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Abstract

This dissertation describes design, modeling and application of continuum robotics

for surgical applications, specifically parallel continuum robots (PCRs) and concentric

tube manipulators (CTMs). The introduction of robotics into surgical applications

has allowed for a greater degree of precision, less invasive access to more remote

surgical sites, and user-intuitive interfaces with enhanced vision systems. The most

recent developments have been in the space of continuum robots, whose flexible

structure create an inherent safety factor when in contact with fragile tissues. The

design challenges that exist involve balancing size and strength of the manipulators,

controlling the manipulators over long transmission pathways, and incorporating force

sensing and feedback from the manipulators to the user.

Contributions presented in this work include: (1) prototyping, design, force

sensing, and force control investigations of PCRs, and (2) prototyping of a concentric

tube manipulator for use in a standard colonoscope. A general kinetostatic model

is presented for PCRs along with identification of multiple physical constraints

encountered in design and construction. Design considerations and manipulator

capabilities are examined in the form of matrix metrics and ellipsoid representations.

Finally, force sensing and control are explored and experimental results are provided

showing the accuracy of force estimates based on actuation force measurements and

control capabilities.

An overview of the design requirements, manipulator construction, analysis and

experimental results are provided for a CTM used as a tool manipulator in a
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traditional colonoscope. Currently, tools used in colonoscopic procedures are straight

and exit the front of the scope with 1 DOF of operation (jaws of a grasper, tightening

of a loop, etc.). This research shows that with a CTM deployed, the dexterity of

these tools can be increased dramatically, increasing accuracy of tool operation, ease

of use and safety of the overall procedure. The prototype investigated in this work

allows for multiple tools to be used during a single procedure. Experimental results

show the feasibility and advantages of the newly-designed manipulators.
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Chapter 1

Introduction

1.1 Motivation

Robotic manipulators have opened up a new world of precision and dexterity to

human tasks that have historically ranged from extremely difficult and hazardous to

essentially impossible. There have been recent innovations in the world of industrial

(1; 2) and medical robotics (3; 4) that have fundamentally changed the way humans

complete these tasks. These applications have created a community of researchers

seeking to push the boundaries of theoretical robotics and apply their knowledge to

solve complex problems that plague the world. This work is a contribution to the

iterative process moving the collective effort forward in pursuit of safer and more

stable robotic partners.

Flexible robotic systems have enjoyed increased interest in industry and research

due to the potential for gains in inherent safety and passive compliance when

interacting with fragile structures inside their workspace (5). These fragile structures

can be humans in an industrial setting, or human tissue in a surgical setting. In the

second case, robots have allowed surgeons to perform increasingly minimally invasive

procedures that cause less damage to the surrounding healthy tissue. Minimally

invasive techniques involve completing the surgical task with smaller incisions (6).
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This has the immediate benefit of decreasing the amount of healing required

for recovery which leads to shorter hospitals stays and decreased medical costs.

Additional benefits of minimally invasive surgery for patients include: reduced risk

for adverse effects, blood loss, and pain related to the invasiveness of the intervention.

By contrast, a challenge with minimally invasive procedures is the increased difficulty

for surgeons. These difficulties arise from the challenges associated with the distance

the robot places between the surgeon and the fragile structures of the surgical site. By

contrast, absent robotic assistance, surgeons must operate on fragile structures using

rigid tools with limited reach that require both triangulation and a larger workspace.

New technologies in robotics and computer assistance has advanced minimally

invasive surgery and helped to alleviate some of these challenges. With these tools,

surgeons now enjoy an ergonomic operating position, magnified 3D visualization,

increased precision, improved tool dexterity, human tremor filtration, and increased

access to difficult surgical sites. The surgeon can now more directly control the

motion of an instrument held by the robot. The robot’s contribution has advanced

to now precisely comply with the direction of the surgeon while scaling motion,

eliminating tremors and following any pre-procedure instructions. An example of

these instructions would include virtual fixtures which are geometrical constraints

imposed on the tool by the robot via a control algorithm that disallows motion in

certain areas of the workspace where the surgeon does not want the robot to go (7).

These benefits have been welcomed in a breadth of medical specialties. In 2014,

there were more than 500,000 surgical procedures performed robotically (8). Most of

these procedures were urological or gynecological. Robotic systems are also used in

cardiology, pediatric surgery and general surgery.

While there are now several systems on the market for surgeons to use during

procedures, there are still some human and technological limitations to their

capabilities and applications. First, use of robotic surgical device requires advanced

training and expertise to achieve optimal utilization. Additionally, the systems are

normally quite large, requiring ample space, and further, they remove the surgeon
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from the bedside to a control input station. The largest of these systems are thus

far relegated to use in laparoscopic procedures. Due to their size and effectiveness as

compared to the cost, the overall appropriateness of these large systems have been

questioned by some (9). Further, the removal of the surgeon from direct contact with

tissue also creates a loss of haptic feedback. Additionally, the set up and calibration

of most robotic systems represents a hindrance to the clinical team as well.

Minimally invasive techniques are pushing the limits of current tools both robotic

and manual. There are some procedures now calling for a completely incision-

less approach where tools are introduced via natural orifices called natural orifice

transluminal endoscopic surgery (NOTES). In these procedures, robotic manipulators

need to be introduced down a long flexible transmission section of a endoscope which

can measure up to 5 feet in length. It is this particular application that has drawn

much of the research in flexible manipulators. These procedures require robots that

are small and dexterous enough to reach locations deep inside the body.

This application and the robots required for its success is the focus of this research

specifically modeling formulations for accurate robot control, analysis methods to

help make design choices, force sensing and control methods to aid in providing

enhanced feedback and increased safety, and finally, prototyping methods to achieve

accurate actuation over long transmission lengths found in endoscopic devices. The

manipulators presented in this dissertation advance the technology and tools toward

addressing these challenges. Parallel continuum robots (PCRs) provide a dexterous

wrist-like structure with an open lumen for tool manipulation. The formulation of

their kinetostatics can solve for the tip forces and moments when measuring the forces

at the base of the robot. Concentric tube manipulators (CTMs) are long and slender,

open-channel manipulators that are well suited for endoscopic deployment.
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1.2 Fundamental Contributions

The contributions of this research are an analysis of PCRs and CTMs in the

application of surgical tool manipulators, investigation of force sensing and control

abilities of PCRs, and an analysis of a new prototype robotic endoscopic system

designed for colon tissue resection. The work is supported by the following individual

contributions.

Generalized Modeling of Parallel Continuum Robots The kinetostatic

modeling of a PCR utilizes Cosserat rod theory and static equilibrium equations

along with boundary conditions that are specified by the physical characteristics of

the manipulator. These equations are solved through a iterative approach that guesses

unknowns conditions and integrates the initial value problem till the boundary value

problem has been solved to meet the desired tolerance. A generalized the modeling

approach for PCRs is presented in Chapter 3 that allows for a wide array of problem

types (various inputs and outputs). The modeling is also enhanced with a definition

of multiple boundary conditions (joint types and base plates). With this approach,

it is simple to define the type of PCR being used and solve for a variety of desired

input/output configurations.

Multi-segment Parallel Continuum Robot Model Along with the generalized

model of PCRs that is presented in Chapter 3, modeling of a multi-segment parallel

continuum robot in the Stewart Gough configuration is also presented. Although an

example of a physical system exists in a rudimentary form, kinematic modeling has

not yet been achieved in this extended design. This model will enable control of a 6n

DOF manipulator where the n is the number of modules.

Linearized Kinestatic Analysis of Parallel Continuum Robots In order

to closely examine the kinematic and kinetostatic capabilities of the PCR, a

linearized analysis method is required. In Chapter 4, the framework for such an
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analysis is presented utilizing the modeling methods of Chapter 3. Previously used

methods of robotic analysis including Jacobian manipulability measures and ellipsoid

visualizations are applied to compliance and force matrices common to all continuum

robots.

Force Sensing and Control with Parallel Continuum Robots Due to the

nature of the generalized modeling, it is possible to take commanded and sensed

information from the actuation points of a PCR and estimate the tip position and tip

wrench. The capabilities of PCRs to be used as “intrinsic force sensors” that utilize

the actuator loads to estimate the force at the tip of the manipulator and the use of

that sensed force for stiffness control is examined in Chapter 5.

Feasibility of Concentric Tube Manipulators for Endoscopic Deployment

The final contribution is the study of a proof-of-concept prototype of a surgical

endoscope with concentric tube manipulators deployed down the tool ports. The

design is analyzed for surgical effectiveness of the manipulator and a physical

prototype is prepared for bench-top validation.

1.3 Background on Robotic Surgery

The union of robotics and surgical techniques is a breakthrough in surgery that is

driving not only advances in technology but also improvements in clinical techniques

to further increase the quality and efficacy of surgical treatments. Robotics is

delivering higher levels of dexterity, vision, and access than previous tools. Currently,

there are four main categories of surgical robotic systems based on function and size

(see Figure 1.1). Laparoscopic systems are usually large, rigid systems like the da

Vinci c© by Intuitive Surgical and the Raven I and II developed by the University of

Washington and the University of South Carolina. These systems are well suited for

laparoscopic surgery because of their ability to triangulate the tools in the open
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Figure 1.1: This graphical representation of robotic manipulators shows their
relationship based on size. The top manipulators on the meter scale while the bottom
right corner is on the nanometer scale. This graphic appears in (10).

workspace of an insufflated (filled with air) body cavity. They have been well

designed with considerable research on the engineering requirements for this category

of operation (6). However, these systems are not without their challenges. They

typically require a large footprint in the surgical suite, multiple operators to maintain

and maneuver the tools, and they remove the doctor from the patient bedside. They

also utilize long, rigid tools that are suitable for procedures like abdominal surgery

but are challenged in more confined areas associated with natural orifice surgical

approaches. The most important drawback to these systems is their current lack

of sensory feedback in terms of forces applied to the tissue (11; 10). The endoscopic

scale of surgical robot is more well suited for these types of procedures. The approach

requires a long flexible instrument with multiple degrees of freedom (DOF) at the tip

of a scope with a camera. This type of surgical robot is the focus of this research and

is discussed in more detail below.
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Figure 1.2: This figure shows the progress of several research groups in using
continuum robots in endoscopic surgical procedures. This graphic appears in (5).

Endoscopic procedure spaces (such as intraluminal or endoluminal) continue to

necessitate an invasive and open approach due to the lack of appropriately designed

robotic tools (11; 10). Thus, for these surgical needs, a different type of robotic

manipulator is warranted for endoscopic procedures. The workspace is much smaller

and usually consists of a long cylindrical lumen or requires navigating a complex

path to reach the surgical site. The tools have to be passed through the tip of a

rigid or flexible endoscope. The tools that do exist for endoscopic procedures are

not dexterous and have to be actuated via non-intuitive torques of the tool and the

scope. Currently there are no commercially available robotic systems for this type of

procedure. However, several research groups are investigating this (12; 13; 14; 15; 16).

The work of Simaan et. al. (17) provided a tele-operated robotic system to work

in the throat. Another system by Choset (18) provides high DOF manipulator for

cardiothoracic surgery. Another area of research includes the steerable needle systems

(19; 20; 21). These systems are used for intravascular procedures and deep biopsies.
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A summary of surgical systems by application is found in (5) and a Figure from this

work is shown in Figure 1.2.

1.4 Robotic Considerations for NOTES

Natural orifice transluminal endoscopic surgery (NOTES) and the closely related en-

doluminal surgery (ELS) have experienced recent growth in research and application

exploration both by surgeons and roboticists. This type of procedure represents

the most significant innovation in surgery since the introduction of laparoscopy

(22; 23) with the most promising application being direct-target NOTES. Direct-

target NOTES procedures enter through natural orifices (i.e. the stomach, colon,

or vagina) to reach procedure sites accessible via those orifices, and thus, they do

not breach healthy tissue. By comparison, the hybrid NOTES uses laparoscopic

ports/tools to complete the surgery, cutting into otherwise healthy tissue to then reach

a surgical site and perform a procedure. The hybrid procedure provides assistance

in tissue manipulation and visualization of the surgical field and has increased in

use exponentially in rectal cancer surgery. However, when these additional incisions

are made the benefits of a natural orifice approach are diminished. Patients can

experience increased pain and wound complications while still being at risk for the co-

morbidities of a pure NOTES procedure (tissue injury at point of access, bleeding and

perforation) (24). This increased risk demonstrates the need for further enhancement

of the tools available for direct-target NOTES procedures and specifically ELS

procedures.

An ELS tool set currently consists of a rigid or flexible endoscope with multi-

channel tool ports for cameras and surgical instruments. Since the camera extends

from inside the scope, the field of view is narrow and limited due to the close proximity

to the tools. The tools are also limited in their dexterity and range of motion. This

limitation is compounded by the problem of spatial disorientation resulting from the

movement of the scope required to manipulate the tools and the viewing angle of the
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embedded camera. Other limitations include limited force feedback at the tool tip

and difficulty in controlling tool motions.

In order to achieve the level of safety and effectiveness needed for ELS surgery

to achieve broader adoption, endoscopic tools need to be developed that address

these concerns and provide small, flexible yet strong, dexterous manipulators capable

of reaching difficult-to-access surgical sites via nonlinear pathways. A category of

robots that promises to provide these capabilities is continuum robots.

1.4.1 Colonoscopic Surgery

One specific application that is examined in this dissertation is endoscopic submucosal

dissection and resection of colorectal carcinoma. A discussion of the significance,

surgical technique and robotic considerations is provided below.

Significance

The most common life-threatening disease of the digestive tract is colorectal

carcinoma. Approximately 1 in 20 Americans will be diagnosed in their lifetime (25).

Of these cases, 40% are diagnosed at the local stage, when the cancer has invaded the

mucosa and submucosa, but has not yet penetrated the muscle layers of the colon wall

and spread into the lymph nodes (see Figure 1.3 (b)). At this stage of the disease,

open or laparoscopic surgery to remove a segment of the colon and anastomose the

remaining ends back together is the current standard of care in the US. While these

procedures are effective, they are invasive and pose a great deal of risk (infection

(27%), non-infectious complications (14%), revision surgery (10%)) (26).

Treating early stage cancer from within the colon is ideal. Some carcinomas

near the anal verge can be removed with laparoscopic instruments passed through

the anus (27; 10; 28; 29), and small, pre-invasive polyps and lesions can be treated

with endoscopic mucosal resection (EMR) during colonoscopy (30). However, as the
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tumors grow larger and deeper into the submucosa, the surgical procedure becomes

more difficult and time intensive.

Endoscopic submucosal dissection (ESD) is a relatively new colonoscopic proce-

dure developed to treat lesions that are larger, more advanced, and located further

from the anal verge (see Figure 1.4 (a)). ESD has been proven more effective and less

invasive than laparoscopic segmental resection (31). However, its widespread adoption

has been hindered by the difficulty of manipulating dissection tools endoscopically

(32) and the associated risks due to this difficulty. The surgeon must dissect through

the inner submucosal layer, approaching, yet preserving, the musculature to protect

against perforation and local paralysis.

In conventional EMR, ESD, and polypectomies, an endoscopist uses visual

feedback from a distal camera to guide a colonoscope with a steerable tip to the site

of the cancerous lesion (see Figure 1.4 (b)). An electrocautery knife is passed through

a hollow tool channel in the colonoscope. In order to excise the cancerous tissue, this

tool is inserted and activated by an assistant while the surgeon controls the steerable

endoscope tip to guide the dissection. This requires the surgeon to turn knobs at

the base of the colonoscope by hand to deflect the tip and the instruments together.

a) c)b)

Figure 1.3: (a) The open surgical technique requires large incisions in the abdomen
and breaching of the colonic wall. (b) The initial stages of colonic cancer begin in
the mucosa and submucosa. It is possible to remove stage 0 or 1 tumors from within
the colon using a natural orifice approach. (c) Endoscopic surgery uses a natural
orifice approach with no incisions. However, current tools are rigidly attached to the
endoscope and have limited dexterity.
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a) b)

Figure 1.4: (a) ESD procedures involve navigating to a remote location in the colon
via a steerable colonoscope and carefully dissecting cancerous tissue. b) A typical
non-steerable electrocautery tool is shown, as seen from the endoscopic camera. The
tool can be inserted along its axis, but the endoscopist must manually maneuver
the entire scope tip and field of view in order to displace the tool tip vertically or
horizontally. The dexterity afforded by this approach is highly limited, contributing
to procedural difficulty, time, and risks.

The dexterity afforded by this approach is quite low, even when compared to the

modest dexterity of laparoscopic surgery. While the tip can be deflected to move the

tools, the angle of incidence between knife tip and tissue is essentially unchangeable.

An added difficulty is that during colonoscope manipulation and steering, the entire

field-of-view can shift in a counter-intuitive direction that is not always predictable

due to colonoscope loop formations (33). Manipulating the colonoscope in this way

contributes greatly to the difficulty of the procedure and its associated risks and

implications discussed previously. ESD has an inherently larger risk of perforation

due to the required dissection to the submucosa (which is the strongest layer in the

intestinal wall (34)). Perforation can lead to possible permanent damage to the colon

wall (requiring resection) as well as systemic infection of the abdominal cavity. Lower

surgeon experience levels have been associated with a higher risk of perforation (35),

indicating that the difficulty of manual endoscopic tool manipulation is a major barrier

to performing this complex task at an expert level. Studies show a learning curve

of 20-30 supervised cases (36; 37; 38) before an already experienced endoscopist can

perform this procedure solo, and upwards of 100 cases before the risk of perforation
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decreases statistically significantly (35). Procedure time for ESD is also lengthy (40-

90 minutes (39), and more than 120 minutes in difficult cases) serving to increase

risks of other complications like infection (40) or blood clots due to the length of the

procedure.

A robot-assisted endoscopic tool manipulation system can reduce difficulty, risk,

and procedure time for colorectal ESD. The final chapter of this work provides

an analysis and feasibility study of a robotically enhanced colonoscope designed

to control instrument manipulators with greater DOF and dexterity than currently

available tools. The long-term impact of this research will include increased adoption

of the minimally invasive ESD approach resulting in reduced risks and cost, thus

providing significant benefits to cancer patients who would otherwise suffer a more

invasive and complicated segmental resection surgery, as well as reduced risk for their

providers and healthcare institutions (Figure 1.3 (a)) as their only option.

A new robotic system also has the potential to impact procedures in a much

broader range of surgical disciplines by providing a strong, dexterous, and intuitively

controlled endoscopic instrument manipulator design. While colorectal ESD is the

initial target application, the success of the new robotic system will also serve as

a proxy and feasibility benchmark for any delicate endoluminal operation at a site

accessible via flexible endoscopy. This includes surgery in the upper GI tract and

the bronchial lumens as well as single-port abdominal surgery. In the long-term, the

potential impact includes realizing novel procedures that are not currently performed

endoscopically and making future natural orifice transluminal surgery (NOTES)

procedures safer and easier to perform (41) in all areas of the body.

Related Work

Endoscopic deployment of continuum robots has been studied for several applications

including neuroendoscopy (42), NOTES (43), and colonoscopies (44). Concentric-

tube manipulators (as shown in Figure 2.2) have been recently proposed and advanced

towards some surgical applications in other areas of the body, (e.g. neurosurgery (45),
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and cardiac surgery (46), thermal ablation in liver (47), and transurethral resection

of the prostate (48)). However, the proposed project will be the first time that

concentric tube manipulators have been applied to colonoscopic surgery. The most

closely related work is the dual arm concentric tube endoscope for prostate surgery

(48). This system uses a dual arm approach via a rigid endoscope. The system in

Chapter 6 applies the dual arm paradigm via a flexible colonoscope. Another closely

related system is the one in (49). The system utilizes a flexible endoscope with a

single concentric tube and a steerable needle to biopsy lung tumors. It shows the

potential for concentric tubes to be manipulated down an endoscope.

The strategy of using robotic, concentric-tube instrument manipulators is a

significant departure from the strategies employed by all other flexible endoscopic

systems investigated to date. First, there have been several manually-operated

flexible platforms developed towards general NOTES (natural-orifice, transluminal,

endoscopic surgery) procedures. These include the NOTES-scope and EndoSamurai

(Olympus) (50), the incisionless operating platform (IOP; USGI medical) (51), the

direct-drive endoscopic system (DDES; Boston Scientific) (52; 53), and the Anubis

platform (Karl Storz) (54). In all of these systems, manually coordinating the DOF

of the flexible endoscopes and steerable instruments simultaneously via knobs and

levers is very challenging. Existing robotic platforms include efforts to robotize the

Anubis scope (55; 56) and scope-mounted robotic instruments (MASTER (57; 58)).

The MASTER uses tendons and sheaths that are controlled via the working channels

of the endoscope and the manipulators are mounted on the front. The instruments

attached at the end of the MASTER are fixed to the distal mechanism.

In contrast to these ongoing efforts, the robotic, concentric-tube approach has

two main advantages: precise actuation and maximum strength and stiffness. All

of the systems referenced above operate via the translation of braided steel Bowden

cables routed through a flexible distal portion of the instruments. In those cases,

high tension and precise control of cable displacements are required for accurate
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manipulation, but friction and cable stretch induce hysteresis, making the shape of

the instruments difficult to predict and control.

Since the concentric-tube approach involves sliding the pre-curved tubes over each

other rather than applying actuation torques with pairs of cables, precise movements

can be achieved without imposing stringent requirements on actuation force and

precision. In addition, solid concentric tubes can be much more stiff and strong

than cable-driven designs, enabling them to apply the same forces to tissue while

requiring less space and providing a hollow central working channel through which

any flexible instrument can be passed. This is in contrast to all other systems which

have specialized, unchangeable instruments integrated into the colonoscope structure

(e.g. EndoSamurai, MASTER), or custom steerable instruments (e.g. Anubis, IOP,

DDES).
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Chapter 2

Literature Review

This section provides a review of robotic research that is relevant to the topics in

this dissertation. Continuum and parallel robots are discussed in detail as they relate

to the relevant robotic structures of this research, parallel continuum robots and

concentric tube robots.

2.1 Continuum Manipulators

Continuum manipulators are continuously bending, infinite degree of freedom (DOF)

robots with an elastic structure whose kinematics are modeled by the field of

continuum mathematics. They are defined by their ability to take the shape of a

smooth continuous curve and bend at any point along its backbone structure (59).

Continuum manipulators are usually considered serial devices, due to their long

slender shape, and the dominant geometric modeling paradigm is constant curvature

arc segments tangentially connected in series, as reviewed in (60). However, the

distinction between serial/hyperredundant devices and continuum devices is the finite

number of joints. This boundary is not always clear when manipulator designs use

continuously bending elements along with discrete joints. As some researchers have

noted, many continuum designs also contain aspects resembling parallel architectures.

For example, multiple entities are often constrained and connected in parallel within
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Figure 2.1: The landscape of manipulator structural types contains the broad
categories of serial and parallel robots. Continuum robots have a slender elastic
structure and are typically considered serial robots. Parallel continuum robots consist
of the unification of parallel structures and continuous links. This graphic appears in
(75).

a single arc segment to achieve 2-DOF bending actuation (e.g. pneumatic muscles

(61), multi-backbone designs (62), multiple embedded tendons (63; 64; 65), and

concentric precurved tubes (66; 67)). The fact that these arc segments are then

arranged in series could lead one to categorize these as hybrid manipulators. Similar

observations have been made in the case of concentric tube robots (66; 67), where

the precurved nested tubes conform to an equilibrium shape in an analogous way

to springs connected in parallel (68). One example in (17) consists of a central

backbone and three secondary backbones constrained by spacer disks. Multiple

entities are often connected in parallel within a single arc segment to achieve 2-

DOF bending actuation (e.g. pneumatic muscles (69), multi-backbone designs (62),

multiple embedded tendons (70; 71; 72), and concentric tubes (46; 73; 74; 67)). Thus,

the majority of existing continuum robots would most accurately be categorized as

either serial or hybrid manipulators.
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There has been significant research into these types of manipulators, leading to

designs and actuation strategies including cables and tendons (71; 76; 77), multiple

backbone rods (17; 78; 79), pre-curved concentric tubes (80; 81; 82; 45; 83; 84),

hydraulics (85; 86; 87), pneumatics (88; 89; 44), and shape-memory behavior (90;

91; 92; 93). There are now several survey articles focused on different aspects of

continuum robots, including early reviews (94; 95), as well as recent reviews of soft

robotics (primarily composed of easily deformable matter such as fluids, gels, and

elastomers that match the elastic and rheological properties of biological tissue and

organs) (96; 97; 98), snake-like robots (99; 100; 101), continuum robot modeling

(60; 102), and robot strings (103). A recent review of emerging surgical robotic

platforms (11) prominently highlights the ability of continuum robots to reach remote

locations in the body through less invasive access routes due to their curved elastic

structure.

Accurate modeling of the continuum manipulator will provide a geometric

representation of the manipulator body via a kinematic and mechanics framework.

These modeling structures incorporate the geometry of the design along with

constitutive relationships and mechanics to relate loads from actuation and the

external environment. The dominant geometric modeling paradigm is constant

curvature arc segments tangentially connected in series, as reviewed in (60). While

this choice is useful for a number of continuum robots, a more geometrically exact

model is used for the manipulators in this research. The details of this modeling

structure are shown in Chapter 3.

2.1.1 Concentric Tube Manipulators

A concentric tube manipulator (see Figure 2.2) consists of elastic, pre-curved tubes

that are nested inside of one another concentrically. The shape of the needle-sized

manipulator can be changed by axially rotating and translating each individual tube

at the base. The curvature of the tubes enables a wide range of shapes to be
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Figure 2.2: Concentric-tube robot with a standard da Vinci EndoWrist R©. This
graphic appears in (104).

achieved in a very small structure. The size of these manipulators makes them ideal

for integration with a standard endoscope or colonoscope. This technique has been

applied to a bronchoscope in (49).

In the trans-endoscope embodiment, concentric tube robots have been proposed

for use in neurosurgery, transoral throat and lung surgery, and transgastric surgery

with applications in transnasal skull base surgery (45), cardiac procedures (66),

thermal ablation in liver (47), and transurethral resection of the prostate (48),

among others. In the transvascular embodiment, concentric tube robots have been

proposed for a variety of intracardiac procedures where they enter the heart through

the vascular system. In the percutaneous, needle-like embodiment, applications

that have been suggested include fetal umbilical cord blood sampling, ultrasound

guided liver targeting and vein cannulation, vascular graft placement for hemodialysis,

thermal ablation of cancer, prostate brachytherapy, retinal vein cannulation, epilepsy

treatments, and general soft tissue targeting procedures. More information can be

found in (104).
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2.2 Parallel Robots

Parallel robots are closed-loop mechanisms whose end effector is linked to the base by

several independent kinematic chains. Parallel manipulators have been the subject

of robotics research since the early 1900s. They have been used in flight simulators,

test beds, and manufacturing. As summarized in (105), “flexible” parallel robots

have also been studied extensively, specifically in the context of how link flexibility

affects the output stiffness mapping and manipulator dynamics. Other research

includes design, modeling and control of planar parallel robots with compliant links

(106; 107; 108; 109; 110; 111). Additionally work has been done on the control of

flexible Stewart platforms (112; 113) and mechanical teleoperation of a cable-driven

continuum robot using a parallel platform as the input device (114). These works are

typically concerned with link deformations that are of small magnitude, modeled with

lumped linear springs or distributed small-deflection Euler-Bernoulli beam theory.

Furthermore, in the designs considered, the links only undergo deformation when

external or inertial loads are present. During quasistatic operation in free space, the

links behave as rigid members, and the joints carry no forces or moments.

Flexure joints and compliant mechanisms have been studied as a substitute for

conventional structures in cases where the size, cost, or non-smooth nonlinearities

must be minimized. Several unique, flexure-based, larger scale platforms have

been developed and analyzed, including designs for finger rehabilitation (115), space

deployed structures (116), large range modular units with compliant prismatic joints

(117), 3 DOF translation platforms employing compliant cruciform hinges (118; 119),

and flexure-jointed 6 DOF platforms (120; 121; 122; 123; 124).

In medical robotics, a parallel robot with series elastic actuation has been

developed for ankle rehabilitation (125). Miniature parallel mechanisms have also

been constructed for use in robotic capsule endoscopy, as in (126) where the universal

joint at the base of each strut was replaced with a leaf spring to minimize size.

Miniaturization is particularly important for minimally invasive robotic surgery, and
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Figure 2.3: The parallel continuum design paradigm utilizes the translation of
slender rods/tubes between constrained points to create large deformations in each
of the flexible links. (a) Stewart Gough configuration with diameters of 87 mm, (b)
10 mm, and (c) 5 mm. (d) 3 link PCR. (e) Stewart Gough configuration 12 mm in
diameter with grapser (128).

Merlet has developed a 3 DOF micro parallel robot, 7 mm in diameter, which is

located at the end of an endoscope and actuated by the translation of rods outside

the patient (105; 127).

2.2.1 Parallel Continuum Robots

A new and novel design of continuum robot that completes the fourth quadrant of

the design space is the parallel continuum robot. A parallel continuum robot (PCR)

is a manipulator with flexible elastic links arranged in parallel. Figure 2.3 shows

several examples of PCRs with flexible links connected in different configurations,

including the traditional 6 link Stewart-Gough pattern. The distal ends of the
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elastic links are connected to the end-effector platform, and the base of each link

is independently translated by an actuator at its proximal end. This causes each

compliant link to deform, giving rise to articulation of the end effector. This PCR

design paradigm achieves multi-degree-of-freedom articulation and force sensitivity

using a structure that is simple, inexpensive, lightweight, compliant, and easily

scalable. These characteristics may be useful in micro-manipulation, endoscopic

robotic-assisted surgery, and human-robot interaction. This manipulator design

category is a natural extension of concepts presented in prior literature on continuum

robots and parallel robots (60; 129; 62; 79; 130; 131), yet its design and potential

advantages/tradeoffs have yet to be thoroughly investigated.

In comparison to serial continuum robots, parallel continuum designs are likely

to have higher payload capacity and accuracy/repeatability. Compared to rigid-

link parallel manipulators, they may exhibit greater compliance, larger workspace,

and easier miniaturization to the the scale of a few millimeters in diameter or

smaller. Their inherent mechanical compliance and low mass due to off-loading

of the actuators can provide an important safety feature wherever parallel robots

need to interact with humans. In the field of endoscopic robotic surgery, parallel

continuum manipulators have the potential to provide precise, multi-DOF motion in

a simple, compact, and short mechanism at the tip of an endoscope. As detailed

in our prior work (132; 128), we believe that this type of design could improve

robot-assisted surgical procedures by providing an easily miniaturized, remotely

actuated manipulator that can achieve multi-DOF articulation in a confined space.

Example procedures would include distal vein anastamosis, urethroplasty, ophthalmic

surgery, and endoscopic/colonoscopic procedures. Another potential application is to

provide a dexterous wrist for intra-abdominal surgeries on small structures. Parallel

continuum robots are also potentially applicable to larger-scale industrial applications

traditionally performed by rigid-link robots to facilitate safer operation around and in

cooperation with humans. Because of the inherently lightweight, compliant nature of

the design, collisions naturally result in deformation to the robot rather than injury
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to the human. Applications include any cooperative robot task where humans are

in direct contact with the robot such as assembly of automotive components and

inspection of complex systems (133).

Current manipulator designs most closely related to the PCR include the multi-

backbone designs of Simaan et al. (134; 62), and the bionic tripod series of

manipulators from the German company Festo (135). Multi-backbone designs

typically employ serial bending segments along a primary backbone, each of which

are actuated by the translation of three secondary backbone rods that terminate at

the end of each segment. Within a segment, the rods are constrained by several

intermediate spacer disks such that the robot shape can be described by a single

backbone curve with piecewise constant curvature. A less constrained parallel

continuum structure can be found in (136; 130; 137), where a mini-parallel wrist

design employed 3 short, compliant rods connected to the end effector platform with

ball joints. The Festo bionic tripod used the same concept, but relaxed the number

of intermediate constraints to a single spacer and used 4 straight actuation rods to

achieve 3-DOF articulation. Many other continuum robots also employ actuation

strategies that can be categorized as parallel across a single manipulator segment

with multiple segments concatenated in series (e.g. tendon-driven catheters (71),

pneumatic arms (61; 138) and concentric-tube robots (46; 67)).

2.3 Manipulator Analysis

Robotic manipulators should be evaluated on their ability to perform the task in the

design phase. If this is not a major step in the design of a surgical manipulator,

the robot might not be able to perform the desired tasks to the satisfaction of the

surgeon. Researchers have identified the importance of this analysis and striven to find

appropriate metrics to analyze for their robotic designs. One of the design parameters

that can be directly compared to the clinical application is the manipulator workspace.

This metric can be matched to the surgical workspace via an optimization of the
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kinematic variables. Workspace analysis for continuum manipulators has been applied

to several different systems (139; 93; 140; 141; 142; 143; 12; 144). There has also been

work toward simplifying the surgical workspace to ease optimization. This is done

by converting the complex geometries to simpler shape primitives. The next step in

this process is to define the dexterous workspace and the non-dexterous workspace

(145). Parallel manipulators have also been investigated in terms of manipulability

and accuracy by Merlet in (146) and others (147; 148; 149). The most current catalog

of robotic evaluation indices is contained in (150). Most of these measures are related

to rigid, serial robots. However, there are some metrics that can be evaluated for

continuum robots as well when examining ellipsoids of different kinematic matrices.

The most current catalog of manipulator indices is contained in (150). Most of these

measures are related to rigid, serial robots. Parallel manipulators have also been

investigated in terms of manipulability and accuracy by Merlet in (146) and others

(147; 148; 149). Analyses specifically relating to continuum robots have not been

as extensively studied. Workspace analysis for continuum manipulators has been

applied to several different systems (45; 141; 142; 143; 12; 144), and manipulability

and force ellipsoids were investigated in (151), which also explored the compliance

ellipsoid of continuum manipulators that related the change in a manipulator’s

position to an external force when the actuators are fixed. Kinestatic comparisons

of different continuum robot designs have also been investigated in (152), where

the output stiffness of three different manipulators was measured to compare the

different physical designs. One goal of our current work is to provide a general

framework for analysis of continuum manipulators in the context of characterizing

parallel continuum robot performance.

2.4 Force Sensing and Control

Many clinicians and roboticists theorize the major limiting factor in the performance

of robotic-assisted minimally invasive surgery (MIS) is the lack of haptic feedback (3).
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When a surgeon is interacting with a tissue or organ, their own proprioceptive and

cutaneous senses allow them to determine the appropriate amount of force to apply

in order to minimize damage. This ability is removed when a robotic manipulator

is interacting with the tissue. The force feedback also allows surgeons to distinguish

diseased tissue from healthy areas via mechanical properties, identifying regions of

lumps or tumors, and hardened or calcified portions of arteries (153; 154). The field

of haptics seeks to provide the user of a tele-operated or virtual system with a realistic

experience of an actual environment by providing them with the most intuitive and

easy to understand information via electromechanical devices. There are two basic

types of haptic feedback, tactile and force. Tactile feedback recreates sensations felt

by the skin. This would include things like texture, temperature and pulsation. Force

feedback replicates what a person feels from a solid boundary or object. This includes

things like weight and inertia (155). It has been hypothesized that a greater degree of

immersion into a virtual environment can be achieved with even rudimentary haptic

devices than with more complex and higher defined visual displays alone.

Haptics research is a well-established field. The first time the concept was

mentioned was by computer scientist Ivan Sutherland when he wrote that the

ultimate display would allow users to feel virtual objects that could only be displayed

graphically with a mechanical force-feedback device (156). This specifically refers

to machine haptics in which the feedback is provided to a human user by an

electromechanical device. In surgery, haptics can enhance simulations, provide vital

information on tissue deformation and provide a surgeon with the feedback needed

to perform complex tasks. However, sensing forces at the tip of small instruments in

a confined space is a difficult design, computational, and mechatronic challenge.

Force sensors for surgical instruments would ideally be placed at the tip and

provide 6 DOF measurement. However, challenges of biocompatibility, sterilization,

and temperature sensitivity make this a difficult engineering task (3). Many

instruments are also disposable and the cost of a high sophisticated sensor would

limit its usability with these instruments. The solution becomes to place the sensors
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on the robotic manipulator that is outside the body. This also creates challenges

because the forces encountered by the sensor can include friction in the manipulator

actuation system and torques applied by the instrument at the point of insertion that

can be large enough to mask the small tissue interaction forces.

Another option for force estimation involves teleoperation controllers, where the

difference in the desired and actual position of the robot inside the body is an

indication of the amount of force applied to the environment. One main example

of this type of control method is the four-channel framework (157) where the

position and force of both the master (surgeon controlled input device) and the slave

(robotic manipulator inside the body) are sensed and influence the control of the

manipulator. One assumption in this method is that the master and slave inputs and

forces affect the output with the same dynamics. This would not be the case with

compliant mechanisms. Other examples include position-position and position-force

teleoperation.

While none of the commercially available systems provide a level of force feedback

that would decrease damage to tissue, academic systems that include force feedback

are being developed such as the RAVEN II at the University of Washington (158),

an enhanced da Vinci robot (159), a laparoscopic robot (160), the NeuroArm and

the LapRobot (161). Most of these systems use a method of measuring the force at

the individual joints of the robot to estimate the force at the tip, a method called

actuation-based force sensing.

Actuation-based force sensing is another topic that is well studied for classical

rigid-link manipulators but has not been widely studied for continuum robots. In

conventional rigid-link designs, end-effector wrench is mapped to the joint torques

by the transpose of the Jacobian matrix (162) due to conservation of energy. For

continuum robots, this simple relationship does not hold true due to the elastic energy

stored within the robot links. Gravagne showed in (151) that the principal of virtual

work can account for the elastic energy storage of a flexible backbone to obtain the true

linearized relationship between actuator torques and end effector forces. When this
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energy storage is accounted for, accurate actuation-based wrench sensing is possible

for multi-backbone continuum robots, as has been investigated in (163; 78; 164; 134)

(termed “intrinsic wrench sensing” in those works). These works derive and validate

a wrench-sensing algorithm for constant curvature manipulators via the principle of

virtual work. For the general PCRs used in our research, we use a geometrically

exact, nonlinear rod-mechanics model to accurately predict the tip force instead of a

virtual-work framework under the constant-curvature assumption.

There has also been work in deflection-based force sensing with continuum robots

(63) and catheters (165; 166). However, if the device is very stiff in one direction, this

approach can become quite ill-conditioned, resulting in high estimation errors. We

show that this is also true for PCRs. Our analysis also concludes that the sensitivity

to sensing errors is greatly decreased for actuation-based force sensing when compared

to deflection-based force sensing.

The model framework presented in Chapter 3 can be arranged in several forms,

three of which can be used to sense forces at the tip of the manipulator. We compare

the potential error propagation of these force sensing methods, including deflection-

based force sensing, to arrive at the proposed method of actuation-based force sensing

and provide results demonstrating a much lower error sensitivity. The sensing

method takes 12 inputs of actuator positions (6) and actuator forces (6) to solve

the static equilibrium and boundary condition equations for the entire manipulator

and calculate the 6-DOF applied end-effector wrench.

Stiffness control of continuum robots is a small but growing area of research. The

goal of a stiffness controller is to provide a command to the robot that incorporates

the sensed tip force and changes the robot’s active stiffness. The use of stiffness

control with continuum robots takes advantage of their passive mechanical stiffness

to increase their effectiveness in the medical application. Compliant motion control of

a manipulator subject to forces along its axis during insertion through a small lumen

has been investigated in (167). In (81), a concentric tube robot uses the controller

to drive the actuation variables to a new desired value based on the force sensed at
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the tip of the manipulator using deflection based force sensing. Another example of

of stiffness control with tendon driven robots can be seen in (168). In this research,

a passive stiffness controller has been developed for the PCR using the modeling

framework presented in Chapter 3. The controller is considered passive due to its

limitation of only decreasing the stiffness of the PCR. The derivation and results of

this work are presented in Chapter 5.2.
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Chapter 3

General Kinematic Modeling for

Flexible Manipulators

The ultimate goal of modeling a robotic manipulator is to control the joints in a way

that provides accurate and dexterous motion of the end effector. A robot’s model must

be based on the physical parameters of its material and construction. This is especially

true for continuum manipulators whose pose cannot be fully defined in a closed form

solution by link lengths and joint angles (60). This chapter will review prior work

in continuum robot modeling, detail the Cosserat rod equations and their use in

modeling parallel continuum manipulators and concentric tube robots and outline

the preliminary and proposed work on manipulator modeling in this dissertation.

For continuum manipulators, the equations defining the deformation of flexible

structures are evaluated numerically and involve solving the statics or dynamics

as opposed to the forward kinematics (72; 97; 67; 70). The barriers to control

of continuum robots come from the limits of solving these models in real time.

The Cosserat rod models used in parallel continuum manipulators and concentric

tube robots have an advantage of simplification. Classical Cosserat rod models

assume no cross-section deformation and gain a great amount of efficiency due to

this simplification (e.g. two orders of magnitude in (169) for an extended Cosserat
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Figure 3.1: Arbitrary section of flexible link with the internal force and moment,
n and m, acting on the portion of the link. The distributed force and moment, f(s)
and l(s), act along the entire arc length. These forces and moments are written in
the global reference frame g(s).

model with cross-section inflation. Weak-form Cosserat rod models can be formulated

and solved using a finite-element, finite-difference, or discrete-differential-geometry

approach. Other systems use information related to the actuator length limits to

create real-time implementations (88). With these techniques, real-time control of

parallel continuum and concentric tube manipulators is possible (170; 46).

In order to establish a basis for the modeling of parallel continuum manipulators

and concentric tube robots, we will review the Cosserat rod theory presented in (171)

and then provide an overview of the modeling algorithms. We generalize the forward

kinetostatics model that was previously presented as a minimal representation in (75).

This model is more intuitive and unifies all problem formulations that we identify

by only changing the known variables and utilizing the same system of equations.

The new model framework also allows for the identification and efficient calculation

of matrices that are applicable to any continuum manipulator or soft robot: the

Jacobian, end-effector compliance, input stiffness, and wrench reflectivity matrices.

3.1 Cosserat Rod Equations

The robot is constructed of n flexible links in parallel. The shape of the ith link

is defined by its position pi (si) ∈ R3 and material orientation in the form of an
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orthonormal rotation matrix, Ri (si) ∈ SO(3), forming a material-attached reference

frame,

gi (si) =

Ri (si) pi (si)

0T 1

 ∈ SE(3) (3.1)

as a function of arc length si ∈ [0 li]. The position and orientation evolve along the

length of the rod according to the linear, vi(s) ∈ R3, and angular, ui(s) ∈ R3, rates

of change expressed in local or “body frame” coordinates of the material frame as

follows:

p′i =Rivi,

R′i =Riûi,
(3.2)

where ′ denotes a derivative with respect to si, and ̂ denotes mapping from R3 to

so(3) as follows:

â =
[

0 −a3 a2
a3 0 −a1
−a2 a1 0

]
(3.3)

As in (172), we also use ∨ to denote the inverse mapping of ̂ , i.e. (û)∨ = u. The

same symbol is overloaded to map a R6 to se(3) as follows:

â =

[
0 −a6 a5 a1
a6 0 −a4 a2
−a5 a4 0 a3
0 0 0 0

]
. (3.4)

Therefore, if one knows the body-frame vi and ui vectors and an initial frame gi(0),

the remaining frames can be obtained by integrating the differential equations in

Equation (3.2). Since vi and ui are not constant with respect to si, numerical

integration is required to obtain gi.

As derived in (171; 63; 67), the rates of change of the internal force vector ni

and internal moment vector mi with respect to the arc length si are described by

the classical Cosserat rod differential equations of static equilibrium. This is done

by taking the derivative with respect to arc length of the static equilibrium balance
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shown in the free body diagram shown in Figure 3.1.

n′i =− fi

m′i =− p′i × ni − li,
(3.5)

where all vectors are expressed in global coordinates, and fi and li are distributed

force and moment vectors, respectively, applied per unit length to rod i. Distributed

self-weight and any other external forces are straightforward to include within fi and

li (see Figure 3.1).

The kinematic variables vi and ui are related to the material strain (shear,

extension, bending, and torsion) and can be used to calculate the internal force and

moment vectors via a material constitutive law. The linear constitutive relationship

used follows the form

ni = RiKse,i (vi − v∗i ) , Kse,i =
[
AiGi 0 0
0 AiGi 0
0 0 AiEi

]
mi = RiKbt,i (ui − u∗i ) , Kbt,i =

[
EiIi 0 0
0 EiIi 0
0 0 JiGi

] (3.6)

and expresses ni and mi in global coordinates where v∗i and u∗i are the kinematic

variables of the rod in an assigned stress free reference state. For an initially straight

rod, the appropriate reference state variables are v∗i = [0 0 1]T and u∗i = [0 0 0]T . The

matrices Kse,i and Kbt,i contain the stiffness terms for a radially symmetric rod cross-

section, which could vary with arc length, involving the area Ai, Young’s modulus,

Ei, shear modulus Gi, second area moment Ii (about the local x and y axes), and the

polar area moment Ji about the local z axis.

Thus, for each rod, equations (3.2), (3.5), and (3.6) form a system of differential

equations that describes the evolution of the state variables pi, Ri, ni, and mi with
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respect to si.

p′i =Rivi, vi = K−1se,iR
T
i ni + v∗i

R′i =Riûi, ui = K−1bt,iR
T
i mi + u∗i

n′i =− fi

m′i =− p′i × ni − li

(3.7)

The above equations describe the shape and the internal forces and moments of the

ith link. In the next section, we detail how the design of the distal end effector and the

proximal base platform create geometric constraints. These constraints are enforced

along with end-effector static equilibrium via a coupled set of boundary conditions

that are simultaneously solved to obtain the configuration of the manipulator.

3.2 Distal Boundary Conditions

Regardless of the joint type, the following conditions of static equilibrium are enforced

for the end effector:

n∑
i=1

[ni (li)]− F = 0

n∑
i=1

[pi (li)× ni (li) + mi (li)]− pe × F−M = 0,

(3.8)

where F and M are external force and moment vectors, expressed in global coordinates

and applied at the centroid of the end effector, pe. We combine the applied loads into

a “wrench” vector w = [FT MT ]T for notational compactness. Also, the position of

the distal end of the link is related to the center of the end effector via a constant

vector ρi expressed in the end effector frame,

pe + Reρi − pi =0 for i = 1...n. (3.9)
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The remaining distal boundary conditions govern the material orientation and

moment of the links at si = li based on the joint types which connect them to

the end effector platform. We explain these rotation conditions below and summarize

the entire set distal boundary conditions for each joint type in Table 3.1.

3.2.1 Fixed Joints

In the case of fixed joints (Table 3.1 “Fixed”), the orientation of the end effector

platform frame, Re, and an orientation of each link at the tip, Ri (li), can be related

by a pre-defined offset orientation, Rαi
(dependent on the distal platform design).

The design could utilize 3D printing construction to ensure that the links were fixed

to the end effector platform at any desired orientation in the nominal configuration.

The rotation between the end effector frame and the link frame can be defined as

Rαi
= RT

e Ri(li), (3.10)

where the matrix Rαi
is defined by αi ∈ R3, containing angular displacements about

the x, y, and z axes of the global frame. This rotation can be constructed via matrix

exponential and the mapping in Equation (3),

Rαi
= eα̂i (3.11)

This offset relationship can be written in a reduced form to be included in our solution

method in the following way,

[
log
(
Ri (li)

T ReRαi

)]∨
=0 for i = 1...n, (3.12)

where log() is the matrix natural logarithm, which maps SO(3) to so(3) and the ∨

operator subsequently maps so(3) to R3. This form was chosen to express the angular

error in the local Ri(li) frame, which facilitates a unified presentation of the torsionless
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Table 3.1: Distal Boundary Conditions for Joint Types

Joint Type Specified at si = li for i = 1 . . . n

Fixed Equation (3.8)

Equation (3.9)

Equation (3.12)

Torsionless Equation (3.8)

Equation (3.9)

eT3 RT
e m(li) = 0(

log
(
RT
i ReRα

))∨ ∣∣∣
xy

= 0

Spherical Equation (3.8)

Equation (3.9)

RT
e m(li) = 0

case we discuss below. The orientation of each link must equal the orientation of the

end effector if Rαi
= I.

3.2.2 Torsionless Joints

For a freely spinning joint, only the tangent vector of the link is fixed at si = li, and

the link’s rotation about its tangent vector is unconstrained. This implies the “natural

boundary condition” that z component of the body frame moment, i.e. eT3 RT
e m(li)

(e3 = [0 0 1]) must be zero. Therefore, only the x and y components of the distal

constraints on the link rotation matrix in Equation (3.12) should only be applied.

This is designated with the |x,y in Table 3.1 and is equivalent to multiplying by a

truncated identity matrix which eliminates the third row. We note that if there are

no distributed moments along the links and the links are straight in their unstressed

reference states, a torsionless joint at the tip implies zero torsion everywhere along the
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Table 3.2: Proximal Boundary Conditions

Configuration Joint Type Specified at si = 0 Unknown

No Base Plate Fixed pi =
[
dix, diy, qi

]T
ni

Ri = Rz (φi) mi

No Base Plate Torsionless pi =
[
dix, diy, qi

]T
ni

miz = 0 mix, miy

Ri = Rz (φi) φi

No Base Plate Spherical pi =
[
dix, diy, qi

]T
ni

mi = 0, θi

Ri (θi)

Base Plate Fixed pi = di ni

Ri = Rz (θi) mi

Base Plate Torsionless pi = di ni

miz = 0 mix,y

Ri = Rz (φi) φi

link as a consequence of the differential equations defining the rod shape (Equation

(3.7)). For the continuum Stewart Gough manipulator presented in this paper,

torsionless joints are used for the simulations and experiments performed with the

physical robot.

3.2.3 Spherical Joints

Having a spherical joint at the tip of each link implies the natural boundary condition

of zero moment at the tip of each link, RT
e m(li) = 0. The distal orientation of the

links is now unknown and must be found.
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3.3 Proximal Boundary Conditions

We formulate proximal boundary conditions for two types of robot designs: 1) robots

with links passing through holes in a base plate between the actuators and the distal

platform and 2) robots with links that are connected directly to the actuators and

unconstrained along their full length (no base platform). We also consider 3 proximal

joint types (fixed, torsionless, and spherical). This extends our prior work, where

we considered designs with base plates and torsionless proximal joints. Our solution

procedure (detailed in the next section) requires known conditions to be specified at

a reference point on each link si = 0 and any unknown variables to be guessed. Table

3.2 details the specified and unknown proximal variables for the relevant joint types

and base plate configurations. We note that the specified variables are functions of

the actuator displacement qi, fixed design parameters dix and diy, and some of the

unknown variables at si = 0 as we describe in detail below. In both the base-plate

and no-base-plate configurations (see Figure 3.2), the actuation variable, qi, is defined

as the z axis position of the base of the link in some fixed global reference frame.

3.3.1 No Base Plate Present

Without a base plate, si = 0 is designated where the link attaches to the actuator,

and the length of integration is the entire length of the link, li = Li. The position

at si = 0 is specified by di, which contains the actuation variable qi as the global z

position of each proximal link end, as shown in Figure 3.2 (a).

When connections are fixed, the base rotation of each link Ri(0) is a function

of φi, a specified rotation about the z-axis, which could be a constant parameter

or controlled as an additional input degree of freedom if rotational actuators were

employed. The internal force and moment at si = 0 are guessed variables.

For a torsionless connections, miz(0) = 0, and the initial rotation is a function

of an unknown rotation φi about the z axis. The internal force and the x and y

components of mi at si = 0 are guessed.
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Figure 3.2: This figure shows the manipulator variables without and with a base
plate in (a) and (b) respectively. The differences arise in the length of integration of
the link and the definition of the arc length datum si = 0 for each link. The linear
actuator controls the qi which is equal to the initial position pz(0) of the link in the
global frame. When a base plate is included, the linear actuator effectively changes
the arc length li beyond the base plate. Without the base plate, the link arc length
is constant, but the initial position of the link is changed.

In the case of spherical joints, mi(0) = 0 and the link has an unknown initial

orientation, Ri(0), which can be parameterized by θi(0) ∈ R3, a vector of three

angular displacements as

Ri(0) = eθ̂i . (3.13)

These rotations are guessed and used to construct Ri(0). The internal force at si = 0

is guessed.

3.3.2 Base Plate Present

With a base plate, we assume that the portion of the link between the actuator and

the base plate is always straight. This is true as long as (1) this portion of the link is

not precurved, (2) the tangent vector of the hole in the base plate is designed to pass

through the actuator connection point, and (3) the axial compressive load is lower

than the Euler critical buckling load for the current length of unsupported rod. We
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designate si = 0 at the base platform and integrate the differential equations from

there to si = li, the length of the link between the base plate and the distal platform,

which is a function of qi,

li = Li + qi. (3.14)

As shown in Figure 3.2, we have defined the global reference frame such that its

x − y plane is co-planar with the base platform, and thus each qi is negative. With

a base plate present and fixed joints, torsional deformation of each link between the

actuator and the base plate should be considered. In this straight section, the Cosserat

equations imply that the angular rate of change in the axial direction, uiz = miz

JiGi
, is

constant. Therefore the angle of axial rotation, θi,z (si) varies linearly with arc length

in this section. Under these assumptions, the initial condition θi,z (0) is a linear

function of the actuation variable qi, and the unknown torsional moment, miz, at

si = 0:

θi,z (0) = φi − qi
miz (0)

JiGi

(3.15)

where φi is the initial axial rotation of the link at the point of attachment. The initial

z axis rotation matrix for the link is then a function of θi,z,

Ri(0) = Rz (θi,z) = eθi,z ê3 (3.16)

where e3 = [0 0 1]T . In the case of fixed connections to the actuators, the proximal

position of the links is specified with the vector di = [dix diy 0]T and the internal force

and moment are guessed. For torsionless connections at the actuators, miz(0) = 0

and Ri(0) is only a function of φi, which is a guessed variable along with the internal

force and the x and y components of the internal moment.
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3.4 Solution Method for Forward Kinematics

To lay groundwork for discussing the generalized problem formulations in the

next subsection, we here detail our numerical solution procedure for the forward

kinetostatics boundary value problem. The differential equations for the ith link

(Equation (3.7)) have the form

y′i = f (yi, si) (3.17)

where yi = {gi,ni,mi} (see Equation (3.1) for definition of gi).

At the proximal end of the link (si = 0), the elements of each yi are specified as

functions of known or unknown proximal variables (see Table 3.2). At the distal end

of the robot (si = li), the boundary conditions consist of six joint-specific geometric

constraints for each distal link end (given in Table 3.1), and six static equilibrium

equations for the entire end effector (given by Equation (3.8)), which involves the

distal variables of all the rods. Thus, this set of 6n+6 distal boundary conditions

effectively couple the individual rod models (3.7) together, and the entire coupled

system must be solved simultaneously. We solve the coupled system via a shooting

method which iteratively guesses the entire set of unknowns, integrates all rod initial

value problems (3.7), and evaluates the entire set of coupled boundary conditions.

The guess is updated based on the results of the boundary residual calculation until

the set tolerance is satisfied. We describe the organization of this process in detail

below for the forward kinetostatics problem, and adapt the same approach to solve

the generalized problem formulations in the next section. The general process is

depicted by an algorithmic flowchart in Figure 3.3.

The set of coupled distal boundary conditions (Table 3.1) can be organized into

a single vector function of the form,

b (ge,q,w, τ ,γ) = 0 (3.18)
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where q = [q1 . . . qn] contains the actuator variables, w = [FT MT ]T is the external

tip wrench, τ = [−ni,z(0) · · · − nn,z(0)]T contains the actuator forces, all remaining

unknown proximal variables are contained in γ (e.g., in the case of fixed joints at the

proximal end with a base plate, γ =
[
n1,x(0) n1,y(0) mT

1 (0) . . . nn,x(0) nn,y(0) mT
n (0)

]T
),

and ge is the (unknown) pose of the end effector,

ge =

eϕ̂ pe

0 1

 (3.19)

with ϕ = [ϕx ϕy ϕz]
T , pe = [pex pey pez]

T .

Note that while q, τ , and γ do not explicitly appear in Table 3.1, b is implicitly

dependent on them through the distal link variables. For any given guess of τ , γ

and ge and specification of q and w, we can integrate the differential equations for

each link from base to tip and subsequently evaluate the function b (ge,q,w, τ ,γ),

which we call the boundary condition residual. In prior work (75), we formulated

the forward kinetostatics residual in a minimal way with only 6n equations that did

not contain the unknown ge. By here introducing ge as an extra 6-DOF unknown,

the distal geometric constraints are written more intuitively in terms of Re and pe

in Table 3.1. This new approach also unifies the generalized problem formulations in

the next section by identifying a common set of equations that they all must solve.

Note that in this form of the forward kinetostatics problem, (3.18) contains 6n + 6

scalar equations, and the number of unknowns is also 6n + 6 with γ containing 5n

unknowns, τ containing n unknowns and ge containing 3 positions and 3 rotations

as unknowns.

We use a shooting method to solve the system of equations in Table 3.1 for

the specific manipulator design being modeled. The unknown proximal boundary

conditions (γ), the actuator forces (τ ) and the end-effector pose (ge) are guessed.

These guessed values along with the specified values are used to numerically integrated

from si = 0 to li as an initial value problem using the ode45 solver which is
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Ingtegrate
IVP (Equation (7)) 

for i=1...n

Evaluate BC’s (Table I) 
and Jacobian

Inputs (Table III)

Guess Outputs (Table III) and
remaining Proximal Unknowns (Table II)

(Levenberg-Marquardt)

Initialize Guess Outputs (Table III)

Residual < Tolerance?
(Equation (18))

True

False

Figure 3.3: Our shooting method for solving any general problem formulation is
depicted in the flow chart shown above. The input variables are specified and the
unknown and output variables are guessed.

implemented by the Dormand-Prince method, and the distal boundary condition

equations are subsequently evaluated. This process is nested within an outer

nonlinear-solver loop which iteratively updates the guessed values until the distal

boundary conditions are satisfied within an appropriate tolerance. To update the

guesses, we have used MATLAB’s fsolve() function. This solver can be configured

to implement several of algorithms, in this case we used the trust-region dogleg

algorithm. In examining solutions for the rotation matrix, we have verified that

orthonormality is maintained without implementing explicit numerical constraints.

This is due to the high order numerical integration methods used, the short integration

length, and low curvatures of the flexible links.

In (170) we described how this shooting method can be efficiently implemented

in C++ to solve the inverse kinematics problem at rates greater than 4 kHz, thus

enabling online control.

3.5 Generalized Problem Formulations

Equation 3.18 represents boundary conditions that must always be satisfied. Since

b is written as a multi-variable function of ge, q, w, τ , and γ, the outer nonlinear

solver loop outlined in the previous section can be easily adapted to solve other general

problem formulations (beyond forward kinetostatics) by merely assigning appropriate
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Table 3.3: Kinetostatic Model Formulations

Formulation Number of Unknowns Number of Equations

{ge, τ} = Fq,w (q,w) 6n+ 6

6n+ 6

{ge,q} = Fτ,w (τ ,w) 6n+ 6

{q, τ} = Fg,w (ge,w) 7n

{τ ,w} = Fg,q (ge,q) 6n+ 6

{q,w} = Fg,τ (ge, τ ) 6n+ 6

{ge,w} = Fq,τ (q, τ ) 5n+ 12

sets of known and unknown (iteratively guessed) variables. For example, if we want

to know the q and τ required to achieve a specified ge under a known constant

load w (which could be considered an inverse kinetostatics problem), the integration

procedure remains the same, but the nonlinear solver must iteratively guess the

unknowns q and τ , and evaluate b with the specified ge and w. In general, any

combination of variables out of the set {ge,q,w, τ} can be selected as knowns with

the remaining variables as unknowns, as long as the number of unknowns matches

the number of equations in b. Figure 3.3 summarizes the process in general, and we

describe several useful cases below.

Table 3.3 shows several possible kinetostatic problem formulations and their

inputs and outputs (knowns and unknowns) along with their respective number of

unknowns which can be compared to the number of equations which is a constant

6n + 6. We briefly discussed the inverse kinetostatics problem formulation above,

and this is labeled Fg,w in the table. Three of the problem formulations contain

the external wrench as an output. Thus these could potentially be used to estimate

the wrench at the tip of the manipulator, given various known or sensed quantities.

The formulation using inputs of ge and q is essentially the deflection-based wrench

sensing explored using a probabilistic framework in (63). The Fg,τ formulation is

also a deflection-based sensing formulation since it has ge as an input. The Fq,τ is

perhaps the most convenient wrench sensing formulation since the actuation variables
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and forces are easily accessible through sensors mounted at the actuators themselves.

We call the Fq,τ formulation “actuation-based wrench sensing”. This idea has been

previously termed “intrinsic wrench sensing” in (163) which used a constant-curvature

model framework in contrast to our general Cosserat-rod approach. We evaluate our

approach experimentally for PCR’s in Section 5, and we analytically show that for

our prototype PCR design, actuation-based sensing is less sensitive to measurement

errors than either deflection-based approach.

We note that the Fg,w formulation (inverse kinetostatics) is under constrained

for n > 6 (which can be addressed by incorporating some method for redundancy

resolution), and over constrained for n < 6 (which can be resolved by reducing in the

dimension of the pose specification). For example, we should consider the number of

desired operational degrees of freedom versus the number of actuator inputs (n). If a

6-DOF robot is used for only position control, the Fg,w, Fg,q, and Fg,τ algorithms will

be underdetermined, and a method for redundancy resolution should be incorporated.

Similarly, the actuation-based sensing formulation is over constrained if n > 6 (which

could be resolved by a least-squares solution or a probabilistic approach) and under

constrained for n < 6 (which could be resolved by reducing the dimension of sensed

wrench components, e.g., assuming some components are zero).

3.6 Stacked Parallel Continuum Manipulator

Building on the modeling previously described, the capabilities of the parallel

continuum manipulator model are expanded to include multiple stacked modules.

This will provide increased dexterity and workspace pass the 6 DOF space that is

currently achievable by a single unit.

Following a similar format to the concentric tube manipulator designs (46; 60),

parallel continuum robots can potentially be stacked in a similar fashion where the

proximal sections are tubes and the most distal section is compose of flexible rods. A

version of this manipulator was prototyped by a senior design team at the Worcester
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Figure 3.4: Example of a stacked parallel continuum robot (173).

Polytechnic Institute (173) (see Figure 3.4). However, this design consisted of two

separate rod pathways with one set terminating at the middle section and the second

set terminating at the end effector. The modeling for this manipulator was a simple

stacking of the PCR model in (75) and does not accurately reflect the kinematics of

the manipulator.

In order to model the kinematics of a stacked PCR with an outer concentric tube

and an inner rod, a second set of static equilibrium equations must be enforced along

with additional constraints on the geometry of the middle section.
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3.6.1 Additional Unknowns, Constraints and Equations

In a single parallel continuum manipulator with 6 rods, the forward kinematics has 42

unknown variables (pose, internal force and moment). For a stacked model with two

sections of six rods, the number of unknown variables doubles. The equations and

constraints can be organized into those pertaining to the outer tube and the inner

rod.

The outer tube has the same initial conditions as a single module of a PCR with

the pose and rotation of each rod at the base (in a fixed case) or some portion of

the internal moment (torsionless or spherical case) known. The Young’s modulus and

shear modulus are doubled. The tubes are integrated with the same equations stated

in 3.7.

The inner rods can be modeled with an initial pose matching the distal end of the

outer tubes. The integration of these rods is from the distal end position of the outer

tubes to the end effector.

An additional equilibrium equation can be written for the middle plate. This

equation sums the forces and moments on the plate

n∑
i=1

[nt,i(Li)]− [nr,i(0)] =0

n∑
i=1

[mt,i(Li)]− [mr,i(0)] =0

(3.20)

where nt is the internal force of the outer tubes and nr is the internal force of the

inner rods. The equilibrium equation for the end plate is similar to the single section

except it only involves the inner rods.

n∑
i=1

[nr,i(Li)]− F = 0

n∑
i=1

[pr,i(Li)× nr,i(Li) + mr,i(Li)]− pe × F−M = 0,

(3.21)
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Figure 3.5: The middle picture shows our prototype parallel continuum manipulator
constructed for initial proof of concept and evaluation of our modeling approach.
Close-up views of the base and end platforms are shown to the left. The dimensions
and patterns of the base plate pass-through holes and the top platform connection
points are detailed to the right. The lengths of the compliant legs between the two
platforms are actuated by manually translating linear slides connected to the rod ends
below the base platform.

3.7 Qualitative Model Validation

There have been several model validations completed for the PCR modeling described

above. The first is presented in (75) and comprises of a qualitative validation between

model predicted configuration plots and photos of the physical system. The second

validation was with a smaller system and used a 3D pose recording system to validate

the model quantitatively. A third validation of the model is presented in Chapter 5

with the force sensing.

3.7.1 Prototype Design and Construction

In this section we describe the construction of a parallel continuum manipulator

prototype structure designed to show proof-of-concept and study parallel continuum

robot behavior. The prototype has six compliant legs connected in a similar
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arrangement to the legs of a 6-DOF rigid-link Stewart-Gough platform, and each

leg can be manually actuated. The legs consist of 1.3 mm diameter spring steel music

wire (ASTM A228) with an estimated Young’s modulus of 207 GPa and Poisson’s

ratio of 0.305. As shown in Figure 3.5, these rods are connected to an end-effector

plate of clear 1/16 inch acrylic via 3/8 inch OD shaft collars constrained in channels

within small blocks attached to the plate. The rods are routed through holes in the

base plate, and the proximal ends are connected to linear slide carriages in the same

fashion. The carriages translate along T-slotted aluminum rails (80/20 R© Inc.) that

are bolted in a hexagonal pattern to the base plate. The linear slide carriages can

be manually repositioned and locked in place with a brake so that the length of each

rod between the base plate and the end plate can be actuated independently.

The connection locations of the 6 flexible legs are arranged in a conventional

radial hexapod pattern of 3 pairs of rods spaced 120◦ apart at a radius of 87 mm. As

depicted by the numbers in Figure 3.5, the proximal holes for rods 1 and 2 are paired

together (with a total separation of 20◦), while at the end plate the connections for

rods 2 and 3 are paired together. The same pattern follows for the other pairs of

wires. Rods 3 and 4, and 5 and 6 are paired at the base plate, while 4 and 5, and 6

and 1 are paired at the distal end. In the nominal configuration shown in Figure 3.6

with all leg lengths equal, this connection pattern causes the top plate to be rotated

by 60◦ with respect to the hole pattern in the base plate and causes all of the rods to

bend from their naturally straight state.

3.7.2 Kinematic Simulation and Analysis

Figure 3.6 demonstrates the kinematic degrees of freedom and range of motion of our

prototype manipulator structure by showing the manipulator shape in five different

configurations. With all leg lengths equal, the robot is in a straight, nominal state,

which can be raised or lowered by equal translation of the legs. By extending legs 2,

4, and 6, the distal platform twists about the z-axis. Translating legs 4 and 5 causes
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Figure 3.6: We show photographs of five experimental configurations, demonstrating
the ability of our prototype parallel continuum manipulator to execute axial twist,
transverse tilt, translation, and bending (simultaneous translation and tilt). To the
right of each experimental photograph, we show a MATLAB rendering of our rod-
mechanics-based kinematic model prediction for the same actuator configurations.

the platform to tilt, and translating legs 3 and 6 causes translation. A combination

of rotation and translation (bending) is achieved by extending legs 4 and 5 while

retracting legs 1 and 2. The collection of legs maintains a compact form throughout

all these motions, which is encouraging for potential applications in confined spaces.

Figure 3.6 also shows a rendering of our forward kinematics model solution for these

five cases, indicating the feasibility and qualitative accuracy of the modeling approach

over a wide range of motion. We provide further quantitative assessment of model

accuracy in Section 3.7.3.

To further illustrate the kinematics of the prototype design, we give the body-

frame manipulator Jacobian, J as defined in (172), which we computed numerically

for the prototype manipulator in the nominal configuration (where all leg lengths are
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Figure 3.7: By solving the inverse formulation of the model equations (inputs of
pose and wrench and outputs of actuation variables and actuation forces) in Section
3.5, we explore three two-dimensional slices of the workspace for our prototype
design described in Section 3.7.1, centered about a nominal workspace point pd =
[0 0 400 mm]T , Rd = I.

406 mm, and the rotation is aligned with the global reference frame.),

J =

 −1.62 −1.62 1.83 −0.21 −0.21 1.83
−1.18 1.18 −0.82 −2.00 2.00 0.82
0.17 0.17 0.17 0.17 0.17 0.17
−0.12 0.12 0.24 0.12 −0.12 −0.24
−0.20 −0.20 0.00 0.20 0.20 0.00
−0.65 0.65 −0.65 0.65 −0.65 0.65

 ,
where the top 3 rows are dimensionless, and the bottom three rows have units of

degrees/mm. The matrix is full rank and well conditioned, indicating that in the

nominal configuration, actuators can easily move the top platform in any direction in

the 6 DOF space of rigid body motion.

In Figure 3.7, we depict the inverse kinematic mapping over 3 two-dimensional

slices of the workspace. The figure shows the required leg length and axial tension at

the base of each leg as a function of the desired end-effector pose, which is specified

by position pd = [x y z]T and orientation Rd = exp(θ̂), θ = [θx θy θz]
T . For each

slice, two of the six pose variables were varied over a 9x9 grid of values for which the

inverse kinematics computation easily converged, while all other pose variables were
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held constant at their nominal values of x = y = θx = θy = θz = 0, and z = 400

mm. In (a) and (d), the required leg lengths (a) and axial tension at the base of

each leg (d) are plotted as a function of desired angular displacements of the distal

platform about the global x and y axes while holding the desired position constant.

In (b) and (e), the required leg lengths (b) and axial tension at the base of each leg

(e) are plotted as a function of desired displacements in the global x and y directions

while holding the desired orientation constant. In (c) and (f), the required leg lengths

(c) and axial tension at the base of each leg (f) are plotted as a function of desired

displacement along and rotation about the global z axis while holding all other pose

variables constant.

The first case (Figure 3.7: (a) and (d)) shows an approximately linear kinematic

mapping for desired rotation about the x and y axes. The second case (Figure 3.7: (b)

and (e)) shows an approximately quadratic leg length mapping and an approximately

linear tension mapping for desired translation in the x−y plane. We note that in this

case, the required lengths and tensions are identical for legs 1 and 4, 2 and 5, and 3

and 6 respectively. The final case (Figure 3.7: (c) and (f)) shows an approximately

linear leg length mapping and an approximately cubic tension mapping for desired

motion which both rotates about and translates along the global z axis. In this case,

the lengths and tensions are identical for legs 1, 3, and 5, and 2, 4, and 6 respectively.

The axial tension at the base of each leg corresponds to the actuator force which

would be required to hold the robot in a particular configuration. We conclude that

over these ranges of motion, moderate forces on the order of 5 N will be required to

actuate the structure. A simulation of this kind can be used in the design process

to size motors for a particular set of manipulator structural parameters, and to limit

the length that the legs extend below the base platform to avoid buckling.

We can also compute the output stiffness matrix at the top platform, which maps

displacement of the end effector centroid to applied force dF = Kdpc. For the
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Figure 3.8: The three main measurements taken from the images are the position of
the centroid of the end effector plate in the x and z, which is denoted by the marker
at the top, and the orientation of the end effector in the x− z plane. The orientation
was measured by drawing a line along the end effector edge and then measuring the
slope of the line with the grid poster.

nominal configuration in Figure 3.6, the computed stiffness matrix is

K =
[
17 0 0
0 17 0
0 0 122

]
N/mm,

while for the bending configuration in Figure 3.6, the stiffness matrix is computed to

be

K =
[
12.7 0 12.8
0 0.5 0

12.8 0 14.5

]
N/mm.

These computations show that the stiffness in the y direction (out of the page for the

bending case in Figure 3.6), is only about 3% of its value in the straight case, which

is consistent with our experience with this prototype. We conclude that care should

be taken when designing and controlling a parallel continuum manipulator to ensure

that output stiffness is sufficient for the desired tasks.
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Table 3.4: Experimental Configurations and Model Error (mm)

# L1 L2 L3 L4 L5 L6 Error % Error
1 406 406 406 406 406 406 3.4 0.8
2 386 406 386 406 386 406 6.1 1.6
3 426 406 426 406 426 406 2.9 0.7
4 406 406 426 406 406 426 8.8 2.1
5 406 406 386 406 406 386 7.1 1.8
6 406 406 366 406 406 366 5.4 1.4
7 406 406 406 386 386 406 7.5 1.8
8 406 406 406 366 366 406 10.4 2.7
9 406 406 406 426 426 406 8.9 2.1
10 406 406 406 446 446 406 7.6 1.8
11 426 426 406 386 386 406 7.0 1.7
12 446 446 406 366 366 406 10.4 2.6
13 386 386 406 426 426 406 9.3 2.3
14 366 366 406 446 446 406 11.7 2.9

3.7.3 Experimental Validation

We performed a set of model validation experiments by photographing the shape

of our prototype manipulator in front of a graph poster in 14 different actuator

configurations, which are listed in Table 3.4. Figure 3.8 shows the basic elements

of each image that were measured, the top platform centroid and orientation in the

global x−z plane. These measurements were then compared to our forward kinematics

model prediction for each actuator configuration. The photos of these planar cases

were taken perpendicular to the graph plane approximately 30 feet away from the

robot so that perspective error was minimized.

The resulting differences between the data and the model prediction are presented

in Table 3.4. The positional error was calculated as the total Cartesian error in the

global x− z plane, and the percent error was calculated as the position error divided

by the average leg length for each case. The maximum positional error was 11.74 mm

with a 2.89% associated percent error. For the configurations resulting in a change

in top platform orientation (7-14 in Table 3.4), angular displacement was measured
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Simulation Fails to Converge
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Simulation Converges to Buckled Solution

Figure 3.9: Displacements of the top platform centroid in the x, y, and z directions
are plotted by using our forward kinematics model to perform quasistatic simulation
with an incrementally increasing vertical load for three different manipulator
configurations (1, 4, and 5 in Table 3.4) . The black dashed lines depict the
experimentally determined critical buckling loads for the same cases.

graphically as shown in Figure 3.8, and the maximum angular difference between

model prediction and experiment was 3.14 degrees.

We observed a small amount of flex in the top acrylic plate during the experiments.

This unmodeled effect is a source of error between model prediction and actual

manipulator shape. Future designs should mitigate this inaccuracy by designing the

top plate thickness to better handle the expected reaction moments which can be

determined using the model.

3.7.4 Buckling Experiments

We also experimentally determined a critical buckling load for the prototype structure

in three different actuator configurations, (1, 4, and 5 in Table I, corresponding

to a straight nominal case and two translating cases, respectively). We applied

an incrementally increasing force in the negative z direction (down) through the

centroid of the top plate until at least one leg in the structure began to buckle.
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Figure 3.10: The surgical gripper system consists of the manipulator structure
(right), platform actuation module (middle) and an end effector actuation module
(left). The manipulator structure includes six flexible tubes connected in a
conventional Stewart-Gough platform configuration. The platform actuation module
uses six linear actuators to translate each leg. The end effector actuation module uses
four linear actuators to control the grasper jaws via Kevlar threads that pass through
the manipulator’s tube legs.

The resulting experimental buckling loads are shown by the black dashed lines in

Figure 3.9. When running a forward kinematics model simulation with the same

incrementally increasing force, our simulation converged to a buckled solution (shown

by the sudden large centroid displacement in Figure 3.9 (a)) at a load close to the

experimentally determined buckling load. For configurations 4 and 5 ((b) and (c) in

Figure 3.9), the simulation failed to converge to a valid forward kinematics solution

just prior to reaching the experimentally determined buckling load, indicating that

the buckled mode is not relatively close to the unbuckled state.

Since the publication of this paper, we have identified a more accurate method of

detecting buckling in (174).

3.8 Validation of PCR with Gripper

3.8.1 Design and Fabrication

In this section, we give a condensed description of the robotic system design previously

presented in (128) to provide context for the mechatronic control description in

Section 3.8.2, and the analysis and validation in Sections 3.8.3 and 3.8.4.
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Figure 3.11: The grasper consists of two jaws, each of which is actuated by a capstan
pulley and a Kevlar thread passing through the tube legs of the manipulator structure.

Manipulator Structure

The manipulator structure consists of a grasper assembly and six superelastic NiTi

(Nitinol) tubes (legs) with their distal ends fixed to holes in the base of the end effector

with J-B Weld 8265S epoxy. The tubes have an outer diameter of 0.597 mm and an

inner diameter of 0.495 mm and are arranged in three pairs with their centers located

on a 10 mm diameter circle, as shown in Fig. 3.11. The pairs are spaced 120◦ apart,

with 24◦ of separation between paired tubes. The proximal ends of the tubes pass

freely through six holes in a fixed platform (made from 0.125 inch [3.175 mm], laser

cut acrylic) at the base of the manipulator structure. The hole pattern in the base

platform is the same as the hole pattern at the end effector, rotated by 60◦, and has

the leg pairings shifted such that the robot resembles a classic 6-DOF Stewart-Gough

platform, as shown by the numbering in Fig. 3.11. The nominal length from base

to end-effector is 42 mm when the robot is in its neutral home configuration (all leg

lengths equal). Axial translation of tube bases by linear actuators behind the base

platform deforms the compliant legs and changes the pose of the end effector.

Platform Actuation Module

The platform actuation module, shown in Fig. 3.12a, contains six L12 miniature

linear actuators from Firgelli Technologies Inc. These actuators have a 10 mm stroke

length, a positional accuracy specification of 0.1 mm, and include an internal feedback
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Figure 3.12: Two sets of custom tabs act as mechanical interfaces to the actuators. (a)
The first set of tabs connects to the tube legs of the manipulator structure. (b) The second
set of tabs holds the Kevlar cables that actuate the end effector.

potentiometer, which allows for closed-loop position control of each actuator. Analysis

of the robot Jacobian reveals that high actuator resolution is necessary to accurately

control this manipulator in certain directions. For example, actuator translations (or

errors) of only 0.1 mm produce a 10◦ axial rotation of the end effector.

End Effector Actuation Module

The end effector actuation module contains four Firgelli L12 miniature linear

actuators for controlling the grasper’s actuation cables. These actuators differ from

the platform actuators in that their stroke is 50 mm and the positional accuracy is

0.2 mm. The actuation cables for the end effector are connected to these actuators

with four 3D printed tabs, shown in Fig. 3.12b.

2-DOF Cable Driven End Effector

The grasper assembly, shown in Fig. 3.11, is 12 mm in diameter and consists of a

housing structure and two jaws. A capstan pulley on each jaw is oriented such that

the sheave is tangent to the through holes in the base of the end effector, which allows

for an actuation cable to be passed through a tube leg in the manipulator structure

and around the capstan pulley. The cable then passes back through a second tube
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Figure 3.13: With a diameter of 12 mm, our gripper design extends the dexterous
workspace of the manipulator by allowing 180◦ of independent motion of each jaw of the
end effector.

leg. This assembly is repeated for a second actuation cable, so a total of four tube legs

are used to guide the grasper actuation cables to the end effector. Kevlar thread was

chosen for the cables because of its high tensile strength and resistance to bending

fatigue compared to stainless steel rope, making it ideal for small diameter capstan

pulleys. All of the components for the prototype end effector, with the exception

of a steel dowel pin shaft, were fabricated with PLA plastic using a Replicator 2

Desktop 3D printer from Makerbot Industries. These components could also feasibly

be machined from higher-strength materials using CNC micro-machining techniques.

As shown in Fig. 3.13, each jaw of the grasper has 180◦ of independent motion. These

additional DOF significantly increase the dexterous workspace of the manipulator,

facilitating use in endoscopic procedures.

3.8.2 Control Architecture

The system’s control hardware includes an Arduino Mega 2560 microcontroller,

three Adafruit Motorshield kits (Adafruit Industries), a Windows PC running 64-

bit MATLAB, and an Xbox controller (Microsoft Corp.) for user input during

teleoperation. The highest level loop is coded in MATLAB and is used for solving

the inverse kinematics, commanding and recording actuator positions, plotting

simulations, and communicating with input devices. The manipulator kinematics

are computationally expensive, so the kinematics are coded in C++ and compiled
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as a Matlab Executable (MEX) function. Using the efficient computation method

from our previous work (170), the inverse kinematics solutions can be computed at

several kilohertz, but due to the Arduino’s processor speed, the serial communication

is synchronized at 25 Hz. A custom Arduino script manages the low-level motor

control of the linear actuators using a proportional-plus-integral (PI) controller and

feedback from the linear actuators’ internal potentiometers.

When not actuating the end-effector jaws, each linear actuator in the end effector

actuation module must keep the cable length above the fixed platform constantly

equal to the tube leg through which it runs. This is to maintain cable tension and

ensure that the jaw angles do not change with the motion of the manipulator. So,

for any change in position for a particular tube leg, the end effector actuator paired

with that leg must move the cable an equal distance to compensate. When actuation

of a grasper jaw is desired, the two linear actuators controlling the actuation cable

move in opposing directions to change the jaw angle while maintaining cable tension.

This control scheme allows for simultaneous control of the jaw angles and the 6-DOF

end-effector pose.

The Kevlar thread diameter and the pulley diameters are difficult to accurately

measure, so the end effector actuation motors required calibration. Diameter

estimates were calculated iteratively to minimize the error between the desired and

the measured jaw angles.

The teleoperation interface integrated with this robot is unilateral and employs

velocity commands as inputs. The user interface is a Microsoft Xbox controller,

which has six buttons that are each mapped to a specific positional or rotational

DOF of the end effector. The scaling of each input can be adjusted according to

user preference. We restrict the workspace of the manipulator to poses for which

the bending strain in any tube does not exceed 2.5% (as further discussed in Section

3.8.3). If the maximum strain for a particular pose exceeds the strain limit, that pose

is not commanded. Virtual limits imposed on the end-effector actuation commands

furthermore prevent the grasper’s jaws from colliding.
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A 6-DOF Geomagic Touch input device was also successfully integrated with this

system as a user interface to generate direct position and orientation commands.

Although the Geomagic Touch provides a more direct interaction with the device,

our preliminary trials showed that 6-DOF control was actually more difficult with

the Touch than with the Xbox controller. This may be due to the decoupling

of the degrees of freedom to separate buttons when using the Xbox controller.

Evaluating input devices is beyond the scope of this paper. However, as reviewed

in (175; 176), haptic feedback may improve teleoperation performance in minimally

invasive procedures, so incorporating these features by using a haptic device like the

Touch could be beneficial for future clinical applications.

3.8.3 Workspace Analysis

Reachable and Strain-Limited Workspace

We determined the reachable workspace of this manipulator by uniformly sampling

the 6-DOF actuation space at seven equally spaced increments on each leg, resulting

in a total of 262,144 sampled points. At each sampled point, the forward kinematics

was solved using the efficient torsionless model from our previous work (75; 170),

which was optimized for computational speed. As we show in Section 3.8.4, mean

accuracy for this model for our system is on the order of 1 mm. The workspace

volume was calculated to be approximately 12,249 mm3 by computing the volume of

the non-convex 3-D point cloud hull generated using Matlab’s boundary() with the

default shrink factor of 0.5.

This point cloud represents the set of Cartesian coordinates that the robot could

possibly reach. However, the leg bending strains required in these configurations

will cause plastic deformation in the legs of the manipulator if the tube material’s

elastic strain limit is exceeded. We can calculate a strain-limited workspace by only

including poses that do not exceed a given strain limit using the relationship ε =

umaxr, where umax is the maximum curvature at any point on any tube leg (calculated
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Figure 3.14: (a) The reachable workspace of the manipulator is shown with color
indicating the maximum strain in any leg at each position. (b) The reachable workspace
was also simulated with a lateral load of 1N at the end effector acting along the x-axis. The
subsequent shift in workspace and max strain is shown. (c) The strain-limited workspace
is shown identifying the experimental poses used in our analysis with lines depicting the
end-effector z-axis. (d) The dexterity of the manipulator over the workspace is visualized
by calculating the range of angular displacement achievable in any direction of rotation at
each reachable position.

using the model), and r is the tube radius. A plot of the workspace colored by the

maximum strain at each pose is shown in Fig. 3.14 (a). The highest estimated

strain over this entire workspace is 5.6%. Superelastic Nitinol has typical maximum

recoverable strains of 6-8%. However, during teleoperation, we limit the workspace

of the robot to strains under 2.5% to introduce a margin of safety and to reduce

the effects of loading/unloading hysteresis in superelastic Nitinol. This strain-limited

workspace and the experimental poses used for our analysis are shown in Fig. 3.14

(c). The workspace volume with strains below 2.5% is approximately 9,595 mm3, a

28% reduction from the original reachable workspace. For comparison, the workspace
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volume is reduced to 3,974 mm3 if the tube legs are made from spring steel, which

typically has a strain limit of 1%. This is an 68% reduction. We conclude that using

a material with a high recoverable strain is essential to maximize the workspace. Also

note that these workspace volumes represent the positions achievable by a reference

point at the center of the base of the grasper. The workspace of the tips of the grasper

jaws is therefore slightly larger and more dexterous due to the length of the gripper

and the two additional cable-driven DOF.

With 6-DOF, this robot can independently achieve pure translations and pure

rotations in all three directions. Based on our inverse kinematics simulations, the

limits of these isolated movements for our manipulator are approximately 12 mm in

translation, 25◦ in x and y rotation, and 70◦ in z rotation (twist). When combining

translation and rotation to achieve bending, the robot is able to reach x and y angles

up to 45◦ with translational distances of 15 mm.

Force Application and Effects of Loading on Workspace

As discussed above, the high strain limit of Nitinol increases the workspace volume.

Another benefit of Nitinol is wider availability in thin-walled tube stock compared to

other flexible metals. Its relatively low elastic modulus (58 GPa) also increases the

manipulator’s compliance. Using our model, we can compute the manipulator stiffness

matrix in any configuration. For example, in the neutral configuration shown in Fig.

3.10, the stiffness matrix is

K =
[
1.9 0 0
0 1.9 0
0 0 525

]
N/mm.

The stiffness significantly varies with the configuration of the robot and the

direction of the force applied. In poses near the home configuration, the stiffness

matrix indicates that we can apply forces up to 5 N with a maximum displacement

of 2.6 mm. The force application required during endoscopic submucosal dissection

consists of applying traction to displace the mucosal and submucosal layers away from
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the musculature in order to dissect the tissue. This pull force has been measured on

average to be 2.5 N with a maximum of 5 N (177). Tubes with higher stiffness can

be used to provide higher end effector forces.

A second reachable workspace simulation was performed with a 1 N force applied

in the +x direction at the end effector. As shown in Fig. 3.14 (b), this applied force

shifts the reachable workspace in the +x direction. The total reachable workspace

volume decreases to 11,326 mm3, and the strain-limited workspace volume (for strains

below 2.5%) decreases to 9,169 mm3, which is a 4.4% reduction from the strain-limited

workspace volume with no applied loads.

Required Actuation Forces

The lower elastic modulus of Nitinol also reduces the forces required for actuation.

The axial tension or compression at the base of each leg is computed by our model, and

this corresponds to the opposing actuator forces required to hold the manipulator at

a given pose with external loading. When computing the workspace, we also recorded

the required actuator forces at each pose. Over all configurations in the workspace,

the maximum actuator force was 7.77 N, with an average force across the workspace

of 1.02 N. In our loaded workspace simulation, the maximum actuator force was 8.20

N, and the average force was 1.27 N.

Dexterity over Workspace

Fig. 3.14 (a) depicts the reachable workspace of 3D points. However, each point in

this simulation actually represents a full 6-DOF pose. To evaluate and visualize the

dexterity over the reachable workspace, we chose a set of uniformly distributed “hub

positions,” clustered all reachable poses within 1 mm of each hub, and evaluated the

angular range of the poses in each cluster. To evaluate the angular range at each hub,

we first found the Karcher mean orientation of each cluster using the algorithm in

(178). Then we calculated the angular displacement between each orientation in the
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cluster and the mean. Next, we determined the largest origin-centered sphere that

would fit within the non-convex boundary of each set of 3D angular displacements

(determined by Matlab’s boundary() command with a default shrink factor of 0.5).

The diameter of this sphere represents the range of orientations that can be achieved

in any direction at each hub. We also note that the set of reachable orientations at any

hub is not necessarily symmetric. The metric we show in Fig. 3.14 (d) is conservative

because it is limited by the direction in which the range is the smallest. In general,

the range of achievable orientations about the end-effector z axis was about three

times greater than the other directions.

3.8.4 Experimental Validation

In our previous work (75; 170) we presented a model for parallel continuum

manipulators, an efficient computation method for solving the model in real-time,

and a large-scale prototype (18 cm diameter). In the previous prototype, the rod

ends were held by torsionless shaft collars that allowed axial rotation, and zero

torsional moments were assumed as boundary conditions in the kinematics model.

For our miniaturized design, it was impractical to include freely rotating shaft-collar

connections due to size constraints, so the rods are fixed at both ends with epoxy. In

this case, the relative axial rod orientations are fixed at each end, resulting in possible

nonzero torsional reaction moments at the actuators and torsional deformation in the

legs. This can be modeled by simply applying the appropriate boundary conditions

to our models in (75; 170). In this section, we experimentally validate the accuracy

of both modeling approaches (referred to as torsionless model and torsional model,

respectively) for our miniaturized system.

Setup

We evaluated the open-loop accuracy of our system by measuring the position

and orientation of the end effector using a tri-camera optical tracking system
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Figure 3.15: A stereo vision tracking system was used to measure the accuracy of the
manipulator. Two passive markers were fixed to the robot, which allowed for measurement
of the end-effector pose. A handheld stylus (bottom left) provided an accurate location of
the manipulator’s global frame relative to the base marker.

(MicronTracker H3-60, Claron Technology Inc.), which has a calibration accuracy

of 0.2 mm RMS. Two passive 6-DOF markers were tracked, one fixed to the base of

the robot (the base marker) and a second fixed to the end effector (the tip marker),

as shown in Fig. 3.15. The robot reference frames used for evaluation are 1) the

global frame of the manipulator F1 (located at the base of the manipulator structure

on the fixed platform), 2) the base marker frame F2, 3) the tip marker frame F3, and

4) the end-effector frame F4. The pose of the end effector in the global frame is given

by 1T4 = 1T2
2T3

3T4, where iTj ∈ SE(3) is the homogeneous transformation from

frame Fi to frame Fj.

Calibration

1T2 was found by measuring known points on the fixed platform using a handheld

stylus with markers attached, as shown in Fig. 3.15. 2T3 was measured at each pose
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Table 3.5: Calibration of Tip Marker to EE Frame Transformation

θx [◦] θy θz x [mm] y z
Nominal 0 90 90 -22 0 8

Calibrated 7.5 87.95 84.46 -22.51 -1.86 6.63

using the Micron Tracker. The unknown transformation between the tip marker

and the end-effector frame 3T4 was calibrated by minimizing the error between

model predicted 6-DOF pose and measured 6-DOF pose using data from a set of

12 robot configurations, symmetric about the manipulator’s neutral configuration,

and the torsional model. These configurations included four translations, four

rotations, and four cases of combined rotation and translation. To minimize the

effects of repeatability error, each configuration was actuated and measured three

times independently. The initial neutral configuration was also recorded to give a

total of 37 measured poses. We then found the transformation that minimized a

weighted combination of rotational and positional error by solving an unconstrained

nonlinear optimization problem

Pcalibrated = argminP

( 37∑
k=1

∥∥∥∥∥∥ ~perrorSθerror

∥∥∥∥∥∥
2 )
,

where P = {x, y, z, α, β, γ} is the set of position vector elements and XYZ Euler

angles that defines 3T4, ~perror = ~psensed − ~ppredicted is the Euclidean distance between

the predicted and sensed position, and θerror = (log(RT
s Rp))

∨ is the single axis

rotation between the predicted rotation Rp and sensed rotation Rs. In the objective

function, θerror is scaled by a characteristic length S, which we set as the distance from

the end-effector frame origin to the axis of rotation of the grasper jaws (8.25 mm).

The transformation that minimizes the objective function was found iteratively using

Matlab’s fminsearch(). The calibrated transformation was then used to compare

model predictions to measured data for all subsequent data sets. Table 3.5 shows the

initial guessed transformation and the calibrated transformation.
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Table 3.6: Repeatability Error of EE Position and Rotation

Home Bending Translation Twisting
RMS Pos. [mm] (%) 0.88 (2.09) 0.35 (0.83) 0.54 (1.28) 0.74 (1.76)
Max. Pos. [mm] (%) 1.36 (3.24) 0.56 (1.33) 0.81 (1.93) 1.41 (3.33)

RMS Rot. [◦] 1.96 1.37 0.77 2.47
Max. Rot. [◦] 3.57 2.32 1.37 5.52

Repeatability

The repeatability of the robot was evaluated by measuring the pose in the home

configuration, actuating to a new pose, actuating back to the home configuration, then

measuring the pose again. This procedure was done for a set of 16 poses distributed

over the workspace of the robot. These poses included 6 translations, 6 rotations, and

4 poses combining rotation and translation. The repeatability was similarly evaluated

at three other representative configurations in the workspace for cases of 1) bending

(6 mm translation plus 15◦ rotation), 2) translation of 5 mm, and 3) z-axis rotation

of 30◦. In addition to the position error and rotation error used for optimization, we

evaluated percent error by dividing with a nominal length factor of 42 mm (length of

the robot in the home configuration), that is % Error = ||perror||
42mm

× 100%. Table 3.6

gives the statistical results, which show that the repeatability error is no greater than

1.41 mm in position and 5.52◦ in rotation.

Absolute Position and Orientation Accuracy

The open-loop system accuracy was evaluated by first selecting a set of 42 desired

poses distributed over the workspace of the manipulator. These poses included

the initial and final neutral configurations, 14 translations, 12 rotations, 8 poses

combining rotation and translation, and 6 z-axis rotations. The actuators were then

commanded to move to the corresponding configurations computed by our inverse

kinematics model, and the end-effector pose was measured by the tracking system

and compared to the commanded pose. Table 3.7 details the statistical results of

these measurements.

66



Figure 3.16: Histograms of position and rotation error for the torsional model are shown
for all 42 measured poses. The six largest angular errors were calculated when pure twisting
was being measured, consistent with the observation that twisting motions are particularly
sensitive to actuator accuracy.

Fig. 3.16 shows the histogram for the position and rotation errors using the

torsional model. The large angular errors above 5◦ were obtained when actuating the

manipulator in pure z-axis rotation, i.e. about the manipulator’s longest dimension.

These large errors are mainly caused by linear actuator accuracy and interface rigidity.

According to simulations, a rotation of 10◦ about the z-axis corresponds to a 0.1

mm actuator displacement for three of the legs. Although the specified positional

accuracy of the linear actuators is 0.1 mm, axial backlash in the linear actuators

and tab interfaces increases the uncertainty such that it is infeasible for such small

position changes to be achieved.

We repeated the experiments using the torsionless model. As shown in Table

3.8, this increased the mean position error by 0.27 mm and the mean angular

error by 0.44◦. While the torsional model is more accurate, our efficient model

implementation in (170) solves significantly faster in the torsionless case, for which it

was optimized. The torsionless model accuracy is likely high enough for human-in-

the-loop teleoperation and workspace simulation.
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Table 3.7: End-Effector Pose Error: Torsional Model

Statistical Metric Position (mm) % Error Angle (◦)
Mean 1.19 2.83 3.81
Max. 3.05 7.26 14.0
Min. 0.13 0.31 0.33

Std. dev. 0.68 1.62 2.95

Table 3.8: End-Effector Pose Error: Torsionless Model

Statistical Metric Position (mm) % Error Angle (◦)
Mean 1.46 3.48 4.25
Max. 4.21 10.02 22.9
Min. 0.25 0.59 0.40

Std. dev. 0.86 2.05 5.32

3.9 Concentric Tube Modeling

Concentric-tube robots consist of multiple precurved elastic tubes which are arranged

concentrically. The base of each tube is independently axially rotated and translated

by an actuation system in order to change the distal shape of the tube collection and

control the pose of the tip. In keeping with the physical system used in Chapter 6,

we present a model for the kinematics of a collection of nested concentric tubes. The

modeling is based on the work done by Rucker et al., which applied geometrically

exact Kirchoff rod theory to pre-curved concentric tubes under arbitrary external

point and distributed wrench loading (67). This modeling approach does not make the

geometric assumptions present in classical beam theory, which allows us to simulate

designs with a greater degree of accuracy. There exists two constitutive assumptions

in Kirchoff rod theory, 1) inextensibility and no transverse shear strain, and 2) linear

constitutive equations for bending and torsion. Since our concentric tubes must be

long and very thin for endoscopic deployment, these assumptions are acceptable. The

derivation of the geometrically exact model is well-described in (67). The resulting

differential equations describe the tube curvatures with respect to the constitutive and

kinematic variables. Friction is neglected in this modeling framework. However, as

discussed in the next section, we chose to avoid tube designs which allow for overlap of
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two or more sections of distinct pre-curvature. This is because counter-rotation during

curved section overlap contributes greatly to torsion in the tube transmissions, which

causes a loss of controllability and can potentially create elastic instability (74; 179).

The resulting multi-tube kinematics and statics are defined by a set of first order

differential equations for the set {g1,u1, u2,z, ..., un,z, θ2, ..., θn}, as follows:

ġ1 = g1ξ̂, where ξ =
[
eT3 uT1

]T
(3.22)

 u̇1,x

u̇1,y

 =−K−1
n∑
i=1

(
Rθi(Ki(θ̇i

dRT
θi

dθi
u1 − u̇∗i ) + (ûiKi + K̇i)(ui − u∗i )

)∣∣∣∣
x,y

−K−1
(

ê3R
T
1

∫ `

s

f(σ)dσ +RT
1 l

)∣∣∣∣
x,y

(3.23)

u̇i,z = u̇∗i,z +
EiIi
GiJi

(
ui,xu

∗
i,y − ui,yu∗i,x

)
+

˙(GiJi)

GiJi

(
u∗i,z − ui,z

)
− 1

GiJi
eT3R

T
i li (3.24)

θ̇i = ui,z − u1,z (3.25)

Variable definitions are listed in Table 3.9. Each variable can be expressed as a

function of arc length s, and all dots denote a derivative with respect to s. The *

superscript refers to the variable before it undergoes deformation in the nested state,

which means solutions require tube pre-curvatures that are some known functions

of arc-length. The ̂ operator refers to a conversion of an element of R3 to its

corresponding element in so(3), as defined in Ref. 172. The x and y curvature

components of the outer tubes are not necessary for describing the shape of the

manipulator, because in a collection of nested concentric tubes, the deformed curves

of all tubes follow the same trajectory. The main distinction from a single rod is that

the tubes are free to twist independently about the local tangent z-axis.

The entire system is constrained by actuator inputs (rotations and translations)

at the proximal end and static equilibrium conditions at the distal end. To implement
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Table 3.9: Table of concentric tube kinematics variables.

Variable Definition

g1 Transformation describing the deformed backbone shape of the

collection of tubes

ui,j Curvature of the ith tube about the local j axis, where the

innermost tube is i = 1

θi Angular rotation of the ith tube about the local z-axis with respect

to the 1st tube

e3 Unit vector on local z-axis ([0 0 1]T )

R1 Rotation matrix for the first tube relative to global reference frame

Rθi Rotation matrix (about the z-axis) for the ith tube relative to the

1st tube by the angular amount θi

f Distributed applied load

l Distributed applied moment

K Stiffness matrix

E Young’s modulus

I Second moment of area of tube cross section

G Shear modulus

J Polar moment of inertia of tube cross section

the forward kinematics, we solve the resulting boundary value problem by numerically

integrating the first order system described in equations 3.22 - 3.25 for a given set of

actuator inputs and guessed initial curvatures at the entry point of the manipulator.

A shooting method is then used to iteratively find the initial curvatures which satisfy

the static equilibrium at the distal end.

Overlap Constraint

In prior analysis of concentric tube kinematics, most pre-curved tubes have been

designed with a single section of curvature at the distal end of the tube. For these

types of designs, curved sections on separate tubes frequently overlap, causing an

increase in internal moments, and creating torsion. In this paper, we constrain the

design space to avoid the overlap of curved sections altogether and thereby eliminate
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the potential for torsional instability. We hypothesize that designs of this type are

advantageous for robots which require a long, winding transmission path, as is the

case in endoscopic procedures.

In our class of designs, we let all outer tube designs contain straight sections at

their distal ends, with lengths that are greater than or equal to the length of the

sum of all curved section lengths on smaller tubes. Then, tubes with pre-curvature

contain segments in the order straight-curved-straight. This is in contrast to most

prior designs which have simply been straight-curved. We define Lsi and Lci as the

lengths of the distal straight and curved sections of the ith tube, beginning from the

base. Then, assuming there are at most two straight sections and one curved section

in each tube design, the new section length constraint can be described as

Lsi ≥
i−1∑
k=1

Lck . (3.26)

Overlap of curved sections is then only possible when an inner tube is withdrawn far

enough that its tip is further retracted than the tip of the next outer tube. This type

of actuation does not result in any useful configurations, and therefore is disallowed

in any control scheme.
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Chapter 4

Analysis of Flexible Manipulators

While robotics has provided surgeons with the ability to complete complex tasks, the

validation method of measuring a robot’s ability to improve the surgical experience

is qualitative and indirect. Most methods involve clinical parameters like reducing

procedure time, increasing success rates, or minimizing tissue damage. While these

factors are important and the ultimate goal of surgical robots, until the robot is

almost fully constructed and implemented, these measures are difficult to assert. At

present, researchers do not have an established set of guidelines for quantitatively

determining whether a robotic manipulator meets the requirements for any given

surgical application. The needs of a robotic manipulator have been studied in general

(6), and in specific applications (3). However, the evaluation of these robots and their

ability to perform tasks is still variable.

A design framework for a surgical robot was examined in (180). This framework

begins with a characterization of the clinical application. This information is available

for most procedures (3). Once this information is known, the researchers can

choose kinematic topologies like joints, link lengths and actuation systems that will

accomplish the targeted task. They can then compare kinematic simulations of their

designs to clinical parameters in order to validate their robot’s ability to perform a

certain task.
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Figure 4.1: The angular offset of the flexible links is shown here as 10◦. This offset
can be increased or decreased by changing the location of the holes in the end effector
platform. This will subsequently change the behavior of the manipulator. The radius,
ri is the radius from the center of the end effector to the center of the link.

In this chapter, we identify four kinetostatic matrices that represent the linearized

robot behavior based on the kinetostatics model. We show how to numerically

compute these matrices with minimal computational overhead beyond what is already

required to solve the kinetostatics boundary value problem. We then analyze the

design of PCRs with these matrices via (1) matrix ellipsoids, (2) matrix metrics,

(3) non-dimensional analysis, and (4) force application calculations. We specifically

examine three pose variations and two design variations.

4.1 Model Linearization

Linearizing the Fq,w formulation about the current robot configuration produces the

following two equations (
g−1e δge

)∨
=Jδq + Cδw

δτ =Kδq + Wδw
(4.1)

where δ denotes a very small change. In the first equation, we recognize the

conventional definition of the 6 × n body-frame Jacobian, J (mapping changes in

joint positions to the corresponding changes in end-effector pose expressed in body-

frame coordinates) and 6 × 6 body-frame compliance matrix, C, (mapping changes
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in global applied wrench to body-frame pose change). This relationship has been

stated for continuum robots in (181; 151), and is also generally true for robots with

series-elastic actuators (182; 183) due to the flexible link between the applied actuator

force and the load. As previously stated, rigid-link end-effector wrench is mapped

to the joint torques by the transpose of the Jacobian matrix (162). Here, elastic

energy is stored within the robot links. The compliance matrix accounts for the

elastic deflection under external loading, and can be used to calculate the additional

elastic energy that is stored in the flexible links of a continuum manipulator when it

is deflected. In the second equation, the n× n matrix, K (which we henceforth refer

to as the “input stiffness”), maps changes in joint positions to changes in actuator

forces, and the n × 6 matrix, W (which we call the “wrench reflectivity matrix”),

maps changes in applied wrench to changes in actuator loads.

4.2 Efficient Computation of the Kinetostatic Ma-

trices

In order to analyze the kinetostatic characteristics of a flexible manipulator, it

is important to efficiently compute the required metrics on which to base design

decisions. Here, we show that J,C,K and W can be calculated with minimal

computational effort after solving the general BVP that defines any of the problem

formulations outlined in Table 3.3. This method is similar to the one derived in (181).

Equation (3.18) can be linearized about the current configuration in terms of pose

(ge), actuator variables (q), actuator forces (τ ), and external wrench (w), and the

vector of remaining proximal unknowns γ. Any small change in the residual function

then has the following form,

δb =Bτδτ + Bqδq + Bwδw

+ Bg

(
g−1e δge

)∨
+ Bγδγ

(4.2)
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The B matrices in the above equation can be numerically approximated by the

following finite difference procedure: For Bτ ,Bq,Bw,Bγ,

1. Increment an element of either τ , q, w, or γ by a small amount, ∆, from

it’s nominal value (which is either known or has already been obtained in the

solution of the BVP). If the incremented variable is an element of w, go directly

to step 3.

2. Solve (3.17) for the link which is associated with the incremented variable from

base to tip as an initial value problem.

3. Evaluate the change in b that the increment produced and divide by ∆. The

resulting vector is assigned in the appropriate column of the B matrix associated

with the incremented variable.

For Bg,

1. Increment ge as follows,

∆ge = ge,iêi∆ (4.3)

where ̂ maps R6 to se(3) as given in Equation (3.4), and ei is a column vector

of zeros with 1 in the ith row.

2. Evaluate the change in b that the increment produced and divide by ∆. The

resulting vector is assigned in ith column of the Bg matrix.

Note that Bg and Bw could also be obtained analytically by direct differentiation of

b, since w and ge appear explicitly in the distal boundary condition equations.

After solving the BVP and obtaining all of the B matrices, we can compute

the four kinetostatic matrices by first observing that the residual vector, b, and its

derivative should remain equal to zero for any small change in any variable. Setting
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Figure 4.2: Each of the models above approximates the full Cosserat rod model
body-frame Jacobian in real-time.

δb = 0 and rearranging provides the following equation,
δγ

(g−1e δge)
∨

δτ

 = G

δq
δw

 (4.4)

where

G = −
[
Bγ | Bg | Bτ

]−1 [
Bq | Bw

]
(4.5)

G then contains the four kinetostatic matrices as appropriately dimensioned sub-

blocks, which can be extracted from it.

G =


Γ

J6×n C6×6

Kn×n Wn×6

 (4.6)

where Γ is the matrix relating the actuation variables and the tip wrench to γ.
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4.2.1 Approximation of Jacobian in Teleoperation

In (184), we investigated using an analytical Jacobian to teleoperate a 6-link Stewart

Gough parallel continuum robot. Simpler approximate kinematic models can be

obtained by considering related rigid-link Stewart-Gough platforms and linearizing

the full model (see Figure 4.2).

In this 6-Link Stewart Gough approximation a standard closed form expression

for leg lengths is used,

Li = ||p + R[xi,e yi,e 0]T − [xi,b yi,b 0]T || (4.7)

The 18-Link Stewart Gough approximation uses additional links to better

approximate leg shape and orientation constraints. The equation for leg length is

Li,k =2li,k + ||p + R[xi,e yi,e − li,k]T − [xi,b yi,b li,k]
T ||

li,k+1 =li,k + α(βLi,k − li,k)
(4.8)

where li is the length of the outer segment and Li is the total length. The segment

converges to the fraction β of Li with a damping constant of α. This model used

β = 0.25 and α = 0.001.

The constant Jacobian approximation is a linearization of the full Cosserat rod

model at nominal configuration with a precomputed 6 DOF Jacobian matrix and leg

lengths calculated by integration of velocities. The equation for the leg lengths is

L(t) = L(0) +

∫ t

0

J

v(s)

u(s)

 ds (4.9)

User experiments were conducted with each of the models (see Figure 4.3). Users

were asked to teleoperate the PCR to a specific location with a 6-DOF mouse from 3D

Connexion Inc.. The algorithms were implemented in Simulink with MATLAB. The

legs were translated by 6 linear actuators from Firgelli Acutonix Motion Devices Inc.,
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Figure 4.3: Users were asked to navigate the PCR with a 6-DOF mouse to a desired
6-DOF pose represented with a jig in the shape of the end effector.

with low level PI control from an Arduino Mega 2560 microcontroller. Six novice

users maneuvered the robot to target 6 DOF pose in 3 runs for each model. The

models were presented in a blind order so that the user did not know which model

they were using. The time to reach the desired pose was measured and recorded.

The results of the user experiments are shown in Figure 4.4. There were

insignificant difference between the rigid-link models. However, there was a significant

difference between the full Jacobian and both rigid-link models. Users were able to

complete the task much faster with the Jacobian model.

4.3 Matrix Analysis

In this section we employ several matrix metrics (Table 4.1) and visualize aspects

of robot behavior with ellipsoids (Figures 4.5 and 4.6). The particular robot design
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Figure 4.4: Users were asked to navigate the PCR with a 6-DOF mouse to a desired
6-DOF pose represented with a jig in the shape of the end effector.

analyzed is a Stewart-Gough design with a nominal length of 400 mm and a radius,

ri, equal to 87 mm for each link. The link connection points are offset from the three

120◦ dividing lines by ϑ = 10◦ (see Figure 4.1). This design is similar to the prototype

presented in our previous work (75). The design we consider in Section 5 has different

physical parameters which are more conducive to the force sensing experiments. A

six link platform design was used to take advantage of the square system of inputs

and outputs in order to analyze the position and rotation Jacobian matrices alongside

the compliance and force reflectivity matrices. The choice of a Stewart-Gough-like

hexapod arrangement for the legs provides well-conditioned control of 6-DOF pose

and wrench sensing. The goal will be to characterize the robot’s abilities in terms of

manipulability, force application, stiffness and force sensing using the J, C, K, and

W matrices. While the use of the Jacobian and compliance matrices is well-known,

the stiffness matrix will aid in motor selection for specific designs by estimating the

forces required to actuate the flexible links. Finally, the wrench reflectivity matrix

can be used to estimate the robot’s ability to intrinsically sense applied tip wrenches

via the measurement of the actuator loads.
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(position)
SF: 0.05 m
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(rotation)
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SF (Nominal): 200 1/N
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Reflectivity 
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Figure 4.5: This figure shows the resulting ellipsoids when the manipulator is in 3
separate configurations, twisting about the z axis, translating along the x axis and
bending in the negative x direction.

The Jacobian is commonly used to measure manipulability by analyzing several

different metrics, including the determinant, the condition number of the matrix,

and the volume of ellipsoids drawn from either the singular values or the eigenvalues

and eigenvectors of the matrix (162; 185; 146; 150). In order to avoid the mixture of

rotational and positional units, we have calculated separate ellipsoids for position and

rotation manipulability (see Figure 4.5 and 4.6, rows 1 and 2). It is also possible to

assign a characteristic length in order to appropriately scale the rotational elements

and then analyze the entire matrix. However, this choice is arbitrary and difficult to

visualize in 2D.

We generate a manipulability ellipsoid for the position and rotation portions of the

matrix by mapping a unit sphere in joint space to an ellipsoid in end-effector Cartesian

space through the Jacobian. Then, the magnitude of the position/rotation ellipsoid

radius corresponds to the ability of the robot to move/rotate in the corresponding

direction. A large radius corresponds to a small amount of displacement in the
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Figure 4.6: This figure shows the position (blue) and rotation (green) ellipsoids from
the body Jacobian as well as the force displacement ellipsoid from the compliance
matrix and the force reflectivity ellipsoid from the wrench reflectivity matrix.

actuator space required for a relatively large amount of displacement in Cartesian

space.

This process can also be applied to the force/displacement portion of the

compliance matrix and force portion of the wrench reflectivity matrix. Equation

(4.6) contains the full compliance matrix related to linear and angular displacements

and wrench. The displacement/force sub-block (the upper 3x3 block, designated Cf )

of the compliance matrix, is used to calculate the ellipsoid shown in Figures 5 and 6.

This reduction in dimension is made for unit consistency and because a 6-dimensional

ellipsoid is difficult to visualize in 2D projections.

Similarly, the force reflectivity ellipsoid is computed using the force/force sub-

block (the upper 3x6 block, designated Wf ) of the wrench reflectivity matrix in

Equation (4.6). This portion of the matrix involves only the tip forces and the

actuation forces, and ensures unit uniformity. These same matrices were used in

the calculation of the indices reported in Table 4.1. The ellipsoid demonstrates
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the direction in which the forces are more or less “sensible” via transmission to the

actuator loads. If the magnitude of the ellipsoid radius is large, a small change in the

external force at the tip corresponds to a large change in the actuation forces that

are sensed at the base of the link. If this is the case, the measurement would be more

easily detected by the sensor.

4.3.1 Pose Variations

In Figure 4.5, the particular manipulator is represented in the nominal configuration

(Column 1) along with three pose variations (Columns 2-4). The radii of each ellipsoid

have units corresponding to the units of the respective matrices. In order to plot the

ellipsoids in Cartesian space, each ellipsoid has been scaled by a factor (SF) in order

to convert the units to length and provide the best visualization for the plots. This

scaling is arbitrary and has been applied to the ellipsoid uniformly over all three

principle radii. The values and units for the scaling factors are shown in the figure.

Nominal Configuration

In the nominal configuration, the position manipulability ellipsoid shows that the

manipulator is isotropic in the x and y directions. The z axis radius is much smaller

than the x and y, indicating that the required actuator displacements are much

higher to move in the z direction. The rotational ellipsoid has a large radius in

the z direction compared to the x and y axes. This is consistent with the ease of

twisting that is achieved in the axial direction versus the larger actuator displacement

required to tilt to an equal angular displacement in the x and y directions. However,

ease of movement in a direction also corresponds to higher pose error propagation

in that direction. This is consistent with the fact that forces on the order of 1 N

will displace the manipulator a distance on the order of 1 mm (as predicted by the

plot, the compliance ellipsoid in the nominal configuration and the Scale Factor equal

to 200 1/N). The compliance in the x and y directions is much larger than in the
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axial direction. This outcome is consistent with the direction of maximum stiffness

being the axial direction. The force reflectivity matrix shows that forces in the axial

direction will be well reflected at the base since the largest radius is in the axial

direction.

Twisting

In Figure 4.5, the second column shows the resulting kinetostatic ellipsoids when the

manipulator is twisted about the z axis. The position ellipsoid radius in the x and

y direction is smaller. This would indicate that it is more difficult to move in the x

and y directions when the manipulator is twisted. The rotation ellipsoid is flattened

in the z direction. This would be expected since the manipulator is already twisted

in that direction. The length of the radius could potentially be used as an indicator

of when the twisting limit is reached. The compliance ellipsoid radius in the x and y

direction is significantly larger. This would indicate that the robot is much less stiff

in the x and y directions when it is twisted. The force reflectivity matrix is much

larger and more isotropic, which means it could be more effective at sensing forces in

this configuration.

Translating

The kinetostatic ellipsoids in the third column result from the manipulator being

translated in the x-y plane. All of the ellipsoids tilt. There are no significant changes

in the size of the ellipsoids except for the compliance ellipsoid which shrinks in the

direction perpendicular to the plane of translation, indicating that the robot is stiffer

in the direction perpendicular to its translation.

Bending

The fourth column of Figure 4.5 shows the manipulator bent in the x-z plane. Again,

all the ellipsoids tilt. The position and compliance ellipsoids tilt in the opposite
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direction of the bending, while the rotation and force reflectivity tilt in the same

direction. Both of the position and rotation ellipsoids shrink in response to the

manipulator moving toward a singular configuration. The compliance matrix grows

in the x and y directions, indicating that the manipulator is more flexible in the bent

state in those directions. The force reflectivity ellipsoid also grows, which means the

forces at the tip are better transmitted to the actuators in this pose.

4.3.2 Design Variations

In Figure 4.6, the manipulator is represented in the nominal configuration (Column

1) along with two design variations (Columns 2 and 3). The first column shows

each ellipsoid while the manipulator is in the nominal configuration with all link

lengths equal. The second column shows the same design but with an aspect ratio

(relationship between the total length and the radius) of 1:1. The third column

shows the same design with an increase in the angular displacement of the links both

proximal and distal (from 10◦ to 20◦).

Equal Aspect Ratio

The aspect ratio of the robot is the ratio of the radius, r (distance from the center of

the end effector to the link constraint holes), to the total length of the robot in the

nominal straight configuration, L. In the nominal configuration, this ratio was 1:4.6.

In Column 2 of Figure 4.6, the ratio is 1:1. All of the ellipsoids are more isotropic than

in the nominal configuration. However, the radius also decreased in all but the force

reflectivity ellipsoid. The diameter of the compliance ellipsoid significantly decreased

and required a much larger scaling factor in order to visualize the ellipsoid. From

these results, it can be shown that a very short PCR is a very sensitive force sensor.

However, the volume of the position and rotation ellipsoids are greatly decreased in the

nominal configuration. This could indicate that the manipulator is more constrained

in a shorter configuration. However, this was not the case for the force reflectivity
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ellipsoid. Instead of decreasing in size, the ellipsoid increased in volume by 6000%,

providing a larger range of sensable forces.

Angular Offset

The link angular offset is the angular displacement of the links from the equally spaced

120◦ lines dividing the circumference of the manipulator (see Figure 4.1). In Column

1 of Figure 4.6, ϑ = 10◦, and in Column 3, ϑ = 20◦ with a total angular offset of

40◦ between the flexible links. The positional ellipsoid shows a much larger diameter

in the x and y directions. Since the scaling of the positional ellipsoid is constant,

this translates to a larger Cartesian displacement for the same amount of actuator

displacement. There is also a larger diameter in the z direction for the rotational

ellipsoid. This indicates a greater degree of axial twisting is possible. There is no

significant change in the compliance matrix in this simulation. There is a much

smaller diameter in the x and y directions of the force reflectivity matrix, suggesting

that this PCR design is a much less sensitive force sensor.

4.3.3 Matrix Metrics

The µ term in (162; 150) of the form

µ =
√
det (AAT ), (4.10)

is the most widely accepted measure for kinetostatic manipulability when applied to

the Jacobian matrix. For the Jacobian matrix, µ measures the relative proximity

of the current configuration to a singular configuration. If the matrix is square,

it reduces to the absolute value of the determinant. For an arbitrary matrix, it

generally corresponds to the notion of volume spanned by the matrix columns. A

value of 0 implies a configuration that is singular. This metric is also calculated for

the compliance and force reflectivity matrices. The results are reported in Table 4.1

for Jp, Jr, Cf and Wf . The values for the force compliance matrix are close to zero.
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Table 4.1: Matrix Indices

µ

Pose Jp Jr Cf Wf

Nominal 4.93 0.27 9.25E-12 0.25

Equal Aspect Ratio 0.34 0.13 4.45E-16 15.25

Angular Offset (+10 16.52 0.45 2.11E-12 0.06

Twisting 2.85 0.01 5.93E-07 65.62

Translating 3.64 0.22 6.06E-10 0.46

Bending 1.30 0.12 1.86E-07 7.40

β

Pose Jp Jr Cf Wf

Nominal 0.36 0.44 0.09 0.19

Equal Aspect Ratio 0.99 0.87 0.97 0.99

Angular Offset (+10 0.24 0.19 0.04 0.08

Twisting 0.60 0.21 0.06 0.82

Translating 0.38 0.50 0.026 0.25

Bending 0.56 0.61 0.10 0.81

This is due to the high degree of axial stiffness (in the z direction) when compared

to the x and y directions from the inability to compress the links.

The second measure in the table, β, is the ratio of the largest and smallest

singular values, and measures the isotropy of the ellipsoid. It is an index of the

directional uniformity of the ellipsoid that is independent of its size (162). It can also

be interpreted as the measure of accuracy with which the manipulator can generate

output forces from input forces, and workspace velocity from joint velocity (150). The

measure of isotropy has an upper bound of 1 and measures how close the ellipsoid is

to a perfect sphere where all the eigenvalues would be equal.

When comparing the indices for the position and rotation ellipsoids in the nominal

pose, β is not close to zero, which indicates that the robot is not singular in the
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Non-dimensional Analysis in the Nominal Configuration
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Figure 4.7: The results of the fitted data (Equation (4.12)) are shown here as red
diamonds, and the simulation data is shown in the blue line. The sudden change in
compliance near ϑ = 30◦ is an interesting result of this analysis.

configurations examined. This is consistent with previous findings of the nominal

configuration in (75). The compliance matrix is significantly skewed in the x and y

directions, and this leads to a very low value for the isotropy. Examining β for the

equal aspect ratio case in Table 4.1, it is evident that all the matrices are extremely

well conditioned in this configuration. The µ value for the angular displacement case

shows the volume of the force reflectivity matrix decreased significantly.

4.4 Non-dimensional Analysis

We would like to obtain a generally applicable function that relates how the

link lengths, hole-pattern radius, link bending stiffness, and hole-pattern angular

offset affect the end-effector output compliance matrix (specifically the transverse

compliance, Cxx = ∂px
∂fx

, which is the first diagonal element in the compliance matrix)

for any Stewart-Gough PCR in the nominal configuration. Knowing how to select

physical parameters that correspond to a specific stiffness can aid in designing robots

to interact with specific stiffness requirements, such as probing soft tissue or working
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close to a human collaborator. To obtain such a generalized relationship, we used the

Buckingham Pi method (186) to find 3 dimensionless groups. For our analysis, there

are 5 problem parameters (L, r, ϑ, EI, and Cxx) and 2 physical dimensions in the

problem (length and force). According to the Buckingham Pi theory, there are then

3 dimensionless groups.

The first two groups are the aspect ratio (radius of the robot divided by the

length), and the angular offset of the flexible links in degrees.

Π1 = ϑ

Π2 =
r

L

A third dimensionless group can be written in terms of the compliance, stiffness, and

length,

Π3 =
CxxEI

L3
.

Therefore, some function exists which relates the dimensionless groups as follows:

CxxEI

L3
= f(ϑ,

r

L
) (4.11)

If the design required increased or decreased compliance, these non-dimensional

groups provide insight on how to scale the physical parameters of the manipulator.

This formulation reveals that if all the length dimensions of the manipulator (r, L,

and link diameter through I) are scaled by a factor, β, the compliance, Cxx, will be

scaled by 1
β
. Also, if the length and radius of the manipulator are both scaled by a

factor, β, then the compliance will increase by a factor of β3. These general rules

equally apply to any other element of the compliance matrix, and also to the inverse

of the input stiffness matrix K, since we could have chosen any scalar compliance for

the formation of Π3.

To determine a functional approximation for Equation (4.11) above, we used

the mechanics model to simulate a range of aspect ratios and angular offsets and
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calculated the resulting Cxx. The angular offset ranged from 0◦ to 30◦ (i.e. from

designs with leg pairs coincident to designs with equally spaced, straight legs), and

the aspect ratio ranged from 0.0625 to 0.4. The values were plotted against Π3 and

fitted to a function using the Eureqa Pro tool from Nutonian Inc., which uses a genetic

algorithm to find an appropriate functional form that fits a set of data. We converged

on an equation with the following form:

CEI

L3
= c1 + c2ϑ+ c3ϑ

2 +
c4ϑ

4

c5ϑ
r
L

+ c6 + c7
r
L

+ c8ϑ
7 (4.12)

c1 = 0.000489911011960653,

c2 = −7.708585607305636e× 10−4,

c3 = 0.001122924359743,

c4 = −0.019046236046962,

c5 = 57.295779513082323,

c6 = −0.0923645619398372,

c7 = −30.0023461726314,

c8 = −0.175434258024175.

The genetic algorithm provides the user options to balance complexity of the resulting

equation and a better fit of the data. This equation best fits the experimental

data. While some of the coefficients are small in magnitude, they are multiplied

by exponential terms, which increases their contribution to the overall equation.

This polynomial produced an R-squared value of 0.966 for the data collected, and

reflects the expected compliance of the manipulator when given an aspect ratio and

an angular displacement of the flexible links from the mid-line (see Figure 4.1). We

measured the percent error between the data set and the fitted equation and found a

maximum percent error of 25.4%. The results of the dimensional analysis simulation

are shown in Figure 4.7. It is important to note that this function is valid only for the
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Table 4.2: Force Application [N] per Configuration

Pose/Variation x = 1 mm y = 1 mm z = 1 mm

Nominal [1.54 0 0.01] [0 1.54 0] [0.01 0 109.5]

Aspect Ratio [160.5 0 1.5] [0 160.4 -0.4] [0.8 -0.02 210.4]

Angular Offset [1.65 0 0.05] [0 1.65 -0.01] [0.04 0.01 407.0]

Twisting [0.03 0 0] [0 0.03 0] [0 0 3.82]

Translating [2.36 0 9.37] [ 0 0.1 0] [9.35 0 37.7]

Bending [0.81 0 1.28] [ 0 0.05 0] [1.29 0 2.36]

limits of the simulation data and will decrease in accuracy if used outside these limits.

There is a hyperbolic relationship between the angular offset of the flexible links and

the compliance term. This curve is sharpened when the aspect ratio of the robot is

increased. Due to the non-dimensional nature of the analysis, these findings and this

equation applies to all Stewart-Gough PCR robots, regardless of size or materials.

The findings will facilitate robot design without requiring the full kinetostatic model.

4.5 Force Application

It is important to know the end-effector’s force application capacity in different

directions and for different configurations in order to assess the manipulator’s ability

to perform certain tasks. In order to assess the force application capacity, the

displacement/force (upper 3 × 3) sub-block of the compliance matrix can be used

to solve for the force required to produce any small linear displacement. Using

this approach, we analyzed the 3D forces required to produce a displacement of 1

mm in the x, y and z directions (in the local end-effector frame) for a manipulator

in the 6 pose and geometry variations examined in this section. The results are

presented in Table 4.2. In the nominal configuration the x and y displacement forces

are symmetrical while the z force is quite large in comparison. This agrees with the

representation of the compliance matrix in Figures 4.5 and 4.6. The equal aspect ratio
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values demonstrate the scaling of the force application capacity when the manipulator

is shortened. If the manipulator is shortened 87%, then the force it can apply before

displacement of 1 mm increases by a factor of 2 in the z direction and by a factor of

100 in the x and y directions. The increase in angular offset results in only marginal

increases in force application capacity in the x and y directions, but increases the

capacity in the z direction by a factor of 4. Twisting is shown to greatly decrease the

stiffness in the x and y directions and increase it slightly in the z direction. Translating

in the x−z plane greatly reduces the stiffness in the y direction. Bending in the x−z

plane also decreases the stiffness in the y direction.
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Chapter 5

Force Sensing and Control with

Parallel Continuum Manipulators

In this chapter, we utilize the kinetostatic formulations presented in Section 3.5 to

sense tip forces on a PCR equipped with tension/compression load cells at the base

of each rod to provide an input for τ . The results demonstrate that force sensing

with actuation-based inputs is accurate to within 0.3 N and has better conditioning

than deflection based force sensing.

We also present a passive stiffness controller using the kinetostatic matrices

formulated in Section 4.2. This control scheme uses a gain matrix based on these

matrices to change actuator inputs (either q or τ ) and can be used in position control

or direct drive control.

5.1 Force Sensing

In Section 3.5, we presented three different model formulations for force sensing with

parallel continuum manipulators. In choosing a force sensing approach, it is important

to understand how the errors in the input values will affect the accuracy of the sensed

wrench. In order to compare the available options for force sensing methods, the 3
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(a) (b) (c)

Figure 5.1: (a) The manipulator consists of 6 flexible steel spring tempered carbon
steel wire rods (AISI 302/304 stainless steel) connected in the traditional Stewart
Gough configuration. (b) The Omega load cells are connected directly to the flexible
rods to measure the actuation forces and translated by linear rails and carriages. (c)
A 300g weight was hung from the centroid of the end effector for each of the force
application experiments.

sensing formulations were evaluated to investigate error propagation from the actuator

positions, actuator forces, and pose.

In Fq,τ , error could arise from the actuator force measurement or the commanded

actuator variables. Solving the second equation in (4.1) for the wrench gives,

δw = W−1δτ −W−1Kδq (5.1)

In order to analyze the effect of errors in actuator displacement and force measure-

ment, we assume Gaussian distributions in the input and output variables and define

the input covariance matrix which is then transformed through the above equation

to provide an output covariance (187). This has the following form,

Σw =
[
W−1 −W−1K

]Στ 0

0 Σq

[W−1 −W−1K
]T

(5.2)
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where the Στ and Σq terms are the input covariances of the actuation forces and

actuation variables. We assume that the error of each input is independent and

uncorrelated so that these are both diagonal matrices.

The covariance is based on the range of accuracy that is estimated for each input.

The square root of the variance of the error can be tripled to provide a range of

error that contains the 95th percentile for the Gaussian distribution. Therefore, the

estimated maximum error range can be divided by 3 and squared to arrive at the

covariance value. The diagonal elements of the output covariance matrix, Σw, can be

rooted and multiplied by 3 to find the 95th percentile range of error for tip wrench.

For an input range of 0.1 N for τ (estimated from our force sensor data in Section

5.1.3) and 0.5 mm for q (estimated from linear actuator repeatability), the maximum

range for force errors using the actuation based force sensing method, Fq,τ , is 0.0136

N in the nominal configuration, with a moment error range of less than 1e−4 Nm. We

note that this error estimate is pose dependent, since it uses the linearized matrices

about the current pose.

The generalized deflection-based force sensing method, Fg,q, for a PCR would use

the following equation

δw = C−1(g−1e δge)
∨ −C−1Jδq (5.3)

Here, the covariance matrix contains ranges for pose accuracy and link length

accuracy. For values of 0.2 mm (estimated from the accuracy of commercially available

3D image tracking systems), and 1 mm for the pose and link lengths error ranges, the

resulting force error range is 1.4×1015 N. This large error range is due to the ill-posed

nature of the deflection-based force sensing method. The compliance matrix is close

to singular in the nominal configuration. This will mean that the Fg,q formulation is

not guaranteed to converge if C is singular. The third method of force sensing, Fg,τ ,

estimates an even larger error range for the tip wrench with the same values for error

range used previously. These results indicate that the Fq,τ formulation (actuation
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based) is the best conditioned force sensing approach for our parallel continuum

manipulator prototype.

5.1.1 Manipulator Construction

The manipulator consists of six flexible steel spring tempered carbon steel wires (AISI

302/304 stainless steel) with a stated diameter of 1.04 mm. The overall length is 145

mm with a radius of 32.9 mm and an angular offset of 8◦. The force sensors are

connected to the wires via 3D printed interface parts that transfer the axial force

directly to the sensor. The sensors are mounted to a steel slide carriage driven by

a Firgelli L16 linear actuator. The linear actuators change the position of each wire

base to create 6 DOF motion of the end effector. The design and construction are

similar to previous systems (75; 170; 132), but this configuration removes the base

platform in order to eliminate friction between the flexible links and the through

holes, which can increase error in force estimation. The physical system used in the

experiments is shown in Figure 5.1.

5.1.2 Repeatability

The repeatability of the force sensor measurements was evaluated by placing the

manipulator in the nominal configuration, and actuating to 8 different positions and

then back to the nominal pose while measuring data from the force sensors. This

resulted in 9 instances of nominal configuration measurements with 6 load cells each.

The average distance from the mean sensor reading in the nominal configuration was

0.15 N for all 6 sensors. This provides an estimation of the repeatability of the force

sensors. Note that this measurement does not contain any friction terms due to the

lack of a base plate and no sliding contact of the flexible links.
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5.1.3 Data Collection

In order to validate the force sensing capabilities of the manipulator, the actuation

force applied to each link was recorded with Omega-LC703 load cells. These load cells

were rigidly attached to the flexible links and reflect the internal axial force of the link

at the proximal end. These measurements are then used as an input, along with the

commanded link positions, to the force sensing model (Fq,τ ), to calculate an estimate

of the external forces applied at the tip of the manipulator. The measurements

were taken while the robot was in 9 different positions (nominal, tilted (clockwise

and counter-clockwise about the y-axis), twisted (+z and -z), translated in the x-

y plane (+x and -x), and bent (clockwise and counter-clockwise about the y-axis))

with a 300 g calibration weight hanging from the center of the end effector via Kevlar

thread. This measurement was taken with the forces applied in the positive x, then

the negative y, and finally the negative z directions. This resulted in 27 cases of

3 DOF force application symmetric to the global frame (twisting in the positive z

and negative z directions, etc.). In the nominal configuration, the readings from

the load cells are assumed to be zero in order to calibrate the sensor readings. The

manipulator was actuated to the previously described configurations with the weight

hanging freely from the centroid, and measurements from all 6 load cells were taken.

Then, the manipulator was returned to the nominal configuration with the weight

removed, and measurements were taken again to ensure proper zeroing of the load

cells.

5.1.4 Data Analysis

The load cell measurements were collected with an Omega DAQ-USB-2401 system.

Each measurement was taken for a minimum of 1 minute at each position to ensure

a steady-state reading. The force data signal was filtered with a built-in Butterworth

filter in Matlab using the butter() command to remove the high frequency noise of

the sensor. Once the data was filtered, the zero values were subtracted from the
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weighted values to find the actuator loads. To analyze the data, the known load was

compared to the estimated load calculated using the force sensing algorithm (Fq,τ ).

The absolute value of the difference between the magnitudes of the known load and

the estimated load, Me, and the angular distance between the two vectors, Θe, were

calculated with the following equations

Me = |‖Ft‖ − ‖Fest‖|

Θe = cos−1
(

Ft · Fest

‖Ft‖ ‖Fest‖

) (5.4)

where Ft is the known force of the hanging weight and Fest is the estimated force from

the sensing algorithm. The percent error, shown as %, was calculated by dividing

the magnitude of the error vector by the magnitude of the known load vector. The

results of the force sensing experiments with no calibration are shown in Table 5.1.

5.1.5 Stiffness Calibration

The nominal Young’s Modulus for AISI 302/304 is 193 GPa. We measured the

diameter of the rods and found agreement with their nominal diameter of 1.04

mm. Thus, the nominal bending stiffness (flexural rigidity) for the links used in

this manipulator is 0.0110 Nm2. To more accurately determine the flexural rigidity,

we performed an experimental calibration of the Young’s Modulus using a simple

cantilevered bending test with a rod of the same diameter and material as the links

in the PCR. The rod was clamped at one end with a 16 cm cantilevered length

extending horizontally, and weights of 10, 20, 50, and 100 grams were hung from its

tip. For each case, we manually measured the tip deflection in the direction of the

load. We chose a calibrated E value by minimizing the least squares error between

the measured tip deflection and the predicted deflection of the Cosserat rod model.

Our calibrated value for E is 161 GPa, which results in a bending stiffness of 0.0092

Nm2. This value was use to re-evaluate all experimental wrench sensing data, and the

results are presented in Table 5.1. While the mean magnitude error of 0.35 N was not
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Table 5.1: Force Estimation Experiments

Nominal EI (EI=0.0110 Nm2) Bending Test Calibrated EI (EI=0.0092 Nm2)

Ft Configuration Fest [N] Me [N] % Θe [ Fest [N] Me [N] % Θe [

[2.94 0 0]

Nominal [2.97 0.20 0.22] 0.04 1.31 5.69 [2.97 0.20 0.22] 0.04 1.33 5.64

Twisting
[2.57 -0.21 -0.19] 0.35 12.00 6.19 [2.59 -0.20 -0.19] 0.34 11.63 6.05

[2.89 0.02 -0.94] 0.10 3.2 18.0 [2.25 0.30 0.22] 0.67 22.65 9.43

Tilting
[2.39 0.56 0.22] 0.48 16.30 14.05 [2.64 -0.25 -1.74] 0.23 7.95 33.66

[2.84 0.03 -0.63] 0.04 1.27 12.47 [3.06 0.21 -0.62] 0.19 6.43 12.13

Translating
[3.04 -0.25 -1.74] 0.57 19.47 30.07 [0.14 -2.72 -0.44] 0.18 6.28 9.73

[2.26 0.24 1.24] 0.35 11.92 29.20 [0.57 -2.67 0.06] 0.22 7.34 12.14

Bending
[3.09 0.22 -0.62] 0.21 7.30 12.04 [-0.14 -2.63 -0.22] 0.30 10.12 5.61

[2.70 0.30 -0.39] 0.19 6.61 10.29 [0.57 -3.13 -0.60] 0.30 10.11 14.84

[0 -2.94 0]

Nominal [0.14 -2.72 -0.44] 0.19 6.31 9.73 [0.10 -2.34 -0.63] 0.52 17.65 15.31

Twisting
[0.57 -2.68 0.06] 0.20 6.85 12.10 [-0.03 0 -2.82] 0.12 4.11 0.56

[-0.15 -2.57 -1.39] 0.02 0.60 28.54 [-0.01 0.10 -2.45] 0.49 16.77 2.33

Tilting
[-0.35 -2.65 -0.22] 0.26 8.99 8.87 [-0.25 0.47 -2.95] 0.06 1.91 10.25

[0.47 -2.51 -1.37] 0.04 1.43 29.97 [0.81 -0.35 -3.56] 0.73 24.80 13.94

Translating
[0.99 -3.17 -0.60] 0.43 14.67 20.08 [-0.32 0.04 -3.42] 0.49 16.57 5.41

[-0.77 -2.18 0.84] 0.49 16.56 27.60 [2.89 0.04 -0.94] 0.10 3.37 17.97

Bending
[0.12 -2.33 -0.63] 0.52 17.79 15.42 [2.63 0.02 -0.63] 0.24 8.03 13.40

[0.23 -1.95 -0.43] 0.93 31.61 14.07 [2.67 0.23 1.24] 0.01 0.44 25.32

[0 0 -2.94]

Nominal [-0.03 0.00 -2.82] 0.12 4.11 0.56 [2.71 0.28 -0.39] 0.19 6.43 10.12

Twisting
[-0.02 0.12 -2.45] 0.49 16.74 2.76 [-0.15 -2.59 -1.39] 0 0.13 28.33

[0.33 -0.04 -2.78] 0.14 4.81 6.72 [0.26 -2.50 -1.37] 0.08 2.68 29.15

Tilting
[-0.44 0.51 -2.95] 0.08 2.89 12.91 [-0.36 -2.18 0.84] 0.58 19.59 22.73

[0.57 -0.01 -2.88] 0.01 0.38 11.17 [0.24 -1.93 -0.43] 0.95 32.27 14.25

Translating
[1.20 -0.37 -3.56] 0.84 28.45 19.44 [0.32 -0.03 -2.78] 0.14 4.83 6.63

[-1.06 0.23 -1.33] 1.22 41.62 39.13 [0.37 0.01 -2.88] 0.04 1.46 7.31

Bending
[-0.31 0.04 -3.42] 0.49 16.55 5.28 [-0.66 0.23 -1.33] 1.44 48.89 27.62

[0.28 0.29 -3.60] 0.68 23.00 6.51 [0.29 0.28 -3.60] 0.68 22.97 6.40

Max 1.22 41.62 39.13 Max 1.44 48.89 33.66

Mean 0.35 11.96 15.14 Mean 0.35 11.73 13.56

Median 0.26 8.99 12.47 Median 0.23 7.95 12.13

improved by the calibration, the mean directional error was improved by 1.5◦. The

relatively low change in the error statistics in response to a 17% change in E suggests

that actuation-based wrench estimates are actually not very sensitive to the value of

E. In contrast, deflection-based wrench estimates would vary linearly with E.

5.1.6 Results

The median difference in the magnitudes between the estimated force and the known

force was 0.26 N in the uncalibrated data set and 0.22 N in the calibrated data set.

Since this is higher than our estimated error of 0.08 N based on sensor resolution,

other errors in construction and load application likely affected the measurement of

the actuation loads and the force estimation. The median directional error in the
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uncalibrated data set was 12.47◦ and 12.09◦ in the calibrated data set. The highest

errors occurred in the case of pure translation. Possible sources of error in force

estimation include inaccuracies in the specification of the nominal link lengths and/or

positional inaccuracies of the linear motion system, and mechanical tolerances in the

construction of the manipulator and linear motion system. The linear actuators have

a backlash of 0.5 mm and the linearity of the potentiometer is less than 2%. Other

sources include elastic deformation of the end effector plate, which is assumed to be

a rigid body in the model, and the potential small plastic deformation of the links.

5.2 Passive Stiffness Control

The goal of a stiffness controller is to provide a command to the robot that

incorporates the sensed tip force and changes the robot’s stiffness. In the case of a

PCR this could be a change to the actuation variable commands (q) or the actuation

forces (τ ). Here we present a stiffness controller that could be formulated to provide

outputs of either variable.

The stiffness controller utilizes a single solve of the inverse kinetostatics for-

mulation (inputs of pose and wrench with outputs of actuation variables and

actuation forces) and the manipulator matrices (see Section 3.5) to solve for a desired

proportional control gain between the actuation forces and the link translations. The

general control law is given as

τ = τ d −Kp(q− qd) (5.5)

where τ are the actuation forces on the robot links, τ d are the desired actuation forces

based on the inverse kinetostatics solution, Kp is the desired proportional control

gain of the controller, q are the link lengths of the robot, and qd are the desired link

lengths. The goal of this controller is to supply a Kp matrix such that the manipulator

will change its configuration based on the applied force at the tip. The control law
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Figure 5.2: This passive stiffness controller takes in a commanded pose from the
master and solves the inverse kinetostatics formulation assuming a zero load on the
manipulator. The desired and current actuation forces or link lengths are multiplied
by the Kp matrix and added to the desired link lengths or actuation forces from the
inverse kinetostatics, respectively. Either of these outputs can be commanded to the
robot depending on the actuation strategy.

can be used to change inputs of link lengths (desirable for linear actuators with

potentiometer feedback on motor location) or actuation forces (desirable for torque

control DC motors). In order to select the appropriate Kp for a desired output

compliance, we can rewrite the control law in the following way,

δτ = −Kpδq (5.6)

By substituting this expression into Equation 4.1, we can solve for Kp in terms

of a desired output compliance, Cd. We substitute the control equation into the

relationship between actuation forces, actuation variables and wrench as follows,

−Kpδq = Kδq + Wδw (5.7)
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Collecting coefficients for δq leads to the following,

(−Kp −K)δq = Wδw. (5.8)

Solving for δw and substituting into the relationship between pose, actuation variables

and wrench provides the following,

(g−1e δge)
∨ = J[(−Kp −K)−1W]δw + Cδw (5.9)

This leads to a new matrix relating pose and wrench that is a function of the

kinetostatics matrices and a gain matrix as follows,

Cd = J[(−Kp −K)−1W] + C (5.10)

We can solve this equation for Kp given by,

Kp = −K + [J−1(Cd −C)W−1]−1 (5.11)

This will allow us to specify a desired compliance behavior and solve for a gain

matrix for the actuation forces related to the actuation variables. A control diagram

is show in Figure 5.2 for both options. The inverse kinetostatics formulation takes

in the commanded pose from the controller (gd) with an assumed zero load on the

manipulator (w = 0) and outputs the desired link lengths and actuation forces. The

difference between the sensed or measured variable (q or τ ) is multiplied by the

proportional controller gain and added to the control variables which are provided to

the manipulator. In the following results the general control law was solved for q.

5.2.1 Simulation Results

The following simulation results were produced with a inverse kinetostatics formula-

tion (inputs of pose and wrench) to initialize q and τ along with the matrices needed
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Figure 5.3: The desired compliance of the manipulator was scaled from Cd = 3C to
Cd = 8C and a constant force of 1.1 N was applied on the end effector in the positive
x direction. Different simulations for the desired compliance matrices are shown here.

for calculation of Kp. A forward kinetostatics formulation (inputs of q and wrench)

was used to apply a force to the end effector and measure the displacement.

Passive Stiffness Controller Position Convergence

The passive stiffness controller solves for new actuation forces or link lengths with a

constant Kp matrix based on the current pose of the manipulator. The convergence

of the controller onto the correct pose for the desired stiffness is measured in the

number of times the robot plant model is provided new actuation variables and solved

for the pose. The figure shows results for 6 different desired stiffness behaviors and

the position convergence for each was simulated with a robot plant in the form of

a forward kinetostatic model. Results are shown in Figure 5.3. The dotted line

represents the displacement desired when the force is placed on the end effector. This

is calculated by multiplying the x component of the Cd matrix (the first diagonal) by

the applied force. It is important to note that for the first 5 simulations the control
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law is simply Equation (5.5). In the simulation with Cd = 8C, an additional damping

term is required for convergence. The control law is of the form

τ = α(τ d −Kp(q− qd)) + (1− α)τ old (5.12)

where τ old is the previous input to the robot plant.

All of the simulations produced actuation forces of less than 3 N. This demon-

strates that the control law is achievable with modest motor effort.
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Chapter 6

Continuum Robot Tool

Manipulators for Colonoscopy

In chapters 3 and 4, kinematic modeling and design analyses of continuum robots

were developed. These results provide the means by which to analyze a particular

concentric tube robot for a surgical task. This chapter outlines the task goals and

requirements, development of a robotically enhanced colonoscope, challenges with

actuation via a long transmission section of the colonoscope, and the resulting design

and construction of a prototype sufficient for bench-top evaluation.

Colonoscopy is a procedure where a colonoscope (endoscope specifically sized for

the colon) is introduced via the rectum and navigated by a surgeon to view and sample

patient tissue to test for abnormal or cancerous growths. A standard colonoscope has

a light source, a camera, air ports that insufflate, or pump air into, the colon, and tool

channels. These tools channels are used to introduce a variety of components into the

working area of the colonoscope which is defined by the field of view of the camera.

Currently, these tools are extremely flexible with only 2 degrees of freedom (insertion

and grasping). The flexibility of these tools increases the difficulty of complex tissue

removal. Surgeons have to manipulate the entire colonoscope in order to change the

direction and reach of these tools. Moving the scope in this way increases the risk to
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the patient for tissue damage or even perforation. The goal of the continuum robot

tool manipulators is to increase the dexterity of the currently available tools and allow

for complex tool manipulation without moving the colonoscope. The design requires

incorporation of current tools and minimal changes in colonoscope functionality.

Due to the size constraints and the need for an open lumen with which to pass

currently available tools, concentric tube robots are the most logical choice for the

tool manipulator. As previously described, these robots consist of flexible pre-curved

tubes that are routed concentrically. The most suitable material is super-elastic

Nitinol due to it’s high elastic stress-strain range and the ability to set pre-curved

shapes with relative ease.

6.1 Design Specifications

A literature review of the relevant anatomy and surgical techniques provided

insight into the workspace and force requirements needed for the physical guidelines

and constraints of the colon. Specifically, we have established (1) a volumetric

representation of the desired workspace that our instrument manipulator design must

exhibit, (2) a stiffness requirement specifying the maximum allowable deflection that

the instruments can exhibit under typical forces during submucosal dissection, (3) size

constraints on the instrument manipulators such that they can be deployed through

tool-port channels in currently available endoscopes, and (4) an accuracy requirement

for effective surgical teleoperation.

Workspace Volume: The colon is approximately 130-150 centimeters long and

5 centimeters wide on average (188; 189). Since the desired operation is with a

stationary colonoscope tip, the desired workspace for the tool manipulators needs to

cover the largest local stage lesions encountered. We estimate that this workspace is

4-6 centimeters in diameter and 8-10 centimeters in length. This cylindrical volume

will be the desired workspace specification for our endoscopic robot.
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Forces and Stiffness: The force application required during endoscopic submu-

cosal dissection consists of applying traction to displace the mucosal and submucosal

layers away from the musculature in order to dissect the tissue. This pull force has

been measured on average to be 2.5 Newtons with a maximum of 5 Newtons (177).

The force required for perforation of the colon wall has also been measured and has a

great degree of variability based on the location and tissue condition. In a study with

porcine bowel segments, the perforation force averaged 13.5 Newtons with a range of

7-19 Newtons (190). Considering these force magnitudes and the small scale of the

procedure, we can specify a desired tool displacement of less than 1 millimeter per 5

Newtons of force. Therefore, the output stiffness requirement for our robot will be 5

N/mm.

Tube Sizes: A standard colonoscope measures 1700 mm in length, 11-15 mm in

diameter and has 1-2 working channels for tools. These tool ports measure between

2.8 and 4.2 mm with most measuring around 3.8 mm (191). This measurement will

dictate the sizes of our concentric tubes.

Accuracy: We can specify the required positional accuracy of the robot based

on the suggested negative margins (amount of normal tissue removed along with

cancerous tissue) of 2-5 mm to decrease the recurrence of cancerous lesions (192).

Based on this margin requirement, a reasonable accuracy goal for our robot’s end-

effector position is less than 1 mm.

6.2 Instrument Manipulator Design

The main requirements of the manipulator design are: (1) increase the workspace,

dexterity and stiffness of colonoscopic tools, (2) incorporation of existing colonoscopic

tools without the need for a specifically manufactured robotic manipulator for each

tool, (3) minimize the increase in flexural rigidity of the colonoscope, and (4) actuate
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Figure 6.1: Concentric tube manipulators can be deployed down the tool channels
of existing colonoscopes.

robotic tool manipulators without moving the colonoscope. This will allow for

the system to function in a “drive-park-and-move” paradigm (193) where the field

of view is stabilized and multi-degree-of-freedom instrument manipulation occurs

independent of the colonoscope tip. This will allow the surgeon to easily apply

sufficient traction to tissue, excise and cauterize from a range of incidence angles

without ever moving the colonoscope tip, thus eliminating the burden of non-intuitive

tool motion. This will decrease the counter-intuitive movement seen with manual

colonoscope tools and tortuous colon paths (33).

There are two design cases to consider for the deployment of the concentric tubes:

(1) down the tool channels of the colonoscope, and (2) down additional tubes attached

outside the colonoscope. The subsequent discussion will consider the first case. In

order to increase the dexterity of the tools, 3 concentric tubes is the most desirable

configuration. This will provide 6 DOF for the manipulator of the colonoscopic tools.

The workspace of a 3 tube concentric tube robot is examined below and compared to

the colon and field of view of a standard colonoscope.

6.2.1 Deployed Inside the Colonoscope

Deploying the concentric tube manipulators inside the colonoscope (see Figure 6.1) is

desirable because no modifications are required for the colonoscope and no additional

space is added to the colonoscope diameter. Here we describe the analysis conducted
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Figure 6.2: The workspace of the concentric tube manipulator with an overlay of
the colon in pink and the field of view of the colonoscope in gray.

for this design case. It uses three solid concentric tubes that are between 5.5 and 6

feet long to span the entire length of the colonoscope.

Workspace

We determined the reachable workspace of the manipulator by uniformly sampling

the 5-DOF actuation space with a resolution of 2 mm in translation and 30 degrees in

Table 6.1: Manipulator design parameters for workspace simulation.

Tube OD
(mm)

ID
(mm)

Pre-
Curvature
(m−1)

Pre-Curved
Length
(mm)

Distal
Straight
Length
(mm)

Inner 2.54 2.25 40 20 0

Middle 2.87 2.57 35 25 20

Outer 3.43 2.92 0 0 45
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rotation, resulting in a total of 16,000+ points. At each sampled point, the forward

kinetostatics was solved within the user defined tolerance. The point cloud in Figure

6.2 represents the set of Cartesian coordinates that the robot could possibly reach.

This set was generated using the design parameters found in Table 6.1. An iterative

simulation process was performed in order to characterize the effect of the other

design parameters. Early in the design process, it was discovered that outer tubes

with any pre-curvature greatly reduced the reachable workspace within the colon

wall. This is because the overlap constraint (see Section 3.9) has an accumulating

effect on the length of distal straight sections for outer tubes, and reveals a trade-off

introduced by the overlap constraint. Therefore, we limited designs to have straight

outer tubes. Then, increasing pre-curvature and pre-curved lengths of the middle and

inner tubes yielded workspaces with increasingly better coverage, but diminishing

spatial resolution. The reachable workspace shown in Figure 6.2 extends beyond the

simulated bounds of the colon (in pink), but all points are still within the 140 degree

field of view of the colonoscopic camera (in green).

Stiffness Analysis

Once the workspace of the concentric tube robot is established, the stiffness of the

manipulator at the edge of the colon (where most procedures take place) needs to be

measured to ensure the appropriate amount of force can be applied to the tissue. It

is important to note that the workspace result directly affects the predicted force

capability of the end effector at the colon wall, since the stiffness calculation is

computed at a particular point in the workspace where the colon wall intersects. It is

then logical to first choose designs which meet workspace and then further evaluate

them for force capability. The design highlighted in Figure 6.2 was chosen for further

stiffness analysis because it yielded a workspace with sufficient coverage.

Two distinct stiffness properties are considered in this analysis. The end effector

stiffness of the manipulator at the boundary of the workspace is used to analyze the

force capability of the manipulator. The bending stiffness of the collection of proximal
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Table 6.2: Computation of end effector force capability at colon wall with all tube
sections made of Nitinol.

Distance to Colon
Wall [N/mm]

Minimum Singular
Value [mm]

Minimum Force
Output [N ]

0.0378 24.6 0.930

0.0343 28.4 0.974

0.0367 25.1 0.921

0.0427 20.4 0.871

0.0378 24.5 0.929

tube transmission segments is also examined and compared with the bending stiffness

of a standard colonoscope. For the current case, this would be the three Nitinol tubes

given in Table 6.1. It is desirable that the transmission section of the robot, which

lies inside the colonoscope, does not significantly add to the overall bending stiffness

in the system and thereby hinder navigation of the colon. The colonoscope bending

stiffness is not specified by the manufacturer and was approximated through a series

of bending tests.

End Effector Stiffness

Using the kinematics model described in Section 3.9, we can compute the robot end

effector stiffness at any reachable workspace point. Several representative points near

the workspace boundary were chosen to measure the stiffness in regions critical to

colon wall procedures. Small forces were applied to the end effectors at these points

and the resulting deflection was recorded for finite difference approximation of the

stiffness matrix. In order to ensure that the manipulator can achieve the required

forces for the procedure, we can compute the minimum singular value of the stiffness

matrix at each point, and the distance between the point and the nearest point on

colon wall. This allows us to express a conservative estimate of the force capability

as the force applied by the end effector at the colon wall in the least stiff direction.

Table 6.2 contains the results of these computations. The average output force is

0.925 N, which does not meet the desired surgical value, but does not suggest total
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Figure 6.3: Colonoscope bending stiffness experiment.

infeasibility. Note that our simulation study places the endoscope at the center of the

colon channel. One way to increase the force capacity is to move the endoscope closer

to the wall during operation, thus providing a larger range of possible end-effector

forces.

Colonoscope Bending Test

In order to define a maximum permissible bending stiffness for the robot transmission

section, a simple experiment was performed to approximate the bending stiffness of

the colonoscope. The experimental setup is shown in Figure 6.3. We use the same rod

model introduced in Section 3.9 to describe the shape of a section of the colonoscope

as a cantilevered elastic rod, where we assume that the colonoscope exhibits linear

elastic deformation under load, excluding the actuated distal section. Using a spring-

scale with a digital read-out, we apply a load in the x direction to the end of the

bending section of the colonoscope. The opposite end of this section is fixed using

a clamp. Since the experiment is performed on a flat surface, the effect of gravity

is negligible. By measuring the deflection of the colonoscope at the location of the

load, we can solve the boundary value problem of static equilibrium by guessing

the bending stiffness EI of the colonoscope along with the values of the unknown
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Table 6.3: Colonoscope bending test data.

L (m) Applied Force (kg) Deflection (m) EI (Nm2)

0.1 0.25 0.003 0.0307

0.1 0.40 0.040 0.0274

0.1 0.56 0.050 0.0272

0.2 0.08 0.067 0.0276

0.2 0.14 0.107 0.0238

0.2 0.25 0.140 0.0211

0.2 0.30 0.150 0.0196

0.3 0.08 0.165 0.0271

0.3 0.13 0.197 0.0307

0.3 0.19 0.227 0.0256

state variables at the cantilevered end. The results of this experiment are shown

in Table 6.3. Three segments of different length were tested using varying applied

forces. The values of EI vary in the range of 0.02 − 0.03 Nm2, with the average

being 0.0261 Nm2. The inconsistency in these values can be attributed to unknown

elastic behavior of the colonoscope, as it is not composed of uniform material. The

results are used to establish an approximate specification for the stiffness of endoscopic

robot transmissions. This value is compared to the combined bending stiffness of all

three Nitinol tubes in parallel equaling 0.3125 Nm2. This result indicates that the

manipulator will require a significantly more compliant transmission section in order

to decrease the overall bending stiffness that is added to the colonoscope.

Notched Transmission Approach

In order reduce the bending stiffness inside the colonoscope, we modeled a manipu-

lator with a transmission made of structurally modified stainless steel tubes, which

are joined to Nitinol sections at the distal end. The stainless steel tubes have a

Youngs Modulus of around 200 GPa (an increase by a factor of 3 from the Nitinol

tubes). In order to decrease the bending stiffness, these tubes will be notched with

a pattern similar to the one studied in (194). Figure 6.4 depicts a solid model of
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Figure 6.4: A solid model of a stainless steel notched tube design for the robot
transmission, based on the work done Lee et. al(194).

a representative notched tube, for which we determined stiffness values by applying

finite element analysis to designs of this type under defined loading. We chose the

finite element method over the analytical solution of calculating the I values of each

of the sections of the tube and adding them together like springs in series. The

finite element method is required due to the Saint-Venant’s Principle stating that the

difference between the effects of two different but statically equivalent loads becomes

very small at sufficiently large distances from load. The springs are small enough

that the load applied to them is no longer statically equivalent. This particular

design was shown to decrease bending stiffness while maintaining a relatively high

torsional stiffness. The notches were designed so that the bending stiffness of the

colonoscope is only increased by 50% due to the stainless steel transmission tubes.

This approach was then analyzed for force capability using the computation approach

discussed in Section 6.2.1. The results are stored in Table 6.4, and the average output

force is 0.871 N. Therefore, while this design meets the requirement of not adding to

the bending stiffness of the colonoscope, it still does not have sufficient stiffness at

the tip to perform surgical tasks.
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Table 6.4: Computation of end effector force capability at colon wall with a notched
stainless steel transmission.

Distance to Colon
Wall (N/mm)

Minimum Singular
Value (mm)

Minimum Force
Output (N)

0.0403 21.7 0.875

0.0391 22.2 0.868

0.0456 20.3 0.926

0.0388 23.8 0.923

0.0428 17.8 0.762

Subsequent Transmission Design

Since both the all Nitinol transmission section and the notched stainless steel

transmission section do not provide the needed tip stiffness, other designs should be

considered. The accuracy and machining time required to notch stainless steel tubes

along with the length of the sections needed to reach the end of the colonoscope

also make these components cost-prohibitive. Another option for the transmission

section design is coil pipe made from stainless steel. This is a tightly wound sheath

that is very flexible. These are the components used inside the actual colonoscope

for the tool channels. This means that they will not add too much stiffness to the

colonoscope. However, these coils are unsuitable for torque transmission due to their

ability to un-wind when twisted.

The current design uses a Helical Hollow Strand R© Tube from Fort Wayne Metals

(see Figure 6.5). This tube is described as a single strand tube with single, double, or

triple layers of strand wrappings at pitches of left, right, unidirectional and reverse.

Materials are mostly tempered steel but Nitinol and Platinum alloys are also possible.

The benefits of this type of component are the very low bending stiffness and the high

degree of torsional transmission that is possible when double strands with opposing

pitches are selected. This eliminates un-winding of the coil since the strands are

joined together.
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Figure 6.5: A double layer, left and right pitch Helical Hollow Strand R© Tube from
Fort Wayne Metals.

6.2.2 Deployed Outside the Colonoscope

The main challenge of deploying the concentric tubes down the colonoscope is the

added thickness of the concentric tubes. The ones previously described do fit inside

the colonoscope. However, they require the use of much smaller tools than are usually

employed during colonoscopic procedures. For this reason, it is important to explore

deploying the tubes outside of the colonoscope.

In this design (see Figure 6.6), two flexible polytetrafluoroethylene (PTFE) tubes

are mounted to the outside of the colonoscope near the tool channel openings. These

tubes provide a low friction transmission channel to hold the manipulators and are

also flexible enough to add no additional stiffness to the colonoscope. The channels

measures 5.5 mm in diameter. They are mounted so that their centerlines are not co-

linear. Each instrument manipulator consists of two flexible concentric tubes, where

the inner and outer tube is pre-curved, providing four degrees-of-freedom for each

instrument manipulator. The transmission sections are double layer HHS R©tubes.
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Figure 6.6: The colonoscope is fitted with two additional PTFE channels.
Concentric tube manipulators are deployed down the channels. The standard
colonoscopic tools are deployed down the tool channel and then captured by the
concentric tube manipulators.

6.2.3 Actuation Module Design

We made several design choices for the actuation system to achieve compactness,

modularity, and accuracy. The core of the mechanical design takes advantage of the

inherent collinearity of nested concentric tubes by aligning the actuation of all six

joint variables on one guide rail. Hollow-shaft stepper motors serve as actuators that

allow the rotation of each tube to be driven directly, without gearing, while at the

same time allowing several tubes to pass through the center of its frame. We used six

Nanotec NEMA 17 stepper motors to drive the translation and rotation of each tube.

The motors are rated for up to 25 N-cm in our desired speed range, greater than the

loads necessary to actuate the robot by a factor of 10-20. This ensures the motors will

not miss steps due to high load torques. We arranged the motors on a cart and guide

rail system as shown in Figure 6.7. The carts and rail are THK-SSR series caged-ball

linear motion guides. Each cart carries two motors: one which is threaded onto a

stationary lead screw to drive the linear motion of the cart, and one which grips and

rotates a concentric tube. Since the carriage sub-assembly can be duplicated for each

concentric tube in a given design, assembly and disassembly of multiple tube designs

is straightforward and time efficient. The system is easily modified for use in a variety

of continuum manipulators, since many existing robot designs require prismatic and

revolute joint motion aligned on a single axis.
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Figure 6.7: The actuation module consists of three dual motor carriages that
translate and rotate the pre-curved concentric tubes while maintaining an accurate
and rigid actuation platform.

Our stepper motors are driven by L6470 AutoDriver boards from Sparkfun. They

offer an advantage in low-level access to motor commands, have relatively large

electrical capacities, and are inexpensive. Each driver can be sent commands through

SPI communication, reducing time and wiring complexity. The boards are controlled

through the serial communication pins of an Arduino Uno. The AutoDrivers are

able to receive motion commands and execute them independently while monitoring

current level. Because the step counter for each motor is offset by the initial position

at startup, we designed a zeroing scheme that makes use of limit switches mounted

on the carriages. The switches are wired in parallel with distinct resistors and then

connected to a single analog input on the Arduino.

Resolution Analysis

We measured positional accuracy by computing the resolution of the instrument tip

using the minimum step angle specification of 1.8 degrees for each motor, which

converts to 0.025 mm of translation through the lead screw. More precision is possible

through microstepping, but for preliminary analysis we consider motor control to be

without this capability. The computation for the resolution shown in Figure 6.8 was

performed for the same tube set design analyzed in Section 6.2.1. In order to show
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Figure 6.8: The spatial resolution of the end effector is represented as the color of
each point in the workspace.

end effector spatial resolution across the workspace, we sampled the actuation space

to find an initial set of 3600 nominal manipulator configurations. For each point in

this set, 5 additional points were solved corresponding to a minimum step by each

actuator away from the nominal point. Then, we calculated the maximum Euclidean

distance that the end effector could travel away from the nominal configuration by

referencing the subspace bounded by the 5-point subset. This maximum Euclidean

distance represents a measure of spatial resolution in that it defines an upper bound

on the end effector displacement that is caused by minimum actuator steps. Figure

6.8 shows a workspace point cloud, in which the color represents the spatial resolution.
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Chapter 7

Conclusions and Future Work

This dissertation has presented several contributions in the growing field of continuum

robots. The generalized modeling of parallel continuum robots presented in Chapter

3 to account for joint types, base plate configurations and various inputs and outputs

will provide a foundation for future analysis in design and manipulator capabilities.

The manipulator analysis methods presented in Chapter 4 allow for substantial

quantitative study of a continuum robot’s ability to complete certain tasks. The

force sensing and control methodologies presented in Chapter 5 will provide enhanced

feedback signals and safety to a new line of robotic manipulators. Finally, the

prototype concentric tube tool manipulators for a colonoscope presented in Chapter

6 will provide the basis for a bench-top user trial and subsequent clinical evaluations

for an enhanced surgical system.

7.1 Future Work in Parallel Continuum Robot

Modeling and Analysis

The next step in modeling of PCRs is to explore the capabilities of robots with

different leg designs. Currently, work is being done on a forward kinetostatics

formulation with 3 links instead of 6 like in the Stewart Gough configuration. This
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modeling is fairly simple for inputs of actuation variables and wrench (the standard

forward formulation). However, the inverse formulation (inputs of pose and wrench)

is limited due to the decrease in the number of equations. This limitation is currently

being explored by including the Euler angles of the end effector rotation matrix as

unknowns in order to balance out the number of equation and unknowns.

Another area of exploration is adding twisting of the flexible links as an actuation

variable. In this case as well, the forward kinetostatics model is fairly straight forward.

However, more research is needed to formulate the inverse formulation. All of these

design variations will need to be analyzed to see how the change the capabilities of

the manipulator.

7.2 Future Work in Stiffness Control

The work done in the control of PCRs seeks to impact safe, robot-assisted

rehabilitation of the wrist, specifically flexible rehabilitation for patients who have

suffered from injury or stroke. Studies have proven that these patients can recover

faster with training directed toward improving strength and motor control, relearning

sensorimotor relationships and improving functional performance. This training can

be further enhanced with haptic feedback from a mechanical device such as the

RiceWrist (195). The future work of stiffness control will be to increase the safety

and effectiveness of this device by applying PCRs in collaboration with Dr. Marcia

O’Malley at Rice University. The flexible nature of this design will allow for use in

more fragile patient populations like the elderly who are more likely to suffer from

strokes.
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7.3 Future Work in Tool Manipulators for Colono-

scopic Surgery

In order to evaluate the prototype robotic manipulators presented in this dissertation,

input devices and testing environments will be constructed to simulate the surgical

task. The first testing structure should be a cylindrical structure (clear plastic tubing

for example) in which a robotic manipulator can perform common laparoscopic tasks.

Subsequent test beds would need to be comprised of tissue phantom arranged in an

anatomically correct jig. These structures will provide preliminary testing for the

prototype prior to ex vivo trials.
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