29 research outputs found

    Design of a snowboard simulating exercise device

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (p. 177-184).Snowboarding, since its creation, has become one of the most widely practiced winter sports. Unfortunately, most snowboarding enthusiasts are unable to snowboard year round due to geographic and financial limitations. One possible solution to this dilemma is the development of a device that simulates snowboarding. Using a Deterministic Design process developed in MIT's Precision Engineering Research Group, a Snowboarding Exercise Machine is created. This design features a carriage constrained to move back and forth along a curved track. Rotational sensations are created using an angular motion module mounted onto the carriage. The end result of this effort is a proof of concept prototype, which indicates that the output kinematics are desirable. Additional work and sponsorship is required to bring the proof of concept prototype to a commercially available product.by Timothy A. Vanderpoel.S.M

    Modeling and experimental validation of a parallel microrobot for biomanipulation

    Get PDF
    The main purpose of this project is the development of a commercial micropositioner's (SmarPod 115.25, SmarAct GmbH) geometrical model. SmarPod is characterized by parallel kinematics and is employed for precise and accurate sample's positioning under SEM microscope, being vacuum-compatible, for various applications. Geometrical modeling represents the preliminar step to fully understand, and possibly improve, robot's closed loop behaviour in terms of task's quality precision, when enterprises does not provide sufficient documentation. The robotic system, in fact, represents in this case a "black box" from which it's possible to extract information. This step is essential in order to improve, consequently, the reliability of bio-microsystem manipulation and characterization. Disposing of a detailed microrobot's model becomes essential to deal with the typical lack of sensing at microscale, as it allows a 3D precise and adequate reconstruction, realized through proper softwares, of the manipulation set-up. The roles of Virtual Reality (VR) and of simulations, carried out, in this case, in Blender environment, are asserted as well as an essential helping tool in mycrosystem's task planning. Blender is a professional free and open-source 3D computer graphics software and it is proven to be a basic instrument to validate microrobot's model, even to simplify it in case of complex system's geometries

    Virtual Reality

    Get PDF
    At present, the virtual reality has impact on information organization and management and even changes design principle of information systems, which will make it adapt to application requirements. The book aims to provide a broader perspective of virtual reality on development and application. First part of the book is named as "virtual reality visualization and vision" and includes new developments in virtual reality visualization of 3D scenarios, virtual reality and vision, high fidelity immersive virtual reality included tracking, rendering and display subsystems. The second part named as "virtual reality in robot technology" brings forth applications of virtual reality in remote rehabilitation robot-based rehabilitation evaluation method and multi-legged robot adaptive walking in unstructured terrains. The third part, named as "industrial and construction applications" is about the product design, space industry, building information modeling, construction and maintenance by virtual reality, and so on. And the last part, which is named as "culture and life of human" describes applications of culture life and multimedia-technology

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Modeling, Analysis, Force Sensing and Control of Continuum Robots for Minimally Invasive Surgery

    Get PDF
    This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and incorporating force sensing and feedback from the manipulators to the user. Contributions presented in this work include: (1) prototyping, design, force sensing, and force control investigations of PCRs, and (2) prototyping of a concentric tube manipulator for use in a standard colonoscope. A general kinetostatic model is presented for PCRs along with identification of multiple physical constraints encountered in design and construction. Design considerations and manipulator capabilities are examined in the form of matrix metrics and ellipsoid representations. Finally, force sensing and control are explored and experimental results are provided showing the accuracy of force estimates based on actuation force measurements and control capabilities. An overview of the design requirements, manipulator construction, analysis and experimental results are provided for a CTM used as a tool manipulator in a traditional colonoscope. Currently, tools used in colonoscopic procedures are straight and exit the front of the scope with 1 DOF of operation (jaws of a grasper, tightening of a loop, etc.). This research shows that with a CTM deployed, the dexterity of these tools can be increased dramatically, increasing accuracy of tool operation, ease of use and safety of the overall procedure. The prototype investigated in this work allows for multiple tools to be used during a single procedure. Experimental results show the feasibility and advantages of the newly-designed manipulators

    Veröffentlichungen und Vorträge 2006 der Mitglieder der Fakultät für Informatik

    Get PDF

    Dual Loop Rider Control of a Dynamic Motorcycle Riding Simulator

    Get PDF
    Compared to the automotive industry, the use of simulators in the motorcycle domain is negligible as for their lack of usability and accessibility. According to the state-of-the-art, it is e.g. not possible for motorcyclists to intuitively control a high-fidelity dynamic motorcycle riding simulator when getting in contact with it for the first time. There are four main reasons for the insufficient simulation quality of dynamic motorcycle riding simulators: ▪ The instability of single-track vehicles at low speed, ▪ The steering force-feedback with highly velocity-dependent behavior, ▪ Motion-simulation (high dynamics, roll angle, direct contact to the environment), ▪ The specific influence of the rider to vehicle dynamics (incl. rider motion). The last bullet point is peculiar for motorcycles and dynamic motorcycle riding simulators in comparison with other vehicle simulators, as motorcycles are significantly affected in their dynamics by the rider’s body motion. However, up until today, almost no special emphasis has been put on the consideration of rider motion on dynamic motorcycle riding simulators. In this thesis, a motorcycle riding simulator is designed, constructed and put into operation. The focus here is attaching a real rider to a virtual motorcycle. Based on a commercially available multi-body-simulation model, a simulator architecture is designed, that allows to control the virtual motorcycle not only by steering, but by rider leaning as well. This is realized by determining the so-called rider induced roll torque, that allows a holistic measurement of the apparent coupling forces between rider and simulator mockup. Performance measures and study concepts are developed that allow to rate the system. In expert and participant studies, the influence of the system on the riding behavior of the simulator is investigated. It is shown that the rider motion determination allows realistic control inputs and has a positive effect on the stabilization at various velocities. The feedback of the rider induced roll torque to the virtual dynamics model allows study participants to control the virtual motorcycle more intuitively. The vehicle states during cornering are affected as expected from real riding. First results indicate that it becomes easier for naïve study participants to access the simulator in first-contact scenarios. The achieved improvements regarding the rideability of the simulator however do not suffice to overcome the abovementioned challenges to a degree that allows for a completely intuitive interaction with the simulator throughout the whole dynamic range

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Modular Robotic Playware

    Get PDF

    Augmentation Of Human Skill In Microsurgery

    Get PDF
    Surgeons performing highly skilled microsurgery tasks can benefit from information and manual assistance to overcome technological and physiological limitations to make surgery safer, efficient, and more successful. Vitreoretinal surgery is particularly difficult due to inherent micro-scale and fragility of human eye anatomy. Additionally, surgeons are challenged by physiological hand tremor, poor visualization, lack of force sensing, and significant cognitive load while executing high-risk procedures inside the eye, such as epiretinal membrane peeling. This dissertation presents the architecture and the design principles for a surgical augmentation environment which is used to develop innovative functionality to address the fundamental limitations in vitreoretinal surgery. It is an inherently information driven modular system incorporating robotics, sensors, and multimedia components. The integrated nature of the system is leveraged to create intuitive and relevant human-machine interfaces and generate a particular system behavior to provide active physical assistance and present relevant sensory information to the surgeon. These include basic manipulation assistance, audio-visual and haptic feedback, intraoperative imaging and force sensing. The resulting functionality, and the proposed architecture and design methods generalize to other microsurgical procedures. The system's performance is demonstrated and evaluated using phantoms and in vivo experiments
    corecore