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Abstract

For most animal species, reliable and fast visual pattern recognition is vital for

their survival. Ventral stream, a primary pathway within visual cortex, plays an im-

portant role in object representation and form recognition. It is a hierarchical system

consisting of various visual areas, in which each visual area extracts different level of

abstractions. It is known that the neurons within ventral stream use spikes to repre-

sent these abstractions. To increase the level of realism in a neural simulation, spiking

neural network (SNN) is often used as the neural network model. From SNN point of

view, the analog output values generated by traditional artificial neural network (ANN)

can be considered as the average spiking firing rates. Unlike traditional ANN, SNN

can not only use spiking rates but also specific spiking timing sequences to represent

the structural information of the input visual stimuli, which greatly increases the dis-

tinguishability.

To simulate the learning procedure of the ventral stream, various research questions

need to be resolved. In most cases, traditional methods use winner-take-all strategy to

distinguish different classes. However, such strategy works not well for overlapped

classes within decision space. Moreover, neurons within ventral stream tends to recog-

nize new input visual stimuli in a limited time window, which requires a fast learning

procedure. Furthermore, within ventral stream, neurons receive continuous input vi-

sual stimuli and can only access local information during the learning procedure. How-

ever, most traditional methods use separated visual stimuli as the input and incorporate

global information within the learning period. Finally, to verify the universality of the

proposed SNN framework, it is necessary to investigate its classification performance

for complex real world tasks such as video-based face disguise recognition.

To address the above problems, a novel classification method inspired by the soft
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winner-take-all strategy has been proposed firstly, in which each associated class will

be assigned with a possibility and the input visual stimulus will be classified as the

class with the highest possibility. Moreover, to achieve a fast learning procedure, a

novel feed-forward SNN framework equipped with an unsupervised spike-timing de-

pendent plasticity (STDP) learning rule has been proposed. Furthermore, an event-

driven continuous STDP (ECS) learning method has been proposed, in which two

novel continuous input mechanisms have been used to generate a continuous input

visual stimuli and a new event-driven STDP learning rule based on the local informa-

tion has been applied within the training procedure. Finally, such methodologies have

also been extended to the video-based disguise face recognition (VDFR) task in which

human identities are recognized not just on a few images but the sequences of video

stream showing facial muscle movements while speaking.
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Chapter 1

Introduction

In computer science, an “intelligent” machine/robot is often refer to a flexible ra-

tional agent that can perceive its environment and take actions to achieve certain goal

based on their learned “knowledge”. Such intelligence exhibited by machine/robot

is called artificial intelligence (AI). For instance, a robot is aimed at recognizing the

human hand gestures and perform certain simple tasks accordingly: moving forward

or backward, executing certain programs, starting or pausing turning around and so

on. There are two core ingredients for the robot to achieve such goal: 1) The ability

to make the robot see the gesture being performed. 2) The ability to understand the

gesture being performed.

Generally speaking, machine learning is often considered as the answer to achieve

the above requirements. Specifically, computer vision, one example of machine learn-

ing, plays an important role in solving the above task. Besides providing high level

information about the environment so that the robot can “see” what is going on, the

computer vision methods can also recognize different given patterns so that the robot

can “understand” what was going on. However, the intelligence of a robot using tradi-

tional machine learning methods remains far behind the human beings. An mammalian

brain may contain more than 10 billion densely packed neurons that are connected to

an intricate network with numerous spikes are emitted in each millisecond [1]. It has

extremely complex network structure, as shown in Figure 1.1, yet still can generate

impressive processing speed. Research shows an mammalian brain can process com-

plicated real-life visual pattern recognition scenarios at milliseconds scale [2].

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Spiking neurons and their synaptic connections within the brain [5].

1.1 Inspiration

Visual cortex within the brain is the part of the cerebral cortex responsible for pro-

cessing visual information, which is critical for reliable and fast visual pattern recogni-

tion tasks. For most animal species, such visual pattern recognition capability is vital

for their survival. In order to learn the input visual pattern, visual cortex uses primary

visual pathway to transmit and learn the information. There are two primary pathways

within the visual cortex: dorsal stream and ventral stream [3], [4]. The dorsal stream,

or “where pathway”, is involved with processing the object’s spatial location relative

to the viewer and with speech repetition. The ventral stream, also known as “what

pathway”, plays an important role in form recognition and object representation.

Ventral stream consists of various visual areas, which gets its main input from the

primary visual cortex V1, and goes through V2 and V4 to areas of the inferior tempo-

ral lobe. Each visual area contains a full representation of the visual space. That is, it

contains neurons whose receptive fields together represent the entire visual filed. Fig-

ure 1.2 shows schematic framework of the ventral stream. It is known that the ventral

stream has a hierarchical structure with several layers capable of extracting different

level of abstractions. Like the Figure 1.2 shown, the higher the layer located, the more

abstract features it generated. For instance, by integrating several faces with different

positions within the inferior temporal (IT) layer and extracting the most significant

structure information, frontal faces with different classes have been generated. Within

2
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Figure 1.2: Schematic framework of the ventral stream [6]. Here, V1, V4, PIT, IT,
AIT and PFC stand for primary visual cortex, visual area V4, posterior inferotempo-
ral area, inferior temporal cortex, anterior inferotemporal area and prefrontal cortex,
respectively. It can be seen that ventral stream is a hierarchical system with various
layers, in which each layer extracts different level of abstractions.

ventral stream, in most cases, the new visual pattern has been learned in a short time

window to adapt to new environment or changes promptly.

Inspired by this hierarchical processing structure, deep learning [7], [8], [9], [10],

[11], [12], [13], one part of a broader family of machine learning methods, attempts

to make better representations of input data and create models to learn these represen-

tation. Various deep learning architectures such as deep neural networks [14], [15],

convolutional neural networks [14], [16], [17], deep belief networks [9], [18] and re-
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Figure 1.3: The template matching and the max pooling layers within HAMX model
adopted in this paper. Units with the same color have tied weights and units of differ-
ent color represents different filter maps [21]. For an input map, a template matching
operation will obtain the convolution of the map by using a specific template (ker-
nel). While a maximum pooling operation, a downsampling technique, will compute
the maximum value from a local domain and only use it to represent the whole local
domain.

current neural networks [19] have been applied to fields like automatic speech recog-

nition, natural language processing, bioinformatics and so on. For instance, AlphaGo,

a computer program developed by Google DeepMind [20], is perhaps the most fa-

mous example of deep learning right now, which beats several professional human Go

players without handicaps on a full-sized 19× 19 board.

Convolutional neural networks (CNNs) [14], [16], [17], compared with other deep

learning methods, has shown superior performances in both image and speech applica-

tions. CNNs are easier to train than other regular, deep, feed-forward neural networks

and have fewer parameters to estimate, making it a highly attractive architecture to use.

HMAX [22], a feed-forward CNN model, stands out from other competitors. Such

model focuses on the object recognition capabilities of the ventral stream in an “im-

mediate recognition” mode, independent of attention or other top-down effects [22].

To simulate the simple and complex cells within primary visual cortex (V1), HMAX

models build an increasingly complex and invariant feature representation by alternat-

ing between a template matching and a maximum pooling operation. Figure 1.3 shows

the template matching and the max pooling operations used in HMAX model. Specif-
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ically, for an input map, a template matching operation will obtain the convolution of

the map by using a specific template (kernel). As a downsampling technique, for a

local domain, a maximum pooling operation will compute the maximum value from

the local domain and only use it to represent the whole local domain.

Traditionally, neurons within classical artificial neural network (ANN) such as

CNN use analog values to represent the information. However, with the development

of neuroscience, it has been shown that neurons within visual cortex use spikes to rep-

resent the information. To increase the level of realism in a neural simulation, spiking

neural network (SNN) [23], [24], [25], [26], [27] is often used as the neural network

model. By incorporating temporal information into the processing procedure, SNN

uses spatiotemporal structural information to represent the input visual stimuli. From

the SNN point of view, the output values of traditional ANN can be considered as the

average firing rate of the neurons. Unlike the traditional ANN, SNN cannot only use

spiking rate but also specific spiking timing sequence (spiking pattern) to represent the

information, which greatly improves the distinguishability. As shown in Figure 1.4,

from traditional ANN point of view, the two spiking patterns have the same output

values 6/t and thus should be identical. However, if using specific spiking timing se-

quences to represent the information, these two spiking patterns are clearly different.

SNN can distinguish different input spiking patterns even they have the same spiking

rates and thus, compared with traditional ANN, the distinguishability of SNN has been

significantly improved.

To specify a SNN, three core factors need to be included: architecture, neural

model and learning rule. Those core factors have complementary relationships and

have their own objectives. For example, architecture depicts what variables are in-

volved in the network and their topological relationships, neural model defines how

the activities of the neurons change in response to each other and learning rule speci-

fies the way in which the neural network’s weights change with time.

Inspired by ventral stream, lots of architectures used in SNNs apply hierarchical

layers to define the variables involving in the network and their topological relation-

ships. From the information theory point of view, SNNs need spiking coding schemes
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Figure 1.4: The comparison between SNN and traditional ANN. Here, each short ver-
tical arrow represents a specific spiking timing. Based on the traditional ANN, spiking
pattern 1 and 2 have the same spiking rates 6/t and thus should be the same. However,
from SNN point of view, those two spiking patterns are clearly different. Instead of
just using spiking rate like ANN, SNN can also use specific spiking timing sequences
to represent the structural information.

to transform the input analog features to real spike trains so that they can be further

processed within the following layers. Various coding methods such as rate coding

[28], [29], temporal coding [30], [31], [32], population coding [33], [34] and sparse

coding [35] have been widely applied in the related fields.

To regulate the neuron activity, various neural models such as leaky integrate-and-

fire (LIF) model [36], HodgkinHuxley model [37], [38] and exponential integrate-and-

fire model [39] have been proposed. Those models describe the relationship between

neuron membrane currents and membrane voltage. Unlike the traditional perceptron

neurons, after feeding presynaptic spikes, a neuron within SNN fires a postsynaptic

spike when and only when its membrane voltage cross the predefined threshold.

For SNNs, spiking learning rules are quite essential as they can “recall” or “recog-

nize” different spiking patterns. In neuroscience, Hebbian theory [40] is probably the

most famous learning rule, which argues an increase in synaptic efficacy arises from

the presynaptic cell’s repeated and persistent stimulation of the postsynaptic cell. It is

often summarized as “Cells that fire together, wire together”. Spike-timing dependent

plasticity (STDP) [41], [42], [43], [44], [45], a temporally asymmetric form of Heb-
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bian learning, is widely believed that it underlies learning and information storage in

the brain, as well as the development and refinement of neuronal circuits during brain

development.

1.2 Research Questions

For face recognition tasks, traditional learning methods such as batch learning rule

[23], [24], [46] and on-line learning rule [47], [48], [49] use winner-take-all(WTA)

strategy to distinguish different classes. However, overlapped classes within the deci-

sion space could worsen the classification performance of WTA strategy. When clas-

sifying a sample within the decision space, WTA strategy only relies on the class in-

formation of its nearest neighbor cluster. Such classifying strategy only works well if

the samples within the same class tend to stay together. However, the samples within

different classes, in most cases, often have a distributed layout and tend to overlap with

each other. The nearest neighbor cluster of a sample may actually belong to another

class. Therefore, it is necessary to find a method to reduce the error classification of

WTA strategy.

Besides reducing the error classification, it is also desirable to achieve a fast unsu-

pervised learning. To adapt to a new environment, human brain tends to differentiate

various input visual patterns in an unsupervised way within a limited time window. For

instance, recent electrophysiological studies [50], [51] show that the neurons within

the inferotemporal cortex respond selectively to faces only 80-100 ms after presenting

the visual stimulus. In fact, compared with human brain, the learning speed of the

current cutting-edge supercomputers still lags behind. For example, the Fujitsu K in

Japan [52], a supercomputer with 83,000 processors and 1.4 million GB of RAM, takes

about 40 minutes to simulate just one second of human brain activity. Thus, obtaining

such fast unsupervised learning while retaining a comparable performance proposes a

huge challenge for the researchers.

Within a limited period, ventral stream is capable of adaptively learning the spa-

tiotemporal structures from the input spiking patterns. Traditionally, to learn the spa-

tiotemporal structures, a new input spiking pattern is only allowed to feed into the
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learning system when the membrane potential generated by the previous spiking pat-

tern has been reseted. However, in ventral stream, the neurons receive the spiking

patterns continuously without any resetting involved. Furthermore, traditional learn-

ing methods like spike-timing dependent plasticity (STDP) often incorporate global

information within the training procedure. For instance, to update the synaptic weights

within STDP learning rule, the neuron is required to remember all the related spiking

timings within the learning window. In most cases, it is physiologically unrealistic

and not efficient. Therefore, adaptively learning the spatiotemporal structures from the

continuous input spiking patterns by only accessing local information has became a

challenge for researchers.

Furthermore, to demonstrate the universality of a novel learning methodology, it

is necessary to verify its classification performance on complex real world recognition

tasks. With the increasingly lower cost of video recording, it is natural to transform the

face recognition applications from the image-based to video-based. Various video-

based face recognition (VFR) methods have been proposed to recognize the faces

within varied video face databases with different variations. The common ground for

these methods is they need to generate static feature vector firstly. To obtain such static

feature vector, certain areas like eyes, mouse or nose within the face should be visi-

ble. However, for video-based disguise face recognition like looking for lost persons

in train station or locating terrorists in airports, such requirement is hard to achieve

since the subjects will try to cover some parts of their faces. Thus, to address the above

problem, a novel video-based disguise face recognition is much needed.

1.3 Contributions

The main contributions of this dissertation can be summarized as the following:

1) Inspired by soft winner-take-all (WTA) strategy, a novel classification method

has been proposed, in which each related class will be assigned with a probability and

the input stimuli belongs to the class with the highest probability. Unlike the traditional

WTA strategy, the proposed method adds certain flexibilities into the classification pro-

cedure and the input visual stimuli have the potential to be classified as other classes.
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2) To strike a trade-off between speed and performance, a novel feed-forward SNN

framework along with its unsupervised learning method have been proposed. The pro-

posed method uses the first two layers of HMAX model to generate the local invariant

features and applies unsupervised STDP learning method to train the synaptic weights.

3) Since the neurons within the ventral stream receive continuous spiking patterns

and can only access the local information, an event-driven continuous STDP (ECS)

learning method has been proposed to adaptively learn the synaptic weights. Unlike the

above method, the proposed ECS method uses modified HMAX model with sparsity

and intermediate features to generate global invariant features. In addition, two novel

continuous input mechanisms, a sequential one with interval between adjacent spiking

patterns and another parallel one with two separated spiking pattern groups, have been

proposed to obtain the continuous input spiking pattern sequence. Furthermore, within

the proposed event-driven STDP learning rule, the learning procedure will be activated

when the neuron receive a presynaptic or postsynaptic spike event.

4) Unlike the traditional video-based face recognition (VFR) methods [53], [54],

[55], which only works when certain areas (i.e. eyes or nose) of the face are visible, the

proposed ECS method has been extended to accomplish the video-based disguise face

recognition (VDFR) tasks using the dynamic facial movements and achieved satisfac-

tory correct classification performance on the proposed video disguise face database.
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Chapter 2

Literature Review

To understand and interact with the environment, visual pattern recognition is a

basic yet vital capability for the “intelligent” machine/robot described in AI. With such

capability, the “intelligent” machine/robot can “see” the environment and “recognize”

the given pattern which has been shown before. The procedure of obtaining such

capability can be considered as a learning process. After this learning process, the

“intelligent” machine/robot eventually adapts with the environment and accomplish its

predefined working objectives.

Essentially, the visual pattern recognition capability can be considered as a specific

learning capability. To obtain such learning capability, hundreds of models and algo-

rithms have been proposed during the last several decades. For a clear and through

understanding of the background, I will introduce and argue those related methods

through a top-down way - from general machine learning methodologies to more rele-

vant and specific fields such as deep learning and spiking neural networks.

2.1 Machine Learning

In 1959, Arthur Samuel summed the machine learning as such statement: “Ma-

chine learning is the field of study that gives computers the ability to learn without

being explicitly programmed” [56]. Machine learning plays a significant role in a

wide range of critical applications, such as data mining, nature language processing,

computer vision and expert systems. It provides potential solutions for the above areas
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and has already grew into a major research topic.

Machine learning filed is quite vast and is expanding rapidly, being continually

partitioned and sub-partitioned. There are so many algorithms available for machine

learning tasks and sometimes it may feel overwhelming. To have a clear and through

understanding of those machine learning algorithms, it is necessary to divide them into

different categories according to two grouping methods: learning style and similarity.

2.1.1 Grouping by Learning Style

Traditionally, in machine learning, there are three different styles an algorithm can

model a problem based on the interaction with the input data: supervised learning,

unsupervised learning and semi-supervised learning [57], [58]. Those different styles

are essential for researchers as it drives you to think about the roles of input data and

the model preparation process. In supervised learning, the input data has a known

label or result. A model is prepared through a training process where it is required

to make predictions and is corrected when those predictions are wrong. The training

process continues until the model achieves a desired level of accuracy on the training

data. Unlike supervised learning, the input data of unsupervised learning is not labeled.

A model is prepared by deducing structures present in the input data, which may be

achieved by extracting general rules or systematically reducing redundancy through

a mathematical process. The input data of semi-supervised learning is a mixture of

labeled and unlabeled examples. There is a desired prediction problem but the model

must learn the structures to organize the data as well as make predictions.

2.1.2 Grouping by Similarity

Compared with grouping algorithms by learning style, it is more intuitive to divide

those algorithms by similarity, which can be summarized as following [57], [58]:

• regression algorithms

• regularization algorithms

• decision tree algorithms
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• instance-based algorithms

• bayesian algorithms

• dimensionality reduction algorithms

• ensemble algorithms

• clustering algorithms

• artificial neural network algorithms

For those algorithms, some (instance-based algorithms or clustering algorithms)

are only focus on unsupervised learning field while some (regression algorithms or

regularization algorithms) are only concentrate on supervised learning field. Others

can be used in both supervised or unsupervised algorithms. Since there are overlaps

among different categories, this grouping strategy is not perfect, but it can still help us

to better understand these abundant algorithms.

Instead of focusing on traditional algorithms, this thesis pays more attention on

bio-inspired methods. Among all the algorithms, only artificial neural network al-

gorithms use bio-inspired methods to deal with the visual pattern recognition tasks.

Thus, we will only highlight the artificial neural network algorithms within all the ma-

chine learning methods. Artificial Neural Networks are models that are inspired by

the structure and/or function of biological neural networks. They are a class of pattern

matching that are commonly used for regression and classification problems but are

really an enormous subfield comprised of hundreds of algorithms and variations for

all manner of problem types. The most commonly used artificial neural network algo-

rithms include: perceptron, back propagation (BP) network, Hopfield network, radial

basis function (RBF) network and deep learning.

2.1.3 Traditional Artificial Neural Networks

From [57], [58], we know that if the classes are linearly separable (i.e. they can

be separate by an hyperplane in the n-dimensional space defined by your input of

length = n), a perceptron is enough for the classification task. Otherwise, at least
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one hidden layer should be added into the perceptron so that multilayer perceptrons

have been generated. In most case, back propagation method should be used within

multilayer perceptrons (MLP). Basically, MLP is a modification of the standard linear

perceptron and can distinguish data that are not linearly separable. Within machine

learning, the perceptron is an algorithm for supervised learning of binary classifiers.

Back propagation requires a known, desired output for each input value in order to

calculate the loss function gradient. Thus, in most cases, it is often considered as a

supervised learning method, although it is also used in some unsupervised networks

such as autoencoders.

In machine learning, MLP is a feed-forward neural network while Hopfield net-

work is a recurrent neural network. Both of them are deterministic networks: For

MLP, it can be shown that the it can estimate the conditional average on the target data;

For Hopfield network, once the initial state is given, its dynamics evolves following a

Lyapunov function. Unlike the stochastic networks such as Helmholtz and Boltzmann

machines, given an input, the state of the Hopfield network does not converge to an

ensemble distribution, but to a unique state.

Unlike the MLP, RBF network only has one hidden layer. Besides, it differs from

a MLP via its activation and combination functions. Commonly-used types of neural

networks such as the MLP and Hopfield network have less limitations and they can

add appropriate hidden layers into the networks. However, they are highly vulnerable

to adversarial noise and can make very wrong predictions when fed such examples

as their inputs. This is not the case in RBF networks which seems to be due to their

non-linear nature of these networks. By taking the trade-off between accuracy and

robustness, RBF networks bring much more robustness into the predictions.

Arguably, MLP is not really different from deep learning, but just one type of deep

learning. Theoretically, back propagation method used in MLP can train a network

with many layers. However, few researchers have widespread success training neural

networks with more than 2 layers. This was mostly because of vanishing and/or ex-

ploding gradients. Specifically, MLP was typically initialized using random numbers

such as the gradient of the network’s parameters and uses the network’s error to adjust
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the parameters to better values in each training iteration. In back propagation method,

to evaluate this gradient involves the chain rule and you must multiply each layer’s

parameters and gradients together across all the layers. This is a lot of multiplication,

especially for networks with more than 2 layers. Unlike the back propagation network,

deep learning proposed a new initialization strategy: use a series of single layer net-

works - which do not suffer from vanishing/exploding gradients - to find the initial

parameters for a deep MLP.

2.1.4 Deep Learning

Deep learning is a modern update to artificial neural network that based on a set of

algorithms that attempt to model high-level abstractions in data by using a deep graph

with multiple processing layers, composed of multiple linear and non-linear transfor-

mations [7], [8], [9], [10], [11], [12], [13]. Specifically, a deep neural network is an

artificial neural network with multiple hidden layers of units between in the input and

output layers, which has often been used to model complex non-linear relationships.

Various deep learning architectures such as deep neural networks, deep convolu-

tional neural networks, deep belief networks and recurrent neural networks have been

applied and achieved state-of-art results on various fields like computer vision, auto-

matic speech recognition, natural language processing, audio recognition and bioinfor-

matics. Research in this area attempts to make better representations and create models

to learn these representations from large-scale unlabeled data.

Deep learning algorithms are based on distributed representations. The underlying

assumption behind distributed representations is that observed data are generated by

the interactions of factors organized in layers. Deep learning adds the assumption that

these layers of factors correspond to levels of abstraction or composition. Since its

resurgence, deep learning has become part of many state-of-the-art systems in various

disciplines, particularly computer vision and automatic speech recognition (ASR).

The first functional Deep Learning networks with many layers, also known as the

Group Method of Data Handling (GMDH), were published by Alexey Grigorevich

Ivakhnenko and V. G. Lapa in 1965 [59]. GMDH features fully automatic struc-
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tural and parametric optimization of models. The activation functions of the network

nodes are Kolmogorov-Gabor polynomials that permit additions and multiplications.

In 1971, Ivakhnenko proposed a novel method describing the learning of a deep feed-

forward multilayer perceptron with eight layers, already much deeper than many later

networks [60]. The supervised learning network is grown layer by layer, where each

layer is trained by regression analysis. From time to time useless neurons are detected

using a validation set, and pruned through regularization. Several related deep learn-

ing working architectures inspired by artificial neural network will be elaborated in the

following subsections.

2.1.4.1 Deep Neural Network

Inspired by artificial neural network, the neocognitron [16], a hierarchical and mul-

tilayered artificial neural network, was proposed by Kunihiko Fukushima in 1980.

It has been used for handwritten character recognition and other pattern recognition

tasks, and served as the inspiration for convolutional neural networks. In 1989, Yann

LeCun et al. were able to apply the standard back propagation algorithm into a deep

neural network with the purpose of recognizing handwritten ZIP codes on mail. How-

ever, the processing time can extend to approximately 3 days, which is obviously im-

practical for general use [14]. In 1995, Brendan Frey demonstrated that it was possible

to train a network containing six fully connected layers and several hundred hidden

units using the wake-sleep algorithm, which was co-developed with Peter Dayan and

Geoffrey Hinton [15]. However, training took two days.

Due to the added layers of abstraction, deep neural networks (DNNs) are prone to

overfitting, which may generate the long computation time. To reduce the overfitting,

several regularization methods such as weight decay or sparsity [60] or dropout regu-

larization [61] have been applied within DNNs. To train the structures of the DNNs,

error-correction training methods such as back propagation with gradient descent have

often been used. Compared with other methods, such method is easy to implement

and tends to converge to better local optima. However, for DNNs, these methods can

be computational expensive, which, in most cases, need different GPU techniques to

15



CHAPTER 2. LITERATURE REVIEW

speedup the training procedure.

2.1.4.2 Convolutional Neural Network

A convolutional neural network (CNN) is composed of one or more convolutional

layers with fully connected layers on top, which often uses tied weights and pooling

layers. It is a type of feed-forward artificial neural network in which the connectivity

pattern between its neurons is inspired by the organization of the animal visual cortex.

Within Fukushima’s convolutional architecture [16], max-pooling operation [62], the

most important step within CNN, has been proposed to take advantage of the 2D struc-

ture of input data. Compared with other regular, deep, feed-forward neural networks,

CNN is easier to train and has much fewer parameters to estimate, which has become

the method of choice for processing visual and other two-dimensional data [14].

To simulate the behavior of a visual cortex, unlike the MLP, CNN exploits the

strong spatially local correlation present within the nature images. Specifically, the

layers of a CNN have neurons arranged in 3 dimensions: width, height and depth, also

known as 3D volumes of neurons. The neurons inside a layer are only connected to a

small region of the layer before it, called a receptive field. Furthermore, CNN exploits

spatially local correlation by enforcing a local connectivity pattern between neurons of

adjacent layers so that the architecture can ensure that the learnt ”filters” produce the

strongest response to a spatially local input pattern, which can be summarized as local

connectivity. Besides, within CNN, each filter is replicated across the entire visual field

so that these replicated units share the same parameterization (weight vector and bias)

and form a feature map. by sharing weights, all the neurons in a given convolutional

layer detect exactly the same feature.

2.1.4.3 Neural History Compressor

In 1992, an early generative model called the neural history compressor, imple-

mented as an unsupervised stack of recurrent neural networks (RNNs) [19], has been

proposed to tackle the vanishing gradient problem of the back propagation method

used in neural networks. The RNN at the input level learns to predict its next input
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from the previous input history. Only unpredictable inputs of some RNN in the hi-

erarchy become inputs to the next higher level RNN which therefore recomputes its

internal state only rarely. Each higher level RNN thus learns a compressed represen-

tation of the information in the RNN below. By doing this, the input sequence can be

precisely reconstructed from the sequence representation at the highest level and the

system effectively minimizes the description length or the negative logarithm of the

probability of the data [63].

2.1.4.4 Deep Belief Network

A deep belief network (DBN) [9] ,[18] is a probabilistic, generative model made

up of multiple layers of hidden units. Generally speaking, DBNs are generative neural

networks that stack Restricted Boltzmann Machines (RBMs) in which each RBM can

be considered as a generative auto-encoder. Specifically, auto-encoder uses determin-

istic units while RBM uses stochastic units with particular (usually binary of Gaussian)

distribution. Learning procedure consists of several steps of Gibbs sampling and ad-

justing the weights to minimize reconstruction error. In theory, DBNs should be the

best models but it is very hard to estimate joint probabilities accurately at the moment.

In current literature on benchmark computer vision datasets such as MNIST, CNNS

have performed better than DBNs by themselves.

2.1.4.5 Deep Boltzmann Machine

Although Deep Belief Networks (DBNs) and Deep Boltzmann Machines (DBMs)

[64], [65] diagrammatically look very similar, they are actually qualitatively very dif-

ferent. Basically, DBNs are directed and DBMs are undirected. If fitting them into the

broader multilayer picture, DBNs can be considered as sigmoid belief networks with

many densely connected layers of latent variables while DBMs are markov random

fields with many densely connected layers of latent variables.

Even though DBNs and DBMs are qualitatively very different, they still share some

similarities: both DBNs and the original DBMs use initialization schemes based on

greedy layerwise training of RBMs and they both feature layers of latent variables
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which are densely connected to the layers above and below, but have no intra-layer

connections.

2.2 Spiking Neural Network

Inspired by the central nervous systems of animals, in machine learning, artificial

neural network (ANN) has been proposed to estimate functions that can depend on a

large number of inputs that are generally unknown. McCulloch-Pitts threshold neurons

have been used in the first generation of ANN, which only generate digital output.

Instead of using a step- or threshold function, neurons within the second generation use

a continuous activation function like the sigmoid or hyperbolic tangent to compute their

output signals, which are suitable for analog in- and output. Based on the advancement

of biological realism, spiking neural networks (SNNs) has been proposed. Unlike the

last two generations, SNN incorporates spatiotemporal information in communication

and computation, like the real neurons do. These neurons use pulse coding instead

of classic rate coding. Specifically, from the SNN point of view, the output values of

traditional ANN can be considered as the average firing rate of the neurons. Besides

applying spiking rate, SNN can also use specific spiking timing sequence (spiking

pattern) to represent the information, which greatly improves the distinguishability.

Typically, to specify a SNN, four basic parts should be included in the proposed

method: framework, neuron model, coding scheme and learning rule. Specifically,

framework specifies the topological relationship of the involved variables while neural

model depicts how the activities of the neurons change in response to each other. Cod-

ing scheme has been used to transform the input visual stimuli into spikes and such

spikes will be trained by the learning rule so that the network can have selectivities

(synaptic weights) for the input visual stimuli. In this section, I will investigate the

SNN from those respects mentioned above.
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2.2.1 Framework

Based on the data flow direction, there are two main frameworks within spiking

neural networks: feed-forward neural network and recurrent neural network. Feed-

forward SNN is the first and most simple type of SNN devised. The information within

this network moves only in forward direction. In contrast, recurrent SNN are models

with bi-directional data flow, which means there are cycles or loops within this kind of

SNN.

It is known that the human brain is a recurrent neural network: a network of neurons

with feedback connections. Compared with feed-forward neural networks, such recur-

rent neural networks are computational more powerful and biologically more plausi-

ble. In paper [66], the authors propose a recurrent spiking model capable of learning

episodes featuring missing and noisy data. The presented topology provides a means of

recalling previously encoded patterns where inhibition is of the high frequency variety

aiming to promote stability of the network. By simulating the network response in a

moving-dot blanking experiment, the paper [67] resolves how anisotropic connectivity

patterns that consider the tuning properties of neurons efficiently predict the trajectory

of a disappearing moving stimulus.

However, the recurrent SNN is still in its initial stage and it lacks enough support

from the available biologically plausible models. On the contrary, the feed-forward

SNN is more intuitive and lots of available biologically plausible models can be used

to accomplish the feed-forward SNN. Lots of works [25], [26], [27], [68], [69], [70],

[71], [72], [73], [74], [75] have been investigated using such feed-froward frameworks.

2.2.2 Neuron Models

Within visual cortex, neurons use neural spikes to represent/transmit information.

Neuron models define how the activities of the neurons change in response to each

other. A spiking neuron model is a mathematical model of the electrical properties of

neuronal action potentials, which are sharp changes in the electrical potential across

the cell membrane that last for about one millisecond.

According to the physical units of the interface of the model, neuron models can
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be divided into two categories: Electrical inputoutput membrane voltage models and

nature/pharmacological input neuron models. The former one produces a prediction

for membrane output voltage as function of electrical stimulation at the input stage

while the latter one was inspired from experiments involving either natural or pharma-

cological stimulation. Electrical inputoutput membrane voltage models describe the

relationship between neuronal membrane currents at the input stage, and membrane

voltage at the output stage. Due to its efficiency and simplicity, the first category has

been chosen as the neuron model in this thesis, as discussed below.

Integrate-and-fire Model: In 1907, the earliest neuron model, named integrate-

and-fire (IF) model, has been proposed by Louis Lapicque [76]. Basically, when an

input current is applied, the membrane voltage increases with time until it reaches a

constant threshold Vth, at which point a delta function spike occurs and the voltage

is reset to its resting potential, after which the model continues to run. However, the

main drawback of this model is that it implements no time-dependent memory. Unlike

the observed neuronal behavior, if the model receives a below-threshold signal at some

time, it will retain that voltage boost forever until it fires again.

Leaky Integrate-and-fire Model: To resolve the memory problem of the integrate-

and-fire model, leaky integrate-and-fire (LIF) model has been proposed by adding a

“leak” term into the membrane potential, which indicates the diffusion of ions that oc-

curs through the membrane when some equilibrium is not reached in the cell [36]. A

postsynaptic neuron will fire a spike if and only if there are enough related presynaptic

spikes fired within a short time window. Otherwise, the potential will gradually de-

cease to zero if no presynaptic spikes fired. By doing this, this model emphasizes the

causality of related spikes.

Hodgkin-Huxley Model: The Hodgkin-Huxley model [37], [38] describes the

relationship between ion currents crossing the neuronal cell membrane and the mem-

brane voltage [77], [78]. This model is based on the concept of membrane ion channels

and experiments that allowed to force membrane voltage using an intra-cellular pipette.

It is a very successful model as the authors even won the Nobel Prize for their work.

However, such model is too complex to simulate as it requires much more parameters
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than other neuron models.

Galves-Locherbach Model: Based on the LIF model, Antonio Galves and Eva

Locherbach [79] proposed the Galves-Locherbach model, which is inherently stochas-

tic. Given the model specifications, one can obtain the probability of a given neuron

i spikes in a time period t. Essentially, such model can be considered as a specific

development of LIF model.

Exponential Integrate-and-fire Model: The exponential integrate-and-fire (EIF)

model, proposed by Nicolas Fourcaud-Trocm, David Hansel, Carl van Vreeswijk and

Nicolas Brunel [39], is a simple modification of the classical integrate-and-fire model

describing how neurons produce action potentials. In the EIF, the threshold for spike

initiation is replaced by a depolarizing non-linearity.

Other Models: To describe ”regenerative self-excitation” by a nonlinear positive-

feedback membrane voltage and recovery by a linear negative-feedback gate voltage,

FitzHugh and Nagumo [80] propose a sweeping simplifications to HodgkinHuxley

model. In 1981, Morris and Lecar [36] combined HodgkinHuxley and FitzHugh-

Nagumo into a voltage-gated calcium channel model with a delayed-rectifier potassium

channel, named as MorrisLecar model. Furthermore, based on the FitzHughNagumo

model, in 1984, Hindmarsh and Rose proposed the HindmarshRose model described

by three coupled first order differential equations.

2.2.3 Coding Scheme

By generating characteristic action potentials, neurons are remarkable in their abil-

ity to propagate signals rapidly over large distances. Although action potentials can

vary somewhat in duration, amplitude and shape, they are typically treated as identical

stereotyped events in neural coding studies. Such identical stereotyped events are also

known as neural spikes.

Based on the information theory, the coding scheme transforms the information

format from analog features into spike trains. Without such transformation, it is im-

possible for SNN to process the input information. Various coding schemes such as

rate coding, temporal coding or population coding have been proposed to represent and
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transmit the structural information existed within the input visual stimuli, as shown be-

low.

Rate Coding: Rate coding assumes that most, if not all, information about the

stimuli is contained in the firing rate of the neuron. Thus, such scheme states that as the

intensity of a stimulus increases, the frequency or rate of action potentials increases. In

most sensory systems, the firing rate increases, generally non-linearly, with increasing

stimulus intensity [28].

There are two ways to represent the spiking rate within this coding scheme: spike-

count rate and time-dependent firing rate. The former one is obtained by counting

the number of spikes that appear during a trial and dividing by the duration of trial

while the latter one is defined as the average number of spikes (averaged over trials)

appearing during a short interval between times t and t +4t, divided by the duration

of the interval.

However, it is difficult for rate-based SNN to generate meaningful rate within a

short time widow. For instance, research showed that mammalian brain use only mil-

lisecond scale time window to process complicated real life visual recognition tasks

[2]. Moreover, if the input visual stimuli has been incorporated with the background

noise with the same spiking rate, it is impossible for rate-based SNN to generate the

selectivity for the input visual stimuli [29].

Temporal Coding: Instead of using spiking rate as the representation of the input

stimuli, temporal coding schemes use specific spiking timings of the fired neurons to

represent the input stimuli. Thus, spiking patterns will play an important role within

the learning procedure. Various potential coding strategies based on spiking timing

have been proposed and widely applied, such as time-to-first-spike, phase, correlations

and synchrony.

Within time-to-first-spike coding scheme, each neuron only needs to fire a single

spike to transmit information, which, clearly, is an idealization. Thorpe et al. [30]

argues that the brain does no have time evaluate more than one spike from each neuron

per processing step. Therefore, the first spike wave should contain most of the relevant

information. Several groups have shown that most of the information about a new
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stimuli is indeed conveyed during the first 20 or 50 ms after the onset of the neuronal

response [31], [32], [81], [82].

In the olfactory system or hippocampus, oscillation of some global variable (for

instance, the population activity) are quite common. These oscillations could serve

as an internal reference signal and neural spikes could then then encode information

in the phase of a pulse with the respect to the background oscillation [83], [84], [85].

Furthermore, spikes from other neurons can be considered as the reference signal for a

spike code. Specifically, the synchrony between a pair or many neurons could signify

special events and convey information which is not contained in the firing rate of the

neurons [86], [87].

Population Coding: Population coding is a method to represent stimuli by using

the joint activities of a number of neurons. In population coding, each neuron has a

distribution of responses over some set of inputs, and the responses of many neurons

may be combined to determine some value about the inputs. Compared with other

coding schemes, population coding is one of a few mathematically well-formulated

problems in neuroscience, which grasps the essential features of neural coding and yet

is simple enough for theoretic analysis [88]. Several studies [33], [34] have shown that

this coding strategy is widely used in the sensor and motor areas of the brain.

Sparse Coding: The sparse code is when each item is encoded by the strong ac-

tivation of a relatively small set of neurons. For each item to be encoded, this is a

different subset of all available neurons. Sparseness within this coding scheme focus

either on temporal sparseness or on the sparseness in an activated population of neu-

rons. The capacity of sparse codes may be increased by simultaneous use of temporal

coding, as found in the locust olfactory system [35]. Given a potentially large set of

input patterns, sparse coding algorithms attempt to automatically find a small number

of representative patterns which, when combined in the right proportions, reproduce

the original input patterns. The sparse coding for the input then consists of those rep-

resentative patterns.
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2.2.4 Learning Rule

Hebb’s postulate [40], one of the most important theory in neuroscience, tries to

explain the adaptation of neurons in the brain during the learning process. It empha-

sizes the causality between pre- and postsynaptic neurons, which also known as “Cells

that fire together, wire together”. Specifically, in Hebb’s postulate, cell A needs to take

part in firing cell B, and such causality can only occur if cell A fires just before, not at

the same time as, cell B. Based on this original theory, several learning rules have been

proposed to learn the selectivities (synaptic weights) from the the spiking patterns, as

shown bellow.

BCM Learning Rule: In 1982, Elie Bienenstock, Leon Cooper, and Paul Munro

[89] proposed an novel synaptic modification theory (also known as BCM theory) try-

ing to account for experiments measuring the selectivity of neurons in primary sensory

cortex and its dependency on neuronal input. It is characterized by a rule express-

ing synaptic change as a Hebb-like product of the presynaptic activity and a nonlinear

function φ(y, θM), of postsynaptic activity y. θM is the modification threshold. For

low values of the postsynaptic activity (y < θM ), φ(y, θM) is negative; for y > θM ,

φ(y, θM) is positive. The rule stabilizes by allowing the modification threshold, θM , to

vary as a super-linear function of the previous activity of the cell.

STDP Learning Rule: Spike timing dependent plasticity (STDP) [41], [42], [43],

[44], [45], a temporally asymmetric form of Hebbian learning [40], has been widely

applied during the last decade. It is widely believed that it underlies learning and

information storage in the brain, as well as the development and refinement of neuronal

circuits during brain development [90], [91]. STDP requires no prior information or

teaching signals since it is essentially an unsupervised learning rule.

Within neuroscience, long-term potentiation (LTP) is a persistent strengthening of

synapses based on recent patterns of activity, while long-term depression (LTD) is an

activity-dependent long-lasting reduction in the efficacy of neural synapses. Based on

these concepts, the STDP learning rule can be summarized as: when a presynaptic

spike fires slightly earlier than the post-synaptic spike, the associated synaptic efficacy

will be potentiated (LTP); While the associated synaptic efficacy will be depressed
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(LTD) if the pre-synaptic synaptic spike fires later than the post-synaptic spike.

2.3 State-of-the-art Methods using SNN

Still image based visaul recogntion such as face or charactor recognition has been

quite commonly used in the past decades. It has been a natural topic for SNN as well.

Delorme and Thorpe proposed the SpikeNet [23] architecture to model large networks

of integrate-and-fire neurons in 1999. Inspired by this hierarchical architecture, they

further proposed a feed-forward spiking neural network with a corresponding batch

learning rule [24], [46] and the experimental results on ORL face database shown

the proposed method can achieve a quite satisfactory performance even incorporating

certain degrees of image degradations into input images. However, this method needs

to prior know the number of samples within each class and only works well if there are

no obvious overlaps between classes.

To overcome the above drawbacks, Wysoski, Benuskova and kasabov proposed an

on-line learning method with structural adaptation [47], [48], [49]. It can adaptively

divides the samples within each class into several sub-classes using on-line learning

and achieves satisfying experimental results. Actually, batch learning rule can be seen

as a special instance of on-line learning rule. However, it still considers one single

specific pattern for the classification task. In other words, this on-line learning method

assumes the training sample belongs to its nearest single relevant class without any

consideration of other related classes.

Reliable and fast visual pattern recognition is vital for most animal species. With-

out such capability, the specie will be abandoned by the law of nature. In most cases,

new visual pattern should be learned in a limited time window to adapt to new envi-

ronments or changes promptly. Traditionally, within artificial neural networks (ANNs),

the standard training method is back propagation. Given the input visual stimuli, each

neuron receives its specific error information which is used to update the synaptic ef-

ficiency matrix. However, research shows this neuron-specific error information is

impossible to obtain within the brain [92]. Compared with back propagation method,

the unsupervised methods like STDP are more biologically plausible and thus attract
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more and more researchers.

To successfully accomplish the visual pattern recognition task, the learning method

should strike a relatively balanced state between biologically plausibility and recogni-

tion performance. Even we can design a system with higher recognition performance

without any consideration of biologically plausibility, the processing mechanism of

the neurons within the visual cortex is still largely unknown. Similarly, without any

consideration of recognition performance, it is difficult to know which mechanisms are

necessary for the processing procedure of the visual cortex even we are able to design

functional systems.

For most visual pattern recognition applications, it is desirable to use more bio-

logically plausible models to build the system without any considerable performance

reduction. To achieve the above requirement, two popular approaches have been ap-

plied within the related fields: One popular approach is to still rely on back propagation

training but afterwards converting the ANN into a SNN [70], [71], [72], [74], [93]. The

other approach uses different variants of models of STDP learning methods trying to

simulate the biological learning procedure of the visual cortex [17], [25], [26], [27],

[68], [69], [75], [94]. For the sake of clarity, those two approaches will be introduced

and argued in the following subsections, respectively.

2.3.1 Methods using Back propagation

Methods [70], [71], [72], [74], [93] within this category are still rely on back prop-

agation training but afterwards converting the ANNs into SNNs. Even some of them

achieve very high performance on classic recognition tasks like MNIST database with

back propagation, such methods are not very biologically plausible or are at least very

much abstracted from the biological mechanism. It is also need to mention that the con-

ditions assumed by these classical back propagation methods are often hard to meet in

real world applications. For instance, the neuron-specific error information required by

back propagation methods to update the synaptic efficiency matrix is often impossible

to obtain within the brain [92].
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2.3.2 Methods using STDP Variants

Lots of researches [17], [25], [26], [27], [68], [69], [75], [94] have been investi-

gated the visual pattern recognition tasks using different SNN frameworks and variant

STDP learning methods. From the spiking encoding point of view, those methods can

be divided into two main categories: spiking time-based methods and spiking rate-

based methods.

For spiking rate-based methods [25], [26], [27], [75], [94], there are two main

drawbacks: a) To generate meaningful spiking rate, the processing time window should

be long enough. In other words, those rate-based methods need to run the database

several time (also known as several runs), which is obvious time-consuming and in-

efficient. b) Most of those methods are not biologically plausible as they lack direct

biological supports for their simulation of the ventral stream. Thus, in this thesis, we

mainly focus on the spiking time-based methods.

In paper [17], Thorpe et. al use their SNN architecture to simulate the process-

ing procedure of HMAX model. However, the simplified STDP learning methods

applied in the synaptic connections between C1 and S2 (the second and the third lay-

ers of HMAX model) are only used for local feature extraction. They are not used

for global pattern recognition. Inspired by convolutional neural network (CNN), in

the paper [68], the authors proposed a novel SNN with supervised learning rule and

temporal coding scheme to generate the spike pattern. Such SNN system and its su-

pervised learning rule achieved relatively good classification rate when cross-validate

the MNIST database. Such supervised learning rule needs prior knowledge before

learning - in many cases, this prior knowledge is hard to obtain. Furthermore, the

authors in papers [69] use a modified tempotron rule to learn the selectivities (synap-

tic weights) from the input visual stimuli. However, from the deep learning point of

view, the simplified HMAX model (with only S1 and modified C1 layer, here, S1

and C1 layers represent the first and the second layer of HMAX model) employed in

their method is not enough to obtain balanced high level features, it will generate lots

of intra-class variance within the modified C1 layer. Besides, the supervisory signal

used in tempotron rule has no strong experimental confirmation, which means it is less
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biologically plausible than the STDP learning rule.

2.4 Video-based Disguise Face Recognition

To recognize a human, such as a friend has not been seen for a long time or a col-

league with complete changed makeups, we human beings often need time to process

the incoming “video sequence” to boost the confidence level on recognizing accuracy.

Similarly, for machine learning methods, since it is easy to capture video sequences

nowadays, the shift from processing still images only to video streams becomes nor-

mal.

There are two main video-based face recognition (VFR) methods: sequence-based

methods [53], [55] and set-based methods [54], [95] (with reviews on lots of related

methods). Basically, the sequence-based methods use the temporal dynamic informa-

tion of the face among the adjacent video frames while the set-based methods does not

use this temporal dynamic information, considering the video as image set of the sep-

arated video frames. Essentially, the common grounds of these two kinds of methods

are using different feature vectors to represent the video frames. The former one tries

to extract the temporal dynamic information from the feature vector patterns while

the latter one models the feature vector patterns, also known as set, and use different

correlation methods to compute the set-to-set distance.

Normally, to obtain the feature vectors using these methods, certain areas like eyes

or nose of the face within the video frames need to be visible. For instance, in paper

[55], within the proposed individual expression recognition (IER) block, to obtain the

behavioral map (BM) containing facial evolutions of microexpressions in each frame,

at least an eye, a brow or a cheek need to be detected within the video frames. In

[53], the authors use genetically-inspired learning method to select meaningful fa-

cial features obtaining from five local areas, such as eyes, nose and mouth. These

algorithms are essentially sequence-based methods. Similar situations can also be ex-

tended into the set-based methods. However, within video-based disguise face recogni-

tion (VDFR) applications, such critical requirement cannot be satisfied and thus these

methods are not suitable for this specific scenario. Moreover, most of these methods
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use SVM or multi-perceptron as the classification algorithms, which are clearly not

biologically plausible.

However, the above problems can be successfully addressed if applying our pro-

posed ECS methodologies on the changes of the facial movements. Here, the changes

of the facial movements, refer to as differential frames in the following chapters, could

be the sole or most important inputs to the ventral stream model for recognition. If

the only inputs are differential images, as inspired by the computational models [96],

[97], the background noise or light condition will not be a problem. Furthermore, for

our proposed ECS methodologies, processing video stream is a natural choice since

temporal information within different video frames can be treated as intra-class vari-

ances, for instance, face image at time t and face image at time t + 1 are similar to

a handwritten character 1 and another handwritten character 1 , as shown in MNIST

database. In this case, even the subject has different makeups, it can still be recognized

with such methodologies.

The above proposed methodologies can successfully accomplish the VDFR tasks

in which human identities are recognized not just on a few images but the sequences of

video stream showing facial muscle movements while speaking. Our experiments on

the proposed video disguise face database (VD Face DB) demonstrated the proposed

VDFR methods are reliable and efficient.

29



Chapter 3

Spiking Neural Network for Face

Recognition

In artificial intelligence, face recognition is a common yet significant task for the

intelligent robots. According to recent electrophysiological studies [50], [51], the neu-

rons within the inferotemporal cortex (IT) respond selectively to faces only 80-100 ms

after presenting the visual stimulus. It is known that the neurons within visual cortex

use spikes to represent the structural information of the input visual stimuli. To achieve

a realistic neural simulation, spiking neural network (SNN) is often used as the neural

network model. Specifically, SpikeNET [23], a simple yet powerful spiking neural

network architecture, is often used to accomplish the face recognition tasks.

Based on the SpikeNet architecture, two state-of-the-art methods, batch learning

rule [23], [24], [46] and on-line learning rule [47], [48], [49], have been proposed

to differentiate the input faces. For each class, batch learning rule [23], [24], [46]

computes the average cluster of the training samples and uses it to represent the whole

training samples. However, it requires prior information (the number of samples within

each class) to obtain average cluster and cannot represent well if the class has dis-

tributed samples. Unlike the batch learning rule, for each class, on-line learning rule

[47], [48], [49] adaptively divides the training samples into various sub-clusters and

uses these sub-clusters to represent the whole training samples. Both methods incor-

porate winner-take-all strategy within the classification procedure and work not well

for overlapped classes within the decision space. Specifically, the batch learning rule
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only uses average cluster while the on-line learning rule just relies on the nearest asso-

ciated sub-cluster.

To overcome the above issues, based on the SpikeNET architecture, a novel learn-

ing rule inspired by the soft winner-take-all strategy has been proposed. Basically, it

will assign a probability for each related class and the testing sample will be classified

to the class with the highest probability. The proposed method dose not need to know

the number of samples within each class and can represent well if the class has dis-

tributed samples. More importantly, since it incorporates soft winner-take-all strategy,

the proposed learning rule adds certain flexibilities into the classification procedure and

the input visual stimuli have the potential to be classified as other classes. Compared

with the two state-of-the-art methods, experimental results on the ORL face database

show the proposed method can achieve a better performance.

3.1 Background

Within traditional artificial neural network (ANN), neurons use different activation

functions to transform the weighted sum of the input visual stimuli to output values.

Specifically, the first generation of neural network model uses step function to generate

the binary outputs while the second generation incorporates sigmoid function to obtain

the analog values. However, with the development of the neuroscience, it is known

that the neurons within the visual cortex use action potentials or spikes to represent the

information. Spiking neural network (SNN), the third generation of neural network

model, is often used to achieve a realistic neural simulation.

A typical neuron within SNN consists of three functional parts: dendrites, soma

and axon [1], as shown in 3.1. Basically, as a “input device”, the dendrites collects

signals from other neurons and transmits them to the soma. The soma, also known

as “central processing unit”, performs a significant nonlinear processing step. It will

generate an output signal if the total input signal exceeds a specific threshold. The

axon is the “output device” that receives the output signal and delivers the signal to

other neurons [1]. The neuronal signals consist of short electrical pulses and can be

observed by placing a fine electrode close to the soma or axon of a neuron. The pulses,
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Figure 3.1: A typical neuron within SNN consists of three functional parts: dendrites,
soma and axon [1]. As a “input device”, the dendrites collects signals from other
neurons and transmits them to the soma. The soma, also known as “central processing
unit”, performs a significant nonlinear processing step. It will generate an output signal
if the total input signal exceeds a specific threshold. The axon is the “output device”
that receives the output signal and delivers the signal to other neurons [1].

also known as action potentials or spikes, have an amplitude of about 100 mV and a

typical duration of 1-2 ms [1].

A sequence of action potentials emitted by a single neuron is often called a spike

train, which can also be considered as a chain of stereotyped events occur at regular or

irregular intervals. Essentially, the form of the spike does not convey any information

as all spikes of a given neuron look alike. Rather, it is the number and timing of spikes

which matter [1]. It is impossible to generate a second spike during or immediately

after a first one even with very strong input. The minimal distance between two spikes

is called the absolute refractory period of the neuron. Thus, within a spike train, action

potentials are usually well separated [1].

A neuron sends the spike trains to another neuron through a synapse. The send-

ing/receiving neuron is often called as presynaptic/postsynaptic neuron. The effect of a

spike on the postsynaptic neuron can be recorded with an intracellular electrode which

measures the potential difference between the interior of the neuron and its surround-

ings. This potential difference is also known as the membrane potential. Without any

spike input, the neuron will remain at the resting potential (a constant membrane po-

tential). If the neuron receives a spike, its membrane potential will change and finally

decay back to the resting potential. If the change is positive, the synapse is said to be

excitatory. Otherwise, the synapse is inhibitory.

32



CHAPTER 3. SPIKING NEURAL NETWORK FOR FACE RECOGNITION

Based on the above phenomenons, SNN incorporates the temporal information

within the processing procedure. Besides spiking rate, SNN can also use the specific

spiking timing sequence, also known as spiking pattern, to represent the information.

Such spiking pattern conveys spatiotemporal structural information of the input visual

stimuli. From the SNN point of view, the output value of the second generation of neu-

ral network model can be considered as the average spiking firing rate of the neuron.

However, it is possible to generate almost countless spiking patterns with the identical

spiking rate. Furthermore, the specific spiking pattern of the neuron may convey more

significant structural information than the spiking rate itself. Compared with the tradi-

tional ANN, the distinguishability of SNN has been greatly improved since it cannot

only use spiking rate but also specific spiking patterns.

To investigate the distinguishability of a SNN, it is much needed to specify its

framework. The framework defines the variables involved within the SNN and its topo-

logical structure. Electrophysiological studies [50], [51] indicate the neurons within

the inferotemporal cortex (IT) respond selectively to faces only 80-100 ms after pre-

senting the visual stimulus. It is known that the visual cortex is a hierarchical system

consisting of several layers. The retina receives the input visual stimuli and transmits

them to cortical visual areas V1, V2 and V4 before reaching higher visual areas in the

anterior and posterior inferotemporal cortex. To simulate this hierarchical architecture,

SpikeNET framework has been proposed and successfully applied to accomplish the

face recognition tasks. It is a feed-forward SNN and includes three layers of retino-

topic maps containing relatively simple integrate-and-fire neurons, with a first layer

corresponding to the retina, the second one for V1 and the last one for V4-IT. More-

over, within the SpikeNET, neurons cannot spike more than once through the whole

network.

Within SpikeNET architecture, code scheme plays an important role in transform-

ing the input visual stimuli to the first spiking pattern. Normally, the input visual stim-

uli can be coded in either rate-coding scheme or time-coding scheme. The fundamental

difference between them is the way it connects the visual saliency and the spike asyn-

chrony. Traditionally, rate-coding scheme considers higher firing rate of spikes means
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higher visual saliency. However, it ignores one important fact that this firing rate would

only be reliable after a relatively long time window, which is unrealistic for the neu-

rons within the inferotemporal cortex. Thus, rank order coding (ROC) [24], [98], [99],

a simple yet powerful time-coding scheme, has been applied in this chapter. Within

ROC scheme, for each neuron, it can fire at most one spike within a step time window.

Such scheme considers the first spike wave conveys enough structural information for

further processing.

Based on the SpikeNET architecture and ROC scheme, Delorme and Thorpe [23],

[24], [46] proposed a novel batch learning rule and achieved satisfactory experimental

results on ORL face database even incorporating certain degrees of image degradations

into input images. Within the batch learning rule, the average cluster of the training

samples within each class has been computed and used to represent the class. However,

without accessing the number of samples within each class before the experiment, the

average cluster cannot be obtained. Moreover, for classes with distributed samples,

the average clusters cannot well represent the classes. To resolve the above issues,

on-line learning rule [47], [48], [49] has been proposed. For each class, it adaptively

divides the training samples into several sub-clusters and use them to represent the

class. Within the classification procedure, both methods incorporate winner-take-all

strategy. Specifically, to classify a testing sample, the batch learning rule just relies on

the average cluster while on-line learning rule only considers the nearest relevant single

sub-cluster. However, for overlapped classes within decision space, the testing sample

will be surrounded by various associated classes and a interference cluster may be

closest to the testing sample. Winner-take-all strategy will classify the testing sample to

the wrong class and it has no error correction mechanism for this scenario. Therefore,

for overlapped classes within decision space, both state-of-the-art learning rules cannot

accurately classify the testing samples.

To address the above problem, based on the SpikeNET framework, a novel learning

method inspired by the soft winner-take-all strategy has been proposed. Basically, for

overlapped classes within decision space, it will assign a probability for each related

class around the testing sample and this testing sample will be classified to the specific
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class with the highest probability. Compared with the two state-of-the-art learning

rules mentioned above, the proposed method achieved better experimental results on

ORL face database.

3.2 Neural Model and Rank Order Coding Scheme

3.2.1 Neural Model

Neural model is essential for SNN as it defines a conductance principle for the

neurons. As mentioned in the above section, the feed-forward SpikeNET [23] archi-

tecture includes three layers of retinotopic maps containing integrate-and-fire neurons.

Since the proposed SNN framework is based on SpikeNET architecture, integrate-and-

fire (IF) will still be used as the neural model in this chapter. Basically, each neuron

within the SNN acts as a coincidence detection unit. It integrates afferent spikes until

it reaches a threshold and then fires once.

A neuron integrates its inputs over time until it reaches a threshold, and fires a

single action potential. The neuron is then reset and, after a certain refractory period,

starts integrating information again. The latency of discharge of output neuron depends

upon the relative order of firing of its afferent neurons. To simulate the above neuronal

dynamics, the postsynaptic potential for neuron i at a time t can be calculated as:

PSP (i, t) = Σmodorder(aj)wj,i (3.1)

where mod ∈ (0, 1) is the the modulation factor, aj represents the synaptic connection

from afferent neuron j to neuron i and wj,i depicts the corresponding synaptic weight.

order(aj) represents the firing rank from afferent neuron j to neuron i. By convention,

order(aj) = +∞ if neuron j has not fire at time t, thus the corresponding term in the

above sum equals to zero. Each time the neuron receives a spike, the efficiency of

spike integration is divided by the factor mod. Neuron i will fire at time t if and only

if:

PSP (i, t) ≥ Threshold(i) (3.2)
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where Threshold(i) represents the predefined threshold of the neuron i. This fast

shunting inhibition mechanism leads to two key properties: First, the activation of the

neuron is highest when the order of afferent discharges matches the pattern of weights.

Second, the most strongly activated neurons fired first based on this kind of spike

integration.

3.2.2 Rank Order Coding Scheme

For SNN, code scheme is essential since it transforms the analog values to real

spikes. Traditionally, spiking rate is considered to represent most, if not all, infor-

mation of the input visual stimuli. Basically, such scheme states that as the intensity

of a stimulus increases, the frequency or rate of action potentials (spikes) increases.

However, electrophysiological studies [50], [51] indicate the neurons within the in-

ferotemporal cortex (IT) respond selectively to faces only 80-100 ms after presenting

the visual stimulus. Such short time window is not enough to generate a meaning-

ful spiking rate. Furthermore, the specific spiking timing sequence may convey much

more important information than the spiking rate itself. Therefore, compared with rate

coding scheme, temporal coding scheme is more universal.

Within SNN, when a postsynaptic neuron receives a presynaptic spike, its mem-

brane potential will increase accordingly. The higher the intensity of the input visual

stimulus, the more the neuron will be activated. After integrating various presynap-

tic spikes within a limited time window, the postsynaptic neuron will eventually fires

a postsynaptic spike if its membrane potential reaches the threshold. The more the

postsynaptic neuron activates, the less the latency of firing a spike will be.

Inspired by the above phenomenon, rank order coding (ROC), a time-to-first-spike

temporal coding scheme, has been proposed. Within ROC, the higher the intensity of

the input visual stimulus, the less the latency of firing a spike will be, as shown in Fig-

ure 3.2. For instance, the neuron received the input stimulus with the highest intensity

will generate a spike with the lowest latency. Besides, such coding scheme only uses

relative firing orders to represent the input visual stimuli. Furthermore, for each neuron

within SNN, it will only be allowed to fire at most once. ROC scheme considers the
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Figure 3.2: Rank order coding scheme diagram. The short horizontal line within the
spike part represents the latency of firing a spike. It can be seen that the higher the
intensity of the input visual stimulus, the less the latency of firing a spike will be.

first spike wave conveys enough information for further visual processing.

3.3 Proposed SNN Framework and its Learning Rule

It is know that the visual cortex is a hierarchical system consisting of various layers.

These layers correspond to different visual areas within visual cortex. Specifically, the

retina receive the input visual stimuli and then transmit them to visual areas V1, V2

and V4 before entering higher visual areas in the anterior and posterior inferotemporal

cortex.

To simulate this hierarchical system, a feed-forward SpikeNET [23] architecture

has been proposed. It includes three layers of retinotopic maps containing relatively

simple integrate-and-fire neurons, with a first layer corresponding to the retina, the

second one for V1 and the last one for V4-IT (inferotemporal cortex). With the devel-

opment of neuroscience, it has been shown that the neurons can use DoG (difference

of Gaussians) filters to simulate the ganglion cells within retina and Gabor filters to

mimic the orientation selective cell within V1. However, for overlapped classes within

the decision space, the winner-take-all strategy used in the third layer of SpikeNET

architecture has no error correction mechanism. If a interference class is closest to

the testing sample, this testing sample will be classified as the interference class. To

reduce this error classification, the framework of the proposed SNN and its learning

rule will be introduced in the following subsections, respectively.
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Figure 3.3: The framework of the proposed SNN. For simplicity, the lateral inhibition
connections of the last two layers have not been included.

3.3.1 Framework of the proposed SNN

Inspired by the SpikeNET [23] architecture, a novel feed-forward SNN framework

has been proposed by keeping the first two layers of SpikeNET architecture and replac-

ing the last layer with two new layers. Thus, in total, the proposed SNN framework

includes four layers and there are the lateral inhibition connections existed within the

last two layers. Moreover, the proposed SNN is a fully connected network.

Within the proposed SNN framework, each layer contains a number of retinotopic

maps and each map consists of various neurons. Specifically, within the first two lay-

ers, each neuron within each map corresponds to a specific pixel within the input image

and the number of neurons within each map is the same as the number of pixels within

the input image. Furthermore, for the third layer, only one neuron exists within each

map. To reduce the intra-class variance, for each input image, the center of the re-

ceptive field of this neuron corresponds to the center of the face and such center is

manually preselected. The center of the face is defined as the isobaric center of the

nose and two eyes. Finally, for each map within the last layer, there is only one neuron

located in the center of the map. For the sake of the simplicity, Figure 3.3 shows the

framework of the proposed spiking neural network with only one scale.

The neurons within the first layer represent the ON and OFF-center ganglion cells
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within the retina. To simulate these ganglion cells, difference of Gaussians (DoG)

filters have been used. DoG is a feature enhancement algorithm that involves the sub-

traction of one blurred version of an original image from another. Within DoG, the

input image is first smoothed by convolution with Gaussian kernel of certain scale σ1

and the first smoothed image g1(x, y) can be computed:

g1(x, y) = Gσ1(x, y) ∗ f(x, y) (3.3)

where ∗ represents convolution operation and f(x, y) is the input image, x and y rep-

resent the location of the pixel within the input image, Gσ1(x, y) is the Gaussian kernel

with scale σ1 and can be computed as following:

Gσ1(x, y) =
1√

2πσ12
exp(−x

2 + y2

2σ12
) (3.4)

With a different scale σ2, a second smoothed image g2(x, y) can be obtained:

g2(x, y) = Gσ2(x, y) ∗ f(x, y) (3.5)

where Gσ2(x, y) is the Gaussian kernel with scale σ2. The difference of these two

smoothed images can be used to detect the edges in the input image.

g1(x, y)− g2(x, y) = (Gσ1 −Gσ2) ∗ f(x, y) = DoG ∗ f(x, y) (3.6)

Thus the DoG as a convolution kernel is defined as:

DoG = Gσ1 −Gσ2 =
1

2π
(
e−(x2+y2)/2σ2

1

σ1
− e−(x2+y2)/2σ2

2

σ2
) (3.7)

where the sum of the mask elements within the DoG kernel will be normalized to zero.

The DoG used in this chapter has two scales. σ1 can take two values of 0.9 and 1.5.

Specifically, for each σ1, σ2 takes the value of 2σ1. Furthermore, the maximum and

minimum convolution values will be normalized to [−1,+1] so that the convolution

results with different scales share a same range.
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Within the second layer (L2), the neurons within each map try to mimic the ori-

entation selective cells within primary visual cortex V1. It has been shown the simple

orientation selective cells within V1 can be modeled by Gabor filters [100], [101].

In image processing, frequency and orientation representations of Gabor filters have

been found to be particularly appropriate for texture representation and discrimination

[100], [101]. The Gabor response F σ,θ
(x,y) can be computed by the following equation:

F σ,θ
(x,y) = exp(−(x

′2 + γ2y
′2

2σ2
)cos(2π

x
′

λ
+ ϕ)

x
′
= xcos(θ) + ysin(θ)

y
′
= −xsin(θ) + ycos(θ)

(3.8)

where θ is the orientation, x and y represent the location of the pixel within the input

image, x′ and y′ describe the location of the same pixel after rotating θ, ϕ the phase

offset, λ the wavelength, σ the standard deviation of the Gaussian factor and γ the

aspect ratio. As mentioned in the above paragraph, there are two scales within the first

layer. Inspired by the SpikeNET architecture [23], for each scale, eight orientation

maps have been used and each one being selective to different direction every other 45o.

The Gabor filters are normalized globally so that neurons having direction selective

cells as inputs can have PSP varying in the same range [0, PSPmax].

For each input image, a new map has been created within the third layer and only

one neuron exists within this map. To reduce the intra-class variance, the center of the

receptive field of this neuron is manually preselected and it is defined as the isobaric

center of the nose and two eyes. There are lateral inhibition connections existed in this

layer so that only k neurons fired eventually.

Given the number of classes is N , there are N maps within the last layer and each

map corresponds to a specific class. Only one neuron exists in each map and it is fully

connected to the previous layer. There are lateral inhibition connections existed in this

layer so that only one neuron fired eventually. The input image will be classified to the

class with a spike firstly fired within the associated map.
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3.3.2 Learning Rule

Based on the SpikeNET architecture, two state-of-the-art methods, batch learning

rule and on-line learning rule, have been proposed to accomplish the face recognition

tasks. For the classification procedure, these two methods share a common methodol-

ogy: winner-take-all strategy. Specifically, the class is represented using the average

cluster within the batch learning rule while the on-line learning rule use various sub-

clusters to represent the class. For overlapped classes within the decision space, the

input images will not be correctly classified with such winner-take-all strategy.

To address this issue, a novel learning rule inspired by the soft winner-take-all strat-

egy has been proposed. Specifically, given a input image, the proposed learning rule

will assign a probability for each associated class and the input image will be classified

to the class with the highest probability. Normally, for overlapped classes within the

decision space, the testing sample tends to be surrounded by clusters belonging to dif-

ferent classes. In this case, for each associated class, the number of clusters surrounded

the testing sample and their distances from the testing sample play an important role

in the classification procedure. Basically, the less the distance, the earlier the firing of

a spike; The more the number of clusters, the more the neuron activated. Therefore,

within the last layer, the probability P (i, t) for the associated class i at the time t can

be calculated as:

P (i, t) = Σmoddis(aj)p wpj,i (3.9)

wheremodp ∈ (0, 1) is the the modulation factor, aj represents the synaptic connection

from afferent neuron j to neuron i and wpj,i depicts the corresponding synaptic weight.

dis(aj) represents the firing rank from afferent neuron j to neuron i. By convention,

dis(aj) = +∞ if neuron j has not fire at time t, thus the corresponding term in the

above sum equals to zero. Each time the neuron receives a spike, the efficiency of

spike integration is divided by the factor modp. Neuron i will fire at time t if and only

if:

P (i, t) ≥ Thr(i) (3.10)

where Thr(i) represents the predefined threshold of the neuron i.
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When the order of the afferent discharges matches the pattern of weights, the acti-

vation of the neuron is highest and thus it will fire the first spike. Therefore, the whole

learning procedure can be described as follows:

1. Propagate a sample k of class K for training into L1 (ganglion cells) and L2

(orientation selective cells).

2. Create a new map in L3 for sample k and train the synaptic weights using the

following equation:

4 wj,i = modorder(aj) (3.11)

where 4wj,i is the change of the synaptic weights between neuron j of the L2

layer and neuron i of the L3 layer. aj represents the synaptic connection from

afferent neuron j to neuron i and order(aj) is the order of arrival spike from

neuron j to neuron i. mod represents the modulation factor. Only one neuron

exists within each map. To reduce the intra-class variance, the center of the

receptive field of this neuron is manually preselected and it is defined as the

isobaric center of the nose and two eyes. Within the third layer, only k neurons

are allowed to fire spikes. At time t, if the neuron has not received any spike from

the synaptic connection aj , the corresponding order(aj) will be set to +∞.

3. Create a new map for each class in L4 layer and train the synaptic weights using

the following equation:

4 wpj,i = moddis(aj)p (3.12)

where 4wpj,i is the change of the synaptic weights between neuron j of the L2

layer and neuron i of the L3 layer. aj is the synaptic connection from afferent

neuron j to neuron i and dis(aj) represents the order of arrival spike from neuron

j to neuron i. modp is the modulation factor. Within the layer L4, there is only

one neuron within each map and it is fully connected to previous layer. At time

t, if the neuron has not received any spike from the synaptic connection aj , the

corresponding dis(aj) will be set to +∞. Moreover, if the neuron receive a spike

from a synaptic connection aj originating from a map belonging to other classes,

the corresponding dis(aj) will be set to +∞.
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Figure 3.4: 10 views of random 5 persons within the ORL face database.

4. Stop the learning procedure when all the training samples have been fed into the

SNN.

3.4 Experiments

To verify the proposed SNN and its learning rule, this chapter uses the AT&T

Cambridge Laboratories face database [102] (also known as the ORL face database)

to test the accurate classification performance. Figure 3.4 shows 10 views of random 5

persons within the ORL face database. This image database include 400 faces and each

of them has been resized to 28× 23 pixels. It includes 10 views of 40 persons, which

includes both sexes, from different origins, with or without various characteristics such

as beard, glasses or mustache. Views were frontal(±30o).

3.4.1 Parameter Settings

Within the proposed SNN framework, for fair comparison with the batch learning

rule and the on-line learning rule, the parameters used in the first three layers take

the same value as SpikeNET architecture [23]. To obtain the best classification perfor-

mance, the parameter settings demonstrated in Table 3.1 have been used in this chapter.

Specifically, k and modp are optimized to achieve the best classification performance

on the ORL face database while others take the same values as [23].
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Table 3.1: Parameter settings of the proposed SNN.

Parameter Description Value

σ1 scale of first Gaussian filter 1 0.9, 1.5

σ2 scale of second Gaussian filter 1 2σ1

θ orientations of Gabor filter 1 every other 45o

ϕ phase offset of Gabor filter 1 0

λ wavelength of Gabor filter 1 5.0

σ standard deviation of Gabor filter 1 2.5

γ aspect radio of Gabor filter 1 1 ms

k number of neurons fired in L3 layer 2 8

mod model factor of first three layers 1 0.995

modp model factor of last layer 2 0.8

1 Take the same value as [23].
2 Optimized to achieve the best classification performance.

3.4.2 Experimental results and Analysis

Like batch learning rule [23], [24], [46] and on-line learning rule [47], [48], [49],

for each person, we will randomly choose 8 views from 10 views as the training sam-

ples and use the remaining 2 views as the testing samples. Specifically, in this chapter,

we will use 5-fold cross validation experiments on ORL face database to compare dif-

ferent methods.

Table 3.2 demonstrates the correct classification results of each fold and its average

values. To achieve the best performance, on-line learning rule uses c = 0 and simthr =

1, where c represents a measure of similarity between maps and simthr is a chosen

threshold. If c = 1, then only the training sample evokes the output spike [47], [48],

[49]. If the similarity of the two maps reaches the threshold simthr, they will be

merged into a single map [47], [48], [49]. Figure 3.5 shows the 5-fold cross-validation

results using three different methods. For each learning method, each point represents

each fold result of the 5-fold cross-validation experiment. The trend line is drawn

through the average of the results for each learning method and the error bars indicate

the standard deviation.
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Table 3.2: 5-fold cross-validation classification performance by using three dif-
ferent methods.

Fold
Method

Proposed method On-line [47], [48], [49] Batch [23], [24], [46]

1 0.8375 0.8125 0.6375

2 0.8125 0.8125 0.6

3 0.825 0.8 0.6

4 0.8375 0.8375 0.625

5 0.8125 0.8125 0.5625

Average 0.825 0.815 0.605

• Note: 0.8375 in this table means 83.75% correct classification rate. To
achieve the best performance, in this experiment, on-line learning rule uses
c = 0 and simthr = 1, where c represents a measure of similarity between
maps and simthr is a chosen threshold. If c = 1, then only the training sam-
ple evokes the output spike [47], [48], [49]. If the similarity of the two maps
reaches the threshold simthr, they will be merged into a single map [47], [48],
[49].

For the distributed samples within a class, the average cluster obtained from batch

learning rule may not be a good representation. Moreover, the batch learning rule

needs to know the number of samples before the experiments. To address the above

problems, for each class, on-line learning rule adaptively divides the training samples

into various sub-clusters and uses these sub-clusters to represent the whole training

samples. For each class, if all associated maps have been merged into one cluster

within the on-line learning rule, batch learning rule can be seen as a special instance

of on-line learning rule. However, both methods incorporate winner-take-all strategy

within the classification procedure and work not well for overlapped classes within

the decision space. Specifically, the batch learning rule only considers average cluster

within each class while the on-line learning rule just relies on the nearest single sub-

cluster.

Unlike those two state-of-the-art methods, the proposed learning method is in-

spired by the soft winner-take-all strategy. Basically, it will assign a probability for

each related class and the testing sample will be classified to the class with the highest

probability. Such probability is computed by collecting the local statistical distribu-
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Figure 3.5: 5-fold cross-validation results using three different learning rules. For each
learning method, each point represents each fold result of the 5-fold cross-validation
experiment. The trend line is drawn through the average of the results for each learning
method and the error bars indicate the standard deviation.

tion information around the undetermined sample. If the proposed learning method

only cares about the nearest sub-cluster, it can replace the on-line learning rule. From

this point of view, on-line learning rule can be considered as a special instance of the

proposed learning rule.

3.5 Conclusion

In this chapter, based on the SpikeNET architecture [23], two state-of-the-art learn-

ing methods - batch learning rule and on-line learning rule - have been proposed to

accomplish the face recognition tasks. Specifically, for each class, batch learning rule

computes the average cluster of the samples and on-line learning rule adaptively di-

vides the samples into various sub-clusters. Within the classification procedure, both

methods incorporate winner-take-all strategy and then classify the input image accord-

ing to one single cluster. Batch learning rule just uses average cluster while on-line

learning rule only relies on the nearest sub-cluster. However, such winner-take-all

strategy works not well for overlapped classes within the decision space. To address

the above problem, a novel learning rule inspired by soft winner-take-all strategy has
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been proposed. For each input image, it will assign a probability for each associated

class and the input image will be classified to the class with the highest probability.

Experimental results on ORL face database show our proposed method can provide

satisfactory results compared with the above two state-of-the-art methods.

However, those attempts are still in their initial stage as the proposed SNN still

needs more balanced features in terms of invariance and differentiation. In other words,

the abstract features we used in this paper are still not fully capable for complicated

visual pattern recognition tasks. Therefore, extending the framework of the proposed

SNN and thus abstracting higher balanced features occupies the priority position in

future works.
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Chapter 4

Fast Learning for Visual Pattern

Recognition using Spike-timing

Dependent Plasticity

Based on evolution theory, reliable and fast visual pattern recognition is vital for

most animal species. Without such capability, the specie will be selected against by

nature. In most cases, new visual pattern should be learned in a limited time window

to adapt to new environments or changes promptly. Recent research shows a biological

brain can process complicated real-life recognition scenarios at milliseconds scale [2].

With the advancement of the neuroscience, it is known that neurons use spikes to

represent information. To achieve a realistic neural simulation, spiking neural network

(SNN) is often used as the neural network model. Compared with traditional artificial

neural network, SNN cannot only use spiking rate but also specific spiking timing

sequence to represent the information, which greatly improves the distinguishability.

To achieve a fast visual pattern recognition, various methods [17], [68] using the

spiking timing sequence have been proposed. However, the Tempotron rule used in

[68] needs a supervisory error signal to update the synaptic weights and this super-

visory error signal, in real scenarios, is hard to obtain. Unlike [68], the authors in

[17] use an unsupervised spike-timing dependent plasticity (STDP) method to learn

the local intermediate features. It is known that feature extraction is only an important

component of pattern recognition. Thus, in [17], the STDP learning method itself is
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not enough to accomplish the visual pattern recognition tasks. To address the above

issues, in this chapter, a novel feed-forward SNN framework has been proposed. To

strike a trade-off between speed and performance, the proposed SNN uses the first two

layers of HMAX model to generate the local invariant features and applies an unsuper-

vised STDP learning method to train the synaptic weights. Unlike the above methods,

the proposed SNN does not need the supervisory error information and the applied un-

supervised STDP learning rule is enough to finish the pattern recognition task. Exper-

imental result on MNIST database shows the proposed method can efficiently achieve

an acceptable accuracy within a limited time window.

4.1 Background

In real scenarios, it is often impossible to obtain the whole training database as,

in most cases, they are gradually generated over time. Real-time learning method

has to learn with limited samples often in real time, without the opportunity to learn

the whole training database. Various machine learning applications have the similar

learning situation - a rescue robot needs to learn to recognize individuals on the spot,

an identification or human recognizing system needs to cope with new criminals in any

public areas, an health-care intelligent machine need to learn to cope with new patients

quickly with limited information, all of which need to learn in a fast speed in real time.

It is proved that learning visual patterns in real time proposes a huge challenge

- the algorithms underlying should process a large volume of visual data in an ex-

tremely short period of time. However, for a biological brain, coping with these large

volume of visual data in real time is a effortless work. A human brain may contain

more than 10 billion densely packed neurons that are connected to an intricate network

with numerous spikes are emitted in each millisecond. The mechanism of how these

spikes are generated and processed is still an open question. But this has not prevented

researchers from proposing biological plausible methods for pattern recognition, as

briefed below.

Various spike coding schemes such as rate-based coding [103],[104] and spike

timing-based coding [27], [75] have been proposed to transform the input analog fea-
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tures into the real spike trains. A human brain can recognize objects in a few tens

of milliseconds in a very complicated real-life scenarios. It is almost impossible for

rate-based SNN to generate meaningful spiking rate in such a short time window. Re-

cent studies show there are repeating spatiotemporal spiking patterns with millisecond

precision existed in vitro and vivo [29]. For rate-based SNN, it is impossible to dis-

criminate the repeating spiking patterns from the distractor with the same spiking rate

as the repeating spiking patterns. In contrast, given a appropriate learning rule, the

spike timing-based SNN can still extract a repeating pattern within a quite short time

window [29]. Furthermore, a spiking pattern itself conveys significant structural infor-

mation, which cannot be represented by spiking rate alone. Thus, in this chapter, rank

order coding (ROC) scheme [24], [98], [99], one type of spike timing-based scheme,

will be used to translate the analog features to spiking patterns for further processing.

These translated spiking patterns convey unique spatiotemporal structural information

corresponds to the inputs images and can be classified via machine learning rules.

To learn these spiking patterns, spike timing dependent plasticity (STDP), one of

the most biological plausible learning rule [41], [43], [105], [106], [107], has been

applied in this chapter. Like Hebb’s postulate [40], it emphasizes the causality of the

related spikes and adjusts the efficacy of synaptic connections based on the relative

timing of postsynaptic spikes and its input presynaptic spikes. As an unsupervised

learning rule, STDP does not need prior information or teaching signal in learning. It

will adaptively change the synaptic efficacy and try to extract the most notable spiking

pattern.

Several papers using SNN and spike timing-based coding scheme have been pro-

posed for visual pattern recognition tasks [17], [68]. Inspired by HMAX model [108]

which consists of four layers (S1-C1-S2-C2) to simulate ventral stream (V1-V2-V4-

IT), Thorpe et. al [17] have investigated the learning of C1 to S2 synaptic connections

through STDP and suggested that temporal coding may be a key to understand the

phenomenal processing speed achieved by the visual system. However, feature extrac-

tion is only a significant part of pattern recognition. Thus, in [17], STDP itself was

not enough to achieve the spiking pattern recognition. In [68], the authors proposed
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a novel SNN with supervised learning rule and temporal coding scheme to generate

the spike pattern. Such SNN system and its supervised learning rule achieved rela-

tively good classification rate when conducting simple random sampling experiments

on the MNIST database. However, the supervisory error signal used in such supervised

learning rule, in real scenarios, is hard to obtain.

To overcome the drawbacks mentioned above, a novel method taking advantages

of SNN and spiking timing-based coding scheme has been proposed in this chapter.

Unlike [17], in our method, S1 and C1 are only for feature extraction; features are

translated to spiking pattern from C1; STDP is used after spiking encoding layer for

pattern recognition. To further speed up the leaning process, we only use S1 and C1 to

extract visual features. Unsupervised learning rule is employed in the proposed method

to make it more practical. Dynamic threshold is introduced to guarantee each training

sample can be fully exploited in learning. Fast simple random sampling experiments

using MNIST database are carried out to evaluate the efficiency and accuracy of the

proposed method.

4.2 Framework of the proposed SNN

In real scenarios, the visual pattern recognition application often involves vast data

dimensions and exists significant variability in terms of inter-class and intra-class.

Thus, reducing the data dimensionality and obtaining the generalized features is an

inevitable choice for most visual pattern recognition applications. Those generalized

features should contain the most distinguishable and unchangeable characteristics of

the original input image [9], [10]. Furthermore, to transmit the structural information

from the input visual stimuli to the proposed SNN, the analog features need to be trans-

formed to spike trains. Rank order coding has been chosen as the coding scheme to

achieve the above goals. Based on an appropriate learning strategy, different spiking

patterns would be recognized eventually.

The whole framework of the proposed SNN includes three main layers: feature

extracting layer, spiking encoding layer and output layer. Figure 4.1 shows the frame-

work of the proposed spike timing-based feed-forward SNN. Within feature extracting

51



CHAPTER 4. FAST LEARNING FOR VISUAL PATTERN RECOGNITION USING SPIKE-TIMING DEPENDENT PLASTICITY

Figure 4.1: The framework of the proposed spike timing-based feed-forward SNN. For
simplicity, the lateral inhibition connections of the last layer have not been included.

layer, the input images have been used to generate the corresponding C1 features with

different scales and directions. Based on the ROC scheme, those C1 features have

been transformed into spike trains. Each input image has its own corresponding spike

pattern after those two layers. The output layer uses STDP learning rule and winner-

take-all strategy to train the synaptic efficacy matrix with specific selectivity to the

input image. In this chapter, within each output map, there is only one neuron for

each specific class. The details of the three layers will be introduced in the following

sub-sections.

4.2.1 Feature Extracting Layer

It has been shown that visual processing is hierarchical, aiming to build an invari-

ance to position and scale first and then to viewpoint and other transformations [109].

Inspired by such phenomenon, HMAX model [108], [110], a hierarchical system that

closely follows the organization of visual cortex, has been proposed to build an increas-

ingly complex and invariant feature representation by alternating between a template

matching and a maximum pooling operation. This hierarchical system includes four

layers: S1 layer, C1 layer, S2 layer andC2 layer. The simple S units within S1 and S2
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combine their inputs with a bell-shaped tuning function to increase selectivity while

the complex C units within C1 and C2 pool their inputs through a maximum opera-

tion, thereby increasing invariance. Basically, for an input map, a template matching

operation will obtain the convolution of the map by using a specific template (kernel).

As a downsampling technique, for a local domain, a maximum pooling operation will

compute the maximum value from the local domain and only use it to represent the

whole local domain.

For the sake of efficiency and simplicity, only the first two layers of HMAX model

(S1 layer and C1 layer) have been used to extract the expected features in this chapter.

Since simulating the complex cells in V 1, the features extracted from C1 layer convey

a relatively local invariance. Specifically, S1 features can be generated after applying

Gabor filters with vary scales and orientations to the input image, which correspond

to the classical simple cells in the primary visual cortex. It has been shown that Ga-

bor response F σ,θ
(x,y) can provide a good model of cortical simple cell receptive fields

[100], [101], which can be computed according to Equation 3.8. In this chapter, we

choose the same parameters settings as the HMAX model [108] that is using a range

of sizes from 7 × 7 pixels to 37 × 37 form the pyramid of scales, and θ takes four

orientations (0o, 45o, 90o, 135o). Notably, those S1 features have been normalized to

a predefined range [−1, 1] so that input images with the same contrast will generate

same S1 features.

C1 unit pool over retinotopically organized afferent S1 units from the previous

S1 layer with the same orientation and from the same scale band. It corresponds to

the cortical complex cells in V 1, which convey certain invariance to local transfor-

mation. The vital part of C1 layer is the max pooling operation, which increases

the tolerance to transformation from S1 layer to C1 layer. Basically, the response

rσ,θ(x,y) of a complex C1 unit corresponds to the maximum response of its m incoming(
F σ,θ
(x1,y1)

, · · ·F σ,θ
(xm,ym)

)
responses from the previous S1 layer with two adjacent scales:

rσ,θ(x,y) = max
j=1···m

F σ,θ
(xj ,yj)

(4.1)

Unlike the traditional HMAX model [108], to speed up the processing speed, only
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Figure 4.2: The generating procedure of spike pattern with the first smallest scale
within C1 layer as example.

the first two smallest scales of C1 layer have been used to obtain the spike pattern, as

shown in Figure 4.2. The whole generating procedure can be summarized as follows:

1. Create S1 maps using the Gabor responses with the same settings as HMAX

model [108]. Unlike the HMAX model [108], to speed up the processing speed,

only the two smallest scales have been used to generate the S1 maps.

2. Downsampling the S1 maps using the maximum pooling operation and generate

the C1 maps. Specifically, for each S1 map with the smallest scale, a local

sliding window with the size of 8 × 8 has been applied to all four orientations

(0o, 45o, 90o, 135o) and the maximum value within this sliding window will be

computed. This maximum value will be used to represent the whole sliding

window. Note, there are overlaps between the adjacent sliding windows and the

overlapping size is 4×4. For the second smallest scale, the sliding windows size

is 10× 10 and the overlapping size is 5× 5.

Throughout the feature extracting layer, only the maximum S1 feature within the

corresponding sliding window has been selected and all others have been discarded.

Such max pooling operation can not only ensure the generated C1 feature having cer-

tain local invariance but also reduce the dimension of the whole data set.
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(a) Original image (b) S1 features map (c) C1 features map

Figure 4.3: One input image and its associated S1 and C1 features maps (C1 map has
been enlarged for better viewing). (a) is one input image. The S1 features map in (b)
is intermediate features generated by Gabor filter with a specific orientation and scale.
C1 features map shown in (c) represents the local invariant features.

Compared with simple cells within V 1, the cortical complex cells tend to have

larger receptive fields [108]. For each orientation, C1 unit pool over two S1 maps

with adjacent filter sizes. Those maps have the same dimensionality but they are the

products of different filters. By sub-sampling with local cells with predefined sizes,

C1 units takes the maximum response from the associated cell grid. Thereby, the

dimension has been reduced with this max pooling operation. The bigger the cell grid

takes, the lesser the dimensionality of C1 maps will be.

In this chapter, the S1 features have been normalized to [−1, 1] and the C1 features

will naturally have the range [0, 1]. By doing this, one can easily design the linear trans-

formation strategy used in ROC scheme. For the sake of simplicity, besides showing

the input image, Figure 4.3 only shows one associated S1 features map and C1 fea-

tures map. Template matching operation used in S1 layer generates orientation edge

packages with certain selectivity, while max pooling operation in C1 layer achieves

dimensionality reduction and invariance to local transformation.

4.2.2 Spiking Encoding Layer

Compared with spiking rate, spiking timing sequence may convey more significant

information of the input visual stimuli. In this chapter, rank order coding (ROC), a

simple yet powerful temporal coding scheme, has been used to generate spikes from

the input visual stimuli. As discussed in the section 3.2.2, ROC uses relative firing

orders to represent the input visual stimuli.
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However, given the same relative order, there are countless spiking pattern combi-

nations but the normal ROC scheme can only distinguish one single pattern (according

to the relative order). To address this drawback, we will use specific absolute spiking

timings to replace the relative orders. As mentioned in the section 3.2.2, the higher

the intensity of the input, the less the latency of firing a spike will be. Therefore, for a

specific feature response r within C1 layer, the corresponding spiking timing t (with

the unit s) can be computed as follows:

t = p(maxr − r) (4.2)

where maxr is the maximum value of all related C1 features in the receptive filed and

p is a positive constant within the range from 0 to 1. Here, p is used to control the

length of the processing time window of a specific spiking pattern. As mentioned in

the above section, the C1 feature response r has been normalized to [0, 1]. If p takes 1,

then the maximum processing time window of a specific spiking pattern will be 1 s. As

Figure 4.2 shown, given the C1 maps with all four orientations, the exact spike timing

of the corresponding C1 feature can be computed using the Equation 4.2. By vertically

assigning the C1 map, each C1 map with certain orientation has been transformed to a

horizontal vector with the same orientation. For the sake of simplicity, only one scale

of C1 layer has been shown in Figure 4.2.

Through the first two layers, the input images will be transformed into spiking pat-

terns with spatiotemporal structural information. Figure 4.4 shows one input image

and its spike pattern generated from the first two layers. Specifically, input images be-

longing to the same class should generate similar spiking patterns with little intra-class

variance. In contrast, input images belonging to the different classes should obtain

spiking patterns with significant differences.

4.2.3 Output Layer

Within the output layer, there are 10 maps and each map corresponds to a specific

class. Note, each map only has one neuron. The neurons within spiking encoding layer

and output layer are fully connected so that each output neuron receive synaptic con-
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(a) Input image (b) Spike pattern

Figure 4.4: Input image and its spike pattern generated from the first two layers. Here,
the spikes are generated by local invariant C1 features.

nections from all the neurons within spiking encoding layer. To achieve a competitive

learning, there are lateral inhibition connections within the last layer. The output layer

uses winner-take-all strategy so that the first fired neuron will strongly depress the rest

neurons within the output layer from firing spikes and thus the input image will be

considered as the class associated with the fired neuron.

Broadly speaking, the visual pattern recognition application should involve two

main tasks: spiking pattern generating and spiking pattern learning. Specifically, the

first two layers of the proposed SNN achieve the spiking pattern generating task while

the output layer accomplishes the spiking pattern learning task.

4.3 Neuron Model and STDP Learning Rule

To build a successful SNN framework, neuron model and spiking pattern learning

rule are two essential building blocks. The former one defines the the conduct principle

of the spiking neurons while the latter one provides the specific learning steps for the

synaptic connections.

4.3.1 Neuron Model

Within SNN, various neuron models such as leaky integrate-and-fire (LIF) and

spike response model (SRM) have been commonly used as the conduct principle of
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the spiking neurons [1]. In fact, SRM can be considered as a generalization of LIF

model.

Specifically, LIF model model acts as a coincidence detector and the causality be-

tween local spikes has been emphasized. When the post-synaptic neuron receives a

spike from its presynaptic neuron, the responding post-synaptic potential (PSP) will

be generated. One can use certain time course to depict this dynamic PSP change.

In leaky integrate-and-fire model, the post-synaptic potential will gradually decrease

if no spikes received since last received spike. Therefore, in order to generate a post-

synaptic spike, this post-synaptic neuron needs to receive lots of spikes within a relative

small time window so that its PSP can reach the predefined threshold.

The dynamic procedure of LIF model can be summarized as follows: when a post-

synaptic neuron receives presynaptic spikes, it will generate dynamic synaptic current

and this dynamic current will thus produce dynamic synaptic voltage. A postsynaptic

spike will fired if the dynamic synaptic voltage reaches the predefined postsynaptic po-

tential threshold. As shown in [1], the dynamic postsynaptic current can be expressed

as follows:

Ii (t) =
∑
j

wij
∑
f

α
(
t− t(f)j

)
(4.3)

where t(f)j represents the time of the f -th spike of the j-th presynaptic neuron; wij is

the strength of the synaptic efficacy between neuron i and neuron j. α(t) is the time

course function, which can be expressed as follows:

α (t) = α
1

τ
exp

(
− t
τ

)
Θ (t) (4.4)

where Θ is the Heaviside step function with Θ (t) = 1 for t > 0 and Θ (t) = 0 else. τ is

the time constant. For a given time-varying input current I (t), the membrane potential

V (t) can be computed as follows:

V (t) = Vr exp

(
−t− t0

τm

)
+
R

τm

∫ t−t0

0

exp
(
− s

τm

)
I (t− s) ds (4.5)

where the initial condition V (t0) = Vr and τm is the membrane time constant. R
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represents the resistance. This equation describes the dynamics of the membrane po-

tential between successive spiking events. When the membrane potential reaches the

threshold Vthr,

V (t) ≥ Vthr (4.6)

it will fire a spike, followed by the absolute refractory period (the membrane potential

is resets to Vr and the absolute refractory time is Trf ) and then start to evolve after-

wards.

In this chapter, a dynamic post-synaptic potential threshold has been proposed in

the training period. Given the input image, for the first run, we collect the generated

membrane potentials from the corresponding spiking pattern instead of setting post-

synaptic potential threshold. The associated postsynaptic potential threshold has been

set to a percentage of the maximum value obtaining from collecting all membrane

potentials within the predefined time window, as shown in follows:

Vthr = k ×max(V (t)) (4.7)

where Vthr is the post-synaptic potential threshold and V (t) represents membrane

potential. max (V (t)) is the maximum value of membrane potential within the prede-

fined spiking time window and k depicts a positive constant within the range [0, 1]. By

doing this, each input image can be ensured to be trained during the learning proce-

dure. Such scenarios with only a little part of training samples have been actually used

(especially those training samples with relatively large intra-class variance) will be

avoided. Each input spike pattern will contribute its part to the final learning efficacy

matrix with certain selectivity.

Figure 4.5 uses the same input image as Figure 4.4 and shows its spike pattern, dy-

namic current and membrane potential. It can be seen that the oscillation of dynamic

current depends on the closeness of the local spike packages. When the post-synaptic

neuron receives lots of spikes from presynaptic neurons in a short time window, the

dynamic current will increase dramatically and then gradually decline if no spikes re-

ceived afterwards. This dynamic current will generate membrane potential in the post-
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Figure 4.5: Schematic diagram of leaky integrate-and-fire model.

synaptic neuron. When the membrane potential reaches its predefined post-synaptic

potential threshold, the post-synaptic neuron will fire a spike, followed by a quite short

refractory period (about 1 ms) and then start integrating again.

Note, by using LIF model, only spikes within a short time window can stimulate

the postsynaptic neuron to fire a post-synaptic spike. Those presynaptic spikes with

much later or earlier have no influence on the procedure of generating a postsynaptic

spike.

4.3.2 STDP Learning Rule

Hebb’s postulate [40], one of the most important theory in neuroscience, tries to

explain the adaptation of neurons in the brain during the learning process. It empha-

sizes the causality between pre- and postsynaptic neurons, which also known as “Cells

that fire together, wire together”. Specifically, in Hebb’s postulate, cell A needs to take

part in firing cell B, and such causality can only occur if cell A fires just before, not at

the same time as, cell B.

Like Hebb’s postulate, Spike-timing dependent plasticity (STDP) also emphasizes

the causality between pre- and postsynaptic neurons [41], [43], [105], [106], [107].

It adjusts the efficacy of synaptic connections based on the relative timing of post-

synaptic spike and its input presynaptic spike. In fact, it can be considered as a tempo-

rally asymmetric form of Hebb’s postulate.

Within neuroscience, long-term potentiation (LTP) is a persistent strengthening of

synapses based on recent patterns of activity, while long-term depression (LTD) is an

activity-dependent long-lasting reduction in the efficacy of neural synapses. Based on
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these concepts, STDP learning rule can be summarized as follows: when a presynaptic

spike fires slightly earlier than the post-synaptic spike, the associated synaptic efficacy

will be potentiated (LTP); On the other hand, the associated synaptic efficacy will

be depressed (LTD) if the presynaptic synaptic spike fires later than the post-synaptic

spike. The learning function W (t) can be expressed as follows (t is the time difference

between pre- and postsynaptic spikes):

W (t) = A+ exp

(
− t

τ+

)
for t > 0

W (t) = −A- exp

(
t

τ-

)
for t < 0

(4.8)

where A+ and A- represent amplitude of LTP part and LTD part of the learning win-

dow, respectively. τ+ and τ- are time constant for LTP and LTD, respectively.

For biological reasons, it is desirable to keep the synaptic efficacy in a predefined

range. Thus, a soft bound strategy [111],[112] has been used to ensure the synaptic

efficacy remains in the desired range wmin < wj < wmax, here, wmin and wmax

represent minimum and maximum value, respectively. The soft bound strategy can be

expressed as follows (for the sake of simplicity, the lower bound is set to zero in most

models):

A+ (wj) = (wmax − wj) η+ and A- (wj) = wjη- (4.9)

where η+ and η- are positive constants. Figure 4.6 shows one example of STDP learn-

ing window. It has been proven that STDP can reliably find the start of repeating

pattern even there are spike jitters or spontaneously activities existed [29]. To achieve

stable status for synaptic efficacy, the predefined postsynaptic potential threshold needs

to be tuned around its optimum value [1].

Within the proposed SNN, the output layer is the only learning layer. The spiking

pattern generated from the first two layers conveys certain selectivity to its input im-

age. Specifically, the spatiotemporal information embedded within the spike pattern

plays an important role in defining such selectivity. Spike-timing dependent plasticity

learning rule has been applied in the output layer and it will dynamically changes the

synaptic efficacy according to the learning window. Eventually, the synaptic efficacy
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Figure 4.6: One example of STDP learning window. When a presynaptic spike fires
slightly earlier than the post-synaptic spike, the associated synaptic efficacy will be
potentiated; Otherwise, the associated synaptic efficacy will be depressed.

matrix will be stabilized and thus the selectivity will be emerged after the learning

procedure. Unlike [17], in the proposed method, STDP is used after spiking encoding

layer for pattern recognition, and C1 features are translated to spiking patterns (S1 and

C1 are only for feature extraction).

Note, a new input image should be fed into the feed-forward SNN only until the

current input image has been successfully trained or tested. After successfully learning

the efficacy weights, the membrane potentials generated during the training procedure

will be reset to default values. This learning efficacy weights would be updated each

time until the very last training image been feeding into the spiking neural network.

Thus, the whole learning procedure can be described as following:

1. Propagate an input image I into the feature extracting layer and obtain its local

invariant C1 features. Moreover, transform the corresponding 2D local invariant

C1 features into a 1D vector F , as shown in section 4.2.1.

2. Create a new map for the feature vector F within the spiking encoding layer

and obtain its spiking pattern S by using the modified ROC scheme, as shown

in section 4.2.2. Note, the number of elements in the local invariant C1 feature

vector F is identical to the number of neurons within the spiking encoding layer.

3. Create a new map for each class within the output layer and train the incoming

spiking pattern S by combing a unsupervised STDP learning rule and a winner-

take-all strategy. To achieve the winner-take-all strategy, there are lateral inhibi-

tion connections existed within output layer. After the learning the input spiking
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pattern S, reset the intermediate variables such as dynamic currents and mem-

brane potentials to their resting values.

4. Stop the learning procedure if all the input training images have been fed into

the proposed SNN once. Otherwise, go to Step 1 and continue the learning

procedure.

4.4 Experiments

To verify the proposed feed-forward SNN and its unsupervised STDP learning rule,

MNIST handwritten digits database has been used as the training and testing database.

Specifically, in this section, details about MNIST database and experimental parameter

settings will be introduced firstly, followed by different experiments and discussions

under various circumstances.

4.4.1 MNIST Database

Within pattern recognition field, MNIST handwritten digits database [113] is of-

ten considered as a benchmark database, which contains 60000 training samples and

10000 testing samples (all sample size is 28×28). It includes 10 classes in which each

class represents one specific handwritten digit between 0 and 9.

As Figure 4.7 shown, MNIST database has large intra-class variance and thus pro-

poses a quite challenging task for the proposed method. For instance, the digit 1 and

7 in Figure 4.7 have different external shape (the fifth digit in the second row and the

sixth digit in the last row have significant different external shape compared with other

samples in their class). Sometimes, even human being cannot easily recognize some

digits of the database. For example, the fifth digit in the last row could be seen as 4 or

6 and each one can have their own opinion.

4.4.2 Parameter Settings

For the sake of efficiency, only the first two layers of HMAX model have been

used in this chapter. For each input image, a local invariant C1 feature vector will be
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Figure 4.7: Random examples of MNIST database.

Table 4.1: Parameter settings of the proposed SNN.

Parameter Description Value

τ postsynaptic current time constant 2 2.5 ms

τm membrane time constant 1 10 ms

τ+ LTP time constant 1 0.0168

τ− LTD time constant 1 0.0337

R the resistance 1 0.1 mΩ

p a positive constant for ROC 2 0.05

Trf absolute refractory time 1 1 ms

Vr resting membrane potential 1 0 mV

k a positive constant for Vthr 2 0.8

wmin minimum synaptic weight 1 0

wmax maximum synaptic weight 1 1

η+ a positive constant for A+
1 0.03125

η− a positive constant for A−
1 0.0265625

1 Take the same value as [29].
2 Optimized to achieve the best classification performance.

obtained within the feature extracting layer. In this chapter, we use the same parameter

settings as HMAX model [108] to generate this C1 feature vector. To simulate the

proposed SNN framework and obtain the best classification performance, parameter

settings demonstrated in Table 4.1 have been used. As mentioned in section 4.2.2,

p controls the time window for a spiking pattern. In this chapter, p is 0.05, which

means the time window for a spiking pattern is 50 ms. Note, the time resolution of

this experiment is 0.1 ms.
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4.4.3 Experiments and Discussions

In many brains areas, temporal aspects of spiking patterns have been found to be

highly reproducible [114]. To obtain spiking patterns with no intra-class variance, the

generated high level features should remain same for different input images. Other-

wise, if the high level features generated from different input images are similar to

each other, the spiking patterns will have low intra-class variance; if the high level fea-

tures vary dramatically from each other for different input images, the spiking patterns

will have large intra-class variance.

Moreover, the mean of Pearson’s correlation coefficients can be used to describe the

level of the intra-class variance. Specifically, givenm input images, the feature extract-

ing layer will generate m local invariant C1 feature vectors. If we have one local in-

variant C1 vector {x1, . . . , xn} containing n elements and another vector {y1, . . . , yn}

containing n elements then the corresponding Pearson’s correlation coefficient rxy can

be computed as follows:

rxy =
nΣn

i=1xiyi − Σn
i=1xiΣ

n
i=1yi√

nΣn
i=1x

2
i − (Σn

i=1xi)
2
√
nΣn

i=1y
2
i − (Σn

i=1yi)
2

(4.10)

and the mean of Pearson’s correlation coefficients r̄ can be computed as follows:

r̄ =
1

m2

m∑
x=1

m∑
y=1

rxy (4.11)

The spiking patterns will have large intra-class variance if | r̄ |≤ 0.8. Furthermore, if

0.8 < | r̄ |< 1, then the spiking patterns will have low intra-class variance. Finally, if

| r̄ |= 1, then the spiking patterns will have no intra-class variance.

In the theoretical study [114], the authors state that repeated inputs systematically

lead to a shaping of the neuron’s selectivity, emphasizing its very first input spikes,

while steadily decreasing the postsynaptic response latency. However, such statement

is only valid for spiking patterns with no or low intra-class variance. Thus, before giv-

ing the experimental performance of the proposed method, we will firstly discuss the

actual performance of the proposed STDP learning rule under different circumstances

(with no intra-class variance and large intra-class variance).
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(a) Status of the first iteration of STDP learning

(b) Status of the 200-th iteration of STDP learning

Figure 4.8: Generating selectivity by using unsupervised STDP learning. In this ex-
periment, since repeated inputs are the same images, then | r̄ |= 1.

4.4.3.1 STDP Learning with No Intra-class Variance

Figure 4.8 shows dynamic learning procedure of generating selectivity after using

unsupervised STDP learning method. Figure 4.8a shows the beginning of the learning

procedure. It can be seen that the dynamic synaptic current fluctuates over the whole

time window and the synaptic voltage reaches its threshold at about 30 ms and 48

ms. The synaptic efficacy weights are relatively random at this stage. After presenting

the same input image (same input image in Figure 4.4) to the SNN system about 200

times, the selectivity finally emerged, just as the Figure 4.8b shows. At this stage,

the synaptic current only fluctuates over the first half time window and the synaptic

voltage fires the spike at about 24 ms. What’s more, the synaptic efficacy matrix has a

special status with most weights take 0 and the rest take 1 [114], [115]. Therefore, the

selectivity to this specific input image emerges. However, such learning results can be

generated only if the intra-class variance of the input images remains at a reasonable

level (| r̄ |> 0.8).
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4.4.3.2 STDP Learning with Relatively Large Intra-class Variance

As Figure 4.8 shown, under the ideal situation that no intra-class variance existed

in features, the proposed method can obtain an ideal STDP learning efficacy matrix. In

real scenarios, such ideal condition is impossible to achieve. In this experiment, even

the input images having high level intra-class variance, as shown in Figure 4.9a, 4.9b,

4.9e, 4.9f, 4.9i, 4.9j, the proposed method can still learn certain selectivity.

In Figure 4.9, according to the level of intra-class variance, 6 input images have

been divided into three groups. Note, 4.9a, 4.9e and 4.9i are the same input images.

Group 1 (| r̄ |= 0.9136) includes 4.9a and 4.9b, 4.9c and 4.9d are the learning synaptic

weight of 20-th and 200-th iterations, respectively; Group 2 (| r̄ |= 0.8461) consists of

4.9e and 4.9f, 4.9g and 4.9h are dynamic efficacy matrix of 20-th and 200-th iterations,

respectively; Group 3 (| r̄ |= 0.7238) contains 4.9i and 4.9j, 4.9k and 4.9l are dynamic

efficacy matrix of 20-th and 200-th iterations, respectively; Here, one iteration means

sequentially feeding the two input images into the proposed SNN once. The learning

synaptic weight will be harder to concentrate if increasing the intra-class variance level

| r̄ |. In other words, from Figure 4.9, one can easily concluded that training samples

with more intra-class variance will somehow hard to learn the selectivity.

Given large intra-class variance, Figure 4.10 shows the dynamic learning efficacy

matrix with different number of learning iterations. Note, in this experiment, one itera-

tion means sequentially feeding 50 different training samples within a certain class into

the proposed SNN framework. It can be seen that the dynamic status only have a very

limited changes. However, even the intra-class variance in the experiment remains at a

relatively high level, the training samples are not totally independent (e.g. totally ran-

dom samples), and thus such seemingly random learning efficacy matrix may contains

certain selectivity to the input.

To ensure each training sample will be properly learned, a dynamic membrane

potential threshold strategy (described in equation 4.7) has been applied in this chap-

ter. Table 4.2 shows the correct classification comparison with the proposed dynamic

membrane potential threshold and the predefined voltage threshold. Note, the prede-

fined voltage thresholds have been set within a certain range (10-30 mV ) around its

67



CHAPTER 4. FAST LEARNING FOR VISUAL PATTERN RECOGNITION USING SPIKE-TIMING DEPENDENT PLASTICITY

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 4.9: Based on the level of intra-class variance, 6 input images have been divided
into three groups. Note, (a), (e) and (i) are the same input images. Group 1 (| r̄ |=
0.9136) includes (a) and (b), (c) and (d) are the learning synaptic weight of 20-th and
200-th iterations, respectively; Group 2 (| r̄ |= 0.8461) consists of (e) and (f), (g) and
(h) are dynamic efficacy matrix of 20-th and 200-th iterations, respectively; Group 3
(| r̄ |= 0.7238) contains (i) and (j), (k) and (l) are dynamic efficacy matrix of 20-th
and 200-th iterations, respectively; Here, one iteration means sequentially feeding the
two input images into the proposed SNN once. The learning synaptic weight will be
harder to concentrate if increasing the intra-class variance level | r̄ |.
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(a) The first iteration (b) The 5-th iteration

(c) The 10-th iteration

Figure 4.10: Learning synaptic weights with large intra-class variance. Here, one
iteration means sequentially feeding 50 different training samples within a certain class
into the proposed SNN framework once.

Table 4.2: Impact of dynamic membrane potential threshold
on recognition rate.

With dynamic threshold
With predifined threshold (mV)

10 20 30

0.81 0.73 0.78 0.71

• Note: 0.81 in this table means 81% correct classifica-
tion rate. Here, classification performances have been
obtained by computing the average value of 30 random
tests. Furthermore, for method with dynamic thresh-
old and method with 20 mV threshold, we conduct a
Wilcoxon signed-rank test on their results and the signif-
icance level p− value=0.005889. Since it less than 0.05,
those two results are statistically different.

optimum value (20mV ). It can be seen that the dynamic membrane potential threshold

strategy can not only ensure learning each training sample properly but also generate
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Table 4.3: Simple random sampling experiments
with different iterations in 10 random tests.

Tests
Number of iterations

1 2 3 4 5

1 0.81 0.85 0.81 0.76 0.71

2 0.83 0.78 0.75 0.72 0.74

3 0.81 0.87 0.88 0.87 0.87

4 0.8 0.81 0.81 0.78 0.76

5 0.84 0.8 0.8 0.78 0.77

6 0.8 0.78 0.74 0.73 0.72

7 0.81 0.8 0.78 0.77 0.75

8 0.84 0.81 0.78 0.8 0.79

9 0.81 0.79 0.74 0.74 0.73

10 0.84 0.79 0.78 0.79 0.79

Average 0.819 0.808 0.787 0.774 0.763

• Note: 0.81 in this table means 81% correct clas-
sification rate. Here, one iteration means se-
quentially feeding 50 different training samples
within a certain class into the proposed SNN
framework once.

the best correct classification performance.

4.4.3.3 Experiments on MNIST Database

There are total 60,000 training samples in MNIST database, as mentioned above,

given a real-time learning circumstance, it is hard to fully exploit the whole database

with limited time. We will use a simple random sampling method to test the proposed

algorithm and to answer the above question. Simple random sampling method, which

randomly selects limited samples for training and testing, creates a scenario most sim-

ilar to a real-time learning situation.

From the MNIST, we randomly choose 50 different training samples for each class

and 100 different testing samples to test the correct classification rate. In the following

experiments, each test follows the same procedure mentioned above. For fair compar-

ison, each iteration within each test uses the same randomly chosen training samples
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Figure 4.11: Standard error performance using different iterations. Here, one iteration
means sequentially feeding 50 different training samples within a certain class into the
proposed SNN framework once.

and testing samples.

Table 4.3 shows the corresponding correct classification rate performance when

using the experimental conditions mentioned above. Average correct classification rate

also has been added in the table. It can be seen that, with one iteration only, almost all

the tests achieved the highest performance. This suggests that the proposed learning

method is suitable for real-time learning.

Figure 4.11 shows standard error performance using different iterations. It can be

seen that, along with increasing of iterations, the correct classification rate gradually

decreases. Tests with one iteration only seems to convey the least standard error. Such

characteristic indicates the learning methods with one iteration only are more reliable

than that with more iterations.

Why more iterations have not led to better performance in this case? This is be-

cause, for precisely timed spikes, the synaptic weight saturates close to its maximum

value if the presynaptic spikes arrive before the postsynaptic neuron is firing. If the

temporal jitter of the pre- and postsynaptic spikes escalated, the weight will take an

intermediate value determined by non-Hebbian terms rather than by learning window

[116]. Since the generated C1 features within the proposed SNN still contain relatively
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Table 4.4: Performance comparison of three methods(%).

Method Correct rate Wrong rate Unknown rate

The proposed method 82± 2 18± 2 0

Tempotron rule [68] 78.5± 1.85 18.35± 1.85 3.15± 1.64

SVM [68] 79.33± 2.03 18.15± 1.69 2.53± 2.04

• Note: Here, SVM [68] with Gaussian kernel has been used on the
local invariant C1 feature vectors.

Table 4.5: Running speed tests.

Item Running time(s) Equivalent to frames per second

Training 23.32 21.3

Testing 5.63 17.9

• Note: the above results are the mean value of 10 random
tests gathered from a laptop with Intel 3rd Gen Core at 2.5
GHz, 8G RAM and 128G SSD. The whole training proce-
dure includes 500 frames/samples represent total 10 classes
(50 samples for each class) and the whole testing procedure
includes 100 samples.

large intra-class variances (means relatively large temporal jitter of pre- and postsynap-

tic spikes), increasing the iteration times implies the level of the temporal jitter of pre-

and postsynaptic spikes is increased, which may lead to the poor performance with

more iterations.

In paper [68], the authors used a supervised temporal learning rule (named Tem-

potron Rule) to train the MNIST database (almost same experimental conditions as this

paper) and achieved 79% correct classification rate in the end. Unlike this state-of-art

learning method, the proposed algorithm uses unsupervised STDP learning rule with

dynamic post-synaptic potential threshold during the learning procedure.

Table 4.4 and Figure 4.12 show the final classification performance comparison of

three different methods. It can be seen that the unknown rate of the proposed method

is 0, which means each testing sample would be recognized as one possible class.

Compared with Tempotron Rule, the proposed method achieves better correct rate at

around 82%, while still remains slightly less wrong rate. Finally, Table 4.5 shows the

speed test results for the training and testing periods respectively. It can be seen that
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Figure 4.12: Performance comparison of three methods.

the learning and testing speeds are quite impressive - 21.3 fps in training and 17.9 fps

in testing, both can be operating in real time.

4.5 Conclusion

Real-time learning needs algorithms operating in a fast speed comparable to human

or animal, however this is a huge challenge in processing visual inputs at milliseconds

scale. In the above chapters, we proposed a novel real-time learning method by comb-

ing the spike timing-based feed-forward spiking neural network (SNN) and the fast

unsupervised spike timing dependent plasticity learning method with dynamic post-

synaptic thresholds. Fast simple random sampling experiments using MNIST database

showed the high efficiency of the proposed method at an acceptable accuracy. Our re-

search may also add to the further understanding of the dynamic processing procedure

existed in brain’s ventral stream.
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Chapter 5

Event-driven Continuous STDP

Learning using HMAX Model for

Visual Pattern Recognition

Within visual cortex, ventral stream, one type of visual processing pathway, plays

an important role in form recognition and object representation. Ventral stream is a

hierarchical system in which each layer extracts different level of abstractions [6], but

the underlying processing mechanism of the ventral stream is still largely unknown,

which proposes a huge challenge for the researchers. Two main categories of meth-

ods, spiking rate-based methods [25], [26], [27], [70], [71], [72], [73], [74], [75] and

spiking time-based methods [17], [68], [69], have been proposed to address the above

issue. However, they suffer various drawbacks: a limited learning time, which often

exists in ventral stream, is not enough to generate meaningful spiking rate; A super-

visory error signal used to update the synaptic weights, in real scenarios, is hard to

obtain.

Furthermore, ventral stream is capable of adaptively learning the spatiotemporal

structures from the input spiking patterns. Traditionally, to learn the spatiotemporal

structures, a new input spiking pattern is only allowed to feed into the learning sys-

tem when the membrane potential generated by the previous spiking pattern has been

reseted. However, in ventral stream, the neurons receive the spiking patterns contin-

uously without any resetting involved. Moreover, traditional learning methods like
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spike-timing dependent plasticity (STDP) often incorporate global information within

the training procedure. For instance, to update the synaptic weights within STDP learn-

ing rule, the neuron is required to remember all the related spiking timings within the

learning window. In most cases, it is physiologically unrealistic and not efficient.

To solve the above problems, in this chapter, an event-driven continuous STDP

(ECS) learning method using specific spiking timing sequences has been proposed.

Specifically, two novel continuous input mechanisms, a sequential one with interval

between adjacent spiking patterns and another parallel one with two separated spik-

ing pattern groups, have been proposed to obtain the continuous input spiking pat-

tern sequence. Furthermore, within the proposed event-driven STDP learning rule, the

learning procedure will be activated when the neuron receive a presynaptic or postsy-

naptic spike event. The simple random sampling and exhaustive experimental results

on MNIST database show the proposed method, compared with other state-of-the-art

methods, can achieve comparable correct classification performances, but with more

biologically plausible supports.

5.1 Background

Within visual cortex, there are two information processing pathways originating in

the occipital cortex: ventral stream and dorsal stream, which also known as what (ob-

ject recognition) and where (spatial vision) pathways. Specifically, the ventral stream

plays an important role in form recognition and object representation. Due to the lim-

ited understanding of the processing mechanism of the ventral stream, it remains a

challenging task for researchers to use recent available biologically plausible mecha-

nisms to simulate the ventral stream.

Specifically, to simulate the ventral stream, several critical issues need to be re-

solved: 1) what is the architecture of the hierarchical system? 2) how to represent and

transmit the information within the system? 3)how to constantly process the input vi-

sual information? 4) which learning method is appropriate for learning the selectivities

from the input visual stimuli? To accomplish the fundamental functions of the ventral

stream, those questions will be discussed and addressed in the following paragraphs.
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It is known that ventral stream is a hierarchical system in which each layer ex-

tracts different level of abstractions [6]. By transforming the input visual stimuli into

generalized abstractions, such hierarchical structure will greatly reduce the data di-

mensionality. Deep learning, a branch of machine learning, has often been used to

accomplish the above scenarios, which is based on a set of algorithms that attempt to

model high-level abstractions in data by using complex hierarchical model architec-

tures with multiple non-linear transformations [9]. HMAX [22], [108], [117], a type

of convolutional neural networks (CNN) within deep learning methods, has been pro-

posed to provide the much-needed framework for summarizing and integrating input

visual stimuli, and thus obtaining the high-level abstractions existed in ventral stream.

In real scenarios, visual cortex uses neural spikes to represent/transmit informa-

tion. The dynamic interaction procedure within visual cortex can be simulated with

spiking neural network (SNN). Within SNN, the spiking patterns with spatiotemporal

structural information have often been used as transmission mediums. Neuron models

define how the activities of the neurons change in response to each other, which is

essential part for building a SNN. In this chapter, conductance-based leaky integrate-

and-fire (LIF) neuron model [1] has been used to regulate the behaviors of the neurons

within SNN. It emphasizes the causality of related spikes and is more biologically

plausible.

According to information theory, the spike coding schemes change the format of

information processing, e.g. from analog feature values into spiking patterns. Both

spike rate and spike timing can be used to represent the input analog feature values.

However, it is difficult for rate-based SNN to generate meaningful rate within a short

time widow. For instance, research showed that mammalian brain use only millisecond

scale time window to process complicated real life visual recognition tasks [2]. More-

over, if the input visual stimuli has been incorporated with the background noise with

the same spiking rate, it is impossible for rate-based SNN to generate the selectivity

for the input visual stimuli [29]. In this chapter, rank order coding (ROC) [24], [98],

[99], a simple yet powerful spike timing-based coding scheme, has been used to gen-

erate the first spike wave. ROC scheme considers the first spike wave conveys enough
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significant structural information for further visual pattern recognition application.

In real scenarios, neurons within visual cortex tend to receive input stimulus con-

tinuously. Continuous stimulus presentation is a significant feature in generating a

versatile and general network [118]. There are two main reasons for choosing contin-

uous input sequence strategy: 1) the visual stimuli can be fed into the SNN without

any reseting during each training/testing step; 2) it is more biologically plausible. In

this chapter, two different continuous input sequence mechanisms have been proposed

in which the first one adds intervals between spiking patterns and updates the synap-

tic efficiency sequentially, while the second one divides the whole sequence into two

subsequences and updates the synaptic efficiency by alternating between those two

subsequences. Furthermore, the background neural noise [119], [120] and time jit-

ter (also known as distractor) can be easily added into the input sequence to test the

robustness of the proposed method.

To learn the spiking pattern sequence, spike timing dependent plasticity (STDP)

[41], [42], [43], [44], [45], a temporally asymmetric form of Hebbian learning [40],

has been applied within the SNN. It is widely believed that it underlies learning and

information storage in the brain, as well as the development and refinement of neuronal

circuits during brain development [90], [91]. Within the traditional STDP learning, to

update synaptic weights, neurons need to integrate all the related spikes within the

learning window. However, in real scenarios, neurons can only access local informa-

tion. Moreover, such update procedure is very inefficient. In this chapter, event-driven

STDP learning method has been used to overcome those drawbacks by involving two

on-line, local learning rules that are applied only in response to occurrences of spike

events. It is believed that such event-driven strategy can provide more efficient and

biologically plausible learning procedure for the input visual stimuli.

Lots of researches [25], [26], [27], [68], [69], [70], [71], [72], [73], [74], [75] have

been investigated the visual pattern recognition tasks using different SNN frameworks

and their corresponding learning methods. From the spiking encoding point of view,

those methods can be divided into two main categories: spiking time-based methods

and spiking rate-based methods. For spiking rate-based methods [25], [26], [27], [70],
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[71], [72], [73], [74], [75], there are two main drawbacks: a) To generate meaningful

spiking rate, those rate-based methods need to run the database several time (runs),

which is obvious inefficient and time-consuming. b) Most of those methods are not

biologically plausible as they lack direct biological supports for their simulation of

the ventral stream. Thus, in this chapter, we mainly focus on the spiking time-based

methods.

In [68], [69], the authors propose a novel SNN framework and use tempotron rule to

train the input visual stimuli. However, the supervisory error signal used in tempotron

rule, in real scenarios, is hard to obtain. Unlike the above methods, in [17], Thorpe et.

al use their SNN architecture to simulate the processing procedure of HMAX model.

However, the simplified STDP learning rule used in their method is only for local

intermediate feature extracting. It is known that feature extracting is only a significant

component of pattern recognition. Thus, the STDP learning rule used in [17] itself is

not enough to accomplish the visual pattern recognition tasks.

To address the problems mentioned above, in this chapter, based on the available bi-

ologically plausible models, an event-driven continuous spike-timing dependent plas-

ticity (STDP) learning method (ECS) using HMAX model has been proposed. Specif-

ically, based on the modified HMAX model and the proposed spike encoding scheme,

the input visual stimuli have been transformed into spiking patterns with spatiotem-

poral structural information. Within the spiking pattern learning procedure, two dif-

ferent continuous input sequence mechanisms have been applied into the event-driven

STDP learning method in which each mechanism has its own specific update proce-

dure. Event-driven strategy and continuous input sequence mechanism are both biolog-

ically plausible, while the former one greatly improves the learning efficiency and the

latter one ensures the input visual stimuli can be learned without resetting the interme-

diate variables during each learning step. The simple random sampling and exhaustive

experimental results on MNIST database show that the proposed method, compared

with other state-of-the-art methods, can achieve acceptable correct classification per-

formances.
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Figure 5.1: The framework of the proposed timing-based feed-forward spiking neural
network. For simplicity, the lateral inhibition connections of the last layer have not
been included.

5.2 The Proposed SNN and Its ECS Learning Method

To simulate the hierarchical ventral stream, in this chapter, a novel feed-forward

SNN framework has been proposed, which includes three layers: feature extracting

layer, spiking encoding layer and spiking pattern learning layer. By simulating differ-

ent visual areas within the ventral stream, each layer within the proposed SNN accom-

plishes one specific training goal.

Specifically, through the feature extracting layer, the invariant high level features

have been extracted by incorporating the modified HMAX model and then transmit-

ted to the spiking encoding layer to obtain the corresponding spatiotemporal spiking

pattern sequences. Within the spiking pattern learning layer, by using the proposed

continuous event-driven STDP learning method with certain update procedure, the se-

lectivity would be emerged eventually. Figure 5.1 shows the framework of the pro-

posed feed-forward SNN with several keywords explaining the functionality of each

layer. The details of each layer will be explained in the following subsections.
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5.2.1 Feature Extracting Layer

From the computational model point of view, the visual system is an information

processor performing computations on internal symbolic representations of visual in-

formation [121]. The computational model plays an important role in obtaining the

invariant high level features from the input visual stimuli. According to deep learn-

ing theory, the high level features should strike a balance state between invariance and

distinguishability [9], which has a large impact on the final classification performance.

Riesenhuber and Poggio [22] proposed a feed-forward processing computational

model (named HMAX model) based on the knowledge of visual cortex and achieved

promising results on some of the standard classification database. Such model focuses

on the object recognition capabilities of the ventral stream in an ”immediate recogni-

tion” mode, independent of attention or other top-down effects [22]. It is considered

as a starting point for researchers to simulate ventral stream. Inspired by the simple

and complex cells within V1 (discovered by Hubel and Wiesel [122]), Serre, Wolf and

Poggio [108], [117] extends the original HMAX model and thus built an increasingly

complex and invariant feature representation by alternating between a template match-

ing and a maximum pooling operation (demonstrated in section 4.2.1). Increasing the

sparsity of basis functions is equals to reduce the capacity of the classifier [123], [124].

Localized intermediate approaches retain some coarsely-coded location information

[125] or record the locations of features relative to the object center [126]. After incor-

porating some additional biologically-motivated properties of the visual cortex, Mutch

and Lowe [127] proposed a novel model by adding sparsity and localized intermediate-

level features into the model proposed by Serre et al. Such model achieves a significant

improvement in final classification performance.

Inspired by the computational model proposed by Mutch and Lowe [127], this

chapter tries to build the feature extracting layer based on the base computational

model proposed by Mutch and Lowe, as depicted in Figure 5.2. The aim is to build a

feature dictionary or feature vector for each input image. The framework used in the

feature extracting layer contains five hierarchical layers, besides the input image layer,

each built from the previous layer by alternating template matching and max pooling
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operations. Note, cortical network simulator (CNS) [128], a GPU-based framework,

has been used to simulate the feature extracting layer. Below, we will briefly introduce

each layer of the framework used in the feature extracting layer.

5.2.1.1 Input image layer

All input images have been converted to grayscale and scale the shorter edge to

140 pixels while retaining the aspect ratio. An image pyramid with 10 scales has been

built, each a factor of 21/4 smaller than the last.

5.2.1.2 Gabor filter (S1) layer

Basically, at each possible position and scale, S1 layer applies the Gabor filters with

four different orientations (0o, 45o, 90o, 135o). The Gabor response F σ,θ
(x,y) at location

(x, y) with the scale σ and the orientation θ can be used to mimic the simple cell within

the primary visual cortex V1, which can be computed according to equation 3.8. The

Gabor filters are 11×11 in size. Note the components of the each filter are normalized

so that their mean is 0 and the sum of their squares is 1. The same size filters have

been used for all scales.

5.2.1.3 Local invariance (C1) layer

This C1 layer pool over retinotopically organized afferent S1 units from the previ-

ous S1 layer with the same orientation and from the same scale band. Basically, the

response rσ,θ(x,y) of a complex C1 unit can be obtained by equation 4.1. Through the

maximum pooling operation, the generated C1 units will obtain certain local invari-

ance.

Unlike the traditional HMAX model [108], a lateral inhibition mechanism has been

used between S1/C1 units encoding different orientations at the same position and

scale. Basically, such mechanism ensures these units are competing to describe the

dominant orientation (maximally responding C1 unit) at their location. By doing this,

those non-dominant orientations will be ignored.
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Figure 5.2: The computational base model proposed by Mutch and Lowe [127]. This
base model consists of 5 layers, besides the input image layer, each built from the
previous layer by alternating template matching and max pooling operations (demon-
strated in section 4.2.1). ⊗ means the template matching operation. For each input
image, a C2 feature vector with d elements will be generated.
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5.2.1.4 Intermediate feature (S2) layer

Within the computational model proposed by Serre. et al [108], for every posi-

tion and scale, the template matching operations (demonstrated in section 4.2.1) have

been conducted between the patch of C1 units centered at that position/scale and each

of d prototype patches. Here, a patch means a set of processing units and the proto-

type patches can be considered as templates within the template matching operations,

as described in [108]. Those prototype patches are randomly sampled from the C1

layers of the training images in an initial feature-learning stage, which represent the

intermediate-level features of the base model. During the feature learning stage, sam-

pling is performed by centering a patch of vary sizes at a random position and scale

in the C1 layer of a random training image. Therefore, a prototype consists of all the

C1 units within the patch. Note, for each position, there are units representing each of

the four orientations. A Gaussian radial basis function has been used to compute the

response of a patch of C1 units X to a particular S2 prototype P with size of n× n:

R(X,P ) = exp

(
−‖X − P‖

2

2σ2α

)
(5.1)

with X and P have dimensionality n× n× 4, where n ∈ {4, 8, 12, 16}. The standard

deviation σ is set to 1 and the parameter α represents a normalizing factor for different

patch size.

However, real neurons are likely to be more selective among potential inputs.

Therefore, by storing the identity and magnitude of the dominant orientation at each

of the n × n positions in the patch, the number of inputs to an S2 feature has been

reduced to one per C1 position. By doing this, the dense prototype in the old model

has been reduced to sparse prototype, which makes the S2 units less sensitive to local

clutter and thus improves the generalization.

5.2.1.5 Global invariance (C2) layer

Within the traditional HMAX model [108], by pooling the maximum response

from one of d prototype patches, one element of the d-dimensional vector (C2 features
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vector) will be obtained. All position and scale information will be removed if using

this mechanism. However, neurons in V4 and IT do not exhibit full invariance and are

known to have receptive fileds limited to only a portion of the visual field and range of

scales. Therefore, in this chapter, certain limits has been incorporated into the global

position/scale invariance mechanism used in [108].

5.2.2 Spiking Encoding Layer

Given the feature extracting layer, one can only obtain the analog high level fea-

tures. However, within SNN, neurons uses spiking patterns to represent and transmit

the spatiotemporal structural information. To generate the spiking patterns from the

analog features, spiking encoding layer has been incorporated into the proposed SNN

framework. Before elaborating the spike encoding scheme and the proposed continu-

ous input sequence mechanism, the neuron model used in this chapter should be intro-

duced firstly.

5.2.2.1 Neural Model

In this chapter, leaky integrate-and-fire (LIF) model has been chosen as the neuron

model as it is biologically plausible and has low computational complexity. The leak-

ing factor within the LIF model ensures that the neurons only fire spikes when there are

enough presynaptic spikes fired from its receptive field within a relatively short time

window. Thus, such neuron model can be considered as a coincidence detector.

Specifically, instead of using voltage based LIF model, this chapter uses conduc-

tance based LIF model to regulate the behaviors of neurons since it increase the level

of realism in a neural simulation. Like in [129], [130], the postsynaptic membrane

potential of the neuron (V ) within the proposed spiking neural network is determined

by

dV /dt = (gex(Eex − V ) + gin(Ein − V ) + Vr − V )/τm (5.2)

where τm is the postsynaptic neuron membrane time constant. Eex and Ein represent

the membrane potential of excitatory synapse and inhibitory synapse, respectively. Vr
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depicts the resting membrane potential. When the postsynaptic membrane potential

reaches the threshold Vt,

V ≥ Vt (5.3)

the neuron fires a spike, and then enters the absolute refractory period, in which the

membrane potential is resets to Vr and the absolute refractory time is Trf . The ex-

citatory/inhibitory synaptic conductance gex/gin and its related peak conductance are

measured in units of the leakage conductance of the neuron and are thus dimensionless.

The excitatory/inhibitory synaptic conductance decays exponentially:

dgex/dt = −gex/τex

dgin/dt = −gin/τin
(5.4)

where τex/τin represents the excitatory/inhibitory synaptic conductance time constant.

5.2.2.2 Spike encoding scheme

Similar to section 4.2.2, rank order coding (ROC) has been used to generate spik-

ing patterns from the global invariant C2 features. For a global invariant C2 feature

response r, the corresponding spiking timing t can be computed according to equation

4.2. Specifically, p within equation 4.2 controls the length of the processing window

of a specific spiking pattern. In this chapter, the processing time window of a specific

spiking pattern is set to 0.2 s (p takes 0.2 in equation 4.2).

Figure 5.3 shows one input image and its spiking pattern generated from the first

two layers. Note, the C2 feature vector has 4096 (d feature responses in Figure 5.2) el-

ements, and thus there are 4096 neurons to fire spikes. Only those neurons with spiking

timing less than 150 millisecond will fire spikes. By feeding 10 input images into the

proposed feed-forward SNN, Figure 5.4 shows spiking pattern sequence without inter-

ference and with interference, respectively. Specifically, the interference includes time

jitter to the input spiking pattern itself and background neural noise between adjacent

spiking patterns, which will be discussed in section 5.3.2.2.
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(a) Input image

(b) Spiking pattern

Figure 5.3: One input image and its spiking pattern generated from the first two layers.
Here, the spikes are generated by global invariant C2 features.

(a) Spiking pattern sequence with no interference

(b) Spiking pattern sequence with time jitter and neural noise

Figure 5.4: Spiking pattern sequence (10 input images) without interference and with
interference. The interference includes time jitter to the input spiking pattern itself and
background neural noise between adjacent spiking patterns.

5.2.2.3 Continuous Input Sequence Mechanism

Traditionally, a new spiking pattern should be fed into SNN only until the current

spiking pattern has been successfully trained or tested. Specifically, before starting the

next training step, the membrane potentials generated by the current spiking pattern

will be reseted to their resting values. Without such procedure, the previous spiking

pattern will have a interference with the spiking generating procedure of the current
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Figure 5.5: Two different continuous input sequence mechanisms. Here, the squares
(1, 2, 3, 4, 5, 6) represent spiking patterns. In this chapter, each spiking pattern pos-
sesses the same time window and the interval inserted into the sequence or subse-
quence has an identical time window as each spiking pattern. The first sequential
mechanism obtains a single spiking pattern sequence with intervals while the second
parallel mechanism generates two subsequences with intervals.

spiking pattern. However, this input mechanism is very inefficient. Moreover, it is not

biologically plausible since, in real scenarios, the neurons within the ventral stream

tend to receive continuous input visual stimuli.

To address the above drawbacks, two different continuous input sequence mech-

anisms have been proposed. The first mechanism applies a sequential strategy while

the second one follows a parallel fashion. Specifically, the first sequential mecha-

nism obtains a single spiking pattern sequence with intervals while the second parallel

mechanism generates two subsequences with intervals, as shown in Figure 5.5. In this

chapter, each spiking pattern possesses the same time window (Ts) and the interval

inserted into the sequence or subsequence has an identical time window (Ti = Ts)

as each spiking pattern, as demonstrated in Figure 5.5. Therefore, within the second

parallel mechanism, if combined those two sequence into a single sequence, we can

obtain a spiking pattern sequence without intervals.

5.2.3 Spiking Pattern Learning Layer

Within the spiking pattern learning layer, there are n maps corresponding to n

classes within MNIST database. Each map corresponds to one possible class. The neu-

rons within each map are fully connected to the previous layer. Within each map, there

are k neurons corresponding to k possible sub-classes (intra-class variance). Within the
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Figure 5.6: Network framework for the first sequential mechanism. Each spiking pat-
tern within the sequence will be sequentially fed into the spiking encoding layer, i.e.
(1,2,3,4,5,6)→(a1,a2,a3,a4,a5).

Figure 5.7: Network framework for the second parallel mechanism. The
two pattern subsequences can be obtained by Figure 5.5. Each spik-
ing pattern within the corresponding subsequence will be sequentially fed
into its corresponding neuron group within the spiking encoding layer, i.e.
(1,3,5)→(a1,a2,a3,a4,a5),(2,4,6)→(b1,b2,b3,b4,b5).

last layer, each neuron has lateral inhibition connections to all the other neurons. When

the neuron fire a spike, other neurons within the last layer will be strongly inhibited.

However, too strong inhibition will let only few neurons fire spikes and too weak inhi-

bition will let all neurons fire spikes. Thus, to achieve a soft winner-take-all strategy,

it is desirable to find a relatively balanced inhibition strength by tuning the weights of

the inhibition connections. This processing scheme can be considered as a soft winner-

take-all strategy. The input image belongs to the map (class) with the largest number

of neurons firing the first spikes. Moreover, as mentioned in the above section, there

88



CHAPTER 5. EVENT-DRIVEN CONTINUOUS STDP LEARNING USING HMAX MODEL FOR VISUAL PATTERN RECOGNITION

are two continuous input sequence mechanisms within the spiking encoding layer and

different input sequence mechanism has different learning procedure.

Specifically, if choosing the first sequential mechanism, each spiking pattern within

the sequence will be sequentially fed into the spiking encoding layer. Figure 5.6 shows

the network framework of the first continuous input sequence mechanism. The learn-

ing procedure of the first mechanism can be summarized as following: when receiving

an incoming spiking pattern, the associated synaptic weights of the neurons within

spiking pattern learning layer will be updated. Within the interval between adjacent

spiking patterns, the membrane potentials of these neurons will be gradually reduced

to their initial values and then these neurons can start to receive the next spiking pat-

tern.

When choosing the second parallel mechanism, the network framework can be de-

picted as Figure 5.7. Unlike the first mechanism, the number of neurons within the

spiking encoding layer has been expanded to twice of the original. There are two

neuron groups within the spiking encoding layer and each pattern neuron group corre-

sponds to its associated spiking pattern subsequence. The associated synaptic connec-

tions within those two neuron groups share the same synaptic efficiency. For instance,

within the Figure 5.7, when the synaptic efficiencyWa1c1 updates, its associated synap-

tic efficiency Wb1c1 within the second neuron group will also be automatically updated

to the same value as Wa1c1. Such weight sharing strategy plays an important role in the

update procedure.

Specifically, the learning procedure of the second mechanism can be summarized

as following: when the first neuron group receives the input spiking pattern and starts

to update its synaptic efficiencies, like Figure 5.7 shows, the second neuron group will

be idle. For the neurons within the second neuron group, the membrane potentials

remain at their initial values. Therefore, when receiving the input spiking pattern, the

neurons within the second neuron group can use the latest updated synaptic efficien-

cies and start updating their synaptic efficiencies without any delays. In the meantime,

the membrane potentials within the first group will be gradually reduced to their ini-

tial values. The first neuron group can start updating immediately after the second
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group finishing their updating procedure. The two neuron groups constantly updates

the synaptic efficiencies by alternating the above process until no input spiking pattern

been fed into the spiking pattern learning layer. To learn the spiking pattern sequence,

we will introduce the adaptive thresholding method and event-driven STDP learning

rule, respectively.

5.2.3.1 Adaptive Thresholding Method

As an asynchronous neural network, the proposed SNN suffers a major drawback:

the neurons fired the first spikes will tend to fire spikes more easier than other neurons.

This is because these neurons will immediately start integrating incoming spikes right

after firing the first spikes. Hence, the membrane potentials of these neurons will be

activated most and then fire spikes earlier than other neurons. The lateral inhibition

will further accelerate such situation and this will in turn affects the final classification

performance.

To achieve a stable network, we incorporate an adaptive thresholding method [26]

into the spiking pattern learning layer. By incorporating such method, the more a neu-

ron fires, the higher will be its membrane threshold. In other words, to fire a spike,

the neuron needs to integrate more presynaptic spikes. Specifically, for each neu-

ron, instead of using the predefined membrane threshold Vthr, an adaptive membrane

threshold Vt will be incorporated within spiking pattern learning layer, which can be

computed by the following equation:

τv
d

dt
Vt = Vthr − Vt (5.5)

where τv is the time constant of the adaptive membrane threshold Vt. Vt will increase

every time the neuron fires a spike, as shown in the follows:

Vt = Vt + Vi (5.6)

where Vi represents a predefined increment (unit: mV ).
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5.2.3.2 Event-driven STDP Learning Rule

To learn selectivities from the spiking pattern sequences, spike timing dependent

plasticity (STDP) [41], [42], [43], [44], [45], a temporally asymmetric form of Hebbian

learning [40], has been applied within the proposed SNN. It is widely believed that it

underlies learning and information storage in the brain, as well as the development and

refinement of neuronal circuits during brain development [90], [91]. STDP requires

no prior information or teaching signals since it is essentially an unsupervised learning

rule.

Similar to section 4.3.2, the traditional STDP function W (t) can be computed

by equation 4.8 (t is the time difference between pre and postsynaptic spikes). For

biological reasons, it is desirable to keep the synaptic efficacy in a predefined range.

Thus, a hard bound strategy has been used to ensure the synaptic efficacy remains in the

desired range wmin ≤ w ≤ wmax, where wmin and wmax are minimum and maximum

value, respectively. Basically, ifwmin andwmax are specified, values smaller thanwmin

become wmin, and values larger than wmax become wmax, which can be described as:

hardbound(w,wmin, wmax) =


wmax, if w > wmax

wmin, if w < wmin

w, if wmin ≤ w ≤ wmax

(5.7)

Traditionally, if choosing all-to-all spike interaction, STDP needs to sum over all

pairs of spikes to update the learning synaptic weight matrix and that is very ineffi-

cient. Besides, it would also be physiological unrealistic because the neuron cannot

remember all its previous spike times. To overcome such drawbacks, in this chapter,

event-driven STDP learning rule has been applied within the proposed SNN by involv-

ing two on-line, local learning rules that are applied only in response to occurrences of

spike events. Such event-driven STDP learning rule is more biologically plausible and

more efficient.

In order to introduce the event-driven STDP learning method, two new variables α+

and α- need to be defined firstly. They represent the “traces” of pre and postsynaptic

activity. Within the traditional STDP learning procedure, a postsynaptic neuron will
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only update its synaptic weights after it fires a postsynaptic spike. However, by tuning

the “traces” variables, the neuron can update the synaptic weights whenever it receive

a presynaptic spike or firing a postsynaptic spike. These “traces” can be computed by

the following equations:

τ+
d

dt
α+ = −α+

τ-
d

dt
α- = −α-

(5.8)

here, τ+ and τ- represent the pre- and post-synaptic activity traces time constant, re-

spectively. When received a presynaptic spike, gex, A+ and w will be updated as fol-

lows:
gex = gex + w

A+ = A+ + α+

w = hardbound(w + A-, w
min, wmax)

(5.9)

where the hardbound function will make the synaptic weight remains in the desired

range wmin ≤ w ≤ wmax, when fired a post-synaptic spike, A- and w will be modified

according to following equations:

A- = A- + α-

w = hardbound(w + A+, w
min, wmax)

(5.10)

and when received an inhibitory presynaptic spike, gin will be updated as follows:

gin = gin + win (5.11)

where win represents the fixed inhibitory synaptic weight.

In this section, we briefly introduces the framework of the proposed SNN, fol-

lowed by detailed introduction of each layer. By using the proposed continuous input

sequence mechanism, input images have been combined into input image sequence.

After feeding these input image sequences into the first two layers, spiking pattern se-

quences have been generated and further fed into the last layer. The last layer is the

only layer involving learning procedure and uses event-driven STDP learning method

to train the selectivity for each input visual stimuli. Therefore, the whole learning
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procedure can be described as follows:

1. Propagate a sequence of input images (I1, I2, . . . , In) into the feature extract-

ing layer, and then obtain a sequence of global invariant C2 feature vectors

(F1, F2, . . . , Fn) using HMAX model with sparsity and intermediate features,

as shown in Figure 5.2. Specifically, for a input image Ij , a global invariant C2

feature vector Fj with 4096 (d in Figure 5.2) elements will be obtained, in which

j = 1, 2, . . . , n and n is the number of input images.

2. Create a new map with 4096 neurons within the spiking encoding layer and use

two continuous input mechanisms, as demonstrated in Figure 5.5, to generate a

continuous spiking pattern sequence (S1, S2, . . . , Sn). Specifically, for a global

invariant C2 feature vector Fj , we use equation 4.2 to obtain its corresponding

spiking pattern Sj , where j = 1, 2, . . . , n.

3. Create a new map with k neurons for each class within the spiking pattern learn-

ing layer. The spiking pattern learning layer and the spiking encoding layer are

fully connected. To achieve the soft winner-take-all strategy, each neuron within

the spiking pattern learning layer has lateral inhibition connections to other neu-

rons within the same layer. Furthermore, initialize the SNN using the parameter

settings in Table 5.1 and generate random synaptic weights w.

4. Propagate the continuous spiking pattern sequence (S1, S2, . . . , Sn) into the spik-

ing pattern learning layer and then compute the membrane potential Vj of a neu-

ron j within this layer according to equation 5.2, where j = 1, 2, . . . , N and N

represents the number of neurons within the spiking pattern learning layer. If

a neuron j in spiking pattern learning layer receives a presynaptic spike from

a neuron i in the previous layer, the synaptic weight wij will be updated using

equation 5.9; If the neuron j reaches the membrane threshold Vt and then fires a

postsynaptic spike, the synaptic weight wij will be modified according to equa-

tion 5.10 and the neuron j will inhibit other neurons to fire by using the equation

5.11. Furthermore, when the neuron j fires a postsynaptic spike, its membrane

threshold Vt will be adaptively changed as demonstrated in section 5.2.3.1. Dif-
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Figure 5.8: Random examples of MNIST database.

ferent continuous input mechanism used in the spiking encoding layer will have

different update procedure, as shown in Figure 5.6 and Figure 5.7.

5. Stop the above updating procedure if all spiking patterns within the sequence

(S1, S2, . . . , Sn) have been fed into the proposed SNN once.

5.3 Experiments

To verify the proposed ECS methods, the convergence and robustness of the meth-

ods are demonstrated first, then two types of experiments are designed. One type of

the experiment is using simple random sampling scheme in which only a small part

of training/testing samples has been used to learn/test the selectivities. Another one is

employing exhaustive scheme in which the whole training/testing samples have been

used to learn/test the selectivities. We will use MNIST handwritten digital database in

our experiments.

The simple random sampling scheme requires the learning methods to generate

acceptable performance based on quite limited learning resources (such as running

time or computational capacity). In most real scenarios, the database is expanded

over time and cannot be obtained at once. Thus, the simple random sampling scheme

is more flexible and is closer to the actual situation. Compared with simple random

sampling scheme, exhaustive scheme is quite ideal, which remains in a static state

with no new training/testing samples added into the database. Similar to section 4.4.1,

MNIST handwritten digital database [113] has been used within this chapter.
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5.3.1 Parameter Settings

As mentioned in section 5.2.1, the feature extracting layer is based on the base

model proposed in [127]. Thus, within the feature extracting layer, the parameters

besides d take the same values as [127]. Normally, to achieve a realistic neural sim-

ulation, the parameters often take the values within a limited predefined range. Table

5.1 shows the parameter settings used in the proposed SNN framework. Specifically,

some of the parameters used in the proposed SNN framework take the the same values

as [129] while the values of other parameters, like [130], are chosen by optimizing the

whole classification performance. Note, the time resolution of this experiment is 0.1

ms.

5.3.2 Convergence and Robustness of The Proposed ECS Method

To validate the proposed method, we need to verify the convergence and robustness

of the proposed method under different experimental conditions. For convergence,

the proposed method should ensure that when the learning procedure enters the final

stable state, the number of spiked neurons and their spiking timings will remain at a

relatively stable level. For robustness, even incorporating background neural noise and

time jitter, the proposed method should be robust enough to ignore such interferences

and only concentrate on learning the input visual stimuli.

5.3.2.1 Convergence Analysis

For the proposed ECS learning method, the convergence property is essential since

it will guarantee the learning procedure can reach a stable stage. Ideally, when the

STDP learning procedure reaches the convergence state, the number of spiked neurons

and their spiking timings should remain at a fixed state. Moreover, the synaptic efficacy

matrix will be saturated to a special status with most weights take 0 and the rest take 1

[114]. However, in real scenarios, the input images often possess abundant intra-class

variance and it is almost impossible for a learning method to cover all the intra-class

variance. Therefore, in reality, the number of spiked neurons and their spiking timings

will remain at a relatively stable level (not fixed) when reaching the convergence state.
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Table 5.1: Parameter settings of the proposed SNN.

Parameter Description Value

d the number of elements in a C2 vector 2 4096

τm membrane time constant 1 10 ms

τv potential threshold time constant 1 20 ms

τex excitatory conductance time constant 1 5 ms

τin inhibitory conductance time constant 2 10 ms

τ+ presynaptic trace time constant 1 20 ms

τ− postsynaptic trace time constant 1 20 ms

p a positive constant for ROC 2 0.2

Ts real processing time window 2 150 ms

Ti interval time window 2 150 ms

Trf absolute refractory time 1 1 ms

Eex excitatory membrane potential 1 0 mV

Ein inhibitory membrane potential 2 -85 mV

Vr resting membrane potential 1 -74 mV

Vthr membrane potential threshold 2 -45 mV

Vi increment for adaptive potential threshold 2 5 mV

wmin minimum synaptic weight 1 0

wmax maximum synaptic weight 2 0.01

win fixed inhibitory synaptic weight 2 0.05

α+ the presynaptic trace 1 0.01wmax

α− the postsynaptic trace 1 −α+(τ+/τ +−)1.05

1 Take the same value as [129].
2 Optimized to achieve the best classification performance.

Correspondingly, the synaptic efficacy matrix will have weights with the value between

0 and 1.

Thus, quantizing the number of spiked neurons and their spiking timings should be

enough to verify whether a learning method is convergent or not. In this chapter, a con-

vergence index f has been proposed by adding the spiking timings of all fired neurons

within a spiking pattern period. Specifically, for each separate spiking pattern period

(include spiking pattern time window and neural noise time window) within the whole
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Figure 5.9: Dynamic convergence index using 150 random samples within the same
chosen class.

spiking pattern sequence, the convergence index f can be computed as following:

f =
n∑
i=1

(sti − init) (5.12)

where n means the total number of spiked neurons within the spiking pattern learning

layer, sti represents the spiking timing (unit: ms) of that specific fired neuron and init

depicts the starting timing of the recent spiking pattern period.

Figure 5.9 shows the dynamic convergence index using 150 random samples within

the same chosen class, while Figure 5.10 shows the learned synaptic weight matrix

using the same 150 random samples as Figure 5.9. It can be seen from Figure 5.9

that the convergence index sharply decrease until around 50 and then enter a relatively

stable stage. The learning weights within Figure 5.10 remains at its extreme values

with relatively smaller number of them located at the between.

5.3.2.2 Robustness Analysis

Within ventral stream, there are interferences generated during the information

transmission procedure, such as background neural noise and time jitter. To verity the
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Figure 5.10: Learning synaptic weight using the same 150 random samples as Fig.11.

robustness of the proposed method, we should investigate the dynamic spiking status of

the postsynaptic neurons when adding these interferences into the learning procedure.

Ideally, the proposed method should be robust enough to ignore such interferences and

only concentrate on learning the input visual stimuli.

In this experiment, we will use the poisson point process to generate the back-

ground neural noise and standard normal distribution to produce the time jitter. Specifi-

cally, the time jitter is generated using the standard normal distribution and the uniform

poisson point progress with frequency of 7.5 Hz (to simulate a common α brainwave)

has been used to produce an background neural noise. The probability density function

(φ(x)) of the standard normal distribution can be expressed as follows:

φ(x) =
e−

1
2
x2

√
2π

(5.13)

Given a compact set K, a point process X is defined as a mapping from a prob-

ability space to configurations of points of K [131]. Note, N(A) is the number of

point of a point process X falling in the Borel set A. Let v(.) be a Borel measure

on K, then a point process X on K is a poisson point process with intensity v(.) if

N(A) is poisson distributed with mean v(A) for every bounded Borel set A included
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(a) The whole dynamic learning procedure using 150 random
samples within the same class

(b) The dynamic learning procedure of the first four spiking
pattern period

(c) The dynamic learning procedure of the last four spiking
pattern period

Figure 5.11: Robustness of the proposed method to the interferences.
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(a) Same frequency and different variance

(b) Same variance and different frequency

(c) Different variance and different frequency

Figure 5.12: Dynamic convergence index under different interferences settings (var
represents the variance of the time jitter and F is the frequency of the background
neural noise).
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in K and the random variables N(A1), ..., N(Ak) are independent for any k disjoint

bounded Borel set A1, ..., Ak. Uniform poisson point process [132], the most simple

poisson point process, is the point process with intensity measure being proportional

to the Lebesgue measure on K:

v(.) = βλk(.) (5.14)

The mean number of points falling into K is then:

E[N(K)] = βλK(K) (5.15)

where E represents expectation symbol and λK depicts the frequency of the poisson

law. β is a positive constant value. A two steps procedure can be used to generate

points in K with the distribution of this point process: Firstly, simulate N according to

poisson law with mean given by the latter equation (it gives N = n); Secondly, sample

each of the n points according to a uniform law on K.

Bascially, the background neural noise will be inserted into the interval between

adjacent spiking patterns within the input spiking pattern sequence, while the time

jitter will be added into the each spiking pattern itself within the same spiking pattern

sequence. By doing so, we can simulate the likely spiking pattern sequence existed

within the ventral stream and thus prove the robustness of the proposed method to

those interferences.

In Figure 5.11, 5.11a shows the whole dynamic learning procedure using 150 ran-

dom samples within the same class, 5.11b represents the dynamic learning procedure

of the first four spiking pattern period and 5.11c depicts the dynamic learning pro-

cedure of the last four spiking pattern period. From 5.11b, it can be seen that there

are several output spikes during the background neural noise time window, while in

5.11c, the output spikes only appear within the input spiking pattern time window and

there are no spike generated within the background neural noise time window. Such

behaviors indicate that those background neural noise will be gradually ignored with

the continuous learning.
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The possible reason of the above behaviors is that those background neural noise

patterns are independent and identically distributed. Specifically, since the the back-

ground neural noise is generated from poisson point process, one background neural

noise pattern within its corresponding neural noise time window is totally independent

to another background neural noise pattern within another neural noise time window.

According to probability theory, if two random variables are independent, they are ir-

relevant. This means the adjacent background neural noise patterns are irrelevant and

there are no similarity between them.

Within the proposed event-driven STDP learning method, the integral area of LTD

is larger than the integral area of LTP. Therefore, if each adjacent spiking patterns

remain independent, the synapses between pre and postsynaptic neurons will be con-

tinuously depressed (LTD) and thus no postsynaptic neuron will fire a spike in the end.

Otherwise, if the similarity between adjacent spiking patterns remains at a high level,

by using the event-driven STDP learning method, the synapses corresponding to the

most significant structural information of input visual stimuli will be reinforced to the

maximum value and others with less importance will be depressed to minimum value,

as shown in Figure 5.10.

To further investigate the influences of those interferences (neural noise and time

jitter) to the event-driven STDP learning procedure, it is necessary to analyze the per-

formance of the event-driven STDP learning method under three different interferences

settings. Specifically, we will use the dynamic convergence index with different inter-

ferences settings to show the influences to the event-driven STDP learning method.

Figure 5.12 shows dynamic convergence index under three different interferences set-

tings. With the increase of the variance of the time jitter and the frequency of the

background neural noise, more and more training samples are needed for the event-

driven STDP learning method to enter the stable state, which also means the turning

point is increasingly moving towards larger number of training samples. Specifically,

compared with time jitter, the background neural noise influence more to the event-

driven STDP learning method.

As discussed in the above subsections, the proposed ECS method can converge to a
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stable stage within limited learning steps. Furthermore, it will ignore the interferences

(the background neural noise and the time jitter) and only concentrate on learning the

input visual stimuli.

5.3.3 Simple Random Sampling Experiments on MNIST Database

In this chapter, simple random sampling experiments on MNIST database have

been firstly used to verify the proposed SNN and its ECS learning method. Note, we

use 100 random testing samples extracted from MNIST testing database to test the

classification performance. As mentioned above, in this chapter, poisson point process

with frequency of 7.5 hz has been used to produce an background neural noise and the

time jitter is generated using the standard normal distribution. From Figure 5.9, it can

be seen that the event-driven STDP learning procedure hits the turning point at around

50 training samples and then enter the relatively stable period.

However, the exact number of training samples needed to generate the optimized

classification performance is still unknown. Moreover, since the processing speed is

quite important within the ventral stream, it is necessary to find a balanced decision

criteria to choose a compromise optimized result between processing time and final

classification performance. Ideally, the proposed method should achieve a better clas-

sification performance using lesser processing time.

In Table 5.2, HMAX[127], a classical convolution neural network (CNN) method,

and the proposed event-driven continuous STDP (ECS) learning method have been

used to classify the testing samples using different number of training samples. Note,

in the above simple random sampling experiment, we use 100 random testing sam-

ples extracted from MNIST testing database to test the classification performance of

the above methods. To be fair, for each random test with specific number of train-

ing samples, HMAX[127] and ECS use the same random training samples. It can

be seen that the proposed ECS method with 100 random training samples strike the

balance state between the processing time and final classification performance, which

only use 23.3s to achieve 86.5% correct classification performance. Moreover, this

performance is achieved when incorporating background neural noise and time jitter
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Table 5.2: Correct classification performance using different random training samples
with two different methods.

Condition HMAX[127]:var=0, F=0hz; ECS:var=1, F=7.5hz

Random test

Number of training samples

50 100 150

HMAX[127] ECS HMAX[127] ECS HMAX[127] ECS

1 0.8 0.86 0.87 0.89 0.82 0.85

2 0.83 0.83 0.86 0.85 0.88 0.86

3 0.83 0.86 0.82 0.84 0.87 0.91

4 0.82 0.86 0.83 0.87 0.88 0.87

5 0.8 0.81 0.85 0.87 0.82 0.87

6 0.84 0.87 0.86 0.88 0.83 0.88

7 0.8 0.87 0.87 0.89 0.87 0.88

8 0.84 0.86 0.85 0.83 0.89 0.84

9 0.81 0.79 0.84 0.85 0.82 0.86

10 0.87 0.8 0.85 0.88 0.85 0.82

cp (average) 0.824 0.841 0.85 0.865 0.853 0.864

rt (average) 22.8s 23.1s 23.1s 23.3s 23.1s 23.4s

• Note: 0.8 in this table means 80% correct classification rate. To be fair, for
each random test with specific number of training samples, HMAX[127] and ECS
use the same random training samples and the same 100 random testing samples.
cp represents the final correct classification performance and rt means the corre-
sponding testing processing time used to generate that specific classification per-
formance.

into the proposed spiking neural network. In other words, compared with HMAX[127]

method, the proposed ECS method processes twice as many samples, which include

100 training samples and 100 background neural noise samples. Besides processing

more samples, the proposed ECS method will also ignore those interferences along

with the continuous learning and gradually focus on learning the real input spiking

patterns.

Compared with HMAX[127] method, the proposed ECS method can still achieve a

better performance even in quite harsh conditions. In order to generate a fully compar-

ison between HMAX[127] and ECS, we still need to compare their classification per-
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Table 5.3: Correct classification performance comparison be-
tween HMAX[127] and ECS using 100 training samples without
any interferences.

Condition HMAX[127]:var=0, F=0hz; ECS:var=0, F=0hz

Random test HMAX[127] ECS

1 0.85 0.88

2 0.87 0.86

3 0.83 0.87

4 0.87 0.89

5 0.82 0.90

6 0.9 0.91

7 0.83 0.86

8 0.86 0.95

9 0.8 0.91

10 0.84 0.88

cp (average) 0.847 0.891

rt (average) 23.15s 22.75s

• Note: 0.85 in this table means 85% correct classification rate.
To be fair, HMAX[127] and ECS use the same random train-
ing samples and the same 100 random testing samples. cp
represents the final correct classification performance and rt
means the corresponding testing processing time used to gen-
erate that specific classification performance.

formance when adding no interferences. Figure 5.13 shows the dynamic convergence

index of three random tests using the proposed ECS method without adding adding any

interferences (var=0, F=0hz). It shows the proposed ECS method will roughly hit the

stable period around 100 training samples. For the sake of simplicity, we only show

the classification performance comparison using 100 of training samples within the

learning procedure. Table 5.3 shows the correct classification performance using both

HMAX[127] and ECS methods when no interferences incorporated into the learning

procedure. From Table 5.3, compared with HMAX[127] method, the proposed ECS

method uses slightly less time (22.75s) to generate quite higher correct classification

performance (89.1%).
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Figure 5.13: Dynamic convergence index of three random tests using the proposed
ECS method without adding any interferences (var=0, F=0hz).

5.3.4 Exhaustive experiments on MNIST database

For fair comparison with other state-of-art methods, exhaustive experiments using

all training/testing samples have also been conducted in this paper. Unlike the simple

random sampling experiments, exhaustive experiments use the whole 60000 training

samples to learn the synaptic weights (also known as selectivities) and then distinguish

the whole 10000 testing samples based on the above learned synaptic weights.

Table 5.4 shows the simple random sampling and exhaustive classification accu-

racy performance using the proposed ECS method and different state-of-art learning

methods. According to their spiking coding type, the learning methods within Table

5.4 have been divided into two categories: time-based and rate-based. Compared with

proposed ECS learning rule, some methods within rate-based category achieves better

performance, but they have two main shortages: 1) To achieve the best performance,

all those methods need to feed the whole training samples into their SNN frameworks

at least several times (several runs) since one run is not enough to generate meaningful

spiking rate. 2) Some of the methods are not biologically plausible, for instance, spik-
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Table 5.4: Classification accuracy performance using different methods on MNIST
database.

Spiking Coding-type Architecture Preprocessing (Un-)supervised Learning Rule Performance
Simple random sampling a Exhaustive b

Time-based

Spiking convolutional
neural network Modified HMAX Supervised ECS(this paper) 89% 93.0%

Two layer network[68] Simplified HMAX Supervised Tempotron rule 79.0% N/A
Two layer network[69] Simplified HMAX Supervised Tempotron rule N/A 91.3%

Rate-based

Dendritic neurons[70] Thresholding Supervised Morphology learning N/A 90.3% d

Spiking RBM[71] None Supervised
Contrastive divergence,

linear classifier N/A 89.0%

Spiking RBM[72]
Enhanced training set
to 120,000 examples Supervised Contrastive divergence N/A 89.0%

Spiking convolutional
neural network[73] None Supervised Backpropagation N/A 99.1%

Spiking RBM[74] Thresholding Supervised Contrastive divergence N/A 92.6% c

Spiking RBM[74] Thresholding Supervised Contrastive divergence N/A 91.9% c

Two layer network[75] Edge-detection Supervised
STDP with calcium

variable N/A 96.5% e

Multi-layer hierarchical
neural network[25] Orientation-detection Supervised

STDP with calcium
variable N/A 91.6%

Two layer network[26] None Unsupervised Rectangular STDP N/A 93.5%
Two layer network[27] None Unsupervised Exponential STDP N/A 95.0%

a Simple random sampling performance has been generated by averaging 10 random tests using 50 random training samples per class and 100 random testing
samples, which is suitable for real-time learning since the whole database is impossible to obtain in most real scenarios.

b Exhaustive performance shows the ideal experimental results by using whole 60000 training samples and 10000 testing samples within MNIST database.
c The authors only use 1000 testing samples to obtain the performance
d The authors only use 5000 testing samples to obtain the performance
e The authors use 10000 randomly chosen samples from MNIST database instead of the dedicated testing database

ing convolutional neural network[73] using back propagation (BP) method achieves

the best performance, however, in real scenarios, the global error signal used in BP

algorithm is hard to obtain and it suffers various drawbacks, such as gradient vanish-

ing/exploding or overfitting.

To overcome those drawbacks, the proposed ECS method uses time-based spiking

neural network and it achieves the best performance by only using one run. Besides,

we use available biologically plausible models to build the layers of the proposed SNN

framework and incorporate the event-driven processing concept into the learning pro-

cedure. From Table 5.4, it can be seen that, within the time-based spiking learning

methods, the proposed ECS method achieves the best classification performance in

both simple random sampling and exhaustive experiments.

5.4 Conclusion

In this chapter, an event-driven continuous STDP learning method (ECS) using

HMAX model has been proposed. Instead of feeding single input image separately, this

paper uses the proposed continuous input sequence mechanism to generate the input

image sequences. After applying the modified HMAX model with sparsity and inter-

mediate variables, the invariant high level features have been extracted from the input

image sequences. Through the proposed spiking encoding scheme, the spatiotempo-
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ral spiking pattern would be generated and such spatiotemporal information conveys

unique and distinguish selectivity to each input visual stimuli. Two novel continu-

ous input sequence mechanisms have been proposed and each mechanism uses differ-

ent update procedure to learn the synaptic efficiency matrix. After using event-driven

STDP learning method, the final selectivity would be emerged with the corresponding

update procedure. Even incorporating background neural noise and time jitter into the

input visual stimuli, the simple random sampling and exhaustive experimental results

on MNIST database using the proposed method still achieve acceptable correct clas-

sification performances. Even though, several parts within the proposed method still

need to improve for better performance. In order to to generate more than one spike per

synapse connection, a more comprehensive spiking encoding scheme is needed. Be-

sides, the feature extracting layer within the proposed method has not been processed

using spiking neural networks. Therefore, overcoming those limitations should be the

priorities of our future work.
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Chapter 6

Spiking Neural Network for

Video-based Disguise Face Recognition

Face recognition using still face images has been widely investigated in the last sev-

eral decades. Compared with the traditional still images-based face recognition, video-

based face recognition (VFR) is still in its initial stage. But, with the vast popularity

of social media and the increasingly lower cost of the smart devices, the importance of

VFR application will increase dramatically over the foreseeable future. Various VFR

methods [53], [54], [55], [95], have been proposed to recognize the faces with different

kinds of variations within the testing video database, such as pose, expression, lighting,

blur and face resolution.

However, none of these testing video databases include the disguise variation. Ac-

tually, most of the existed VFR methods [53], [54], [55], [95] cannot deal with such

scenarios since the feature vectors within their methods can only be generated when

certain areas (eyes, nose, mouth) of the faces are visible within the video database.

Therefore, for video-based disguise face recognition (VDFR) application such as look-

ing for lost persons in train station or recognizing the terrorists in airport, the existed

VFR methods are not suitable.

To address the above problem, in this chapter, the proposed ECS method has been

extended to accomplish the VDFR tasks using the dynamic facial movements. Unlike

the traditional VFR methods, the proposed methodology can still work well when cer-

tain areas of the face is not visible. Our experiments on the proposed video disguise
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face database (VD Face DB) demonstrated the proposed VDFR methods are reliable

and efficient.

6.1 Background

Extensively researches have been conducted on the still images-based face recog-

nition applications over the last several decades. Specifically, various methods [133],

[134], [135] have been proposed to resolve the disguise detection applications and

achieved satisfactory results. Most of these methods usually divide the face area into

several patches and use methods such as PCA (Principal component analysis) or ITE

(Intensity and Texture Encoder) to generate high level features from these patches. The

classification procedure normally uses SVM (Support Vector Machine) or LBP (Local

Binary Pattern) to recognize different feature patterns. However, most of these meth-

ods use still images as the input and extract the static facial features/patches without

any consideration of the temporal relationship between different frames.

However, with the vast popularity of social media and the increasingly lower cost of

the smart devices, more and more researchers shifted their attentions from still image-

based face recognition (SIFR) to video-based face recognition (VFR). Within real-

world VFR application, at least one of query or target needs to be video sequence.

Therefore, three different scenarios need to be investigated within VFR: 1) Video-to-

Still (V2S); 2) Still-to-Video (S2V); 3) Video-to-Video (V2V) [54].

Various video face databases such as CMU MoBo, Honda/UCSD, YouTube Celebri-

ties and YouTube Faces DB have been built to test the different kinds of VFR methods.

Different video face database includes different kinds of variations. Basically, the vari-

ations included in these databases can be summarized as varying pose, illumination,

expression, resolution, motion blur and walking. Clearly, none of these testing video

databases include the disguise variations. However, VDFR plays an important role in

scenarios like looking for lost persons in train station or recognizing the terrorists in

airport. To resolve the problem, in this chapter, a novel video disguise face (VD Face

DB) database has been built.

It has been shown that a set of microexpressions using facial action coding sys-
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tems (FACS) cannot be mimicked and can provide authenticity for person identification

[136]. it is common sense that changing the subconscious actions such as the move-

ments of facial muscles is an extremely difficult task for human beings. Inspired by

this phenomenon, in this chapter, the temporal dynamic information pattern will be ob-

tained from the movements of facial muscles and used to recognize different subjects

even when they try to disguise themselves. Various available biologically plausible

models will be used to represent the temporal dynamic information patterns and learn

the selectivities from these temporal dynamic information patterns.

Specifically, the absolute differences of adjacent video frames have been used to

represent the movements of the facial muscles, similar to those differential images fed

into motion sensitive neuron models [96], [97]. If there are no moving background,

such frame differences can be considered as the representation of the movements of

facial muscles by themselves. Apparently, the frame differences would be zero if the

subject remains still within the training period. Thus, to avoid such scenarios within the

proposed video face database, the subjects will be asked to say a few sentences in front

of the camera. However, the frame differences themselves are not enough to represent

the video frames within the video face database since there still exists large volumes

of the pattern variations. It is known that the ventral stream, a hierarchical system

in which each layer extracts different level of abstractions, plays an important role in

form recognition and object representation. As discussed in the previous chapter, the

framework of the event-driven continuous STDP (ECS) learning method can be used

to simulate the ventral stream. Thus, in this chapter, the framework of the ECS method

will be used to reduce the pattern variations.

Generally speaking, the traditional VFR methods can be summarized as two main

types: sequence-based methods [53], [55] and set-based methods [54], [95]. Basically,

the sequence-based methods use the temporal dynamic information of the face among

the adjacent video frames while the set-based methods does not use this temporal dy-

namic information, considering the video as image set of the separated video frames.

Essentially, the common grounds of these two kinds of methods are using different

feature vectors to represent the video frames. The former one tries to extract the tem-
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poral dynamic information from the feature vector patterns while the latter one models

the feature vector patterns, also known as set, and use different correlation methods to

compute the set-to-set distance.

Normally, to obtain the feature vectors using these methods, certain areas like eyes

or nose of the face within the video frames need to be visible. For instance, in paper

[55], within the proposed individual expression recognition (IER) block, to obtain the

behavioral map (BM) containing facial evolutions of microexpressions in each frame,

at least an eye, a brow or a cheek need to be detected within the video frames. In [53],

the authors use genetically-inspired learning method to select meaningful facial fea-

tures obtaining from five local areas, such as eyes, nose and mouth. These algorithms

are essentially sequence-based methods. Similar situations can also be extended into

the set-based methods. However, within VDFR applications, such critical requirement

cannot be satisfied and thus these methods are not suitable for this specific scenario.

Moreover, most of these methods use SVM or multi-perceptron as the classification

algorithms, which are clearly not biologically plausible.

To address the above problems, based on the ECS learning method, a novel VDFR

method using the movements of the facial muscles has been proposed and it has been

accomplished using the available biologically plausible models. Specifically, based on

the modified HMAX model, the proposed method extracts dynamic features from the

input video clips and uses the proposed spike encoding scheme to obtain the spiking

patterns. Within the spiking pattern learning procedure, an event-driven continuous

spike-timing dependent plasticity (ECS) learning method has been used to learn the

selectivities from the spiking pattern sequences, which not only improves the learning

efficiency but also ensures the input visual stimuli can be learned without resetting

the intermediate variables during each learning step. Experimental results on the pro-

posed testing database shows the proposed method can achieve a quite high correct

classification performance.
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6.2 Framework of the Proposed SNN

It is known that ventral stream is a hierarchical system in which each layer extracts

different level of abstractions [6]. Its aim is to build an invariance to position and

scale first, and then to viewpoint and other transformations [109]. To simulate the

hierarchical structure of the ventral stream, a novel feed-forward SNN framework has

been proposed in this chapter. This framework includes 5 layers: dynamic movements

extracting layer, high level feature extracting layer, spiking encoding layer, spiking

pattern learning layer and output layer.

Specifically, to obtain the dynamic movements of the facial muscles, the dynamic

movements extracting layer tries to compute the absolute difference of adjacent frames.

In other words, when fed the input training video, the proposed SNN framework focus

on dynamic moving features rather than still frame features. Furthermore, within the

high level feature extracting layer, those dynamic movements would be transformed to

high level invariant features. The spiking pattern sequence generated from the spiking

encoding layer would be trained within spiking pattern learning layer. Finally, the

output layer accumulates different judgments from the spiking pattern learning layer

and classifies the input sample video into predicted class.

Figure 6.1 shows the framework of the proposed feed-forward SNN. Within the

spiking pattern learning layer, for each map, there are k neurons corresponding to k

possible sub-classes and each neuron within the map has lateral inhibition connections

to all the other neurons of the spiking pattern learning layer. The spiking encoding

layer and the spiking pattern learning layer are fully connected. When a neuron fires

a spike, other neurons will be strongly inhibited, which also can be considered as a

soft winner-take-all strategy. Besides, finding a relatively balanced inhibition strength

is extremely significant for this lateral inhibition strategy. Note, the amount of maps

within the output layer is the same of the total classes and each map corresponds to a

specific related class. There is only one neuron within each map and this neuron only

connects with its related neurons within spiking pattern learning layer. The input video

belongs to a certain class if the related map fires a spike firstly.
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Figure 6.1: Framework of the proposed feed-forward SNN. For simplicity, the lateral
inhibition connections of the spiking pattern learning layer have not been included.

6.2.1 Dynamic Movements Extracting Layer

It is known that the traditional face recognition methods cannot easily recognize

the faces if the training samples try to disguise themselves. However, for human be-

ings, changing the subconscious actions such as the movements of facial muscles is

an extremely difficult task. Essentially, the movements of facial muscles represent the

dynamic characteristics of the face. In other words, the traditional facial recognition

methods use static features of the subject while the movements of facial muscles use

dynamic features of the subject.

Given the video frames as the input, the absolute differences of adjacent video

frames contain the dynamic movements of facial muscles. Furthermore, if there are no

moving background, such frame differences can be considered as the representation

of the movements of facial muscles by themselves. Apparently, the frame differences

would be zero if the subject remains still within the training period. Thus, such scenar-

ios should be avoided within this chapter.
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6.2.2 High Level Feature Extracting Layer

For the VDFR application, it is not enough to just use dynamic movements as the

input of the spiking encoding layer since there are still lots of intra-class variances

within the dynamic movements. Thus, the high level features are much needed for

further processing. According to deep learning theory, the high level features should

strike a balance state between invariance and distinguishability [9], which has a large

impact on the final classification performance. Based on the computational model

proposed by Mutch and Lowe [127], the high level feature extracting layer can be built

according to section 5.2.1.

6.2.3 Spiking Encoding Layer

Within visual cortex, neurons use spikes to transmit information to other neurons.

Traditionally, spike rate has been considered to contain most, if not all, information of

the input visual stimuli. Rate-based SNN assumes that as the intensity of a stimulus

increases, the associated spike rate increases. However, such mechanism ignores one

significant fact: short processing time window is not enough for rate-based SNN to

generate meaningful spiking rate. Recent neuroscience studies show that mammalian

brain only use millisecond scale time window to process the complicated real-life vi-

sual recognition tasks [2]. Moreover, if the input visual stimuli has been incorporated

with the background noise with the same spiking rate, it is impossible for rate-based

SNN to generate the selectivity for the input visual stimuli [29].

To resolve the above problems, researchers use the specific spike timings of the

fired neurons to represent the information. Compared with spike rate, it is believed

such spike timing pattern conveys much more structural information. For instance,

given each fired neuron only fires a single spike, the spike timing-based SNN can still

distinguish different spiking patterns, which is impossible for spike rate-based SNN.

On the other hand, even the spike rate remains unchanged, it is still possible to generate

countless spike timing sequences and each of them corresponds to a different input

visual stimuli.

Similar to section 5.2.2.2, rank order coding (ROC) scheme has been used within
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(a) Input frame difference

(b) Spiking pattern

Figure 6.2: One input frame difference and its spiking pattern generated from the
spiking encoding layer.

this chapter. For a global invariant C2 feature response r, the corresponding spiking

timing t can be computed according to equation 4.2. Like section 5.2.2.2, in this

chapter, the processing time window is set to 0.2 s (p takes 0.2 in equation 4.2). Figure

6.2 shows one input frame difference and its spiking pattern generated from the spiking

encoding layer. Note, the C2 feature vector has 4096 elements, and thus there are

4096 neurons to fire spikes. Only those neurons with spiking timing less than 150

millisecond will fire spikes.

6.2.4 Spiking Pattern Learning Layer

Spiking pattern learning layer is the only learning layer within the proposed SNN

framework. Given the initial state of the synaptic connections, the synaptic efficiency

of the neurons within this layer will be adjusted over the learning period and gradually

converged to the stable state. The final stable synaptic efficiency matrix represents the

selectivity of the input visual stimuli and can be used to distinguish different classes

within the testing period.

Within the spiking pattern learning layer, for each map, there are k neurons corre-
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Figure 6.3: One input spiking pattern sequence and its learning results.

sponding to k possible sub-classes and each neuron within the map has lateral inhibi-

tion connections to all the other neurons of the spiking pattern learning layer. The spik-

ing encoding layer and the spiking pattern learning layer are fully connected. When a

neuron fires a spike, other neurons will be strongly inhibited, which also can be consid-

ered as a soft winner-take-all strategy. Besides, finding a relatively balanced inhibition

strength is extremely significant for this lateral inhibition strategy. The specific learn-

ing method used in this chapter will be introduced in the following section. Figure 6.3

shows one input spiking pattern sequence and its learning results.

6.2.5 Output Layer

The amount of maps within the output layer is the same of the total classes and each

map corresponds to a specific related class. There is only one neuron within each map

and this neuron only connects with its related neurons within spiking pattern learning

layer. The input video belongs to a certain class if the related map fires a spike firstly.

Specifically, during the testing period, for each input frame difference, one neuron
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within the spiking pattern learning layer will fire a spike firstly and then this spike

transmits to its related neuron within the output layer. Note, within the output layer,

the membrane potential of the neuron will increase by a fixed amount when receiving

a input spike and remain at the same without any reducing. When the membrane

potential crosses the predefined threshold, the neuron will fire a spike. For instance,

given a video clip includes 100 frames, it belongs to the class if at least 50 frames

are classified as this specific class. Basically, for VDFR task, output layer acts as a

information collecting and decision making hub.

6.3 Neuron Model and Learning Method

Within SNN, neurons need neuron model to interact with each other as it can be

considered as the conduct principle. On the other hand, learning method plays an

important role in training the selectivities from the input spiking patterns. Basically,

those two factors are the core building blocks of a complete SNN algorithm and thus

will be introduced in the following subsections respectively.

6.3.1 Neuron Model

Neural models define how the activities of the neurons change in response to each

other. In this chapter, leaky integrate-and-fire (LIF) model stands out from the com-

petition since it is biologically plausible and has low computational complexity. The

leaking factor within the LIF model ensures that the neurons only fire spikes when

there are enough presynaptic spikes fired from its receptive field within a relatively

short time window. Thus, such neuron model can be considered as a coincidence de-

tector. In this chapter, conductance based LIF model has been used as the neural model

for the proposed SNN. Like in [129], [130], the membrane potential of the neuron (V )

can be computed according to section 5.2.2.1.
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6.3.2 Learning Method

Traditionally, if choosing all-to-all spike interaction, STDP needs to sum over all

pairs of spikes to update the learning synaptic weight matrix and that is very ineffi-

cient. Besides, it would also be physiological unrealistic because the neuron cannot

remember all its previous spike times.

To overcome such drawbacks, in this chapter, event-driven STDP learning rule

has been applied within the proposed SNN by involving two on-line, local learning

rules that are applied only in response to occurrences of spike events. The details can

be found in section 5.2.3.2 . Compared with the traditional STDP, such event-driven

STDP learning rule is more biologically plausible and more efficient. Furthermore,

similar to section 5.2.3.1, an adaptive thresholding method has been used to achieve a

stable network. Therefore, the whole learning procedure can be described as follows:

1. Propagate an input video into the dynamic movements extracting layer and ob-

tain the frame difference sequence.

2. Given a frame difference sequence as the input, the synaptic weights w within

the spiking pattern learning layer can be updated using the learning procedure

described in section 5.2.3.2.

6.4 Experiments

To verify the proposed VDFR method, a novel video disguise face database (VD

Face DB) has been built since the traditional video face databases have no disguise

variations. Based on this novel database, various experiments using the proposed

VDFR method have been examined under different experimental conditions. Specif-

ically, VD Face DB itself will be introduced in the first subsection, followed by the

parameter settings of the proposed method. The experimental performances and anal-

ysis will be elaborated in the last subsection.
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Figure 6.4: Sample frames without disguise extracted from the VD Face DB.

6.4.1 The Proposed Video Disguise Face Database

Unlike the traditional face recognition methods, the proposed method tries to dif-

ferentiate different faces based on video-based database instead of still images-based

database. To achieve the VDFR, the human identities are recognized not just on a few

images but the sequences of video stream showing facial muscle movements while

speaking. Compared with other video face databases, VD Face DB introduces the

disguise variations to the faces within the video frames.

To simulate the real scenarios, the database consists of two different experimental

conditions: subject without any disguise and subject with disguise. In this experiment,

to achieve the disguise condition, each subject will be asked to wear different sun-

glasses, hats and fake beards. Figure 6.4 shows some sample frames of three subjects

without any disguise while Figure 6.5 demonstrates the sample frames of the same
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Figure 6.5: Sample frames with disguise extracted from the VD Face DB.

subjects with various disguises. All sample frames are extracted from the proposed

VD Face DB.

The database includes 20 subjects totally. There are 5 video clips for each sub-

ject and those video clips have been recorded under various experimental conditions.

Within each video clip, the subject has been asked to say a few sentences in front of

the camera. The frame rate of each video clip is 30 frames/sec and the recording time

per subject per time is 3 seconds. The size of each frame within each video clip is set

to 320 × 240. Table 6.1 shows the basic information of different video face database.

The proposed video disguise face database (VD Face DB) has been emphasized using

bold text. Even though the number of experimental subjects/videos are not comparable

with other huge databases like YouTube Faces DB or COX Face DB, the proposed VD

Face DB has been incorporated with disguise variations and none of these databases
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Table 6.1: Basic information of different video face databases.

Database Number of subjects/videos Variations Scenarios

CMU MoBo 25/150 w V2V

First Honda/UCSD 20/75 p V2V

Second Honda/UCSD 15/30 p V2V

CMU FIA 214/214 p,l,e V2V

CamFace 100/1400 p,l V2V

Faces96 152/152 l,r V2V

VidTIMIT 43/43 p,e V2V

YouTube Celebrities 47/1910 p,l,e,r,b,w V2V

MBGC 821/3764 p,l,e,r,b,w V2S/V2V

ND-Flip-QO 90/14 l,e,r,b V2V

YouTube Faces DB 1595/3425 p,l,e,r,b,w V2V

Chokepoint 29/48 p,l,e,r,b V2V

ScFace 130/910 p,l,r V2S/V2V

UT Dallas 284/1016 p,l,e,r,b,w V2S/V2V

UMD Comcast10 16/12 p,l,r,b,w V2V

PaSC 265/2802 p,l,e,r,b,w V2S/V2V

Celebrity-1000 1000/7021 p,l,e,r,b,w V2V

COX Face DB 1000/3000 p,l,e,r,b,w V2S/S2V/V2V

VD Face DB 20/100 l,e,d V2V

• Note: Variations include pose(p), illumination(l), expression(e), resolution(r),
motion blur(b), walking(w) and disguise(d).

consider such factor.

6.4.2 Parameter Settings

Within the proposed feed-forward SNN framework, besides the postsynaptic po-

tential threshold Vthr, the parameters for the first four layers take the same values as

Table 5.1. In this experiment, to obtain the best classification performance, the postsy-

naptic potential threshold Vthr is set to -45 mV . Furthermore, as mentioned in section

6.2.5, the membrane potential of the neuron will increase by a fixed amount when re-
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ceiving a input spike and remain at the same without any reducing. Thus, given a video

includes m frames, it belongs to the class if at least 0.5m frames are classified as this

specific class. Note, the time resolution of this experiment is 0.1 ms.

6.4.3 Experiments and Discussions

To verify the universality of the proposed VDFR method, various experiments un-

der different experimental conditions need to be explored. In the following subsec-

tions, we will test the proposed method by increasing the recognition difficulty.

6.4.3.1 Experiment without any disguise

Before exploring the experiments with disguise, we need to make sure the proposed

VDFR method can successfully distinguish different faces without any disguise. This

is the basic requirement for the proposed VDFR method. Without such ability, it is

impossible for the proposed VDFR method to recognize the faces with disguise.

Specifically, in this subsection, we use different number of video clips without any

disguise to train the selectivity matrix and then test the recognition performance on the

remaining video clips without any disguise. Note, some subjects within these video

clips wear glasses (not the sunglasses within disguise video clips). 10 subjects have

been chosen from the database for this specific experiment.

Table 6.2 shows the correct classification performance using different number of

training/testing video clips. By using the proposed VDFR method, only 2 training

video clips within the total 5 video clips are enough to flawlessly recognize different

faces without any disguise. Such high convergence speed is critical for the face recog-

nition applications. In other words, the proposed VDFR method requires less training

samples to train the selectivity matrix.

Through this experiment, we demonstrate the proposed VDFR method can flaw-

lessly distinguish different faces without any disguise by only using limited training

video clips. Such capability is essential and critical for the following experiments with

disguise. However, this is a initial requirement for the proposed method and we still

need to verify the proposed method can still work well within not so ideal situation.
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Table 6.2: Correct classification performance using different number of training
and testing video clips.

Number of training video clips Number of testing video clips Performance

1 4 0.925

2 3 1.00

3 2 1.00

• Note: 0.925 in this table means 92.5% correct classification rate.

6.4.3.2 Experiment with disguise

To accomplish the VDFR task, in this subsection, we will feed video clips with dis-

guise within the testing period. According to the above experiment, it has been shown

that 2 video clips without any disguise are enough to learn the selectivity. Therefore,

we will use 2 video clips without any disguise as the training samples and test the

recognition performance using the remaining 3 video clips (with various disguises).

All 20 subjects within VD Face DB will be used in this experiment. Table 6.3 shows

the average classification performance of the two different methods, CNN [127] and

the proposed VDFR method, on testing the disguise video clips in 100 random tests.

It can be seen that the proposed VDFR method can averagely achieve 94.7% correct

classification performance, while CNN [127] method just obtains 87.3% correct rate.

Moreover, we have conducted a Wilcoxon signed-rank test on the correct classification

performances by using the above two methods and computed the corresponding sig-

nificance level p− value (0.005364). Since the significance level p− value < 0.05, it

clearly shows that the two correct classification performances are statistically different.

Generally speaking, the traditional VFR methods can be summarized as two main

types: sequence-based methods and set-based methods. Essentially, the common

grounds of these two kinds of methods are using different feature vectors to represent

the video frames. The former one tries to extract the temporal dynamic information

from the feature vector patterns while the latter one models the feature vector patterns,

also known as set, and use different correlation methods to compute the set-to-set dis-

tance.
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Table 6.3: Classification performances of two different methods on test-
ing video clips with disguise.

Method Correct rate Wrong rate Unknown rate

CNN [127] 87.3% 12.7% 0

Proposed VDFR method 94.7% 5.3% 0

• Note: The correct classification rate has been computed by averag-
ing 100 random tests. Furthermore, we have conducted a Wilcoxon
signed-rank test on the correct classification performances by using
the above two methods and computed the significance level p−value
(0.005364). Such significance level (p−value < 0.05) indicates that
the two correct classification performances are statistically different.

Normally, to obtain the feature vectors using these methods, certain areas like eyes

or nose of the face within the video frames need to be visible. For instance, in paper

[55], within the proposed individual expression recognition (IER) block, to obtain the

behavioral map (BM) containing facial evolutions of microexpressions in each frame,

at least an eye, a brow or a cheek need to be detected within the video frames. In

[53], the authors use genetically-inspired learning method to select meaningful facial

features obtaining from five local areas, such as eyes, nose and mouth. However,

within VDFR application like this experiment, such critical requirement cannot be

satisfied. For instance, in Figure 6.5, the sunglasses have covered the eyes of the first

and second subjects. Moreover, most of these methods use SVM or multi-perceptron

as the classification algorithms, which are clearly not biologically plausible.

6.5 Conclusion

With the vast popularity of social media and the increasingly lower cost of the

smart devices, more and more researchers shifted their attentions from SIFR to VFR.

Various VFR methods have been proposed to recognize the faces with different kinds

of variations. However, none of these testing video databases include the disguise

variation. Actually, most of the existed VFR methods cannot deal with such scenarios

since the feature vectors within their methods can only be generated when certain areas

(eyes, nose, mouth) of the faces are visible within the video databases.
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To resolve the above problems, in this chapter, a novel video disguise face database

(VD Face DB) has been built and then based on the available biologically plausible

models and the event-driven continuous spike-timing dependent plasticity (ECS) learn-

ing method, a novel VDFR method using the movements of the facial muscles has been

proposed. Specifically, based on the modified HMAX model, the proposed method

extracts dynamic features from the input video clips and uses the proposed spike en-

coding scheme to obtain the spiking patterns. Within the spiking pattern learning pro-

cedure, an event-driven continuous spike-timing dependent plasticity (ECS) learning

method has been used to learn the selectivities from the spiking pattern sequences,

which not only improves the learning efficiency but also ensures the input visual stimuli

can be learned without resetting the intermediate variables during each learning step.

Experimental results on the proposed testing database shows the proposed method can

achieve a quite high correct classification performance. Even though the proposed

method achieved a satisfactory performance, it still has several limitations: the feature

extracting layer within the proposed method has not been processed using spiking neu-

ral networks and it cannot deal with the scenarios with complex moving distractions

within the background. Thus, overcoming those limitations should be the priorities of

our future work.
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Conclusion

For most animal species, reliable and fast visual pattern recognition is vital for

their survival. Within computer science, machine learning is often used to accomplish

the visual pattern recognition task. However, recent research shows an mammalian

brain can process complicated real-life visual pattern recognition scenarios at millisec-

onds scale, which proposes a huge challenge for traditional machine learning methods.

Thus, using spiking neural network to simulate the visual cortex, especially the ven-

tral stream, has became a natural choice for the researchers. In this thesis, based on

the available biologically plausible models, several novel methods have been proposed

and successfully applied on still image-based and video-based visual pattern recogni-

tion tasks, respectively.

Two main methods, batch learning rule [23], [24], [46] and on-line learning rule

[47], [48], [49], have often been used to address the face recognition tasks based on

spatiotemporal information extracted from spiking neural network (SNN). However,

since they both incorporate winner-take-all strategy within the classification procedure,

the batch learning rule only considers the average cluster within the class while the on-

line learning rule just relies on the nearest relevant single sub-cluster. Both of them

will not work well if there are obvious overlaps between classes. To overcome the

above drawback, a novel learning rule inspired by soft winner-take-all strategy has

been proposed. Specifically, it will assign a probability for each related class and the

testing sample will be classified to the class with the highest probability. Compared

with the two state-of-the-art methods mentioned above, experimental results on the
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ORL face database show the proposed method can achieve a better performance.

In most cases, new visual pattern should be learned in a limited time window to

adapt to new environments or changes promptly. Such learning procedure can be char-

acterized as real-time learning. Recent research shows a biological brain can process

complicated real-life recognition scenarios at milliseconds scale [2], which is obvi-

ously impossible for the traditional visual pattern recognition methods. Several papers

[17], [68] based on SNNs have tried to solve the above problem. However, the method

used in paper [68] needs prior knowledge before learning - in many cases, this prior

knowledge is hard to obtain. Even the paper [17] incorporated STDP as their learning

rule, it is only used as a local feature extractor. More importantly, these methods have

not achieved real-timing learning. To overcome these drawbacks, a novel real-time

learning method has been proposed by combining the spike timing-based feed-forward

spiking neural network (SNN) and the fast unsupervised spike timing dependent plas-

ticity learning method with dynamic post-synaptic thresholds. Experimental result on

MNIST database shows the proposed method can efficiently achieve an acceptable

accuracy within a limited time window.

The ventral stream, one type of visual processing pathway, plays an important role

in form recognition and object representation. But, the underlying processing mecha-

nism of the ventral stream is still largely unknown, which proposes a huge challenge

for the researchers. Two main categories of methods, spiking rate-based methods [25],

[26], [27], [70], [71], [72], [73], [74], [75] and spiking time-based methods [17], [68],

[69], have been proposed to address the above issue. However, spiking rate-based

methods [25], [26], [27], [70], [71], [72], [73], [74], [75] suffers two main drawbacks:

limited learning time, which often exists in ventral stream, is not enough to generate a

meaningful spiking rate and these methods often lack direct biological supports. Un-

like the above methods, the authors in paper [17], [68], [69] use spiking time-based

methods. But, the supervisory signal used in the first two papers has no strong ex-

perimental confirmation and the STDP method used in the last paper is only acted as

a local feature extractor. To solve the above problems, based on the available bio-

logically plausible models, an event-driven continuous spike-timing dependent plas-
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ticity (STDP) learning method (ECS) using HMAX model has been proposed. The

cross-validated and exhaustive experimental results on MNIST database show that the

proposed method, compared with other state-of-art methods, can achieve comparable

correct classification performances, but with more biologically plausible supports.

So far, the proposed methodologies have only been applied on still image-based

visual pattern recognition tasks, but they can also extend to video-based visual pattern

recognition tasks. With the vast popularity of social media and the increasingly lower

cost of the smart devices, the face recognition tasks have been shifted from still image-

based to video-based. Various video-based face recognition (VFR) methods [53], [54],

[55], [95], have been proposed to recognize the faces with different kinds of varia-

tions within the testing video database, such as pose, expression, lighting, blur and

face resolution. However, none of these testing video databases include the disguise

variation. Actually, most of the existed VFR methods [53], [54], [55], [95] cannot deal

with such scenarios since the feature vectors within their methods can only be gener-

ated when certain areas (eyes, nose, mouth) of the faces are visible within the video

database. Therefore, for video-based disguise face recognition (VDFR) application

such as looking for lost persons in train station or recognizing the terrorists in airport,

the existed VFR methods are not suitable. To address the above problem, the proposed

ECS method has been extended to accomplish the VDFR tasks using the dynamic fa-

cial movements. Unlike the traditional VFR methods, the proposed methodology can

still work well when certain areas of the face is not visible. Our experiments on the pro-

posed video disguise face database (VD Face DB) demonstrated the proposed VDFR

methods are reliable and efficient.

Even though the proposed methods achieved satisfactory performances, they still

have several limitations. Firstly, the HMAX model used to generate the high level

features has not been modeled by SNN. Ideally, given a visual input stimulus, SNN

should accomplish the whole visual pattern recognition procedure. Specifically, within

the feature extracting layer, for an input image, we should use spikes instead of analog

values to obtain the high level features. In other words, within an ideal SNN, the input

image should be transformed to spikes and then these spikes will be used to accomplish
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the visual pattern recognition task.

Moreover, the high level features obtained from HMAX model is still not perfect

for further visual processing since they still convey abundant intra-class variance. To

further reduce the intra-class variance, a more complicated feature extracting method

is much needed. Such feature extracting method should consider incorporating more

biological properties of the ventral stream, such as attention mechanism or sparsity.

Specifically, attention mechanisms in neural network are loosely based on the visual

attention mechanism found in humans. Through attention mechanism, the neural net-

work will only focus on the region of interested and ignore other areas. Even though

the structure of the ventral stream is extremely complex and the number of neurons

involved is often huge, only a few of them are actually activated within a period. Such

sparsity plays an important role in visual information processing within the ventral

stream.

Furthermore, in this thesis, we only use rank order coding (ROC) scheme to trans-

form the features into spike patterns. Within ROC, a neuron is only allowed to fire

at most one spike. This is certainly an ideal situation. In reality, as long as their

membrane potentials reach the threshold, neurons can fire spikes as many as possible.

Thus, to generate more than one spike per synapse connection, a more comprehensive

spiking encoding scheme is needed.

Finally, we only use feed-forward SNN framework in this thesis. However, it is

known that the human brain is a recurrent neural network (RNN): a network of neu-

rons with feedback connections. Specifically, RNN is a class of artificial neural net-

work where connections between units form a directed cycle. This creates an internal

state of the network which allows it to exhibit dynamic temporal behavior. Unlike

feed-forward neural networks, RNN can use their internal memory to process arbitrary

sequences of inputs. This makes them applicable to tasks such as unsegmented con-

nected handwriting recognition or speech recognition. Therefore, a long short-term

memory (LSTM), a deep learning RNN, will be investigated in our future work.
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