690 research outputs found

    Touch- and Walkable Virtual Reality to Support Blind and Visually Impaired Peoples‘ Building Exploration in the Context of Orientation and Mobility

    Get PDF
    Der Zugang zu digitalen Inhalten und Informationen wird immer wichtiger fĂŒr eine erfolgreiche Teilnahme an der heutigen, zunehmend digitalisierten Zivilgesellschaft. Solche Informationen werden meist visuell prĂ€sentiert, was den Zugang fĂŒr blinde und sehbehinderte Menschen einschrĂ€nkt. Die grundlegendste Barriere ist oft die elementare Orientierung und MobilitĂ€t (und folglich die soziale MobilitĂ€t), einschließlich der Erlangung von Kenntnissen ĂŒber unbekannte GebĂ€ude vor deren Besuch. Um solche Barrieren zu ĂŒberbrĂŒcken, sollten technische Hilfsmittel entwickelt und eingesetzt werden. Es ist ein Kompromiss zwischen technologisch niedrigschwellig zugĂ€nglichen und verbreitbaren Hilfsmitteln und interaktiv-adaptiven, aber komplexen Systemen erforderlich. Die Anpassung der Technologie der virtuellen RealitĂ€t (VR) umfasst ein breites Spektrum an Entwicklungs- und Entscheidungsoptionen. Die Hauptvorteile der VR-Technologie sind die erhöhte InteraktivitĂ€t, die Aktualisierbarkeit und die Möglichkeit, virtuelle RĂ€ume und Modelle als Abbilder von realen RĂ€umen zu erkunden, ohne dass reale Gefahren und die begrenzte VerfĂŒgbarkeit von sehenden Helfern auftreten. Virtuelle Objekte und Umgebungen haben jedoch keine physische Beschaffenheit. Ziel dieser Arbeit ist es daher zu erforschen, welche VR-Interaktionsformen sinnvoll sind (d.h. ein angemessenes Verbreitungspotenzial bieten), um virtuelle ReprĂ€sentationen realer GebĂ€ude im Kontext von Orientierung und MobilitĂ€t berĂŒhrbar oder begehbar zu machen. Obwohl es bereits inhaltlich und technisch disjunkte Entwicklungen und Evaluationen zur VR-Technologie gibt, fehlt es an empirischer Evidenz. ZusĂ€tzlich bietet diese Arbeit einen Überblick ĂŒber die verschiedenen Interaktionen. Nach einer Betrachtung der menschlichen Physiologie, Hilfsmittel (z.B. taktile Karten) und technologischen Eigenschaften wird der aktuelle Stand der Technik von VR vorgestellt und die Anwendung fĂŒr blinde und sehbehinderte Nutzer und der Weg dorthin durch die EinfĂŒhrung einer neuartigen Taxonomie diskutiert. Neben der Interaktion selbst werden Merkmale des Nutzers und des GerĂ€ts, der Anwendungskontext oder die nutzerzentrierte Entwicklung bzw. Evaluation als Klassifikatoren herangezogen. BegrĂŒndet und motiviert werden die folgenden Kapitel durch explorative AnsĂ€tze, d.h. im Bereich 'small scale' (mit sogenannten Datenhandschuhen) und im Bereich 'large scale' (mit einer avatargesteuerten VR-Fortbewegung). Die folgenden Kapitel fĂŒhren empirische Studien mit blinden und sehbehinderten Nutzern durch und geben einen formativen Einblick, wie virtuelle Objekte in Reichweite der HĂ€nde mit haptischem Feedback erfasst werden können und wie verschiedene Arten der VR-Fortbewegung zur Erkundung virtueller Umgebungen eingesetzt werden können. Daraus werden gerĂ€teunabhĂ€ngige technologische Möglichkeiten und auch Herausforderungen fĂŒr weitere Verbesserungen abgeleitet. Auf der Grundlage dieser Erkenntnisse kann sich die weitere Forschung auf Aspekte wie die spezifische Gestaltung interaktiver Elemente, zeitlich und rĂ€umlich kollaborative Anwendungsszenarien und die Evaluation eines gesamten Anwendungsworkflows (d.h. Scannen der realen Umgebung und virtuelle Erkundung zu Trainingszwecken sowie die Gestaltung der gesamten Anwendung in einer langfristig barrierefreien Weise) konzentrieren.Access to digital content and information is becoming increasingly important for successful participation in today's increasingly digitized civil society. Such information is mostly presented visually, which restricts access for blind and visually impaired people. The most fundamental barrier is often basic orientation and mobility (and consequently, social mobility), including gaining knowledge about unknown buildings before visiting them. To bridge such barriers, technological aids should be developed and deployed. A trade-off is needed between technologically low-threshold accessible and disseminable aids and interactive-adaptive but complex systems. The adaptation of virtual reality (VR) technology spans a wide range of development and decision options. The main benefits of VR technology are increased interactivity, updatability, and the possibility to explore virtual spaces as proxies of real ones without real-world hazards and the limited availability of sighted assistants. However, virtual objects and environments have no physicality. Therefore, this thesis aims to research which VR interaction forms are reasonable (i.e., offering a reasonable dissemination potential) to make virtual representations of real buildings touchable or walkable in the context of orientation and mobility. Although there are already content and technology disjunctive developments and evaluations on VR technology, there is a lack of empirical evidence. Additionally, this thesis provides a survey between different interactions. Having considered the human physiology, assistive media (e.g., tactile maps), and technological characteristics, the current state of the art of VR is introduced, and the application for blind and visually impaired users and the way to get there is discussed by introducing a novel taxonomy. In addition to the interaction itself, characteristics of the user and the device, the application context, or the user-centered development respectively evaluation are used as classifiers. Thus, the following chapters are justified and motivated by explorative approaches, i.e., in the group of 'small scale' (using so-called data gloves) and in the scale of 'large scale' (using an avatar-controlled VR locomotion) approaches. The following chapters conduct empirical studies with blind and visually impaired users and give formative insight into how virtual objects within hands' reach can be grasped using haptic feedback and how different kinds of VR locomotion implementation can be applied to explore virtual environments. Thus, device-independent technological possibilities and also challenges for further improvements are derived. On the basis of this knowledge, subsequent research can be focused on aspects such as the specific design of interactive elements, temporally and spatially collaborative application scenarios, and the evaluation of an entire application workflow (i.e., scanning the real environment and exploring it virtually for training purposes, as well as designing the entire application in a long-term accessible manner)

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Methods and applications of mobile audio augmented reality

    Get PDF
    In augmented reality, virtual objects are presented as if they were a part of the real world. In mobile audio augmented reality, sounds presented with headphones are perceived as if they originated from the surrounding environment. This thesis investigates potential applications of mobile audio augmented reality and different methods that are needed in these applications. The two main topics studied are distance presentation and spatial audio guidance. Reverberation is known to be an important factor affecting the perceived distance of sound sources. Here, a practical method for modifying the perceived distance of virtual sound sources is investigated, where the temporal envelopes of binaural room impulse responses (BRIRs) are modified. In a listening test, speech sources were presented using these modified BRIRs. The results show that the perceived distance is controlled most effectively by modifying an early-to-late energy ratio with the first 50–100 ms of the BRIR included in the early energy. Presenting large distances in an audio augmented reality environment is difficult, since people underestimate the distances of distant sound sources and very distant sound sources cannot even be heard. In a user study, the presentation of points of interest (POIs) outdoors using auditory distance cues was compared with a voice saying the distance in meters. The results suggest that distances should be given in meters if fairly accurate distance estimates are needed without prior training. With training, however, the user study participants were able to estimate the distances of the POIs fairly accurately based on the provided auditory distance cues, performing the task faster than when the distances were presented in meters. In addition to the presentation of POIs, another type of spatial audio guidance is investigated: using spatialized music to guide pedestrians and cyclists to their destination. Two forms of guidance, route and beacon guidance, were tested in different environments. The user studies showed that music guidance is a pleasant and effective aid for navigation. Both route and beacon guidance were effective methods, but suitable for different environments and circumstances. This thesis also investigates a mobile teleconferencing scenario, where participants can move freely from one location to another. With hear-through headphones, co-located participants can hear each other naturally. To avoid transmitting the speech of the participants to other participants in the same room – as this would be perceived as an echo – acoustic co-location detection is applied. In a user study, utilization of acoustic co-location detection was shown to improve the clarity of communication. Together, the studies presented in this thesis provide methods and guidelines for the development of mobile audio augmented reality applications

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Binaural virtual auditory display for music discovery and recommendation

    Get PDF
    Emerging patterns in audio consumption present renewed opportunity for searching or navigating music via spatial audio interfaces. This thesis examines the potential benefits and considerations for using binaural audio as the sole or principal output interface in a music browsing system. Three areas of enquiry are addressed. Specific advantages and constraints in spatial display of music tracks are explored in preliminary work. A voice-led binaural music discovery prototype is shown to offer a contrasting interactive experience compared to a mono smartspeaker. Results suggest that touch or gestural interaction may be more conducive input modes in the former case. The limit of three binaurally spatialised streams is identified from separate data as a usability threshold for simultaneous presentation of tracks, with no evident advantages derived from visual prompts to aid source discrimination or localisation. The challenge of implementing personalised binaural rendering for end-users of a mobile system is addressed in detail. A custom framework for assessing head-related transfer function (HRTF) selection is applied to data from an approach using 2D rendering on a personal computer. That HRTF selection method is developed to encompass 3D rendering on a mobile device. Evaluation against the same criteria shows encouraging results in reliability, validity, usability and efficiency. Computational analysis of a novel approach for low-cost, real-time, head-tracked binaural rendering demonstrates measurable advantages compared to first order virtual Ambisonics. Further perceptual evaluation establishes working parameters for interactive auditory display use cases. In summation, the renderer and identified tolerances are deployed with a method for synthesised, parametric 3D reverberation (developed through related research) in a final prototype for mobile immersive playlist editing. Task-oriented comparison with a graphical interface reveals high levels of usability and engagement, plus some evidence of enhanced flow state when using the eyes-free binaural system

    Experiential Perspectives on Sound and Music for Virtual Reality Technologies

    Get PDF
    This thesis examines the intersection of sound, music, and virtuality within current and next-generation virtual reality technologies, with a specific focus on exploring the experiential perspectives of users and participants within virtual experiences. The first half of the thesis constructs a new theoretical model for examining intersections of sound and virtual experience. In Chapter 1, a new framework for virtual experience is constructed consisting of three key elements: virtual hardware (e.g., displays, speakers); virtual software (e.g., rules and systems of interaction); and virtual externalities (i.e., physical spaces used for engaging in virtual experiences). Through using and applying this new model, methodical examinations of complex virtual experiences are possible. Chapter 2 examines the second axis of the thesis through constructing an understanding of how sound is designed, implemented, and received within virtual reality. The concept of soundscapes is explored in the context of experiential perspectives, serving as a useful approach for describing received auditory phenomena. Auditory environments are proposed as a new model for exploring how auditory phenomena can be broadcast to audiences. Chapter 3 explores how inauthenticity within sound can impact users in virtual experience and uses authenticity to critically examine challenges surrounding sound in virtual reality. Constructions of authenticity in music performance are used to illustrate how authenticity is constructed within virtual experience. Chapter 4 integrates music into the understanding of auditory phenomena constructed throughout the thesis: music is rarely part of the created world in a virtual experience. Rather, it is typically something which only the audience – as external observers of the created world – can hear. Therefore, music within immersive virtual reality may be challenging as the audience is placed within the created world.The second half of this thesis uses this theoretical model to consider contemporary and future approaches to virtual experiences. Chapter 5 constructs a series of case studies to demonstrate the use of the framework as a trans-medial and intra/inter-contextual tool of analysis. Through use of the framework, varying approaches to implementation of sound and music in virtual reality technologies are considered, which reveals trans-medial commonalities of immersion and engagement with virtual experiences through sound. Chapter 6 examines near-future technologies, including brain-computer interfaces and other full-immersion technologies, to identify key issues in the design and implementation of future virtual experiences and suggest how interdisciplinary collaboration may help to develop solutions to these issues. Chapter 7 considers how the proposed model for virtuality might allow for methodical examination of similar issues within other fields, such as acoustics and architecture, and examines the ethical considerations that may become relevant as virtual technology develops within the 21st Century.This research explores and rationalises theoretical models of virtuality and sound. This permits designers and developers to improve the implementation of sound and music in virtual experiences for the purpose of improving user outcomes.<br/
    • 

    corecore