
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-46

2006-01-01

A view-based deformation tool-kit, Master's Thesis, August 2006 A view-based deformation tool-kit, Master's Thesis, August 2006

Nisha Sudarsanam

Camera manipulation is a hard problem since a graphics camera is defined by specifying 11

independent parameters. Manipulating such a high-dimensional space to accomplish specific

tasks is difficult and requires a certain amount of expertise. We present an intuitive interface

that allows novice users to perform camera operations in terms of the change they want see in

the image. In addition to developing a natural means for camera interaction, our system also

includes a novel interface for viewing and organizing previously saved views. When exploring

complex 3D data-sets a single view is not sufficient. Instead, a composite view built... Read Read

complete abstract on page 2. complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Sudarsanam, Nisha, "A view-based deformation tool-kit, Master's Thesis, August 2006" Report Number:
WUCSE-2006-46 (2006). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/196

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/196?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/196

A view-based deformation tool-kit, Master's Thesis, August 2006 A view-based deformation tool-kit, Master's Thesis, August 2006

Nisha Sudarsanam

Complete Abstract: Complete Abstract:

Camera manipulation is a hard problem since a graphics camera is defined by specifying 11 independent
parameters. Manipulating such a high-dimensional space to accomplish specific tasks is difficult and
requires a certain amount of expertise. We present an intuitive interface that allows novice users to
perform camera operations in terms of the change they want see in the image. In addition to developing a
natural means for camera interaction, our system also includes a novel interface for viewing and
organizing previously saved views. When exploring complex 3D data-sets a single view is not sufficient.
Instead, a composite view built from multiple views may be more useful. While changing a single camera
is hard enough, manipulating several cameras in a single scene is still harder. In this thesis, we also
present a framework for creating composite views and an interface that allows users to manipulate such
views in real-time.

https://openscholarship.wustl.edu/cse_research/196?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/196?utm_source=openscholarship.wustl.edu%2Fcse_research%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-46

A view-based deformation tool-kit, Master's Thesis, August 2006

Authors: Nisha Sudarsanam

Corresponding Author: nisha.sudarsanam@gmail.com

Web Page: http://www.cs.wustl.edu/~nsudarsa

Abstract: Camera manipulation is a hard problem since a graphics camera is defined by specifying 11
independent parameters. Manipulating such a high-dimensional space to accomplish specific tasks is difficult
and requires a certain amount of expertise. We present an intuitive interface that allows novice users to perform
camera operations
in terms of the change they want see in the image. In addition to developing a natural means for camera
interaction, our system also includes a novel interface for viewing and organizing previously saved views. When
exploring complex 3D data-sets a single
view is not sufficient. Instead, a composite view built from multiple views may be more useful. While changing a
single camera is hard enough, manipulating several cameras in a single scene is still harder. In this thesis, we
also present a framework for creating composite views and an interface that allows users to manipulate such
views in real-time.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

A THESIS ON A VIEW-BASED DEFORMATION TOOL-KIT

by

Nisha Sudarsanam , Bachelor Of Engineering, Computer Engineering

Prepared under the direction of Professor Cindy M Grimm

A thesis presented to the Henry Edwin Sever Graduate School of

Washington University in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

August 2006

Saint Louis, Missouri

WASHINGTON UNIVERSITY

THE HENRY EDWIN SEVER GRADUATE SCHOOL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ABSTRACT

A THESIS ON A VIEW-BASED DEFORMATION TOOL-KIT

by

Nisha Sudarsanam

ADVISOR: Professor Cindy M Grimm

August 2006

Saint Louis, Missouri

Camera manipulation is a hard problem since a graphics camera is defined by spec-
ifying 11 independent parameters. Manipulating such a high-dimensional space to
accomplish specific tasks is difficult and requires a certain amount of expertise. We
present an intuitive interface that allows novice users to perform camera operations
in terms of the change they want see in the image. In addition to developing a natural
means for camera interaction, our system also includes a novel interface for viewing
and organizing previously saved views. When exploring complex 3D data-sets a single
view is not sufficient. Instead, a composite view built from multiple views may be
more useful. While changing a single camera is hard enough, manipulating several
cameras in a single scene is still harder. In this thesis, we also present a framework
for creating composite views and an interface that allows users to manipulate such
views in real-time.

To my family and friends

Contents

List of Figures . vi

1 Introduction . 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Outline . 2

2 Key Concepts . 3

2.1 Models . 3

2.2 Transformation matrices . 3

2.2.1 Rotation . 4

2.2.2 Transforming vectors . 5

2.2.3 Convention . 5

2.3 Camera Model . 5

2.3.1 Camera operations . 7

2.4 Lighting . 7

2.5 Deformations . 8

2.6 Widgets . 8

3 CubeCam : A screen-space camera manipulation tool 9

3.1 Motivation . 9

3.2 Goals . 10

3.3 Background . 10

3.4 The CubeCam Interface . 10

3.5 Previous work . 11

3.6 1-pt perspective . 12

3.6.1 User’s view . 12

3.6.2 Perspective Distortion . 13

3.7 2-pt perspective . 13

iii

3.7.1 User’s view . 14

3.7.2 Center-of-projection . 14

3.8 3-pt perspective . 14

3.8.1 User’s view . 15

3.8.2 Rotation . 15

3.8.3 Rotation Planes . 16

3.8.4 Scene-centric versus Object-centric CubeCam 16

3.9 Ghosting . 16

3.10 Camera Bookmarks . 17

3.11 Implementation . 19

3.11.1 Camera primitives . 19

3.11.2 Rendering a ghost scene . 19

3.11.3 Bookmark Icons . 19

4 Non-linear perspective projections . 20

4.1 Background . 20

4.2 Non-linear perspective rendering framework 21

4.3 Contributions . 22

5 Visualization of complex data-sets . 23

5.1 Motivation . 23

5.2 Goals . 23

5.3 Previous Work . 25

5.4 Approach . 26

5.5 The non-linear projection tool-kit . 27

5.5.1 Unwrap Widget . 27

5.5.2 Clipping Widget . 28

5.5.3 Fish-eye Widget . 28

5.5.4 Design Rationale . 28

5.6 Unwrap widget . 29

5.6.1 Overview . 29

5.6.2 User’s View . 29

5.6.3 Methodology . 30

5.6.4 Blending Views . 31

5.6.5 Examples . 33

iv

5.7 Clipping widget . 33

5.7.1 User’s View . 33

5.7.2 Methodology . 35

5.7.3 Examples . 35

5.8 Fish-Eye widget . 36

5.8.1 User’s View . 36

5.8.2 Methodology . 36

6 Curved Perspective . 38

6.1 Motivation . 38

6.2 Goal . 39

6.3 Approach . 39

6.3.1 Mathematical Model . 40

6.4 User’s view . 41

6.5 Examples . 43

6.5.1 Single curved camera . 43

6.6 Multiple curved cameras . 43

7 Panoramic views . 45

7.1 Motivation . 45

7.2 Problem statement . 45

7.3 Approach . 46

7.4 Implementation . 46

7.5 Result . 47

7.6 Future Work . 47

8 GPU Implementation . 49

8.1 Rendering times . 50

9 Conclusion . 51

References . 52

Vita . 55

v

List of Figures

2.1 Camera view volumes . 6

3.1 The CubeCam Interface . 11

3.2 Perspective Distortion in 1-pt view 13

3.3 Center of projection in 2-pt view . 14

3.4 Camera rotation in 3-pt view . 15

3.5 Ghosting in CubeCam . 17

3.6 Bookmarks based on translation . 17

3.7 Bookmarks based on Rotation . 18

4.1 Non-linear perspective in art . 21

5.1 Example data-sets . 24

5.2 Blob building . 30

5.3 Helix unwrapping - changing the default camera 32

5.4 Helix unwrapping - changing the source volume 33

5.5 Clipping widget and sillhouetes . 34

5.6 Clipping widget and occlusion . 34

5.7 Clipping Widget and knots . 35

5.8 A single fish-eye camera . 36

5.9 Multiple fish-eye cameras . 37

6.1 Escher and Curved Perspective . 39

6.2 Curved Perspective primitives . 42

6.3 Single curved camera . 43

6.4 Multiple curved cameras . 44

7.1 Panorama . 46

7.2 Bandit Views . 47

7.3 Bandit Panorama . 48

vi

1

Chapter 1

Introduction

1.1 Motivation

These days, both virtual 3D environments and data-sets are becoming increasingly

complex. As a user you want to explore such scenes in the simplest manner. In graph-

ics, exploring scenes is accomplished by using a virtual camera, analogous to the real

world. However, unlike a real world camera, the graphics camera is manipulated in

the same 2D environment that the 3D scene is rendered in. Since the graphics camera

is specified using 11 parameters, manipulating it is hard. For novice users, changing

the camera in order to acquire a desired view can be very difficult. Current tech-

niques prevalent for manipulating cameras are also quite unintuitive. A few of these

techniques are menu-based, thus resulting in a myriad of menu options corresponding

to the different possible camera operations. Others are mouse-based, which require

mapping 11 degrees of freedom (dof) to a 2 dof device. These therefore use shortcut

keys and key modifiers in order to disambiguate different operations. Developing an

intuitive camera manipulation interface is thus an active area of research.

Often data-sets are so complex that a single view does not suffice to adequately ex-

amine the different features of the data-set. On the other hand, if multiple windows

are used for different views, it can be difficult to mentally stitch together a composite

view of the whole data-set from these views. One common method of combining

different features into a single view is to deform the data-set. The problem with such

techniques is that the deformation is dependent on the current view of the data-set:

changing the view even slightly produces an inconsistent deformation. The methods

2

we present in this thesis combine different views in order to generate a seamless com-

posite view of a data-set. Our methods leave the underlying geometry of the model

intact. The idea of using view-based deformations for exploring data-sets is an new

idea in graphics. Finally, we use view-based deformations to re-create a special kind

of perspective effect commonly used by artists called curved perspective.

1.2 Goals

Our work has been directed towards accomplishing two key goals.

• To develop and evaluate a camera manipulation interface that moves away from

menu-based techniques.

– The interface should be based more on how the user wants to view a

3D scene rather than relying on the user’s familiarity with the internal

parameters of the camera.

• To create a framework that allows users to easily tie together multiple views of

a data-set to form a composite view.

– To develop an effective real-time interface that allows users to manipulate

this composite view.

1.3 Outline

Chapter 2 introduces key concepts and conventions that will be used in the rest of

the thesis. Chapter 3 discusses the workings of our camera manipulation interface.

Chapter 4 provides a general introduction to non-linear perspective projections while

Chapter 5 explains the non-linear perspective framework and the interface for visual-

izing data-sets . Chapters 6 and 7 deal with two other applications of our framework,

namely generating images that have a curved perspective and creating panoramic

views. Chapter 8 discusses implementation of the framework on the GPU while

Chapter 9 summarizes with the conclusion.

3

Chapter 2

Key Concepts

In the following chapter I define terms that are used throughout this thesis.

2.1 Models

The 3D models used in this thesis were either obtained from 3D laser scans of real-

world objects or created using 3D modeling software. The coordinates of all the

vertices in the model, along with how they are connected, are stored in a text file.

Generally, triangles are used to represent the connectivity of the vertices. The coor-

dinates of the vertices are based on a canonical coordinate frame, which is located

at the origin and follows the right-handed coordinate system. This coordinate-space

is known as world-space. When the connectivity of the vertices on the model is

known, the model is termed as a mesh. Other types of data-sets include point-sets

(only the 3D positions of the points are known) and volume-data (slices through an

object are stored as images, used mainly for representing medical data). In addition,

to storing the position of points, normals are associated with the vertices for lighting

calculations (Section 2.4).

2.2 Transformation matrices

Common transformations used are the translation, rotation and scaling of points and

vectors. These transformations are represented as 4×4 matrices assuming that points

4

are represented using homogenous coordinates i.e (X, Y, Z, W). Thus, transforming

points (or vectors) boils down to performing matrix multiplications.

2.2.1 Rotation

Rotation around an axis (rx, ry, rz) by an angle θ (axis-angle representation) can be

denoted by a matrix. However, in this thesis, I have chosen to represent rotation

through quaternions. Conversions between matrices and quaternions is an easy and

common operation.

Quaternions have 4 dimensions, one real and 3 imaginary dimensions (i, j, k). Each

of the imaginary dimensions has a unit value of
√
−1 (but are different square roots

of
√
−1) and are mutually perpendicular to each other (Equation 2.1).

q = w + xi + yj + zk (2.1)

Quaternions provide convenient methods for representing and combining 3D rotations.

For example, when a quaternion is used to represent a 3D rotation, w corresponds to

the angle of rotation while x, y, z corresponds to the axis about which rotation takes

place. Thus a quaternion q, defined using this representation is given by Equation 2.2.

q = cos(θ/2) + (rxsin(θ/2))i + (rysin(θ/2))j + (rzsin(θ/2))k (2.2)

A unit quaternion is a quaternion of unit length and can be considered as a point on a

unit hyper-sphere S3. A body starting at orientation q1 and ending in an orientation

of q2 will rotate uniformly with a constant angular velocity v = log(q−1
1 q2). The

shortest path on S3 between q1 and q2 is called a geodesic on S3. The geodesic norm

is given by Equation 2.3.

dist(q1, q2) = ‖log(q1, q2)‖ (2.3)

We use this metric when measuring the difference between camera rotations for or-

ganizing our camera bookmarks (Section 3.10).

Finally, a point, P (X, Y, Z) can undergo translation, rotation and scaling simultane-

ously. To do this a composition of translation, rotation and scaling matrices is built

5

to form a single matrix, M (Equation 2.4).

M = TRS x

y

z

 = M

 X

Y

Z

 (2.4)

2.2.2 Transforming vectors

When P is multiplied by M , it is said to be transformed. A vector, ~N is transformed

in a slightly different way (Equation 2.5).

n = (M−1)T N (2.5)

2.2.3 Convention

In this thesis, transformed quantities are represented in lower case. Untransformed

quantities are represented in uppercase, with matrices represented in a similar man-

ner. Vectors are represented with a line on top.

2.3 Camera Model

This thesis is devoted to manipulating a graphics camera in a 3D scene and hence

understanding the mathematical model behind it is important. The graphics camera

is an extension of a simple pin-hole camera. 11 parameters are used to represent the

camera, which can be divided into external and internal camera parameters.

• Position & Orientation - 6 parameters (External)

• Zoom - 1 parameter (Internal)

• Center of projection - 2 parameters (Internal)

6

Image Plane
Eye (From)

Up

At
Look

Near
Far

Zoom

World

Projection

X

Y

Z1.0

1.0

-1.0
Near

Far

(b)(a)

Figure 2.1: (a) An arbitrary view-volume located in world-space (b) Canonical view
volume

• Skew - 1 parameter (Internal)

Position (also known as eye of the camera) controls the location of the camera in

world-space while the orientation specifies the angles made by the camera with world-

space coordinate axes. The additional parameters are the camera-zoom, which cor-

responds to a uniform-scale applied to the world, and the center-of-projection, which

is the center of the image-plane. Usually set to (0, 0), the center-of-projection of

real-world cameras is non-zero which contributes to a slight shift in the image. Skew

is the shear of the image-plane and is usually zero.

Figure 2.1(a) shows the visible region of the world in world-space, known as the view-

volume. The near and far planes represent the field-of-interest i.e anything that

is projected to lie before the near plane or beyond the far plane cannot be seen.

This process of rejecting points based on their position with respect to these planes

is known as clipping. Performing clipping in an arbitrary view-volume is hard, so the

view-frustrum is transformed to the canonical view-volume (Figure 2.1(b)). Trans-

forming arbitrary 3D points to the canonical camera-space is done by multiplying

with a single matrix, C (Equation 2.6). C is a composition of translation, rotation

and scaling matrices similar to those seen in Section 2.2.

C = PSRT (2.6)

7

P : Perspective matrix built from the center-of-projection and skew
S : Scale matrix built from zoom
R : Rotation matrix built from the orientation of the camera
T : Translation matrix built from the eye.

Finally, in this thesis I additionally define the camera using the From-At-Up model.

From correspond to the camera eye, At corresponds to the point the camera is looking

at and Up corresponds to the vertical axis of the camera. At several points in the

thesis, when I refer to the camera’s look vector, I am referring to the axis along

which the camera is looking down (At− From).

2.3.1 Camera operations

Camera operations refer to the process of changing one or more of the camera pa-

rameters mentioned in the previous section. A pan corresponds to translating the

camera in a direction parallel to the image-plane, a zoom corresponds to increasing

or decreasing the zoom parameter, and a dolly corresponds to moving the camera up

or down the look vector.

2.4 Lighting

Lighting refers to the calculations that are performed in order to determine the final

color of a point. There are several types of lights that are available such as spot-lights

and directional lights. The important point to note about lighting calculations are

that all the light parameters, including light-direction and light-position, are stored

in camera-space. Thus, changing the camera changes the lighting effects found in a

scene. Also, lighting is based on the geometry of the object, namely the normal at a

given vertex, thus changing the geometry also affects lighting.

8

2.5 Deformations

Transforming a vertex in a scene is also called deforming the vertex. A vertex can

be deformed in two ways. Its world-space position can be changed in which case

such a deformation is referred to as an object-space deformation. A vertex can also

be deformed using the camera, since all points are finally multiplied by the camera

matrix, C. This type of deformation is known as a view-based deformation. The

important point to note is that applying a view-based deformation does not change

the world-space position of a point, it only changes the way in which the point is

projected.

2.6 Widgets

This thesis discusses interfaces that are based on widgets. A widget is an interface

module that the user can interact with. Screen-space widgets are widgets that are

defined in 2D (defined in the image-plane) as opposed to 3D widgets (which are

defined in world-space).

9

Chapter 3

CubeCam : A screen-space camera

manipulation tool

3.1 Motivation

Virtual 3D environments are becoming larger and increasingly realistic. Manipulat-

ing a virtual camera in such 3D environments is a crucial concern. Unfortunately,

effective camera manipulation techniques have been difficult to develop. In orderto

completely specify a camera, 11 distinct degrees of freedom need to be specified :

six for positioning and orienting the camera and five for controlling the projection of

the image. Standard mouse-based techniques can control only a subset of this large

11-dimensional space. In order to map the whole camera space to the 2D space of

the mouse, current techniques use an array of menu options, shortcut keys and key

modifiers. This mapping is not always transparent to the user. Given the myriad of

tools available to manipulate the camera, it is hard for the user to know which tool

to use in order to obtain their desired view.

Another problem with current 3D applications is the method used to represent “cam-

era bookmarks”, or previously saved camera views. Current techniques represent

camera bookmarks as a textual list that users can organize. However, a textual

representation of a bookmark conveys no visual information about the view point

corresponding to that bookmark. There is also no way to find bookmarks close to

the current viewpoint.

10

3.2 Goals

Our basic goal is to create a camera manipulation interface that supports intuitive

selection of the various camera operations. One way to do this is to specify a camera

operation in terms of the desired change in the projected image. Additionally, we

would like to visualize camera bookmarks and the relationship between them.

3.3 Background

In linear perspective, the perspective effects depend on the relative position of the

camera with respect to the 3D scene. Artists explicitly visualize this relationship

using geometric proxies which are used to reduce objects to sets of points, lines and

curves. Thus, geometric proxies visually reflect the artists perception of the 3D scene.

We borrow this idea by presenting the user with camera primitives which not only

serve as geometric proxies for visualizing the current camera but also can modify

the projection of the scene. These camera primitives allow camera operations to be

defined with respect to any point in the scene and also provide visual feedback with

regard to how specific camera operations affect the projected image.

3.4 The CubeCam Interface

The camera is visualized through the projection of a cube in the scene. The cube

can be viewed in three different perspective views, namely 1-pt perspective, 2-pt per-

spective and 3-pt perspective (Figure 3.1). We collectively label the three perspective

views of the cube as CubeCam. Each of these perspective views form a camera prim-

itive that encapsulates a subset of all the possible camera operations. This subset is

selected based on the operations that map naturally to the shape of the cube in that

particular view. This allows camera operations to be defined in terms of the change

the user wants to see in the camera primitive. For example, when the cube is in 1-pt

perspective making the the cube bigger results in the camera being zoomed in or

out. This is analogous to saying “perform the camera operation that makes the cube

11

Zoom & Dolly in-out

Pan
Zoom in-out

Change of
focal plane

Pie-menu button

COP change

Change of
focal plane

Dolly in-out
Rotate about
Y axis

Virtual
trackball

Rotation
planesSliders for

rotation planes

Rotate about Z
axis

Rotate about
X axis

(a) 1-pt perspective (c) 3-pt perspective(b) 2-pt perspective

Figure 3.1: Figure shows each camera primitive and the associated camera
operations

appear bigger”. In this case, the camera operation is a camera zoom. Additionally,

we employ pie-menus for displaying the different non-camera actions.

3.5 Previous work

For mouse-based systems, camera control paradigms fall roughly into two categories,

camera-centric and object-centric. In the camera-centric paradigm, operations are

applied to the camera as if it were a real object in the scene. This mirrors camera

placement in the real world, and many of the camera operations (dolly, pan, and roll)

reflect that. The external parameters, position and orientation, can be specified ei-

ther “through the lens”, or by manipulating a pictorial representation of the camera

in a second window. The internal camera parameters, with the exception of focal

length, are changed through textual input.

In the object-centric paradigm, the camera is centered on an object and the view-

point is rotated relative to the object (as if there were a virtual trackball around the

object [12], [11]). The camera can also be zoomed in and out. This paradigm is useful

when there is a single object in the scene (or one object of importance) and the user

is simply choosing a direction from which to view it.

An alternative approach to directly specifying the camera is to use image-space con-

straints [3], [8]. In this approach, points in the scene are constrained to appear at

12

particular locations, or to move in a specified direction, and the system solves for the

camera parameters that meet those constraints.

The recently-introduced IBar [19] is, in some sense, a specialization of the constraint

approach, where the points are the points of the edge of a cube. Like CubeCam, the

IBar is a screen-space widget where changing the widget changes one or two camera

parameters. The IBar and CubeCam have similar goals; both systems move beyond

current menu-based camera manipulation techniques to a unified screen-space camera

primitive. The underlying mathematical framework of the two systems are similar.

Thus, both systems support the same set of camera operations. However, CubeCam

improves and extends the interface presented to the user. One of the key differences is

manner in which CubeCam encapsulates camera operations. CubeCam splits up all

the camera operations between three different primitives unlike the IBar, which has

only one camera primitive for all of the camera operations. Ghosting, visualization

of the focal plane and the rotation planes are features that are unique to CubeCam

[20] introduces navigation of large collections of photos. This work and our bookmarks

have different goals. The goal of this work was to help users organize photographs

and allow navigation of the photos by mapping the photos onto the object which was

photographed. Our goal is to help users navigate the camera using the bookmarks as

a guide.

3.6 1-pt perspective

1-pt perspective allows for camera zooming, camera panning and perspective manip-

ulation.

3.6.1 User’s view

Figure 3.1(a) shows the camera operations associated with the 1-pt perspective view.

The camera is zoomed in or out by dragging the outer edges of the cube outward or

inward. Perspective distortion (3.6.2) is achieved by dragging the inner edges. The

camera is panned by moving the whole cube. The focal plane is slid through the scene

13

Focal plane is behind all
the objects in the scene

Clicking the inside edge of
the cube results in a zoom
and dolly of the camera

Dragging the edge outward
results in perspective distortion
of all objects

Focal plane
Moving the slider away
or towards the center of
the cube slides the plane
further or closer

Focal plane
intersects the bowl

Dragging the edge
outward results in a
distortion of all objects
except the bowl.

Bowl remains the
same size

Figure 3.2: Perspective distortion controlled by the focal-plane

using the sliders on the receding edges of the cube. The pie-menu button is used to

bring up the pie-menu.

3.6.2 Perspective Distortion

Perspective distortion is a function of the distance of the camera eye point to the ob-

ject in question. Unfortunately, changing the camera distance also changes the size of

the object in the scene. To counter-act this, the camera is zoomed out simultaneously

to keep the object the same size [19]. Thus, objects at a specific distance d (focus-

distance) along the look vector remain the same size in the image plane. This distance

is visualized by a plane drawn at depth d (focal-plane) , which can be changed by

moving a slider along the receding edges of the cube in the 1-pt perspective view

(Figure 3.2).

3.7 2-pt perspective

2-pt perspective allows for camera dollying and center of projection change

14

The focal plane
intersects the
bowl

The COP is
changed by
dragging the
center of the cube

All the objects
except the bowl
are shifted.

The focal plane
intersects the vase

All the objects
except the vase
are shifted

Figure 3.3: Center of projection and camera pan

3.7.1 User’s view

Figure 3.1(b) shows the camera operations associated with the 2-pt perspective view.

The camera is dollied in or out by dragging the outer edges of the cube outward or

inward. The camera’s center of projection is changed by moving the whole cube. As

in the 1-pt perspective, the sliders on the cube are used to change the position of the

focal plane in the scene.

3.7.2 Center-of-projection

We extend the focal plane idea to the 2-point perspective view. When the center

of projection is changed the whole scene slides in the opposite direction. To prevent

this, the camera is panned in the opposite direction ensuring that objects at a depth d

remain stationary. A focal plane is rendered at this depth and its position is controlled

by sliders located on the slanting edges of the cube. The position of the focal plane

controls which objects stay fixed on the screen (Figure 3.3).

3.8 3-pt perspective

3-pt perspective is used only for either constrained rotation or virtual trackball of the

camera

15

Virtual trackball
is performed by
selecting multiple
edges

The red path
indicates the
cursor path

The final path
after performing
virtual trackball
of the camera

Crossing a single
edge specifies a
constrained
rotation

The edge crossed
is vertical: the
camera is rotated
around the Y-axis

Figure 3.4: Virtual trackball and constrained rotation

3.8.1 User’s view

Figure 3.1(c) shows the camera operations associated with the 3-pt perspective view.

The semi-transparent planes are rotation planes. The intersection of these planes

form the rotation point about which the camera can be rotated. The position of

each rotation plane is controlled using the corresponding slider located on an edge

of the cube. Constrained rotation about a particular axis is selected by crossing the

appropriate edge. Clicking and dragging any point on the cube then performs the

actual rotation. A virtual trackball rotation of the camera is selected by crossing

multiple edges of the cube.

3.8.2 Rotation

In the 3-pt perspective view, the user can perform either a constrained rotation or

virtual trackball of the camera. A constrained rotation is specified by crossing a

single cube edge. In constrained rotation, the camera is rotated about a single axis.

The rotation axis depends on whether the primitive is centered in the scene or on an

object. If centered in the scene, the camera is rotated about one of the X,Y,Z world

axes, depending on the selected cube edge. For example, if the cube edge selected

is vertical, the camera will be rotated about the Y axis. If centered on an object,

the camera is rotated about one of the X,Y,Z axes of the object. A virtual trackball

rotation is specified by crossing multiple multiple edges of the cube. Once the rotation

type has been selected, the user can click and drag any point on the cube to perform

the rotation (Figure 3.4).

16

3.8.3 Rotation Planes

Our system visualizes the rotation point about which a camera rotation takes place.

This is done using three semi-transparent planes. The planes are aligned along the

principal axes of the cube in the 3-pt perspective view (Figure 3.1(c)). Sliders, located

on three edges of the cube, are used to change the position of the rotation planes.

The final rotation point is the intersection of the rotation planes.

3.8.4 Scene-centric versus Object-centric CubeCam

CubeCam can be either centered in the scene or at the center of an object in the

scene. Users can switch between the two configurations using the pie-menu. Clicking

on an object centers CubeCam about that object. All of the previously described

camera operations can be performed in both configurations of CubeCam with the

only difference being the axis used for rotating the camera in the 3-pt perspective.

If CubeCam is scene-centered then the camera primitives snap back to the original

position after the user has modified them. In the case of object-centric CubeCam,

the position of the camera primitives change with the position of the object.

3.9 Ghosting

Our goal is to present the user with a simple camera manipulation interface. By

creating multiple camera primitives we simplify the overall interface but introduce

the problem of expecting the user to remember the functions associated with each

primitive. In order to help the user learn these functions we provide ghosting. When

ghosting is active, users manipulate the camera primitive as they would normally.

However, as they change the camera primitive, a “ghost camera” is changed. This

ghost camera is used to render a ghosted scene rendered over the current scene. The

original scene camera remains unaffected (Figure 3.5). For advanced users, this mode

provides an opportunity to test out possible camera changes before actually making

them.

17

The ghost scene is
rendered using the
panned camera on
top of the original
scene

A perspective
distortion is
performed which is
reflected in the
ghost image

The ghost image is
rendered using the
rotated camera

Figure 3.5: Ghosting helps users learn functions of the camera primitives

3.10 Camera Bookmarks

No bookmarks
in the scene.

 Camera is panned,
a new bookmark
is added

Bookmark is an icon
in the 12:00 position

New bookmark is
same as current
view: replaces
previous bookmark

New bookmark in
the 12:00 position

Current view is
closer to (b) than
(c): bookmarks
swap positions.

Swapping of
bookmarks

Bookmark is moused
over: its ghost image
is rendered over the
current view.

Figure 3.6: Bookmarks ordered based on translation parameters

It is very useful to be able to save cameras and snap back to them at will. For

example, when modeling a surface, a user might bookmark a handful of orthogonal

views and close-ups of complex geometry. An animator might also use bookmarks to

start laying out an animation sequence. In both of these cases, we need to provide

the user with a method for quickly searching through existing cameras. Although the

user could simply create a text list, appropriately naming each camera, we believe

that a visual search mechanism is more useful. We have implemented two bookmark

placement algorithms, one of which is static placement and the other is automatic

placement. Each bookmark is represented as an icon with an image of the scene. In

static placement, the user simply places the icon on the image plane. As the user

changes the current camera, the bookmark icons remain at the same place on the

screen. Mousing over an icon renders a ghost image of the bookmarked view on top

18

The user rotates the camera using the
3-pt perspective view and bookmarks
two views.

Current view is
closer to (a)
then (b).

Swapping of
bookmarks

Figure 3.7: Bookmarks ordered based on rotation parameters

of the current view. Double clicking an icon switches to the bookmark.

In the automatic method, bookmark icons are arranged in a circular fashion around

the center of the screen. The cameras are arranged in an increasing order of distance

from the current camera in a clockwise manner. If the 1-point or 2-point perspective

view is active, the ordering is based on the translation parameters, otherwise, it

is based on the rotation parameters. To order cameras based on the translation

parameters, each bookmarked camera’s eye point is projected onto the film plane of

the current camera. The magnitude of the vector from the origin to the projected eye

point is used to order the bookmarks (Figure 3.6).

The rotation distance is calculated by measuring the length of the geodesic path

between the quaternion of the current camera and the quaternion of the bookmarked

camera (Figure 3.7).

GeodesicPath(q1, q2) = Log(q1
−1, q2) (3.1)

q1 : Quaternion of the current scene camera.
q2 : Quaternion of the bookmarked camera.

As the user changes the current scene camera, bookmarked cameras move further or

closer to the current camera. Accordingly, the ordering of the bookmark icons change.

19

3.11 Implementation

3.11.1 Camera primitives

If scene-centric CubeCam is active, a cube of unit scale is placed at the origin. Since

scene-centric CubeCam snaps back after the camera has been changed, inverse trans-

formations have to be applied to the cube to reset it. The cube is translated back

to the point which the camera is looking at, translated appropriately down the look

vector so that it appears the same size. An inverse rotation is applied and finally a

scaling proportional to the camera zoom is applied. In case of object-centric Cube-

Cam, the cube is transformed as the object it is attached to. Finally, the cube is

translated down the ~look so that it appears at the right size on the screen.

3.11.2 Rendering a ghost scene

The current scene is rendered to the back-buffer using the ghost camera. If ghosting is

turned on, the ghost camera is the camera created by modifying the current camera.

If bookmarks are turned on, the ghost camera is the bookmarked camera. The scene

is rendered under the original lighting in a non-photorealistic style with the silhouette

edges highlighted. The contents of the back-buffer are copied into a texture which is

alpha-blended with the original scene, rendered using the current camera.

3.11.3 Bookmark Icons

As the number of bookmarks in the scene increases, the circle of bookmarks created by

the automatic placement algorithm becomes more crowded. To prevent the occlusion

of bookmarks in the circle, we vary the size of the icon, r, as a function of the number

of bookmarks in the scene, n.

SizeOfIcon =
√

2× r × 2π

3n
(3.2)

20

Chapter 4

Non-linear perspective projections

The previous chapter in the thesis dealt with building an interface for manipulating

a single camera. In the chapters to follow I will discuss building interfaces for manip-

ulating multiple cameras in a scene, as well as a framework for integrating multiple

cameras.

4.1 Background

Non-linear perspective forms a part of non-photorealistic rendering, a set of tech-

niques inspired by the work of artists. Even though linear perspective is a good

approximation of the human visual system, artists such as Escher, Picasso and Hock-

ney intentionally incorporated distortions of perspective in their work (Figure 4.1).

By simply changing the perspective over the scene, these artists could introduce sub-

tle mood changes and vary the relative importance of objects in the scene.

A scene viewed through a non-linear perspective can be thought of as being seen

through a linear perspective in certain local regions while overall having a smooth

perspective change. In other words, even though in some regions there are certain

local perspective changes, global scene coherence is maintained. This is the reason

why, even though we are aware of the perspective distortion in the examples illus-

trated, we are not overly disturbed by it.

21

+ +

Figure 4.1: Above is an example of non-linear perspective. Several linear
perspective pieces are combined together to form a global view. Perspective varies

over even individual objects such as the side-table and chair.

4.2 Non-linear perspective rendering framework

Our goal is to create and manipulate non-linear perspective projections in real-time

through simple and intuitive interfaces. As mentioned in the previous section, a single

non-linear perspective view can be thought of as collection of linear perspective views

tied together in a coherent manner [18]. Towards this end, our framework assigns

a unique camera to each vertex of a mesh (or point in case of a point-set). Several

vertices within a particular region may be assigned the same camera. This corresponds

to the local perspective seen in a non-linear perspective image. A global camera is

used for viewing the rest of the scene. Blending is done between the local perspective

view and the global view to ensure a smooth transition between the two. This ensures

the global scene coherence.

In the next few chapters we will introduce our non-linear rendering framework in more

detail and illustrate its applicability in three main areas namely, exploring complex

data-sets, creating panoramic views and creating interesting artistic effects. Although

the interface is adapted to suit each particular application, the underlying framework

remains the same for all of the applications.

22

4.3 Contributions

I have developed a framework that helps users create and manipulate non-linear

perspective projections. Specifically, I have created an interface that is can be used for

creating non-linear projections of complex data-sets and simulating interesting artistic

effects. This system guarantees seamless blending of multiple camera views and real-

time manipulation of the final composite view. In order to sucessfully implement the

system I had to implement the framework on the GPU, perform adaptive subdivision

of meshes and on the front-end develop a set of intuitive tools which would be general

enough and yet useful for different visualization applications.

23

Chapter 5

Visualization of complex data-sets

5.1 Motivation

In general, data-sets can either be composed of inherently complex geometry or a large

collection of relatively simple geometry (Figure 5.1). Finding the “best” view in which

all of the interesting features can be seen distinctly is challenging. As certain features

come into a view, others move out. Also, it can be quite difficult to manipulate a

virtual camera to a view a particular feature. Knowing which of the many camera

parameters to change in order to get a desired view of the scene can be quite an art.

Thus, instead of trying to find a single view in which all of the features are visible, a

better approach is to view the dataset using a composite view. This composite view

is made up of subviews, each of which allows particular features to be seen clearly.

The idea of combining multiple views into a single one is not new. This concept

has been illustrated in the works of artists such as M.C. Escher, David Hockney and

Picasso. However, the novel contribution lies in applying and adapting these concepts

to the domain of data visualization and exploration.

5.2 Goals

We have three key goals.

• To visualize complex data-sets through non-linear projections.

24

Section A

Section B

Front faces of
Section B

Back faces of Section A Wrist bones (clipped)

Fingers (clipped)

Thumb

(a) Front and back faces of a helix (b) Bones in a hand

Figure 5.1: (a) Figure shows the front (left-side) and back (right-side) faces of a
helix. Trying to examine section A and section B simultaneously in a single camera
view is impossible. The unwrap widget rotates the front faces of section B (shown in
dashed lines) to show its back faces while leaving rest of the helix to be seen as is in

the front-view (Figure 5.3). (b) Figure shows several overlapping bones lying at
different depths along any given viewing direction. Different parts of the bone are
seen in different views. The clipping widget exposes sections of the bone lying at

different depths without deforming the model.

• Create a tool-kit of widgets for modifying such projections. These widgets must

function in real-time.

– The widgets must be well-defined. More specifically, the functionality of a

widget must be clearly defined to the user.

– When used in isolation, a widget should produce a “simple” projection but

it should be possible to combine multiple widgets to produce more complex

projections.

• Finally, the framework should be independent of the underlying representation

of the data-set.

25

5.3 Previous Work

A large body of research has been devoted to interactive viewing of volume data-sets.

However, these methods actually deform the underlying geometry of the data-set in

order to expose interesting structures [5, 10, 15]. The problem with such methods

is that the deformation depends on the current view of the model. Changing the

view results in an inconsistent deformation. In general, view-based deformations

work around this problem by applying deformations based on the current view of the

model.

Lenses such as fish-eye lenses and magnification lenses [22, 14] have been used for

visualization of large amounts of information given a restricted amount of screen

real-estate. Similar to these papers, we introduce a transformation of the view-space

for exploring data in this manner. However, lenses are a subset of the entire set of

view-transformations possible using our framework.

General linear cameras introduced in [24] presented a variety of camera models. Our

framework includes the cameras that were presented in [24]. The main advantage

of our framework is intuitive interface that is presented for generating non-linear

projections. The idea of breaking down a general non-linear projection into a set of

local projections which can then be seperately manipulated by the user through our

widgets is the key contribution of this work.

Work has been done in producing multi-perspective panoramas given either a 3D

model and a camera path [23] or a set of images [17]. Our work is similar in that a non-

linear perspective widget implicitly defines a camera path. However, our approach

ensures that the surrounding context of the data-set is maintained while creating a

panorama locally. The above methods are also not suited for interactive manipulation.

Multi-projection techniques [2, 9] allow each object to be rendered from a different

view-point. Neither work allows for continuously varying projections over a single

object. The idea of creating a non-linear perspective projection from multiple linear

perspectives was first introduced in [18]. Singh’s approach required users to specify

individual camera parameters of different cameras in the scene. Our work ensures

global scene coherence by allowing users to specify a default view with which we

blend different view-points.

A different approach [7] defined a simple set of primitives such as points, lines, and

bounding boxes that were used to express image-space constraints. A simplex solver

26

found the camera that satisfies these constraints. These primitives were then used to

generate a set of cameras that form a non-linear projection. A greedy approach was

employed to group features that are satisfied by the same camera. While it is useful to

express constraints for a single camera through these primitives, it is sometimes hard

to know which primitives to use in order to get a specific non-linear projection. The

framework is not interactive and the solver occasionally gets stuck in local minima.

5.4 Approach

Each of our non-linear perspective widgets consists of a 3D volume and a 2D area in

screen-space. We refer to the 3D volume as the “source volume” and the screen-space

area as the “destination area”. The source volume specifies the region of the data-set

which the user is interested in viewing differently. The destination area controls the

“after-projection” aspects of the region such as placement on the screen and projected

size of the volume.

The user first specifies a default view, which controls the overall view (global per-

spective) of the data-set. Next, the user selects a source volume using our 3D widget.

The widget controls the position, orientation and scale of the selected volume. To

simplify the interface, we make certain assumptions about the destination area. Thus

in general, the user only needs to specify a volume in order to generate a simple

non-linear projection.

Once the volume is created, the system automatically creates and assigns different

cameras to different parts of the data set, based on the data points location relative

to the source volume. Exactly how these cameras are constructed from the default

one depends on the particular widget being used. The net effect is that data inside

of the source volume is viewed differently than the data outside of the source volume.

We refer to these new cameras as “local cameras”.

More specifically, each widget modifies a subset of the default cameras parameters to

create each local camera. The remaining set of parameters are the same as the corre-

sponding parameters in the default camera. For example, a widget could change just

the zoom parameter of all of the local cameras, creating a fish-eye effect in the source

volume. In order to ensure a continous transition between the default view and the

local views, the cameras smoothly interpolate to the default one at the boundaries of

27

the source volume. In order to combine cameras, we build fall-off functions around

the selected volume. The fall-off functions are user-controlled. Finally, our framework

makes no assumption regarding the representation of the data. The only constraint

we require is that the data be sufficiently sampled. If meshes are used to represent the

data, then our framework expects triangular meshes. This is the underlying structure

of all the widgets presented here. The exact description of a source volume along with

the blending techniques used varies from one widget to another. The specifics of each

widget will be expanded upon in the following sections.

5.5 The non-linear projection tool-kit

Our tool-kit is composed of three widgets, namely, the unwrap widget, the clipping

widget and the fish-eye widget. We believe that these widgets are general enough to

be used to generate useful non-linear projections.

5.5.1 Unwrap Widget

Exploring a data-set is commonly done through a series of camera rotations and trans-

lations. However, in certain data-sets a small camera rotation results in a significant

portion of the data going out of the field of view. The unwrap widget applies a view

transformation to bring such data back into the current view. The data remains in

the field-of-view irrespective of how the current view is rotated. An example of such

data-sets are helices where two surfaces are interleaved. In Figure 5.1(a), it would be

impossible to see both section A and section B of the helix in the same view since

looking at either part would involve a rotation of the camera that would result in

the other moving out of the view. The unwrap widget allows user-selected regions to

be rotated into the current field-of-view while ensuring that remaining parts of the

model are seen as before.

28

5.5.2 Clipping Widget

The goal of the clipping widget is to expose structures that are occluded in a partic-

ular view. Usually, parts of the model that are farther from the current view-point

are occluded by those that are closer (Figure 5.1(b)). The clipping widget allows

regions of the model located at different depths along a particular view-direction to

be exposed. Changing the global view, results in exposing structures lying at those

depths but along a different view-direction.

5.5.3 Fish-eye Widget

The fish-eye widget simulates a fish-eye lens. When a scene is viewed through a fish-

eye lens, regions within/close to the center of fish-eye lens appear more magnified

than regions that are further away (Figure 5.8).

5.5.4 Design Rationale

Our widgets are inspired by commonly-performed camera operations and object-space

transformations. Frequently used camera operations include camera panning, camera

dollying, camera rotation and camera zoom. Camera rotation is encapsulated within

the unwrap widget, dollying is encaspulated within the fish-eye widget. The clipping

widget is derived from the common object-space transformation of using slicing planes

to view the internal structure of a model. Combining these widgets aggregates the

functionality of these operations and simultaneously applies these deformations to

the model.

29

5.6 Unwrap widget

5.6.1 Overview

As described in the previous section, the unwrap widget is used to rotate selected

regions which may not be seen into the current field-of-view of the camera. Only the

vertices located within the region are affected, the rest of the model is seen as before.

5.6.2 User’s View

The user specifies a source volume which corresponds to the part of the model that the

user is interested in viewing from a different direction. The source volume is selected

using a 3D widget which contains handles for controlling the position, orientation

and scale of the selected volume. If we directly used the camera assigned to volume

then the region would be projected to the center of the screen and would therefore be

occluded by the rest of the model in the default view. Thus we need to determine a

good screen-space position of the projected volume. Usually, the user would have to

specify a 2D destination area. The position of this area corresponds to the position

on the screen where the volume will be projected while the scale corresponds to the

final projected size of the volume.

To simplify our interface, we make a few assumptions about the destination area.

First, we calculate the screen-space position of the volume in the default view and

which quadrant of the screen it mostly lies in. We then shift the unwrapped region

in that direction such that it is lies immediately outside the projected bounding box

of the model in the default view. The final calculated position is then displayed and

can be changed by the user. We also assume that the final scale of the unwrapped

region is the same as the scale of the model in the default view.

Representing a source volume

Internally, the source volume is represented by an implicit function which represents

the position, orientation and scale of the volume. Additionally, a fall-off function is

associated with the source volume. The fall-off function is used to blend between the

30

Outer Blob

Inner Blob

rout rin

0.0 < W < 1.0

x

W = 1.0

Figure 5.2: The green blob corresponds to the source volume created by the user.
The pink blob corresponds to the outer region of the fall-off function which is

automatically calculated by our system.

points projected using the new camera and the default view (Figure 5.2).

5.6.3 Methodology

Each vertex in the model is assigned a local camera. The parameters of the local

camera are computed based on the location of the vertex. Vertices lying within the

source volume are assigned a rotated camera Crot looking at Cat whose view-direction

lrot is given by Equations 5.1a - 5.1c:

vrot = Cross(Norm, Look) (5.1a)

lrot = R(vrot, θ)Look (5.1b)

Cat = Centroid (5.1c)

Essentially, Equations 5.1a - 5.1c states that the source volume is viewed through a

rotated camera that looks at the centroid of the region along the surface normal at

that point. In other words, for the unwrap-widget the local camera is a camera that

31

R : Rotation matrix, axis vrot and magnitude θ

Look : View-direction of the default camera
Norm : Surface normal at the centroid of the source volume
θ : Angle between norm and look
Cat : At point of the camera

looks at the surface volume from the intended direction. The screen-space position

of the rotated region is calculated as explained in the previous section.

COP
′
= (−cx,−cy) (5.2)

COP
′

: Center-of-projection of local camera
(−cx,−cy) : Calculated center of the destination area

Finally, all vertices lying outside of the source volume are assigned the default cam-

era. Thus, the rest of the model is guaranteed to be projected as before while only

the source volume is assigned a different local perspective.

5.6.4 Blending Views

The advantage of our method is that while the projection of only a part of the model

is modified to be seen in the current view, the rest of the model remains seen as before.

The transformation is entirely view-dependent leaving the underlying geometry intact.

Therefore as the user rotates the model, the selected region is always seen.

Unfortunately, applying a view-transformation to only a section of the model can

introduce artifacts at the boundaries. Artifacts occur along the seams where triangles

share vertices that are projected with different cameras. To reduce such artifacts and

create smooth transitions from the rotated view to the default view, we blend the

different views. We employ fall-off functions for blending camera projection of the

vertices that lie within an intermediate region between the source volume and the

32

Figure 5.3: The orange box denotes the 3D volume that was selected, while the red
box denotes the 2D destination area.

rest of the model. The fall-off function is built according to Equation 5.3.

w(Q) =


1 ||Q− C|| < rin

g(‖Q−C‖−rin

rout−rin
) rin ≤ ‖Q− C‖ ≤ rout

0 ‖Q− C‖ > rout

(5.3)

Q : 3D vertex position
w : Weight of Q
C : Center of the source volume
g(x) = (x2 − 1)2, x ∈ [0, 1]
rin : Inside radius of the source volume
rout : Outer radius of the source volume

Equation 5.3 defines a fall-off function based on 2 parameters namely rin and rout.

rin is calculated based on the scale of the source volume (Figure 5.2). rout is user-

controlled.

Blending projections of points

After assigning a weight to those vertices which lie in and around the source volume,

the final projection of the vertex is computed according Equation 5.4. Each vertex

is simply a weighted combination of the projections using the local camera and the

default camera.

q = (1−
n∑

k=1

wk)D(Q) +
n∑

k=1

wkCk(Q) (5.4)

33

n : Total number of local cameras
Q : 3D vertex position
D : Default camera view
Ck : kth local camera
wk : Degree of influence of kth local camera on vertex Q

5.6.5 Examples

Angle = 60
Angle = 30

Angle = 150
Angle = 130

Figure 5.4: The different points correspond to the different positions of the source
volume. The angles in each picture denote the angle between the surface normal at

the center of the source volume and the default look vector

Figure 5.3 shows the different unwrappings obtained when changing the default cam-

era. As expected, the unwrapping remains consistent even as the default view changes.

Since our transformation is entirely view-based the unwrapping is invariant to any

change in the default camera’s rotation or translation parameters. Figure 5.4 shows

the different unwrappings obtained when changing the position of the source volume.

5.7 Clipping widget

The clipping widget is used to view occluded structures in a model.

5.7.1 User’s View

As before the user specifies a default view-point which determines the overall projec-

tion of the model. In addition, the user specifies one or more sections of the model

that need to be exposed. These sections can be thought of as a set of slices taken

along a particular viewing direction and are specified by sliding planes through the

34

(b)(a)

Figure 5.5: (a) The original model drawn with a complicated set of sillhouete lines.
(b) The final non-linear perspective rendering with sillhouetes. Note that the

original frontal view of the model and the isolated section are seen in the same
window. The original model retains all the sillhouete lines except in the isolated

section

model. This is the source volume. The destination area is computed using the same

method as in the unwrap widget. One important difference between the clipping and

the unwrap widget is that in case of the clipping widget no blending is performed.

This is because a given vertex should be associated with only one camera : the de-

fault camera or the local camera. Thus, only a cut-out of the relevant section is done.

(Section 5.6.2)

Figure 5.6: The final non-linear perspective view. The isolated section shows some
features occluded in the original model. Note that both the frontal and isolated

section are seen in the same window.

35

(b)(a)

Figure 5.7: (a) The front-view of the vase: The internal knot is completely
occluded. (b) The front-view and the knot seen side-by-side.

5.7.2 Methodology

We employ the near and far planes of a camera in order to control the occlusion

of different sections. Vertices that lie within the source volume are assigned a local

camera whose near and far clipping planes align with the boundaries of that volume.

Vertices that do not lie within any source volume are assigned to the default camera.

5.7.3 Examples

The key advantage of this widget, is that both the occluding and the occluded struc-

tures can be viewed simultaneously in screen-space.

The Bone data-set

The model of the bones in a human hand is complex because there are several over-

lapping bones lying at different depths along any given viewing direction. Different

parts of the bone are seen in different views. We illustrate the clipping widget in two

contexts. One is to simplify viewing of the sillhouetes on this model (Figure 5.5).

The other is to view different parts of a bone that may not have been seen in the

default view (Figure 5.6).

Knotted vase

We used the clipping widget on the knotted vase. In this model, there is a knot in the

middle of the vase, which is completely invisible in the front view of the vase. The

36

(a) (b) (c)Fish-eye widget

Figure 5.8: (a) Original model (b) Fish Eye widget (b) After applying the widget,
the central hole appears magnified while the rest of the model is intact.

clipping widget allows both the front view and the knot to be seen simultaneously

(Figure 5.7).

5.8 Fish-Eye widget

5.8.1 User’s View

When a fish-eye lens is applied to a model, only the front-facing faces are affected.

A fish-eye is represented by two circles (Figure 5.8(b)). The inner circle represents

the area in which the actual fish-eye zoom takes place. All vertices that project to

the inner circle in the default view are subjected to a fish-eye zoom. This implicitly

defines the source volume. The area between the inner and outer circle represents the

blend region from the fish-eye zoom to the default view. Moving the widget around

the model changes the region over which the fish-eye is applied. Each fish-eye is also

associated with a magnification factor, m. Changing m results in a larger amount

of zoom associated with the fish-eye. Finally, all vertices that lie outside the area

covered by the outer circle are projected using the default view.

5.8.2 Methodology

Similar to the methods outlined in the previous section each vertex on the model

is assigned a camera. Vertices projected into the inside circle of the fish-eye are

37

(a) (b)

Figure 5.9: Multiple fish-eye cameras

assigned a camera given by Equations 5.5a - 5.5b. Essentially, this equation builds

a camera that has been translated down the view-direction of the default view while

simultaneously changing the focus distance of the camera. In addition, the center-

of-projection of the camera is adjusted so that the 3D point corresponding to the

center of the fish-eye remains at the center even in the new camera. Vertices that are

projected into the transition area between the inside and outside circles are assigned a

camera that is a weighted combination of the fish-eye camera and the default camera.

Blending of the cameras is done by combining the corresponding camera parameters

(Section 5.6.4).

f
′

d = fd × (1.0− 1.0/m) (5.5a)

COP
′
= COP + (p− c) (5.5b)

f
′

d , COP
′
: Focus distance and center-of-projection of fish-eye camera

fd, COP : Focus distance and center-of-projection of default camera

m : Magnification factor

c : Center of fish-eye widget

p : Projected version of 3D point P corresponding to c

Figure 5.8 and Figure 5.9 illustrate the working of single and multiple fish-eye widgets

on a single model.

38

Chapter 6

Curved Perspective

In the previous chapter, we illustrated the application of non-linear perspective for

data exploration. In this chapter, we demonstrate another application of non-linear

perspective, namely, to simulate a few specific artistic effects.

6.1 Motivation

Usually, linear perspective is used to project 3D scenes onto the 2D image plane. In

classical perspective, points at infinity are projected to vanishing points on the 2D

plane. Straight lines tending toward infinity in the real world converge as straight

lines at the vanishing points of the scene. This is an approximation of our percep-

tion of the real world. In reality, our perception of the real world is not so linear.

Our overall view of a 3D scene is an aggregation of several individual views. Thus,

converging lines in the 3D world are not perceived as straight lines but are instead

perceived as converging curves. This leads to the concept of “curved perspective”.

A scene viewed in curved perspective has curves converging at its vanishing points

rather than straight lines. The advantages of curved perspective over linear perspec-

tive are several. Curved perspective produces perceptually accurate projections. It

can be used to emphasize the importance of certain parts of the scene over others

since the viewer is naturally attracted to these curved lines. It can also be used to

communicate a sense of three-dimensional space on the 2D image plane. Figure 6.1 is

a classic example of curved perspective in art. Escher manages to convey the height of

39

(a) High And Low – M.C.Escher (b) Curved Perspective

Figure 6.1: (a) All M.C. Escher works c©Cordon Art B.V.-Baarn-the Netherlands.
All rights reserved. Escher seamlessly combines two panoramic views (views from

top and bottom of the building) into a single lithograph while still conveying a sense
of expansive space. (b) This grid was used as a stencil for determining the vanishing

points of High and Low. Notice the similarity between the curved outlines of the
buildings and this sketch.

this building in a limited field-of-view using the central point as a common vanishing

point for the two curved perspective views.

6.2 Goal

Our goal is to develop a simple and intuitive interface which allows for real-time

creation and modification of projections with a curved perspective.

6.3 Approach

Curved perspective projections form a subset of non-linear projections. In the real-

world example, we can consider each world-point the eye looks at as being projected

by a different camera. As the eye shifts from one point to another, the view-plane of

the camera is shifted. This fits into our non-linear perspective rendering framework

40

where each point in the scene is assigned a camera. The difference lies in how the

camera parameters change from one vertex camera to another. Thus, given the gen-

erality of our approach for constructing non-linear projections, we can construct such

projections using our framework.

In order to vary the perspective continously across a single 3D model we automati-

cally assign a unique camera to each vertex of the 3D model. The vertex camera is

found by varying the center of projection of a default scene camera. The new center

of projection is a function of the position of the projected vertex with respect to

the vanishing points defined in the scene. We will refer to this function as the warp

function.

6.3.1 Mathematical Model

If M represents the linear perspective projection matrix then the transformation of

a world space point P into the corresponding camera space point c is given by the

matrix equation:

c = MP (6.1)

As explained before, M is a 4×4 matrix which is a function of 11 camera parameters,

one of them being the center of projection of the scene (Section 2.3).

We define a warp function g, which represents the amount of warp c is subjected to,

given the current set of vanishing points in the scene. Thus, g takes in the camera

point c and the vanishing points of the scene. The range of g is the interval [0, 1]. g

can be any monotonically increasing function. In the simplest case, g is a constant

function resulting in linear perspective. The examples illustrated g is a sinusoidal

function. Given n vanishing points in the scene we can define the new center of

projection for c as:

COP
′
= OldCOP +

n∑
i=1

wig(c, Vi)~v (6.2)

41

Vi : ith vanishing point in the scene.
~v : Vector from Vi to c.
wi : Weight of the ith vanishing point in the scene. wi ∈ [0, 1].

A new projection matrix M
′
is constructed using the new center-of-projection, COP

′
.

The world space point P is then reprojected using M
′
resulting in a new camera space

point c
′
.

c
′
= M

′
P (6.3)

This concept can be extended to defining multiple curved cameras on a single 3D

model. This feature is useful when the user wants to define multiple warps in order

to highlight certain local features on the model. Given m curved cameras defined on

a model, Equation 6.2 can be rewritten as:

COP
′
= OldCOP +

m∑
j=1

wj

n∑
i=1

wig(c, Vi)~v (6.4)

wj : Weight of the jth curved camera. wj ∈ [0, 1].

6.4 User’s view

Our goal is to present users with an interface that allows for real-time modification of

curved perspective projections. The simplest interface for manipulating perspective

in a scene is based on vanishing points. In general, people can intuitively position

the vanishing points given a scene, and conversely given the vanishing points recon-

struct the perspective projection of a scene. Thus, our interface is based on vanishing

points.

Perspective primitives are screen-space widgets defined for one or more vanishing

points in the scene and are analogous to the primitives that artists sketch to layout

3D scenes on a 2D canvas (Figure 6.2(a)). The user can click and drag a widget

handle on these primitives to modify that particular vanishing point. The handles

are reset after a vanishing point is modified. Thus it is possible to place vanishing

42

Left VP Right
VP
Handle

Nadir

Zenith
Vertical
sinusoid

Horizontal
sinusoid

(a) Perspective primitives for the
global curved camera

wtlocalcamera = 1.0

Fall-off region
wtlocalcamera = 0.0

(b) A local curved camera

Figure 6.2: (a) Figure shows the perspective primitives for manipulating a single
curved camera that is active over the entire model. Two sinusoids are drawn, each
containing handles for manipulating the vanishing points that lie on that particular

principal axis. (b) Figure shows a local camera represented by a single fall-off
function.

points outside the image plane just as artists do on a real canvas.

In the case of multiple local curved cameras defined over a single model, the user

can pick a region on the model to place the camera. Currently, a curved camera

is represented by two circles, the inner circle representing the region of the model

over which the local camera is active and the region between the inner and outer

circle represents the transition region (Figure 6.2(b)). The transition region repre-

sents the region over which the local curved camera is blended with the global curved

camera using a fall-off function similar to the type introduced in the previous chap-

ter (Section 5.6.4). The position and size of the fall-off function are all user controlled.

43

(a) Original
vase

(b) Equal weights
for sinusoids

(c) Heavy horz.
sinusoid

(d) Grid for (c) (e) Heavy vert.
sinusoid

Figure 6.3: Figures show the effect of changing the weights on the vanishing points
of a curved camera

6.5 Examples

6.5.1 Single curved camera

We begin with a linear perspective view of a vase as shown in Figure 6.3(a) . The

curved perspective of the vase is shown in Figure 6.3(b). The perspective primitives

are drawn as sinusoids whose ends represent the vanishing points of the scene. Thus

there are 2 perspective primitives : one controlling the zenith and nadir of the scene,

the other controlling the left and right vanishing points of the scene. Note how the

handles of the vase have curved inwards and the bottom of the vase has become

narrow. Our method retains the original lighting of the vase even after re-projection

of the vase using curved perspective. Figure 6.3(c) shows the curved perspective of

the side-view of the vase obtained by assigning very heavy weights to the left and right

vanishing points. Note how the right vanishing point is located outside the picture.

This is equivalent to placing a vanishing point very far away or in the extreme case,

at infinity. Thus the right-side of the vase is not as warped as the left side of the vase.

Figure 6.3(e) is obtained by assigning very heavy weights to the zenith and nadir.

The zenith and nadir are very close to the vase itself resulting in the lid of the vase

almost disappearing.

6.6 Multiple curved cameras

Figure 6.4(b) shows the curved perspective view of the building obtained by applying

a global curved camera. Figure 6.4(d) is obtained by defining two local curved cameras

44

(a) Original
building

(b) Global curved
camera

(c) Two local
cameras

(d) Only local
cameras active

(e) Local & global
cameras active

Figure 6.4: Figure demonstrates the effect of adding two local curved cameras in
addition to the global curved camera

represented by the circles (Figure 6.4(c)). The radius of the circle defines the region of

influence of that camera and the grayscale value represents the weight of the camera.

Thus the right side camera influences a larger number of vertices of the model and has

a slightly larger weight than the left side camera. Note how the edges of the building

remain the same as in the original model but the side pillars curve inwards as do two

of the large pillars. The rightmost pillar remains straight since it lies exactly along

the central axis of the right side camera. Figure 6.4(e) shows the resulting projection

obtained by combining the global camera of Figure 6.4(b) and the local cameras of

Figure 6.4(c). Note that the curving of the side pillars is retained from Figure 6.4(b)

while the curving of the rightmost pillar is introduced from Figure 6.4(c).

45

Chapter 7

Panoramic views

7.1 Motivation

Panoramas have been used extensively for various purposes, from generating fly-

throughs for animations [23] to creating virtual 3D worlds [21]. We implemented

panoramas as a part of a novel visualization interface for the Bandit Project, con-

ducted in the Department of Mechanical Engineering. The Bandit project involves

deploying a space-probe equipped with a camera, from a satellite. The probe goes

around the satellite taking pictures for several reasons that could range from peri-

odic surveys to trouble-shooting mishaps. In order to direct the probe, the controller

needs to consider where the probe is, where it is expected to be in the future and

then change its path accordingly. The state of the probe is based on what it is “sees”

which indirectly reflects where it is relative to the main satellite. Thus, one of the vi-

sualization questions in this project is how to aggregate and present to the controller

all that the probe sees (and will see) so that the user can make an informed decision

regarding the probe’s navigation. Panoramic views provide a convenient mechanism

for combining multiple such views into a single field-of-view. Panoramas are also a

good artistic tool (Figure 7.1) for visualizing scenes that do not fit in a single view.

7.2 Problem statement

Our goal is to construct a single continous panoramic view, given a single camera

path C(t).

46

Figure 7.1: Panoramas are used to concatenate multiple views into a single one.
Agrawala et al. ([1]) used automatic techniques to combine photographs into a
single view. Their work was mainly motivated art work done by Michael Koller.

7.3 Approach

Panoramic views can be thought of as a special-case of non-linear projections. Thus,

they fit quite naturally into our framework. As explained in Section 4.2, in order

to generate a non-linear projection, vertices are assigned a local camera followed

by blending with a global camera. When generating a panoramic view, we follow

the same procedure, the main difference being the local camera that is assigned to

each vertex. Local cameras are selected from various points along the camera path

provided by the user (Figure 7.2). We then unwrap the camera path on the image

plane.

7.4 Implementation

In case of the bandit example we are given a discrete set of cameras, representing

the predicted state of the probe. We use the position and orientation of the probe

to build a corresponding camera. In order to assign cameras to vertices, we need to

create clusters. Each cluster corresponds to the camera. For the general case, we just

need a function representing the camera path.

A preliminary algorithm for clustering the different vertices is presented here. In the

current method, a given vertex is projected onto the view-direction of every camera

to find the one that is the closest. Thus, each cluster contains those vertices that are

closest to that particular camera. The center-of-projection of each camera must be

47

Bandit
Satellite

Different predicted views of the bandit

Figure 7.2: (a) The initialization of the bandit. (b) Different views of the satellite
from the Bandit. Note how the perceived size of the satellite decreases between

views.

changed in order to create a final smooth image. In order to do this, we determine the

projected bounding box of each cluster. From the bounding box we can determine

the projected span of any given cluster. Using these spans, clusters are projected

such that those corresponding to consecutive cameras (based on the input path) are

adjacent to each in the final image.

7.5 Result

The input camera path consisted of 12 views of the Bandit panning away from the

satellite. Assigning each vertex to one of these views, creates clusters as shown in

Figure 7.3(a). The panorama itself is show in in Figure 7.3(b). The substantial dip

in the size of the satellite seen in the left-side of the panorama corresponds to the

decrease in the projected size of the satellite as the Bandit moves away.

7.6 Future Work

The algorithm presented here is a prototype. It demonstrates that panoramic paths

can be generated using our framework . However, to make the final panorama more

artifacts-free we need to make several additions to the current algorithm. One is a

better clustering algorithm that should be based on clustering triangles as opposed

to vertices and takes into account the direction the camera is moving. Another is

48

(b) Final Panoramic View(a) Vertices Clusters

Figure 7.3: (a) Each vertex is colored based on the camera it is associated with. (b)
The final panorama.

allowing further sampling of the camera path. Finally, blending between adjacent

clusters will improve the overall result.

49

Chapter 8

GPU Implementation

In the non-linear perspective rendering framework, every vertex on the model is pro-

jected differently. However, we would like to retain the original lighting effects. As

mentioned in Section 2.4, changing the projection changes the lighting. Thus, we

have to recalculate the lighting on a per-vertex basis. Assigning different projections

to vertices and calculating their original color is a time-consuming process. If done

on the CPU, our interface would run no where close to the real-time interface we wish

to create. Thus, we implemented the framework on the GPU.

Programs written on the GPU (Graphics Processing Unit) consist of two modules.

One module, the vertex program, performs transformations on the world space

vertex position. Input to this module includes a world-space vertex normal and po-

sition along with the color. In addition to these per-vertex quantities, the program

also takes in global data (uniform data) which is shared by all vertices. The out-

put of the vertex program is the position of the vertex in camera (screen) space, the

transformed normal, and the original color. Finally, these quantities go through a

fragment shader (pixel shader) which performs lighting calculations to output

the final color of the pixel.

In our case, we use the vertex program to perform the projection of a given vertex by

combining the projections of the different cameras in the scene. Thus, the uniform

quantities given to the vertex program are the fall-off functions and the different cam-

eras in the scene (including the default camera). The output is the newly projected

vertex in camera-space, the normal projected using the default camera, and the color.

The fragment shader then performs the lighting calculations based on the old normal.

50

8.1 Rendering times

Rendering a non-linear perspective projection with even a single local camera takes an

extremely long time on the CPU. We ran a comparison study on a scanned model of

a human pelvis (number of vertices = 1289815, number of faces = 49989). The GPU

rendering took 0.775422016 seconds to render while the CPU rendering of the same

model took 13.42311523 seconds, approximately 17.31 times slower. Our algorithm

for rendering on the CPU computed and stored the new projection of vertices every

time a local camera was created or changed. In case of the pelvis model, this pre-

projection step took 115.95372054 seconds. Thus, even interactive manipulation of

the CPU rendering of the final composite image was extremely slow.

51

Chapter 9

Conclusion

In this thesis, I have presented a tool-kit for performing view-based deformations.

CubeCam was presented as an interface for manipulating a single camera which is

essentially a view-based deformation (a very simple one). Our non-linear perspective

framework is flexible for adapting to different applications while the design of the

front-end of the framework varies from one application to another.

52

References

[1] Aseem Agarwala, Maneesh Agrawala, Michael Cohen, David Salesin, and
Richard Szeliski. Photographing long scenes with multi-viewpoint panoramas.
ACM Trans. Graph., 25(3):853–861, 2006.

[2] Maneesh Agrawala, Denis Zorin, and Tamara Munzner. Artistic multiprojection
rendering. In Proceedings of Eurographics Rendering Workshop 2000, pages 125–
136. Eurographics, 2000.

[3] Jim Blinn. Where am i? what am i looking at? In IEEE Computer Graphics
and Applications, volume 22, pages 179–188, 1988.

[4] Stefan Bruckner, Sören Grimm, Armin Kanitsar, and Meister Eduard Gröller.
Illustrative context-preserving volume rendering. In Proceedings of EuroVis 2005,
pages 69–76, May 2005.

[5] Stefan Bruckner and Meister Eduard Gröller. Volumeshop: An interactive system
for direct volume illustration. In H. Rushmeier C. T. Silva, E. Gröller, editor,
Proceedings of IEEE Visualization 2005, pages 671–678, October 2005.

[6] Patrick Coleman and Karan Singh. Ryan: rendering your animation nonlinearly
projected. In NPAR ’04: Proceedings of the 3rd international symposium on Non-
photorealistic animation and rendering, pages 129–156, New York, NY, USA,
2004. ACM Press.

[7] Patrick Coleman, Karan Singh, Leon Barrett, Nisha Sudarsanam, and Cindy
Grimm. 3d screen-space widgets for non-linear projection. In GRAPHITE ’05:
Proceedings of the 3rd international conference on Computer graphics and inter-
active techniques in Australasia and South East Asia, pages 221–228, New York,
NY, USA, 2005. ACM Press.

[8] Michael Gleicher and Andrew Witkin. Through-the-lens camera control. In
Edwin E. Catmull, editor, Siggraph, volume 26, pages 331–340, July 1992. ISBN
0-201-51585-7. Held in Chicago, Illinois.

[9] Cindy Grimm. Post-rendering composition for 3d scenes. Eurographics short
papers, 20(3), 2001.

53

[10] Sören Grimm, Stefan Bruckner, Armin Kanitsar, and Meister Eduard Gröller.
Flexible direct multi-volume rendering in interactive scenes. In Vision, Modeling,
and Visualization (VMV), pages 386–379, October 2004.

[11] K. Henriksen, J. Sporring, and K. Hornbaek. Virtual trackballs revisited. In
IEEE Transactions on Visualization and Computer Graphics, volume 10, pages
206–216, Mar 2004.

[12] Jeff Hultquist. A virtual trackball. In Graphics Gems, pages 462–463. 1990.

[13] X. Jiao and M.T. Heath. Feature detection for surface meshes. In Proceedings
of the 8th International Conference on Numerical Grid Generation in Computa-
tional Field Simulations, Honolulu, HI, June 2002.

[14] Eric C. LaMar, Bernd Hamann, and Kenneth I. Joy. A magnification lens for
interactive volume visualization. In H. Suzuki, L.P. Kobbelt, and A.P. Rock-
wood, editors, Proceedings of Ninth Pacific Conference on Computer Graphics
and Applications- Pacific Graphics 2001, pages 223–232, Los Alamitos, Califor-
nia, 2001. IEEE, IEEE Computer Society Press.

[15] Michael J. McGuffin, Liviu Tancau, and Ravin Balakrishnan. Using deformations
for browsing volumetric data. In VIS ’03: Proceedings of the 14th IEEE Visual-
ization 2003 (VIS’03), page 53, Washington, DC, USA, 2003. IEEE Computer
Society.

[16] Chunhui Mei, Voicu Popescu, and Elisha Sacks. The occlusion camera. In
Computer Graphics Forum, volume 24, 2005.

[17] Paul Rademacher and Gary Bishop. Multiple-center-of-projection images. In
Proceedings of the 25th annual conference on Computer graphics and interactive
techniques, pages 199–206. ACM, ACM Press, 1998.

[18] Karan Singh. A fresh perspective. In Proceedings of Graphics Interface 2002,
pages 17–24, 2002.

[19] Karan Singh, Cindy Grimm, and Nisha Sudarsanam. The ibar: A perspective-
based camera widget. In UIST, October 2004.

[20] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: exploring
photo collections in 3d. ACM Trans. Graph., 25(3):835–846, 2006.

[21] Richard Szeliski. Video mosaics for virtual environments. IEEE Computer
Graphics and Applications, 16(2):22–30, 1996.

[22] Lujin Wang, Ye Zhao, Klaus Mueller, and Arie Kaufman. The magic volume lens:
An interactive focus+context technique for volume rendering. In Proceedings of
IEEE Visualization (VIS) 2005, pages 367–374, 2005.

54

[23] Daniel N. Wood, Adam Finkelstein, John F. Hughes, Craig E. Thayer, and
David H. Salesin. Multiperspective panoramas for cel animation. In Proceedings
of the 24th annual conference on Computer graphics and interactive techniques,
pages 243–250. ACM, ACM Press/Addison-Wesley Publishing Co., 1997.

[24] Jingyi Yu and Leonard McMillan. General linear cameras. In ECCV (2), pages
14–27, 2004.

55

Vita

Nisha Sudarsanam

Date of Birth July 23, 1982

Place of Birth Chennai, India

Degrees B.E. Computer Engineering, May 2003

M.S. Computer Science, August 2006

Publications Nisha Sudarsanam, Cindy Grimm, Karan Singh (2005). “In-

teractive Manipulation of Projections with a Curved Perspec-

tive”, Eurographics short papers, volume 24 : 105–108.

Karan Singh, Cindy Grimm, Nisha Sudarsanam (2004). “The

IBar: A Perspective-based Camera Widget”, UIST.

Leon Barret, Patrick Coleman, Nisha Sudarsanam, Karan

Singh, Cindy Grimm (2005). “3D Screen-space Widgets for

Non-linear Projection”, Graphite.

August 2006

Short Title: A view-based deformation tool-kit Sudarsanam, M.S. 2006

	A view-based deformation tool-kit, Master's Thesis, August 2006
	Recommended Citation
	A view-based deformation tool-kit, Master's Thesis, August 2006

	tmp.1418149444.pdf.zwhsu

