97 research outputs found

    Deep Spiking Neural Network for Video-based Disguise Face Recognition Based on Dynamic Facial Movements

    Get PDF
    With the increasing popularity of social media andsmart devices, the face as one of the key biometrics becomesvital for person identification. Amongst those face recognitionalgorithms, video-based face recognition methods could make useof both temporal and spatial information just as humans do toachieve better classification performance. However, they cannotidentify individuals when certain key facial areas like eyes or noseare disguised by heavy makeup or rubber/digital masks. To thisend, we propose a novel deep spiking neural network architecturein this study. It takes dynamic facial movements, the facial musclechanges induced by speaking or other activities, as the sole input.An event-driven continuous spike-timing dependent plasticitylearning rule with adaptive thresholding is applied to train thesynaptic weights. The experiments on our proposed video-baseddisguise face database (MakeFace DB) demonstrate that theproposed learning method performs very well - it achieves from95% to 100% correct classification rates under various realisticexperimental scenario

    Deep visual learning with spike-timing dependent plasticity

    Get PDF
    For most animal species, reliable and fast visual pattern recognition is vital for their survival. Ventral stream, a primary pathway within visual cortex, plays an important role in object representation and form recognition. It is a hierarchical system consisting of various visual areas, in which each visual area extracts different level of abstractions. It is known that the neurons within ventral stream use spikes to represent these abstractions. To increase the level of realism in a neural simulation, spiking neural network (SNN) is often used as the neural network model. From SNN point of view, the analog output values generated by traditional artificial neural network (ANN) can be considered as the average spiking firing rates. Unlike traditional ANN, SNN can not only use spiking rates but also specific spiking timing sequences to represent the structural information of the input visual stimuli, which greatly increases the distinguishability. To simulate the learning procedure of the ventral stream, various research questions need to be resolved. In most cases, traditional methods use winner-take-all strategy to distinguish different classes. However, such strategy works not well for overlapped classes within decision space. Moreover, neurons within ventral stream tends to recognize new input visual stimuli in a limited time window, which requires a fast learning procedure. Furthermore, within ventral stream, neurons receive continuous input visual stimuli and can only access local information during the learning procedure. However, most traditional methods use separated visual stimuli as the input and incorporate global information within the learning period. Finally, to verify the universality of the proposed SNN framework, it is necessary to investigate its classification performance for complex real world tasks such as video-based face disguise recognition. To address the above problems, a novel classification method inspired by the soft I winner-take-all strategy has been proposed firstly, in which each associated class will be assigned with a possibility and the input visual stimulus will be classified as the class with the highest possibility. Moreover, to achieve a fast learning procedure, a novel feed-forward SNN framework equipped with an unsupervised spike-timing dependent plasticity (STDP) learning rule has been proposed. Furthermore, an eventdriven continuous STDP (ECS) learning method has been proposed, in which two novel continuous input mechanisms have been used to generate a continuous input visual stimuli and a new event-driven STDP learning rule based on the local information has been applied within the training procedure. Finally, such methodologies have also been extended to the video-based disguise face recognition (VDFR) task in which human identities are recognized not just on a few images but the sequences of video stream showing facial muscle movements while speakin

    Emotion Recognition from Electroencephalogram Signals based on Deep Neural Networks

    Get PDF
    Emotion recognition using deep learning methods through electroencephalogram (EEG) analysis has marked significant progress. Nevertheless, the complexities and time-intensive nature of EEG analysis present challenges. This study proposes an efficient EEG analysis method that foregoes feature extraction and sliding windows, instead employing one-dimensional Neural Networks for emotion classification. The analysis utilizes EEG signals from the Database for Emotion Analysis using Physiological Signals (DEAP) and focuses on thirteen EEG electrode positions closely associated with emotion changes. Three distinct Neural Models are explored for emotion classification: two Convolutional Neural Networks (CNN) and a combined approach using Convolutional Neural Networks and Long Short-Term Memory (CNN-LSTM). Additionally, two emotion labels are considered: four emotional ranges encompassing low arousal and low valence (LALV), low arousal and high valence (LAHV), high arousal and high valence (HAHV), and high arousal and low valence (HALV); and high valence (HV) and low valence (LV). Results demonstrate CNN_1 achieving an average accuracy of 97.7% for classifying four emotional ranges, CNN_2 with 97.1%, and CNN-LSTM reaching an impressive 99.5%. Notably, in classifying HV and LV labels, our methods attained remarkable accuracies of 100%, 98.8%, and 99.7% for CNN_1, CNN_2, and CNN-LSTM, respectively. The performance of our models surpasses that of previously reported studies, showcasing their potential as highly effective classifiers for emotion recognition using EEG signals

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-- trained using model simulations-- to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    Face Anti-Spoofing and Deep Learning Based Unsupervised Image Recognition Systems

    Get PDF
    One of the main problems of a supervised deep learning approach is that it requires large amounts of labeled training data, which are not always easily available. This PhD dissertation addresses the above-mentioned problem by using a novel unsupervised deep learning face verification system called UFace, that does not require labeled training data as it automatically, in an unsupervised way, generates training data from even a relatively small size of data. The method starts by selecting, in unsupervised way, k-most similar and k-most dissimilar images for a given face image. Moreover, this PhD dissertation proposes a new loss function to make it work with the proposed method. Specifically, the method computes loss function k times for both similar and dissimilar images for each input image in order to increase the discriminative power of feature vectors to learn the inter-class and intra-class face variability. The training is carried out based on the similar and dissimilar input face image vector rather than the same training input face image vector in order to extract face embeddings. The UFace is evaluated on four benchmark face verification datasets: Labeled Faces in the Wild dataset (LFW), YouTube Faces dataset (YTF), Cross-age LFW (CALFW) and Celebrities in Frontal Profile in the Wild (CFP-FP) datasets. The results show that we gain an accuracy of 99.40\%, 96.04\%, 95.12\% and 97.89\% respectively. The achieved results, despite being unsupervised, is on par to a similar but fully supervised methods. Another, related to face verification, area of research is on face anti-spoofing systems. State-of-the-art face anti-spoofing systems use either deep learning, or manually extracted image quality features. However, many of the existing image quality features used in face anti-spoofing systems are not well discriminating spoofed and genuine faces. Additionally, State-of-the-art face anti-spoofing systems that use deep learning approaches do not generalize well. Thus, to address the above problem, this PhD dissertation proposes hybrid face anti-spoofing system that considers the best from image quality feature and deep learning approaches. This work selects and proposes a set of seven novel no-reference image quality features measurement, that discriminate well between spoofed and genuine faces, to complement the deep learning approach. It then, proposes two approaches: In the first approach, the scores from the image quality features are fused with the deep learning classifier scores in a weighted fashion. The combined scores are used to determine whether a given input face image is genuine or spoofed. In the second approach, the image quality features are concatenated with the deep learning features. Then, the concatenated features vector is fed to the classifier to improve the performance and generalization of anti-spoofing system. Extensive evaluations are conducted to evaluate their performance on five benchmark face anti-spoofing datasets: Replay-Attack, CASIA-MFSD, MSU-MFSD, OULU-NPU and SiW. Experiments on these datasets show that it gives better results than several of the state-of-the-art anti-spoofing systems in many scenarios

    Predictive Coding: a Theoretical and Experimental Review

    Full text link
    Predictive coding offers a potentially unifying account of cortical function -- postulating that the core function of the brain is to minimize prediction errors with respect to a generative model of the world. The theory is closely related to the Bayesian brain framework and, over the last two decades, has gained substantial influence in the fields of theoretical and cognitive neuroscience. A large body of research has arisen based on both empirically testing improved and extended theoretical and mathematical models of predictive coding, as well as in evaluating their potential biological plausibility for implementation in the brain and the concrete neurophysiological and psychological predictions made by the theory. Despite this enduring popularity, however, no comprehensive review of predictive coding theory, and especially of recent developments in this field, exists. Here, we provide a comprehensive review both of the core mathematical structure and logic of predictive coding, thus complementing recent tutorials in the literature. We also review a wide range of classic and recent work within the framework, ranging from the neurobiologically realistic microcircuits that could implement predictive coding, to the close relationship between predictive coding and the widely-used backpropagation of error algorithm, as well as surveying the close relationships between predictive coding and modern machine learning techniques.Comment: 27/07/21 initial upload; 14/01/22 maths fix; 05/07/22 maths fix; 12/07/22 text fixe

    Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A Contemporary Survey

    Full text link
    Adversarial attacks and defenses in machine learning and deep neural network have been gaining significant attention due to the rapidly growing applications of deep learning in the Internet and relevant scenarios. This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques, with a focus on deep neural network-based classification models. Specifically, we conduct a comprehensive classification of recent adversarial attack methods and state-of-the-art adversarial defense techniques based on attack principles, and present them in visually appealing tables and tree diagrams. This is based on a rigorous evaluation of the existing works, including an analysis of their strengths and limitations. We also categorize the methods into counter-attack detection and robustness enhancement, with a specific focus on regularization-based methods for enhancing robustness. New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks, and a hierarchical classification of the latest defense methods is provided, highlighting the challenges of balancing training costs with performance, maintaining clean accuracy, overcoming the effect of gradient masking, and ensuring method transferability. At last, the lessons learned and open challenges are summarized with future research opportunities recommended.Comment: 46 pages, 21 figure

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators—trained using model simulations—to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin–Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Automated Classification for Electrophysiological Data: Machine Learning Approaches for Disease Detection and Emotion Recognition

    Get PDF
    Smart healthcare is a health service system that utilizes technologies, e.g., artificial intelligence and big data, to alleviate the pressures on healthcare systems. Much recent research has focused on the automatic disease diagnosis and recognition and, typically, our research pays attention on automatic classifications for electrophysiological signals, which are measurements of the electrical activity. Specifically, for electrocardiogram (ECG) and electroencephalogram (EEG) data, we develop a series of algorithms for automatic cardiovascular disease (CVD) classification, emotion recognition and seizure detection. With the ECG signals obtained from wearable devices, the candidate developed novel signal processing and machine learning method for continuous monitoring of heart conditions. Compared to the traditional methods based on the devices at clinical settings, the developed method in this thesis is much more convenient to use. To identify arrhythmia patterns from the noisy ECG signals obtained through the wearable devices, CNN and LSTM are used, and a wavelet-based CNN is proposed to enhance the performance. An emotion recognition method with a single channel ECG is developed, where a novel exploitative and explorative GWO-SVM algorithm is proposed to achieve high performance emotion classification. The attractive part is that the proposed algorithm has the capability to learn the SVM hyperparameters automatically, and it can prevent the algorithm from falling into local solutions, thereby achieving better performance than existing algorithms. A novel EEG-signal based seizure detector is developed, where the EEG signals are transformed to the spectral-temporal domain, so that the dimension of the input features to the CNN can be significantly reduced, while the detector can still achieve superior detection performance
    • …
    corecore