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Abstract 
 
Emotion recognition using deep learning methods through electroencephalogram (EEG) 
analysis has marked significant progress. Nevertheless, the complexities and time-intensive 
nature of EEG analysis present challenges. This study proposes an efficient EEG analysis 
method that foregoes feature extraction and sliding windows, instead employing one-
dimensional Neural Networks for emotion classification. The analysis utilizes EEG signals 
from the Database for Emotion Analysis using Physiological Signals (DEAP) and focuses on 
thirteen EEG electrode positions closely associated with emotion changes. Three distinct 
Neural Models are explored for emotion classification: two Convolutional Neural Networks 
(CNN) and a combined approach using Convolutional Neural Networks and Long Short-
Term Memory (CNN-LSTM). Additionally, two emotion labels are considered: four emotional 
ranges encompassing low arousal and low valence (LALV), low arousal and high valence 
(LAHV), high arousal and high valence (HAHV), and high arousal and low valence (HALV); 
and high valence (HV) and low valence (LV). Results demonstrate CNN_1 achieving an 
average accuracy of 97.7% for classifying four emotional ranges, CNN_2 with 97.1%, and 
CNN-LSTM reaching an impressive 99.5%. Notably, in classifying HV and LV labels, our 
methods attained remarkable accuracies of 100%, 98.8%, and 99.7% for CNN_1, CNN_2, and 
CNN-LSTM, respectively. The performance of our models surpasses that of previously 
reported studies, showcasing their potential as highly effective classifiers for emotion 
recognition using EEG signals. 
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1. Introduction 
 
Emotion is a fundamental aspect of human behavior, fostering interpersonal communication 
and influencing rational decision-making [1-3]. Recognizing emotions offers valuable insights 
into individuals' interests, tastes, personality traits, and overall physical and mental well-
being [4]. For instance, accurate emotion recognition can significantly enhance the quality of 
nursing and treatment for patients with expressive disorders, allowing nurses and doctors to 
better understand their feelings during care [5]. Moreover, emotion recognition holds vital 
implications for improving the reliability of human-machine interaction and enhancing social 
cognition in machines and robots [6,7]. Consequently, research in emotion recognition is 
imperative [8]. Despite its significance, existing studies on emotion recognition face challenges 
such as low accuracy and variability across individuals [9]. 
 
Previous studies have proposed several models to accurately classify and represent emotions 
[8]. One prominent model likens emotions to colors, where each emotion can encompass 
primary emotions. One researcher linked eight primary emotions to evolutionarily valuable 
properties, resulting in the categorization of anger, sadness, fear, curiosity, disgust, surprise, 
joy, and acceptance into eight main categories [10]. Another well-known model, introduced 
by Ekman, identifies six universal basic emotions: anger, fear, sadness, happiness, disgust, 
and surprise [11]. Additionally, a multi-dimensional model, proposed by Russell, 
characterizes emotions based on two dimensions: arousal and valence [12]. Arousal reflects 
the intensity of an emotion, ranging from arousal to relaxation, while valence categorizes 
emotions as positive or negative. Among the various emotion classifier models, the Russell 
model, featuring a vertical arousal axis and horizontal valence axis (as depicted in Figure 1), 
has been widely adopted as the standard model [12]. 
 

 
Figure 1: Russell's two-dimensional emotion model. 
 
According to Figure 1, this study focuses on analyzing emotions based on two key 
components, Arousal and Valence. Specifically, the aim of this article is to identify and 
quantify negative and positive emotions, as well as assess their intensity.  
 
Recently, various input modalities have provided abundant information about individuals 
and their emotional states. Commonly employed modalities include audiovisual interactions, 
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encompassing facial expressions, eye gaze tracking, body movement detection, and speech 
and auditory analysis [13]. Moreover, previous studies have explored emotion recognition 
using physiological signals, such as electroencephalogram (EEG) signals and peripheral 
measures like electrocardiogram (ECG), respiration, skin resistance, and blood pressure [14-
17]. Among these input modalities, EEG exhibits great potential compared to facial 
expression- and speech-based approaches, due to its non-invasive nature, tolerance to 
movement [13], and the inability for individuals to consciously disguise or control internal 
neural changes [18]. This article will delve into the capabilities of EEG for emotion recognition 
research, offering valuable insights into emotions and their complexities. 
 
In contrast to previous studies where EEG signal segments required extensive feature 
extraction as a prerequisite for classification, our research aims to streamline EEG data 
classification by eliminating feature extraction and reducing preprocessing steps. We propose 
a novel method for classifying EEG signals, yielding remarkably high accuracy without the 
need for feature extraction techniques. 
 
Additionally, we explore two distinct strategies for defining class labels. The first strategy 
incorporates four class labels: high valence and high arousal (HVHA), high valence and low 
arousal (HVLA), low valence and low arousal (LVLA), and low valence and high arousal 
(LVHA). The second strategy simplifies the classification process by considering only two 
labels: high valence (HV) and low valence (LV). Our experimental results demonstrate the 
effectiveness of our proposed method in achieving superior accuracy, making it a promising 
approach for EEG signal classification without the burden of feature extraction. 
 
2. Related Work 
 
Recently, emotion recognition based on EEG signals has seen significant advancements 
through the implementation of both end-to-end deep learning and step-by-step machine 
learning approaches [11]. A variety of machine learning algorithms have been employed in 
previous studies for EEG-based emotion recognition, including K-Nearest Neighbor (KNN) 
[19], Support Vector Machines (SVM) [20], Bayesian Networks (BNT) [21], and Decision Trees 
(DT) [21]. It is important to note that the accuracy of emotion recognition using these 
algorithms is influenced by factors such as the extracted features, the trained classifier, and 
the target dataset [22]. For EEG signal segment classification with conventional machine 
learning methods, feature extraction from EEG signal segments is a fundamental prerequisite 
step [23]. Table 1 provides an overview of some previous studies utilizing conventional 
machine learning methods for emotion recognition from EEG signals [24-28]. 
 
The utilization of deep learning methods in emotion recognition offers the advantage of 
automatically extracting high-level features from the data [29], eliminating the dependence 
on specific feature extraction techniques. Extensive research has demonstrated the superiority 
of deep neural networks (DNNs) over conventional machine learning methods for EEG-based 
emotion recognition in numerous cases [30]. Moreover, DNNs have exhibited exceptional 
performance in diverse applications such as computer vision [31], natural language 
processing [32], and biomedical signal processing [33], further attesting to their effectiveness. 
Table 2 presents an overview of several deep learning methods that have been proposed and 
employed for EEG-based emotion recognition in prior studies, encompassing DNN [34], 
convolutional neural networks (CNN) [35], long short-term memory (LSTM) [36], and a 
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hybrid model combining CNN and LSTM (CNN-LSTM) [37]. These advanced techniques hold 
promise in enhancing the accuracy and efficiency of emotion recognition from EEG signals. 
 
Table 1: List of the previous studies based on conventional machine learning methods. 
 

Ref Classes Feature Extraction Classification Accuracy 

[24] Valence, Arousal, 

Dominance, Liking 

PCA SVM 70.52% 

[25] Valence, Arousal PSD SVM 79.54% 

[26] Valence, Arousal STFT-PSD-DE-DCT KNN 55.4%and 60.4% 

[26] Valence, Arousal STFT-PSD-DE-DCT SVM 59.1% and 63.1 

[27] Valence, Arousal, 

Dominance 

- SVM, K-NN, Naïve 

Bayes, hierarchical 

clustering 

78.06% 

[28] Valence Arousal EMD LIBSVM 74.88% and 82.63% 

 
Table 2: The summary of the previous studies using DNNs for emotion recognition from EEG signals. 
 

Ref Classes Feature Extraction Classification Accuracy 

[25] Valence, Arousal PSD CNN 81.14% and 77.69% 

[26] Valence, Arousal STFT-PSD-DE-DCT CNN 77.27% and 73.51% 

[37] Valence Arousal - LSTM 90.1% and 87.9% 

[37] Valence Arousal - CNN-LSTM 91.8% and 91.6% 

[38] HVHA, HVLA, LVLA, 

LVHA 

EMD LSTM 88.42% 

[39] Valence, Arousal - RACNN 95% 

[40] Valence, Arousal - 2DCNN-BiGRU 88.69% and 87.89% 

[41] Valence, Arousal - SNNs 82.75% and 84.22% 

[42] Valence, Arousal and 

Dominance 

- EmotionCapsNet 

(CNN based) 

80.34%, 83.04% and 

82.50% 

 
3. Materials and Methods 
 
The proposed method for emotion recognition from EEG signals is depicted in Figure 2. The 
process involves dataset selection and EEG signal preprocessing. The signals are then 
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segmented into 60-second intervals and assigned class labels accordingly. Next, a stacked 
ensemble classifier is designed, comprising four deep neural networks in the first layer and 
conventional machine learning methods in the second layer. 
 

 
Figure 3: The main steps of the proposed method in this study for emotion recognition from EEG 
signals. 
 
3.1. Dataset 
 
In this study, we utilized "The Database for Emotion Analysis using Physiological Signals 
(DEAP)" [15], which is a publicly available EEG database. The DEAP dataset contains EEG 
and peripheral physiological signals of 32 participants who viewed 40 segments of 1-minute 
video clips representing various emotions. The participants comprised 16 females and 16 
males, aged between 19 and 37, and the experiments were conducted in laboratories at Twente 
and Geneva universities. To account for slight differences between the two university setups, 
we relocated the electrodes for participants 23-32 to include all EEG signals in our analysis 
rather than excluding this group from the study. 
 
3.2. Preprocessing 
 
The preprocessing step consists of three sub-steps, as depicted in Figure 3. Initially, the raw 
EEG data is loaded into Google Colab, followed by montaging sensor location, selecting 
appropriate channels, and downsampling to 128Hz. Additionally, a bandpass filter between 
3 and 47 Hz is applied to prepare the raw EEG for segmentation. Figure 3 illustrates that after 
the preprocessing step, the raw data, originally comprising 32 EEG channels, is converted into 
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an EEG dataset with 13 channels, effectively removing EOG artifacts and noise. This 
transformation simplifies data handling and significantly reduces memory and RAM 
requirements during subsequent analysis. 
 

Downsample And Bandpass Filter

Pick the Channels

Montage channel position to 10-20 system

Raw EEG Preprocessing Preprocessed EEG

 
Figure 4: The main steps for preprocessing EEG signals in this study. 
 
3.2.1. Montaging the channel positions  
 
Within the DEAP database, there are two distinct groups of participants, each having their 
EEG signals recorded at separate universities. Consequently, the placement of certain EEG 
sensors varies between these groups. This discrepancy in sensor positioning necessitates 
adapting them to conform to a standard 10-20 system, significantly enhancing their 
visualization and usability during analysis and experimentation. 
 
3.2.2. Picking the most informative channels 
 
Based on the findings from previous studies [1,43-45], we have determined that the optimal 
approach for improving emotion recognition from EEG signals is by selectively removing 
non-informative EEG channels. In this study, we carefully identify and include only the most 
informative channels, which have shown the highest correlation with emotion changes, as 
reported by Laiyuan Tong [1]. These thirteen channels are based on the renowned 10-20 
system, comprising "FP1," "T7," "PO4," "Pz," "FP2," "Oz," "F8," "T8," "P4," "O1," "FC5," "C3," and 
"CP2". The precise locations of these channels can be observed in Figure 5. Through our 
experimental endeavors, we ascertain that this strategic selection of channels yields the best 
performance for emotion recognition, resulting in superior outcomes as compared to 
alternative configurations. These refined results affirm the significance of channel selection as 
a crucial step in optimizing emotion recognition accuracy from EEG signals. 
 

 
Figure 6: Location of 13 EEG channels used in this study. 
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3.2.3. Downsampling and bandpass filter 
 
In this study, all physiological signals were initially recorded at a high sampling rate of 512 
Hz [15]. However, to expedite data processing without compromising essential information, 
a downsampling technique was applied, reducing the sampling rate to 128 Hz. Furthermore, 
to enhance the signal quality and minimize the influence of unwanted noise, a bandpass filter 
with a frequency range of 3-47 Hz was meticulously selected and employed. This filtering 
process effectively isolates the relevant frequency components, ensuring that the subsequent 
analysis and interpretation are based on a clean and accurate representation of the 
physiological data. 
 
3.3. EEG signal segmentation 
 
Each participant's EEG data spans approximately 60 minutes, beginning with a baseline 
recording lasting around two minutes. Subsequently, 40 trials are conducted, wherein each 
trial consists of four steps: 
 

1. An initial 2-second display of the experiment number. 
2. A 5-second baseline recording to establish a stable reference state. 
3. Presentation of a one-minute music video. 
4. Self-assessment by participants of their levels of arousal, valence, liking, and 

dominance. 
 
To maintain participant engagement and mitigate fatigue, a short break is provided after 
twenty trials. As a result, certain segments within each experiment lack specific information 
and can be excluded from the study. To address this, we meticulously mark the starting and 
ending moments of each music video for every participant. 
 
Subsequently, these marked segments are cropped and transformed into a series of numerical 
values using the MNE library [46]. This transformation facilitates the generation of diagrams 
and simplifies model training, streamlining the subsequent analysis and interpretation of the 
EEG data. By leveraging the capabilities of the MNE library, we ensure efficient visualization 
and seamless integration of the EEG data for further analysis and experimentation. 
 
3.4. Labeling method 
 
First of all, we established four distinct emotional categories representing different 
combinations of valence and arousal: "High Valence-High Arousal" (HVHA), "High Valence-
Low Arousal" (HVLA), "Low Valence-Low Arousal" (LVLA), and "Low Valence-High 
Arousal" (LVHA). These categories were determined by partitioning the valence and arousal 
scales into two ranges: 0 to 5 and 5 to 9, as described in prior work [47]. 
 
To visualize the classification, Figure 5 illustrates the regions where both valence and arousal 
values exceed 5, labeled as "high," and regions where they are below 5, labeled as "low." 
Consequently, these labels effectively distinguish between emotions with higher or lower 
intensity levels. As a complementary step, we assigned two additional emotional classes to 
the first dependent variable: "High Valence" (HV) and "Low Valence" (LV), representing 
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positive and negative emotions, respectively. This pragmatic approach enables 
straightforward comparisons with numerous other studies that have undertaken similar 
experiments and reported their findings [4,29,48-50]. By employing these well-defined 
emotional categories and labels, our study benefits from enhanced comparability with 
existing research, enriching the collective understanding of emotions in relation to valence 
and arousal levels. 
 

LVLA LVHA

HVLA HVHA

Valence

Arousal

V>5
A>5

V<5
A>5

V<5
A<5

V>5
A<5

0 5 9

9

0

 
Figure 7: Division of arousal and valence. 
 
3.5. Deep learning modeling for classification 
 
Within the existing literature, a plethora of deep learning and machine learning algorithms 
have been explored for emotion classification. In our present research, we leverage the power 
of two distinct Convolutional Neural Network (CNN) models, alongside a hybrid CNN-
LSTM model, to effectively classify EEG signals into four primary emotion classes: HVHA, 
HVLA, LVLA, and LVHA. Additionally, we extend our analysis to encompass two broader 
emotional classes: HV and LV emotions. 
 
By employing these advanced neural network architectures, we aim to achieve more accurate 
and robust emotion classification, enriching the field of emotion recognition from EEG signals. 
Through this study, we contribute valuable insights into the potential applications of deep 
learning methodologies in understanding and discerning human emotions with enhanced 
precision. 
 
3.5.1. CNN model 
 
After completing EEG preprocessing, we obtain 1280 pre-processed segments, each 
containing thirteen channels with 7681 time series numbers per channel. Since feature 
extraction is omitted, we adopt a CNN architecture capable of automatically extracting 
relevant features. Thus, the input shape of the model is 13*7681. To optimize the CNN 
architecture for accurate emotion classification, we systematically explore various 
combinations of hyperparameter values. Consequently, we identify the top-2 performing 
models, namely CNN_1 and CNN_2, as illustrated in Figures 6 and 7, respectively. 
 
CNN_1 comprises two convolutional and pooling layers, both utilizing Rectified Linear Unit 
(ReLU) as the activation function. Additionally, a one-dimensional Max Pooling layer with a 
kernel size of 2 is applied for pooling. To adapt to the number of labels, the last dense layer's 
units are set to either 2 for HV and LV or 4 for HVHA, HVLA, LVLA, and LVHA, 
corresponding to the considered class labels, as shown in Figure 6. 
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Figure 8: Schematic overview of the CNN_1 model architecture. 
 
On the other hand, CNN_2 demonstrates a more complex architecture with three 
convolutional and pooling layers, each followed by a dropout layer to mitigate overfitting. 
ReLU serves as the activation function for each convolutional layer. Like CNN_1, the number 
of units in the last dense layer is adjusted based on the corresponding class labels, as depicted 
in Figure 7. 
 
3.5.2. CNN_LSTM Model 
 
Considering that CNN models excel at feature extraction and LSTM models are renowned for 
their accurate time series classification [51], we leverage the strengths of both architectures by 
integrating them into a single, powerful CNN-LSTM model. Our goal is to achieve the highest 
level of performance in emotion classification. The CNN-LSTM model is strategically 
designed, incorporating both CNN and LSTM layers to optimize its capabilities. For a clear 
representation of its architecture, please refer to Figure 8, which provides a schematic 
overview of the CNN-LSTM model. 
 
These carefully designed CNN models with their distinctive architectures aim to enhance 
emotion classification accuracy by effectively capturing salient features from EEG signals. By 
considering the top-performing models, our study strives to contribute valuable insights to 
the field of emotion recognition and its potential applications. 
 
By skillfully combining the complementary strengths of CNN and LSTM layers, we anticipate 
this hybrid model to outperform individual architectures and yield enhanced accuracy in 
classifying EEG-based time series data. Throughout our study, we meticulously tune the 
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parameters of the CNN-LSTM model to maximize its potential and deliver superior results in 
emotion recognition. 
 

 
Figure 9: Schematic overview of the CNN_2 model architecture. 
 
4. Experimental Results 
 
In this study, we utilized the DEAP dataset, as detailed in the Material and Methods section. 
To address our research objectives, two distinct labels were defined and elaborated in Section 
A and Section B, respectively. Python programming language was employed for model 
implementation, and the models were executed on Google Colab with a 12-gigabyte GPU for 
efficient processing. 
 

 Scenario A: 2 categories 
CNN_1, CNN_2, and CNN-LSTM were trained with various testing and training 
examples, repeated 10 times to ensure robust classification across different classes. 
While the network architectures remain consistent in both scenarios, the activation 
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function in the last layer of all three models in Scenario A is set to "Sigmoid." Detailed 
hyperparameters used in the models' architecture are provided in Table 3. 

 

 
Figure 10: Schematic overview of the CNN-LSTM model architecture. 
 
Table 3: Parameter values used to create the CNN_1, CNN_2, and CNN-LSTM models. 
 

Parameters CNN-1 CNN-2 CNN-LSTM 

Optimizer Adam Adam Adam 

Learning Rate 0.001 0.002 0.001 

Dropout Rate - 0.2 0.25 

Loss Function binary_crossentropy binary_crossentropy binary_crossentropy 

Batch size 256 512 256 

Epochs 100 100 100 
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Remarkably, CNN_1 achieved the best performance with a remarkable 100% accuracy and 
0.002 loss in the training examples, and equally impressive 100% accuracy and 0.009 loss in 
the testing examples. The performance metrics, including recall, precision, F1-score, and class 
accuracy values, are presented in Table 4. Notably, our proposed models outperformed other 
classifiers, establishing their superiority in emotion classification. 
 
Table 4: Comparison of accuracy, precision, recall, F1-score of CNN_1, CNN_2, and CNN-LSTM 
models. 
 

Performance Measures 

Model Accuracy Precision Recall F1-Score 

CNN_1 100 100 100 100 

CNN_2 98.8 100 97.9 98.9 

CNN_LSTM 99.7 99.6 100 99.8 

 
For further insights, Figure 9 displays the accuracy and loss curves of CNN_1, CNN_2, and 
CNN-LSTM models. The curve convergence rate of CNN_1 model is notably faster than that 
of CNN_2 and CNN-LSTM models, resulting in significantly higher final accuracy. 
Conversely, CNN_2 model demonstrates a quicker convergence rate for the loss value, closely 
matching CNN_1 and CNN-LSTM models in the final loss values.  
 
To illustrate the classification performance specifically for high valence and low valence, 
Figure 10 depicts the confusion matrix for CNN_1, CNN_2, and CNN-LSTM models. Overall, 
our proposed approach showcases exceptional accuracy and robustness, surpassing existing 
methods, thus affirming its potential to advance emotion classification with EEG signals. 
 

 Scenario B: 4 categories 
Similar to Scenario A, we conducted ten iterations of model training for CNN_1 with 
varying test and training examples. By the 10th iteration, the CNN_1 model achieved 
an impressive accuracy of 98.8%. Similarly, CNN_2 and CNN_LSTM models 
underwent the same training process as CNN_1. The proposed networks were 
initialized using the parameters defined in Table 5, ensuring a consistent and fair 
comparison (Table 6). 
 

Table 5: Parameter values used to create the CNN_1, CNN_2, and CNN-LSTM models. 
 

Parameters CNN-1 CNN-2 CNN-LSTM 

Optimizer RMSprop Adam Adam 

Learning Rate 0.001 0.001 0.001 

Dropout Rate - 0.2 0.25 

Loss Function categorical_crossentropy categorical_crossentropy categorical_crossentropy 

Batch size 128 256 128 

Epochs 100 100 100 
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Figure 11: Models accuracy versus loss plots for 10-fold cross-validation. 
 

 
Figure 12: Confusion matrix for four emotions classification by CNN_1, CNN_2, and CNN-LSTM 
models. 
 
Table 6: Comparison of accuracy, precision, recall, F1-score of CNN_1, CNN_2, and CNN-LSTM 
models. 
 

Performance Measures 

Model Accuracy Precision Recall F1-Score 

CNN_1 97.7 98.9 97.6 98.3 

CNN_2 97.1 98.5 96.8 97.6 

CNN_LSTM 99.5 99.6 99.6 99.6 
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To assess the models' performance across the 10 iterations, Figure 11 displays the training and 
testing accuracy versus loss plots for 10-fold cross-validation. As depicted in parts a, b, and c 
of the figure, all models consistently minimized the loss function and maximized accuracy 
throughout the iterations. 
 
Furthermore, Figure 12 presents the confusion matrix for the four emotion classes (HVHA, 
HVLA, LVHA, and LVLA) obtained by CNN_1, CNN_2, and CNN-LSTM deep learning 
models classifiers using a 33-67 sampling rate. This configuration involved 448 testing 
examples and 832 training examples, and 10-fold cross-validation was applied. 
 
The results showcase the remarkable performance of our proposed deep learning models, 
demonstrating their ability to achieve accurate emotion classification across multiple 
iterations and 10-fold cross-validation. These findings underscore the robustness and 
reliability of our approach in effectively analyzing EEG signals to discern emotional states. 
 

 
Figure 13: Models accuracy versus loss plots for 10-fold cross-validation. 
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Figure 14: Confusion matrix for four emotions classification by CNN_1, CNN_2, and CNN-LSTM 
models. 

 
5. Conclusion 
 
In this paper, we have introduced a method based on deep learning, for emotion recognition 
based on EEG signals. The EEG preprocessing steps, which included segmenting each EEG 
into 60-second trials, downsampling to 128Hz, and applying a bandpass filter of 3–47 Hz for 
noise reduction, effectively prepared all 1280 EEG samples for direct input into our proposed 
models, eliminating the need for manual feature extraction. Our proposed models, specifically 
the CNN and CNN-LSTM architectures, demonstrated exceptional performance in predicting 
the defined emotion classes and achieved minimal prediction error. Notably, in the case of 
two emotion labels, "high valence" and "low valence," the CNN_1 model excelled with an 
outstanding accuracy of 100%. 
 
Additionally, for the more challenging task of predicting the four emotion classes, "High 
Valence-High Arousal," "High Valence-Low Arousal," "Low Valence-Low Arousal," and "Low 
Valence-High Arousal," the CNN-LSTM model exhibited remarkable accuracy, achieving 
99.5%. Based on our results, it is evident that one-dimensional CNN and CNN-LSTM models 
are highly effective for emotion recognition using EEG signals. Importantly, the absence of 
manual feature extraction did not compromise the accuracy of our proposed models; instead, 
it expedited the learning process, allowing for faster and more efficient training.  
 
This study contributes valuable insights to the field of emotion recognition from EEG signals, 
offering practical and accurate approaches to understanding human emotions. Our findings 
pave the way for further advancements in using deep learning methodologies for emotion 
recognition tasks and hold promising implications for applications in various domains, 
including healthcare, human-computer interaction, and affective computing. As this research 
opens up new avenues for future studies, we anticipate that our proposed models will serve 
as a foundation for continued exploration and refinement in the field of EEG-based emotion 
recognition. 
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