Þbuuuu ¼
� cos! sinð� þ ’Þ
cos! cosð� þ ’Þ

sin! sin �

0@ 1A: ð25Þ

To see that this rotation axis uu is always perpendicular to

the displacement vector dd, one can compute the dot-product

of the vectors dd and uu:

dd � uu ¼
cosð� þ ’Þ
sinð� þ ’Þ

0

0@ 1A �
� cos! sinð� þ ’Þ
cos! cosð� þ ’Þ

sin! sin �

0@ 1A ¼ 0: ð26Þ

The point ppa is assumed to be in the image plane, so its

coordinates are ppa ¼ ðxa; ya; 0Þ> and the rotation angle

around the z-axis can be computed as

’ ¼ tan�1

�
ya
xa

�
: ð27Þ

3.4 Choosing Function f

The rotation angle around the y-axis may be computed in

several ways. Chen et al. [1] computed it as a function f of

the distances jppaj and jrrj as

! ¼ f

�
jppaj
jrrj

�
; ð28Þ

where f : IR�!IR is a monotone function which satisfies

fðxÞ ¼ 0 if x � 0
�
2 if x � 1:

�
ð29Þ

At least three choices for the function f are relevant to

discuss:

. The original suggestion by Chen et al., see (11):

fðxÞ ¼ x:

. The angle actually specified by the user under
perspective projection of the sphere:

fðxÞ ¼
r2 �O2

z

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
�Ozx

2r

O2
z � r2 1� x2ð Þ

 !
:

The derivation is given in Appendix A.
. The angle specified by the user under orthographic

projection of the sphere:

fðxÞ ¼ sin�1ðxÞ:

This choice results in the virtual trackball of Shoe-

make [2], to be demonstrated in Section 4.2.

4 THE SHOEMAKE VIRTUAL TRACKBALL

Shoemake [26] and Hultquist [27] implement a special

version of the virtual trackball, the so-called arcball, in which

pp is the orthographic projection of PP as shown in Fig. 2. The

functionmmShoemake is extended to the full image by

mShoemakeðppÞ ¼ mShoemakeðx; y; 0Þ ¼ PP

¼

x

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðx2 þ y2Þ

p
0B@

1CA if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� r

rffiffiffiffiffiffiffiffiffiffi
x2þy2

p
x

y

0

0B@
1CA if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> r

8>>>>>>>><>>>>>>>>:
ð30Þ

such that a point outside the projected sphere is mapped to

the nearest point on the rim of the sphere. The graph of the

z-value of mShoemake is shown in Fig. 5. In the virtual

trackball of Shoemake, first, the point ppa is mapped to PPa

and ppc to PPc. Then, the sphere is rotated an angle � along the

great circular arc defined by the origin OO, PPa, and PPc. This

rotation is performed by rotating the angle � around an axis

210 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 2, MARCH/APRIL 2004

Fig. 5. The graph of the 3D points computed by Shoemake.



uu which is perpendicular to both of the location vectors PPa

and PPc. The rotation axis uu and the angle � are given by

uu ¼ PPa � PPc ð31Þ

� ¼ tan�1

�
jPPa � PPcj
PPa � PPc

�
: ð32Þ

Shoemake uses quaternions to compute the rotation angle �
and the rotation axis uu; see Dam et al. [28] for a review of
quaternions. If the vectors PPa and PPc are normalized, they
can be represented as unit quaternions QQa and QQc:

QQa ¼ 0;
PPa

jPPaj

� �
ð33Þ

QQc ¼ 0;
PPc

jPPc

� �
: ð34Þ

The unit quaternion which rotates PPa into PPc along a great
circle is given by Pervin and Webb [29, p. 6]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�QQcQQa

p
: ð35Þ

That is, QQa is rotated into QQc as follows:

QQc ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�QQcQQa

p �
QQa

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QQcQQa

p ��1

: ð36Þ

The product �QQcQQa is a unit quaternion and so is its square
root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QQcQQa

p
. PervinandWebb {29,p. 6] give their relationas

�QQcQQa ¼ ðcos �; nn sin �Þ

¼)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QQcQQa

p
¼
�
cos

�

2
; nn sin

�

2

�
;

ð37Þ

where nn is the unit axis of rotation. Shoemake does not

compute
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�QQcQQa

p
, but, for convenience, he instead rotates

by QQcQQa
�1 which is equivalent to �QQcQQa because of the

relations:

QQcQQa
�1 ¼ QQcQQa

� ¼ �QQcQQa: ð38Þ

Thus, Shoemake computes a rotation of 2� instead of �.

4.1 Remarks on the Shoemake Virtual Trackball

We note that Shoemake uses the quaternion
QQ ¼ ðcos �; nn sin �Þ, which implements a 2� rotation. We will
not judge whether this happened by accident or design, but
we note that the quaternion implementing a rotation by � is
given by QQ ¼ ðcos �

2 ; nn sin �
2Þ. In Section 6, we discuss some

questions related to the usability of the virtual trackball of
Shoemake.

The Shoemake trackball allows the user to rotate an
object using any point on the screen by mapping points
outside the projected sphere onto its rim (30). Unfortu-
nately, the chosen implementation has a discontinuity
which will be discussed in the following.

Fig. 6 shows two situations where the mouse is clicked at
a point ppa and dragged across the screen to a point ppc,
where both points are outside the projection of the sphere.
In both cases, the points ppa; ppc are mapped onto 3D points
PPa; PPc on the rim of the sphere. Therefore, both vectors PPa

and PPc are parallel to the image plane. The axis of rotation
is equal to the crossproduct of the vectors PPa � PPc.

Fig. 6a shows a situation where the axis of rotation goes
into the paper and, in Fig. 6b, the axis of rotation goes out of
the paper. That is, the axes of rotation are perpendicular to
the image plane. The actual rotations are shown as thick
great circular arcs in the figure. If the point PPc lies exactly
on the dashed line, the axis of rotation is the zero vector.

If the point ppc moves outside of the projection of the
sphere just around the dashed line in Fig. 6, the axis of
rotation will flip in and out of the paper each time the
dashed line is crossed. As long as the point ppc is outside the
projection of the sphere, the user is not likely to notice the
discontinuity since the actual rotation behaves as a
2D rotation. The discontinuity becomes visible when the
point ppc moves into the projection of the sphere because,
when ppc crosses the rim of the sphere, the vector PPc is no
longer parallel to the image plane and the actual axis of
rotation is not perpendicular to the image plane. Therefore,
the great circular arcs of rotation will start to sweep across
the sphere, but the way they sweep depends on where the
point ppc enters the projection of the sphere, see Fig. 7. This
behavior is visible to the user and looks rather strange
because the vector PPc changes very rapidly when it crosses
the rim of the sphere. Fig. 8 shows the angle between the
Z-axis and the rotation axis when ppa ¼ ð�1:5; 0; 0Þ> and the
point ppc is moved across the screen parallel to the x-axis.
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Fig. 6. The mouse is clicked at point ppa and dragged across the screen
to a point ppc, where both points are outside the projection of the sphere.
Vectors PPa and PPc are parallel to the image plane and the rotation is
along the thick great circular arc with the rotation axis directed into the
paper (a) and out of the paper (b). If the point PPc lies exactly on the
dashed line, the axis of rotation is the zero vector.



4.2 The Shoemake Virtual Trackball Is a Special
Case of the Chen et al. Virtual Trackball

This section shows that the virtual trackball described by

Shoemake is a special case of the virtual trackball described

by Chen et al.
Recall that Chen et al. rotate an angle ! around the y-

axis, where

! ¼ f

�
jppaj
jrrj

�
ð39Þ

and f : IR�!IR is a monotone function which satisfies

fðxÞ ¼ 0 if x � 0
�
2 if x � 1:

�
ð40Þ

Shoemake uses orthographic projection to map points ppa
in the image plane onto the sphere, see Fig. 9. The figure
shows that the ratio of jppaj and jrrj equals sin!, i.e.,

! ¼ sin�1

�
jppaj
jrrj

�
¼ sin�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
a þ y2a

p
r

�
: ð41Þ

If the function f used by Chen et al. is chosen to be

fðxÞ ¼
0 if x � 0
sin�1ðxÞ if 0 � x � 1
�
2 if x � 1;

8<: ð28Þ

then the virtual trackball described by Shoemake is a special
case of the improved Chen et al. virtual trackball described
in Section 3.3.

5 THE BELL VIRTUAL TRACKBALL

The virtual trackball implemented by Bell [3] is very similar
to the virtual trackball implemented by Shoemake [26]. The
difference is the function mapping points in the image
plane to 3D points. While Shoemake maps the points onto a
sphere, Bell maps them onto a surface made by combining a
sphere and a hyperbola: if the 2D point is close to the center
of the screen, the surface is a sphere, else it is a hyperbola.
The function mmBell : IR

3�!IR3 is given by

mmBellðppÞ ¼ mmBellðx; y; 0Þ ¼ PP

¼

x

yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðx2 þ y2Þ

p
0B@

1CA if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� rffiffi

2
p

x

y
r2

2
ffiffiffiffiffiffiffiffiffiffi
x2þy2

p

0BB@
1CCA if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
> rffiffi

2
p :

8>>>>>>>>><>>>>>>>>>:
ð43Þ

The graph of the function mm is shown in Fig. 10. The actual
rotation is computed using the same equations as Shoe-
make, i.e., (33)-(36).

5.1 Remarks on the Bell Virtual Trackball

In contrast to the Shoemake virtual trackball, the Bell virtual
trackball rotates smoothly because the orientation of the
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Fig. 7. The mouse is clicked at point ppa and dragged across the screen

to a point ppc above (a) and below (b) the discontinuity line.

Fig. 8. The angle between the Z-axis and the axis of rotation for

ppa ¼ ð�1:5; 0; 0Þ>.

Fig. 9. Orthographic projection of point ppa in the image plane onto PPa on

the sphere.



axis of rotation is continuous as a function of the screen
coordinates. Fig. 11 shows the angle between the Z-axis and
the axis of rotation as a function of screen coordinates and is
seen to be smooth.

6 EVALUATIONS OF THE USABILITY OF

VIRTUAL TRACKBALLS

To our knowledge, four studies have empirically evaluated
the usability of virtual trackballs. These studies are
reviewed below. In addition, we identify possibilities for
future work in evaluating virtual trackballs.

Chen et al. [1] report two experiments. Both experiments
required subjects to rotate a single object from an orienta-
tion chosen at random to a fixed position used throughout
the experiment. After performing each rotation, subjects
were given feedback on the accuracy of their rotation. In the
first experiment, 12 subjects solved nine tasks with each of
the following techniques: the virtual trackball of Chen et al.,
a controller-based technique using the mouse button to
switch between XY and Z rotation, and two controller-
based techniques using sliders. The results of Chen et al.
indicated no practical difference in accuracy between the
techniques. For tasks that required rotation around only one
axis, the techniques using sliders were faster. However, for
tasks that require rotation around more than one axis, the
virtual trackball and the XY + Z technique were fastest. In
the second experiment, six subjects used a virtual trackball
and a controller-based technique where gestures deter-
mined which dimension to rotate on [7]. This experiment
did not reveal any difference between techniques. In both
experiments, most subjects preferred the virtual trackball,
stating that it felt more natural.

Jacob and Olivier [30] compared four techniques also
used in the experiments of Chen et al.: an XY + Z controller-
based technique, the virtual trackball, the technique of
Evans et al. [7], and a controller-based technique with
overlapping sliders. In addition to the rotation task used by
Chen et al., Jacob and Olivier had the 137 subjects perform
an inspection task which required subjects to examine an
object to answer questions about it (for example, in a house,
find the number of windows). Subjects did 12 rotation and
six inspection tasks with each controller. For the rotation
task, the technique of Evans et al. resulted in a higher mean

error compared to the other techniques. With respect to task
completion times, the virtual trackball was faster, the
overlapping sliders and the technique by Evans et al. had
comparable task completion times, and the XY + Z

technique was slowest. For the inspection task, the virtual
trackball appeared to be fastest; the four techniques had
similar levels of error.

Hinckley et al. [18] compared the virtual trackball by
Chen et al. with the virtual trackball of Shoemake and two
multiple-degree-of-freedom techniques. Twenty-four sub-
jects used each technique to solve 10 tasks. The tasks
required subjects to rotate an object from a fixed position to
a randomly generated one. Hinckley et al. found no
difference in accuracy between the techniques. However,
the multiple-degrees-of-freedom techniques were between
33 percent and 36 percent faster than the virtual trackballs.
Hinckley et al. consider their results to show that the faster
movement of the virtual trackball of Shoemake does not
decrease users’ satisfaction. On the contrary, many users
reported that they liked the virtual trackball’s responsive-
ness [18, p. 7]. The main usability problem with the virtual
trackballs was that users were unsure about the difference
between being inside and outside the center of the virtual
trackballs.

Partala [31] had 12 subjects use a virtual trackball, a
modified version of the virtual trackball, called the virtual
rectangle, and a keyboard. These techniques were imple-
mented using two different metaphors: a metaphor of
rotating the object (world-in-hand metaphor; rotation is
controlling the object) and moving one’s self around the
object (eyeball-in-hand; rotation is controlling the view-
port). Subjects had to match the orientation of an object
shown on the screen to an object shown on paper. The
results showed that the virtual trackball and the virtual
rectangle have similar task completion times. When the
world-in-hand metaphor was used, both the virtual
rectangle and the virtual trackball were faster than a
keyboard. Subjective satisfaction indicated that the virtual
rectangle was preferred to the virtual trackball, which, in
turn, was preferred to the keyboard.

In our view, the evaluations of usability reviewed above
raise questions to be explored in future work so as to reach
a broader description of the usability of virtual trackballs.
First, the tasks used in the experiments are mostly simple
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Fig. 10. The graph of the 3D points computed by Bell.

Fig. 11. The angle between the Z-axis and the axis of rotation as a

function of screen coordinates for ppa ¼ ð�1:5; 0; 0Þ>.



rotation tasks that require subjects to rotate an object from
one position to another. One exception is the study by Jacob
and Olivier [30] that includes an inspection task. Interest-
ingly, this study finds differences between controllers for
rotation and inspection tasks. The technique by Evans et al.
does relatively worse on the inspection tasks, and Jacob and
Olivier [30, p. 75] note that “The overlapping sliders [...]
seem more adequate for orientation tasks [we call those
rotation tasks] than for inspection ones.” Consequently,
using a broader selection of tasks in evaluations of virtual
trackballs may show trade offs between different techni-
ques. Future experiments could explore 1) a series of
rotation tasks which may prove harder when the virtual
trackball has discontinuities; 2) tasks closer to actual work
tasks, for example, where subjects are concentrated on
solving a diagnostic problem (such tasks may help explore
how usable virtual trackballs are when attention has to be
divided between controlling rotation and solving the work
task); and 3) tasks similar to the informal painting task used
by Kurtenbach and Balakrishnan [32], which may help
focus on different aspects of usability (e.g., fun or engage-
ment) than do the, for example, diagnostic tasks. The
taxonomy of tasks described by Plaisant et al. [33], though
developed for image browsing, may help identify addi-
tional kinds of tasks that could supplement the simple
rotation tasks.

Second, usability may be seen as comprised of the
aspects effectiveness (e.g., rotation accuracy), efficiency
(e.g., time), and subjective satisfaction (e.g., preference)
[34]. The studies by Chen et al. [1] and Jacob and Olivier
[30] do not report subjective satisfaction in a systematic
way, potentially leaving out important differences between
controllers. Furthermore, the three usability aspects may be
measured by a variety of indicators. In the studies reviewed
above, few usability measures are employed in addition to
time and accuracy. How mentally demanding is it, for
example, to rotate objects using the various techniques?
What understanding of the objects rotated do users build?
Which technique results in the least physical fatigue? These
questions seem important to address in future work.

Third, the studies reviewed all emphasize accuracy and
give subjects feedback on accuracy. Consequently, we need
to explore what happens if subjects are encouraged to
emphasize speed, which has been done in other contexts
[35], [15].

Fourth, details in the implementation of virtual trackballs
are likely to have a large impact on usability. In this paper,
we have shown that the virtual trackball of Shoemake is
discontinuous when the user presses the mouse outside the
projection of the virtual sphere, making the size of the
sphere crucial for usability studies. Unfortunately, the
studies reviewed omit details about the size of the virtual
sphere, how the sphere is visually indicated on the screen,
etc., which makes comparisons across studies difficult.
Future work could explore, for example, the influence on
usability of the size of the virtual sphere more system-
atically so as to help designers make decisions about how to
implement virtual trackballs. Another line of work could
explore how different sensitivities of virtual trackballs

influence usability and if nonisomorphic rotational map-
pings [36] work for virtual trackballs.

In summary, the evaluations suggest that the accuracy of
virtual trackballs is comparable to that of other techniques
for rotating 3D objects. As found by Hinckley et al. [18],
however, multiple-degrees-of-freedom techniques are more
efficient. Such techniques also lead to higher subjective
satisfaction. The distinction between inside and outside the
virtual sphere seems the single most critical usability
problem. Yet, to our knowledge, no studies have investi-
gated the usability of the solution of Bell, which in part
address this problem. Finally, we suggest supplementing
the studies reviewed with further work using a wider range
of tasks and richer measures of usability.

7 CONCLUSION

Virtual trackballs are convenient tools for rotation of

3D objects with a 2D mouse that work by simulating a

physical trackball. Most often, virtual trackballs are not

displayed on screen, but are simulated as if situated at the

center of the object to be rotated and having a size

proportional to the object’s size.

To our knowledge, Chen et al. [1] pioneered the field,

while the methods by Shoemake [2] and Bell [3] are the

most commonly used. In this paper, the method by Chen

et al. has been discussed and corrected; in the process, we

demonstrated that Shoemake’s virtual trackball [2] is a

special case of the corrected Chen et al. virtual trackball.

While a physical trackball cannot be operated without

actually touching it, virtual trackballs may be used outside

the range of projection. From a usability point of view, this

possibility seems natural because the virtual trackball is

often not shown and the user does not have any notion of

the simulated, physical trackball. Chen et al. do not consider

this possibility. Shoemake does and we demonstrate that,

for certain mouse movements, the extension of Shoemake is

discontinuous. Bell [3] suggests an alternative solution, but,

to our knownledge, the consequences for usability have not

yet been studied.

Virtual trackballs are used for almost all rotations of

3D objects with a 2D mouse. This paper has contributed a

solid mathematical foundation for virtual trackballs. In

addition, we have identified possibilities for future work

concerning the evaluation of virtual trackballs, especially

how to find new tasks and usability measures for such

evaluations.

APPENDIX A

CHOOSING ! ¼ fðkÞ ¼ � IN CHEN ET AL.

In the special case where the ppa is on the x-axis, Chen et al.

Case 2, a sigmoid function fðjppaj=jrrjÞ is used to rotate

around the y-axis as depicted in Fig. 12. We wish to find the

function f such that

! ¼ f
jppaj
jrrj

� �
¼ �: ð44Þ
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In this section, we will show that

fðkÞ ¼ cos�1 r2 �O2
z

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
�Ozk

2r

O2
z � r2 1� k2ð Þ

 !
ð45Þ

using k ¼ jppaj
jrrj and independently of the focal length F .

In general, we have

� ¼ cos�1 ðoo�OOÞ � ðPPa �OOÞÞ
rjoo�OOj

� �
ð46Þ

with oo at the center of focus. Because the sphere is assumed

to be centered on the z-axis and because PPa previously has

been rotated around OO such that Py ¼ 0, we may obtain a

simplification of (46) using

ry ¼ Ox ¼ Oy ¼ 0 ð47Þ

such that

! ¼ f
px
rx

� �
¼ cos�1 Pz �Oz

r

� �
: ð48Þ

Given a point ppa ¼ ðpx; 0; 0Þ> in the image plane, the

projection onto the sphere is the intersection of the

projection line

lpðsÞ ¼ s ppa �
0
0
F

0@ 1A0@ 1A ¼ s
px
0

�F

0@ 1A; ð49Þ

with the implicit equation of the sphere:

ðx�OxÞ2 þ ðy�OyÞ2 þ ðz�OzÞ2 � r2 ¼ 0: ð50Þ

The resulting second order polynomial,

ðspxÞ2 þ ð�sF �OzÞ2 � r2 ¼ 0; ð51Þ

is solved for s and the solution corresponding to the first

intersection is selected

s0 ¼ �FOz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF 2 þ p2xÞr2 �O2

zp
2
x

p
F 2 þ p2x

: ð52Þ

Hence,

� ¼ cos�1 �s0F �Oz

r

� �
: ð53Þ

To find the sigmoid function f solving (44), (53) must be

written in terms of px=qx. To find qx, a line is placed along rr

lqðtÞ ¼ t qq �
0
0
F

0@ 1A0@ 1A ¼
qx
0

�F

0@ 1A ð54Þ

such that it grazes the sphere. Inserting lqðtÞ into the implicit

equation for the sphere (50)

ðtqxÞ2 þ ð�tF �OzÞ2 � r2 ¼ 0; ð55Þ

it is noted that lqðtÞ grazes the sphere when the second

order polynomial has excactly one solution, i.e.,

ð2OzF Þ2 ¼ 4ðF 2 þ q2xÞðO2
z � r2Þ: ð56Þ

The positive solution is

qx ¼ Frffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2

z � r2
p : ð57Þ

Introducing the factor k ¼ px=qx with px ¼ kqx, it is found

that the sigmoid f such that ! ¼ fðpx=qxÞ ¼ � is given by

! ¼ fðkÞ

¼ cos�1 �s0F �Oz

r

� �
¼ cos�1 r2 �O2

z

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p
�Ozk

2r

O2
z � r2 1� k2ð Þ

 !
¼ �:

ð58Þ

Note that f is independent of the focal length F .

APPENDIX B

REFERENCE IMPLEMENTATIONS

Implementations of the three virtual trackballs are

available in C++ at: http://www.diku.dk/forskning/

image/trackballs/.
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