155 research outputs found

    FARSEC: A Reproducible Framework for Automatic Real-Time Vehicle Speed Estimation Using Traffic Cameras

    Full text link
    Estimating the speed of vehicles using traffic cameras is a crucial task for traffic surveillance and management, enabling more optimal traffic flow, improved road safety, and lower environmental impact. Transportation-dependent systems, such as for navigation and logistics, have great potential to benefit from reliable speed estimation. While there is prior research in this area reporting competitive accuracy levels, their solutions lack reproducibility and robustness across different datasets. To address this, we provide a novel framework for automatic real-time vehicle speed calculation, which copes with more diverse data from publicly available traffic cameras to achieve greater robustness. Our model employs novel techniques to estimate the length of road segments via depth map prediction. Additionally, our framework is capable of handling realistic conditions such as camera movements and different video stream inputs automatically. We compare our model to three well-known models in the field using their benchmark datasets. While our model does not set a new state of the art regarding prediction performance, the results are competitive on realistic CCTV videos. At the same time, our end-to-end pipeline offers more consistent results, an easier implementation, and better compatibility. Its modular structure facilitates reproducibility and future improvements

    Vision-based traffic surveys in urban environments

    Get PDF
    This paper presents a state-of-the-art, vision-based vehicle detection and type classification to perform traffic surveys from a roadside closed-circuit television camera. Vehicles are detected using background subtraction based on a Gaussian mixture model that can cope with vehicles that become stationary over a significant period of time. Vehicle silhouettes are described using a combination of shape and appearance features using an intensity-based pyramid histogram of orientation gradients (HOG). Classification is performed using a support vector machine, which is trained on a small set of hand-labeled silhouette exemplars. These exemplars are identified using a model-based preclassifier that utilizes calibrated images mapped by Google Earth to provide accurately surveyed scene geometry matched to visible image landmarks. Kalman filters track the vehicles to enable classification by majority voting over several consecutive frames. The system counts vehicles and separates them into four categories: car, van, bus, and motorcycle (including bicycles). Experiments with real-world data have been undertaken to evaluate system performance and vehicle detection rates of 96.45% and classification accuracy of 95.70% have been achieved on this data.The authors gratefully acknowledge the Royal Borough of Kingston for providing the video data. S.A. Velastin is grateful to funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement nº 600371, el Ministerio de Economía y Competitividad (COFUND2013-51509) and Banco Santander

    UA-DETRAC: A New Benchmark and Protocol for Multi-Object Detection and Tracking

    Full text link
    In recent years, numerous effective multi-object tracking (MOT) methods are developed because of the wide range of applications. Existing performance evaluations of MOT methods usually separate the object tracking step from the object detection step by using the same fixed object detection results for comparisons. In this work, we perform a comprehensive quantitative study on the effects of object detection accuracy to the overall MOT performance, using the new large-scale University at Albany DETection and tRACking (UA-DETRAC) benchmark dataset. The UA-DETRAC benchmark dataset consists of 100 challenging video sequences captured from real-world traffic scenes (over 140,000 frames with rich annotations, including occlusion, weather, vehicle category, truncation, and vehicle bounding boxes) for object detection, object tracking and MOT system. We evaluate complete MOT systems constructed from combinations of state-of-the-art object detection and object tracking methods. Our analysis shows the complex effects of object detection accuracy on MOT system performance. Based on these observations, we propose new evaluation tools and metrics for MOT systems that consider both object detection and object tracking for comprehensive analysis.Comment: 18 pages, 11 figures, accepted by CVI

    Survey on video anomaly detection in dynamic scenes with moving cameras

    Full text link
    The increasing popularity of compact and inexpensive cameras, e.g.~dash cameras, body cameras, and cameras equipped on robots, has sparked a growing interest in detecting anomalies within dynamic scenes recorded by moving cameras. However, existing reviews primarily concentrate on Video Anomaly Detection (VAD) methods assuming static cameras. The VAD literature with moving cameras remains fragmented, lacking comprehensive reviews to date. To address this gap, we endeavor to present the first comprehensive survey on Moving Camera Video Anomaly Detection (MC-VAD). We delve into the research papers related to MC-VAD, critically assessing their limitations and highlighting associated challenges. Our exploration encompasses three application domains: security, urban transportation, and marine environments, which in turn cover six specific tasks. We compile an extensive list of 25 publicly-available datasets spanning four distinct environments: underwater, water surface, ground, and aerial. We summarize the types of anomalies these datasets correspond to or contain, and present five main categories of approaches for detecting such anomalies. Lastly, we identify future research directions and discuss novel contributions that could advance the field of MC-VAD. With this survey, we aim to offer a valuable reference for researchers and practitioners striving to develop and advance state-of-the-art MC-VAD methods.Comment: Under revie

    Reconstruction of 3D Information about Vehicles Passing in front of a Surveillance Camera

    Get PDF
    Tato diplomová práce se zabývá 3D rekonstrukcí vozidel projíždějících před dohledovou kamerou. V práci je nejprve představena kalibrace dohledové kamery a souvislost automatické kalibrace s 3D informacemi o sledované dopravě. Dále jsou představeny algoritmy Structure from Motion a SLAM, společně s metodami pro odhad optického toku. Za účelem prozkoumání chování pro snímky projíždějících vozidel jsou provedeny experimenty s výpočtem korespondencí a algoritmem Structure from Motion. Následně je postup algoritmu Structure from Motion upraven. SIFT příznaky jsou nahrazeny algoritmem DeepMatching za účelem získání hustých bodových korespondencí pro následnou fázi rekonstrukce. Rekonstruované modely jsou dále zpřesněny aplikováním dodatečných omezení, která jsou specifická pro rekonstrukci projíždějících vozidel. Získané modely jsou poté vyhodnoceny. Veškeré zjištěné poznatky a informace o rekonstrukci vozidel jsou pak využity k navržení dalších modifikací, které by vedly k vytvoření zcela vlastního rekonstrukčního postupu, specializovaného přímo pro 3D rekonstrukci projíždějících vozidel.This master's thesis focuses on 3D reconstruction of vehicles passing in front of a traffic surveillance camera. Calibration process of surveillance camera is first introduced and the relation of automatic calibration with 3D information about observed traffic is described. Furthermore, Structure from Motion, SLAM, and optical flow algorithms are presented. A set of experiments with feature matching and the Structure from Motion algorithm is carried out to examine results on images of passing vehicles. Afterwards, the Structure from Motion pipeline is modified. Instead of using SIFT features, DeepMatching algorithm is utilized to obtain quasi-dense point correspondences for the subsequent reconstruction phase. Afterwards, reconstructed models are refined by applying additional constraints specific to the vehicle reconstruction task. The resultant models are then evaluated. Lastly, observations and acquired information about the process of vehicle reconstruction are utilized to form proposals for prospective design of an entirely custom pipeline that would be specialized for 3D reconstruction of passing vehicles.

    Webcams for Bird Detection and Monitoring: A Demonstration Study

    Get PDF
    Better insights into bird migration can be a tool for assessing the spread of avian borne infections or ecological/climatologic issues reflected in deviating migration patterns. This paper evaluates whether low budget permanent cameras such as webcams can offer a valuable contribution to the reporting of migratory birds. An experimental design was set up to study the detection capability using objects of different size, color and velocity. The results of the experiment revealed the minimum size, maximum velocity and contrast of the objects required for detection by a standard webcam. Furthermore, a modular processing scheme was proposed to track and follow migratory birds in webcam recordings. Techniques such as motion detection by background subtraction, stereo vision and lens distortion were combined to form the foundation of the bird tracking algorithm. Additional research to integrate webcam networks, however, is needed and future research should enforce the potential of the processing scheme by exploring and testing alternatives of each individual module or processing step

    Active recognition through next view planning: a survey

    Full text link

    Real-time vehicle speed estimation using Unmanned Aerial Vehicles for traffic surveillance

    Get PDF
    Drones are an emerging tool for traffic surveillance; however, they inherently lack the capability to solely obtain vehicle speed on the road. This Bachelor's thesis presents the design, implementation and study of a system to detect the position, velocity and type of vehicles using the video stream obtained from drones. The solution is created to be used with any kind of aerial vehicle but is tailored for the drones in the European project LABYRINTH, of which the thesis has been a part. The tool utilizes the video feed from a sole camera and the telemetry data from the drone to detect, track and project the objects present on the road from the image into reality. This allows for an estimation of their position and speed. The detection and tracking algorithm implemented is the Simple Online Real Time algorithm, which is often referred to as SORT. Once the position has been acquired, another stream is generated that displays the same video, but with the bounding boxes, velocity and confidence ratings of all identified vehicles, with an overall computing time lower than the frame rate. After implementation, the tool underwent testing in a simulated environment to determine its assets and shortcomings, and was used during the LABYRINTH traffic monitoring flight tests. The Bachelor's thesis achieves the aimed objectives with minimum resource utilization, using readily available logic and open-source software to strike an optimal balance between real-time functionality and precise detection of vehicle position.Outgoin
    • …
    corecore