1,817 research outputs found

    Improving quality of medical image compression using biorthogonal CDF wavelet based on lifting scheme and SPIHT coding

    Get PDF
    As the coming era is that of digitized medical information, an important challenge to deal with is the storage and transmission requirements of enormous data, including medical images. Compression is one of the indispensable techniques to solve this problem. In this work, we propose an algorithm for medical image compression based on a biorthogonal wavelet transform CDF 9/7 coupled with SPIHT coding algorithm, of which we applied the lifting structure to improve the drawbacks of wavelet transform. In order to enhance the compression by our algorithm, we have compared the results obtained with wavelet based filters bank. Experimental results show that the proposed algorithm is superior to traditional methods in both lossy and lossless compression for all tested images. Our algorithm provides very important PSNR and MSSIM values for MRI images

    Stereoscopic video quality assessment using binocular energy

    Get PDF
    Stereoscopic imaging is becoming increasingly popular. However, to ensure the best quality of experience, there is a need to develop more robust and accurate objective metrics for stereoscopic content quality assessment. Existing stereoscopic image and video metrics are either extensions of conventional 2D metrics (with added depth or disparity information) or are based on relatively simple perceptual models. Consequently, they tend to lack the accuracy and robustness required for stereoscopic content quality assessment. This paper introduces full-reference stereoscopic image and video quality metrics based on a Human Visual System (HVS) model incorporating important physiological findings on binocular vision. The proposed approach is based on the following three contributions. First, it introduces a novel HVS model extending previous models to include the phenomena of binocular suppression and recurrent excitation. Second, an image quality metric based on the novel HVS model is proposed. Finally, an optimised temporal pooling strategy is introduced to extend the metric to the video domain. Both image and video quality metrics are obtained via a training procedure to establish a relationship between subjective scores and objective measures of the HVS model. The metrics are evaluated using publicly available stereoscopic image/video databases as well as a new stereoscopic video database. An extensive experimental evaluation demonstrates the robustness of the proposed quality metrics. This indicates a considerable improvement with respect to the state-of-the-art with average correlations with subjective scores of 0.86 for the proposed stereoscopic image metric and 0.89 and 0.91 for the proposed stereoscopic video metrics

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Significant medical image compression techniques: a review

    Get PDF
    Telemedicine applications allow the patient and doctor to communicate with each other through network services. Several medical image compression techniques have been suggested by researchers in the past years. This review paper offers a comparison of the algorithms and the performance by analysing three factors that influence the choice of compression algorithm, which are image quality, compression ratio, and compression speed. The results of previous research have shown that there is a need for effective algorithms for medical imaging without data loss, which is why the lossless compression process is used to compress medical records. Lossless compression, however, has minimal compression ratio efficiency. The way to get the optimum compression ratio is by segmentation of the image into region of interest (ROI) and non-ROI zones, where the power and time needed can be minimised due to the smaller scale. Recently, several researchers have been attempting to create hybrid compression algorithms by integrating different compression techniques to increase the efficiency of compression algorithms

    Recursive Non-Local Means Filter for Video Denoising

    Get PDF
    In this paper, we propose a computationally efficient algorithm for video denoising that exploits temporal and spatial redundancy. The proposed method is based on non-local means (NLM). NLM methods have been applied successfully in various image denoising applications. In the single-frame NLM method, each output pixel is formed as a weighted sum of the center pixels of neighboring patches, within a given search window. The weights are based on the patch intensity vector distances. The process requires computing vector distances for all of the patches in the search window. Direct extension of this method from 2D to 3D, for video processing, can be computationally demanding. Note that the size of a 3D search window is the size of the 2D search window multiplied by the number of frames being used to form the output. Exploiting a large number of frames in this manner can be prohibitive for real-time video processing. Here, we propose a novel recursive NLM (RNLM) algorithm for video processing. Our RNLM method takes advantage of recursion for computational savings, compared with the direct 3D NLM. However, like the 3D NLM, our method is still able to exploit both spatial and temporal redundancy for improved performance, compared with 2D NLM. In our approach, the first frame is processed with single-frame NLM. Subsequent frames are estimated using a weighted sum of pixels from the current frame and a pixel from the previous frame estimate. Only the single best matching patch from the previous estimate is incorporated into the current estimate. Several experimental results are presented here to demonstrate the efficacy of our proposed method in terms of quantitative and subjective image quality

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Full-reference stereoscopic video quality assessment using a motion sensitive HVS model

    Get PDF
    Stereoscopic video quality assessment has become a major research topic in recent years. Existing stereoscopic video quality metrics are predominantly based on stereoscopic image quality metrics extended to the time domain via for example temporal pooling. These approaches do not explicitly consider the motion sensitivity of the Human Visual System (HVS). To address this limitation, this paper introduces a novel HVS model inspired by physiological findings characterising the motion sensitive response of complex cells in the primary visual cortex (V1 area). The proposed HVS model generalises previous HVS models, which characterised the behaviour of simple and complex cells but ignored motion sensitivity, by estimating optical flow to measure scene velocity at different scales and orientations. The local motion characteristics (direction and amplitude) are used to modulate the output of complex cells. The model is applied to develop a new type of full-reference stereoscopic video quality metrics which uniquely combine non-motion sensitive and motion sensitive energy terms to mimic the response of the HVS. A tailored two-stage multi-variate stepwise regression algorithm is introduced to determine the optimal contribution of each energy term. The two proposed stereoscopic video quality metrics are evaluated on three stereoscopic video datasets. Results indicate that they achieve average correlations with subjective scores of 0.9257 (PLCC), 0.9338 and 0.9120 (SRCC), 0.8622 and 0.8306 (KRCC), and outperform previous stereoscopic video quality metrics including other recent HVS-based metrics

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Automated Complexity-Sensitive Image Fusion

    Get PDF
    To construct a complete representation of a scene with environmental obstacles such as fog, smoke, darkness, or textural homogeneity, multisensor video streams captured in diferent modalities are considered. A computational method for automatically fusing multimodal image streams into a highly informative and unified stream is proposed. The method consists of the following steps: 1. Image registration is performed to align video frames in the visible band over time, adapting to the nonplanarity of the scene by automatically subdividing the image domain into regions approximating planar patches 2. Wavelet coefficients are computed for each of the input frames in each modality 3. Corresponding regions and points are compared using spatial and temporal information across various scales 4. Decision rules based on the results of multimodal image analysis are used to combine thewavelet coefficients from different modalities 5. The combined wavelet coefficients are inverted to produce an output frame containing useful information gathered from the available modalities Experiments show that the proposed system is capable of producing fused output containing the characteristics of color visible-spectrum imagery while adding information exclusive to infrared imagery, with attractive visual and informational properties
    • …
    corecore