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Abstract—Stereoscopic video quality assessment has become
a major research topic in recent years. Existing stereoscopic
video quality metrics are predominantly based on stereoscopic
image quality metrics extended to the time domain via for
example temporal pooling. These approaches do not explicitly
consider the motion sensitivity of the Human Visual System
(HVS). To address this limitation, this paper introduces a novel
HVS model inspired by physiological findings characterising the
motion sensitive response of complex cells in the primary visual
cortex (V1 area). The proposed HVS model generalises previous
HVS models, which characterised the behaviour of simple and
complex cells but ignored motion sensitivity, by estimating optical
flow to measure scene velocity at different scales and orientations.
The local motion characteristics (direction and amplitude) are
used to modulate the output of complex cells. The model is
applied to develop a new type of full-reference stereoscopic video
quality metrics which uniquely combine non-motion sensitive
and motion sensitive energy terms to mimic the response of
the HVS. A tailored two-stage multi-variate stepwise regression
algorithm is introduced to determine the optimal contribution of
each energy term. The two proposed stereoscopic video quality
metrics are evaluated on three stereoscopic video datasets. Results
indicate that they achieve average correlations with subjective
scores of 0.9257 (PLCC), 0.9338 and 0.9120 (SRCC), 0.8622
and 0.8306 (KRCC), and outperform previous stereoscopic video
quality metrics including other recent HVS-based metrics.

Index Terms—Stereoscopic video quality assessment, human
visual system, motion sensitivity, quality of experience.

I. INTRODUCTION

STEREOSCOPIC video quality assessment remains a ma-
jor research challenge due to the difficulty of devising

metrics that are able to faithfully capture the complexity
of human perception. Recently, there have been a number
of research activities which explored how models of the
Human Visual System (HVS) can be used to develop more
robust stereoscopic image and video quality metrics [1]–
[11]. However, these activities mostly considered stereoscopic
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video quality assessment as an extension of stereoscopic
image quality assessment, relying on temporal pooling of
stereoscopic image quality measures. A major drawback of
this class of approaches is that they are unable to capture
important spatio-temporal characteristics, such as the motion
of objects in a scene, which require direct processing in the
spatio-temporal domain. In contrast to previously reported
research, this paper introduces a novel HVS model which
directly encodes temporal complexity to mimic the spatio-
temporal characteristics of human stereoscopic perception.
The proposed HVS model generalises our previous model [8]
which was also based on the HVS but excluded influence of
motion sensitivity. The novel model is applied here to stereo-
scopic video quality assessment thereby demonstrating the
importance of incorporating motion sensitivity in perceptual
tasks. To the authors’ knowledge, this is the first stereoscopic
video quality metric based on a motion-sensitive HVS model.

Simple cells and complex cells are the main cell types in the
primary visual cortex that are responsible for binocular vision
in the HVS. Several physiological models have been proposed
to mimic their properties [12], [13] and have been used to build
image and video quality metrics [2], [8]. These models are
based on the computation of binocular signals using analytical
methods to estimate the perceptual quality of stereoscopic
images and videos. The response to a stereoscopic input is en-
coded in the form of a binocular energy consisting of multiple
objective scores capturing different perceptual characteristics.
Physiological studies have identified motion sensitivity as an
important characteristic of a significant proportion of com-
plex cells [2]. However, to date, no model of complex cells
with motion sensitivity has been developed for stereoscopic
video quality assessment. This paper introduces a novel HVS
model which incorporates motion sensitivity information in
the computation of binocular energy, introducing new energy
terms capturing motion-specific perceptual characteristics, and
demonstrates its application and benefit for stereoscopic video
quality assessment.

A fundamental challenge addressed in this paper relates
to estimating and leveraging the level of motion present in
stereoscopic videos to construct a reliable HVS model. The
key insight is the introduction of a generalised complex cell
model which is able to represent the behaviour of a variety
of complex cells and their motion responses. This is achieved
using an optical flow algorithm to extract pixel level motion
information for each perceptual channel and utilising this
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information to modulate the response of each complex cell.
This results in two types of complex cells: non-motion sensi-
tive and motion sensitive complex cells. Non-motion sensitive
complex cells respond to spatial orientation regardless of
whether motion is present or not, similarly to the complex
cells introduced in [8]; in contrast, motion sensitive complex
cells respond to spatial orientation only in the presence of
motion [14], [15]. Different velocity response functions are
investigated to model the behaviour of these cells as a function
of the amplitude of the motion at a given orientation and scale,
taking into account minimum velocity requirements.

To validate the model and demonstrate its practical use, it is
applied to build a novel stereoscopic video quality metric. The
metric is built by pooling both sensitive and non-motion sensi-
tive objective scores and performing a multi-variate regression
on the pooled objective scores. In the case of the motion
sensitive objective scores, the level of motion in each frame is
taken into account during pooling. The high dimensionality of
the proposed HVS model poses computational challenges in
terms of extracting a robust regression model. To address this,
a tailored two-stage regression approach is proposed. In the
first stage, the most significant objective scores are selected by
performing a regression separately on the non-motion sensitive
and the motion sensitive objective scores. In the second stage,
a regression is performed on the combined set of selected non-
motion sensitive and motion sensitive objective scores thereby
reducing dimensionality. A comparison against state-of-the-
art stereoscopic video quality metrics including the Binocular
Energy Video Quality Metric (BEVQM) [8] validates the
benefit of accounting for motion-sensitivity.

The novelty of the proposed method lies in accounting for
both motion sensitive and non-motion sensitive complex cells
of the HVS. Further, the temporal response of these complex
cell types are modelled differently. In this way, modelling the
HVS is expected to result in more accurate representation
than by neglecting the true behaviour of the complex cells.
The rest of the paper is organised as follows. Section II
reviews the background on HVS modelling with a focus on
motion sensitivity and the application to stereoscopic video
quality assessment. Sections III and IV introduce the proposed
HVS model and quality metrics. Section V evaluates the
proposed approach against the state-of-the-art and discusses
performance. Section VI concludes the paper by summarising
the findings and discussing avenues for future research.

II. RELATED WORK

A. Physiology of the HVS

A neural tissue at the back of the eye called retina receives
images. It contains two layers with synaptic interconnections
between the neurons and three layers of cell bodies. The
images projected onto the retina are inverted and exhaustively
pre-processed before passed on to other parts of the brain.
The visual cortex that processes this information is located
at the back of the brain. The primary visual cortex (V1
area) is the largest part of the HVS, which receives signals
from the Lateral Geniculate Nucleus (LGN) located in both
hemispheres of the brain. There is a large variety of cell types
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Fig. 1. Decomposition of an image into perceptual channels. Left: original
image. Right: spatial-frequency bands of the image with 3 orientations and
3 decomposition levels considered and resulting in a total of 10 perceptual
channels: V1, D1 and H1 correspond to the vertical, diagonal and horizontal
orientations respectively at level 1 (similar notation is used for the orientations
at levels 2 and 3); L is the low resolution residual.

in the visual cortex, responding to different kinds of stimuli,
e.g. particular frequencies, colours or direction [16].

Physiological experiments have shown that simple cells can
be modelled using linear filters from their impulse response
measured on the visual cortex. An approximation of the
impulse response using a Gabor wavelet has been shown in
[17], where the spatial arrangement by a two-dimensional
Gabor function with ON and OFF regions correspond to peaks
and hollows of the function, respectively. These findings have
resulted in many sampling functions for simple cells which
allow an image to be decomposed into perceptual channels and
image elements localised in spatial and frequency domains as
shown in Fig. 1.

There is a variety of simple cells in HVS: binocular and
monocular cells with their respective types of receptive fields.
Monocular information from left and right retinas results
in occluded information when each eye independently sees
the world. Binocular vision of objects results from binocu-
lar simple cells organised in pairs with binocular receptive
fields. These binocular cells are responsible for stereoscopic
perception. There are several analytical models to describe
simple cells and the response of a pair of binocular simple
cells is often represented as a complex cell [16], [17]. The
spatial-frequency response based on size, amplitude, phase and
orientation can be modelled using directional wavelets with an
aim to represent the pairs of stereoscopic images using a set
of complex functions.

The binocular energy is generated in the receptive fields
of binocular complex cells. The spatial relationship between
monocular receptive fields of complex cells and corresponding
simple cells is described in [18], including the correspondence
of amplitude, size, orientation and phase shift between simple
and complex cells. Sensitivity to the orientation and spatial
arrangement is however not inherited by complex cells from
corresponding simple cells. Thus, the binocular energy gener-
ated by a complex cell depends on the disparity of position
and the shift in phase between the simple cells.

B. Motion sensitivity in the HVS

Direction of motion is one of the main features tested in
physiological experiments. Different types of complex cells
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Fig. 2. Motion sensitivity of complex cells. The top part of the figure shows an
oriented feature (yellow bar) moving at different velocities V in the receptive
field of a complex cell, while the bottom part shows the response of the
complex cell. From left to right the velocity increases from zero to a level
which saturates the response of the complex cell. The right-most example
shows the effect of changing the direction of motion for a given velocity.

are sensitive to different directions of motion, as illustrated
in Fig. 2. This is an important phenomenon for modelling
motion sensitivity of the HVS. It has been observed that there
is a lower velocity threshold at which the HVS response starts
and an upper velocity threshold beyond which the response
saturates. Physiological studies have shown that motion sensi-
tivity is orientation and spatial frequency selective [2]. These
notable findings are at the centre of the generalised complex
cell architecture proposed in this paper.

[19] showed that the velocity response of complex cells can
be classified into three types: low pass, high pass and band pass
responses. The first type primarily responds as a low pass filter
in velocity and only a small proportion of complex cells are
known to behave in this manner. The second type acts as a high
pass filter in velocity and is the most common type of motion
sensitive complex cells found in the HVS. It is worth noting
that the cut-off velocity between these two types of filters does
not occur at the same velocity threshold. The third type acts
as a band pass filter and shares a maximum velocity with the
second type. This type of complex cells is more common than
the first type but less so than the second type. The response
to velocity in all three types of complex cells can be observed
to be approximately linear or uniform across the given range
of operation. The study in [19] indicates that the predominant
velocity response of the HVS can be modelled as a high pass
filter with a linear slope or a sharp high pass filter with a
uniform response after a threshold velocity. This is the model
that will be implemented and evaluated in this paper.

A number of HVS models incorporating motion sensitivity
and with various degrees of complexity have been proposed.
A motion model based on a simple spatio-temporal concept
of motion is discussed in [15]. Motion detection is formulated
in terms of detecting orientation in a three-dimensional space
defined by x, y, and t; the orientation exists in space-time
rather than just in space. Motion in particular is filtered
using appropriately oriented impulse response filters chosen
as quadrature pairs sensitive to the motion direction. The
combination of the outputs of two linear filters has a phase-
independent-motion energy response.

If the filters’ responses are squared and summed, the result-
ing signal gives a phase-independent measure of local motion
energy within a given spatial-frequency band. The system built
on these filters has motion-detecting properties with a motion
response that is localised in space, time, and spatial frequency.
Continuous motion, apparent motion, and motion illusions
(fluted square wave and reverse phi) are basic phenomena

perceived in this model. Spatio-temporal orientation can be
considered as a local property of spatio-temporal stimuli and
can be extracted with the same kind of simple mechanisms
used for extracting spatial orientation.

A two-stage physiological model for local image velocity
representation in the Middle Temporal (MT) visual area is
presented in [20]. Each neuron of the MT visual area com-
putes a weighted sum of its inputs followed by half-wave
rectification, squaring, and response normalisation. Despite its
simplicity, the model can account for much of the physiology
of MT neurons. However, the population of model neurons
is unrealistically homogeneous unlike real neurons which are
irregular in comparison. Further, there is a lack of realistic
temporal dynamics as the model corresponds to steady-state
firing rates. This model is required to compute an estimated
velocity from the responses of the MT population for the
perception of speed and direction of plaid patterns.

Physiological mechanisms have been used to derive a uni-
fied model of motion and stereo vision in [21] to explain phe-
nomena pertaining to motion-stereo interaction. In one such
phenomenon, when a moving target is viewed with a neutral-
density filter over one eye, it appears displaced in depth.
This phenomenon is called Pulfrich’s pendulum, where when
the target is oscillating like a pendulum, it appears to move
in an elliptical path. A demonstration of how computational
modelling can help bridge the gap between physiology and
perception confirms the importance of constructing computa-
tional theories of vision based on neurophysiology. However,
the integrated model developed in [21] is not completely
physiologically realistic.

A functional architecture of human visual motion perception
is presented in [22], using four types of moving stimuli
with luminance modulation, texture-contrast modulation, depth
modulation and motion modulation. Seven experiments related
to the four types of stimuli were conducted to determine
a functional control chart. A first-order luminance system
and a second-order texture-contrast system use independent
motion-energy detectors, operate in parallel, and combine their
outputs at an early stage. A third-order (feature-tracking)
system receives inputs (features) from texture grabbers and
from the lower-order motion systems. The strength of feature
inputs to the third-order motion system is subject to top-down
control-attention to particular features, and influences features’
strengths and thereby the perceived direction of motion. The
high complexity is a major concern in this architecture.

Despite the above-mentioned works, there is a large gap
between physiological models of motion sensitivity and their
use in quality assessment tasks. Devising novel quality metrics
which incorporate the motion sensitive information available
in physiological models is therefore of primary importance
to achieve reliable stereoscopic video quality assessments.
Sections II-C and II-D review the related stereoscopic image
and video quality metrics with a focus on motion sensitivity.

C. Stereoscopic image quality metrics
In [23], established 2D quality metrics such as Peak Signal-

to-Noise Ratio (PSNR), Structural SIMilarity (SSIM), Just No-
ticeable Difference (JND), Visual Information Fidelity (VIF)
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and Noise Quality Measure (NQM) were extended to measure
the quality of stereoscopic content through averaging of the
left and right view scores obtained each using the 2D quality
metric. The authors observed a reduction in performance
which was attributed to the fact that stereoscopic perception
was not only affected by image content, but also by other
attributes of stereopsis such as disparity.

Inclusion of disparity maps with 2D metrics was considered
in [24] and [25]. Blur, JPEG and JPEG2000 impairments
were applied symmetrically to left and right images in [24]
to derive a measure of 3D perception. It was concluded that
the 3D content of a disparity map could not be interpreted
by 2D metrics based on a fidelity score combining disparity
map score and average stereoscopic score. Further experiments
in [26] confirmed the limitations of the usage of 2D metrics
for stereoscopic image quality assessments. Depth information
was incorporated in different ways without directly consider-
ing the special characteristics of 3D perception such as spatial
masking affected by suppression.

In [27], the performance of applying Video SSIM (VSSIM)
[28] and PSNR to colour+depth sequences was evaluated.
Synthesized virtual views of compressed colour and depth
sequences were objectively assessed with the quality metrics.
Subjective experiments showed the relative importance of
colour distortions over depth distortions and the need to devise
quality metrics specifically targeting stereoscopic content. In
[29], a good correlation with human perception was obtained
when the depth maps were computed using stereoscopic
images affected by low degrees of impairment. However, the
correlation was found to degrade as the significance of the
impairment increases.

A full-reference metric using a product of two quality scores
based on a disparity map and an extracted Cyclopean view was
presented in [16]. Both quality scores were quantified using
SSIM and were named as monoscopic quality (number of
binocular cues preserved in images) and stereoscopic quality
(via disparity map comparison). The quality metric results
were then correlated to human perception. However, the results
were verified using a small scale subjective experiment and did
not include colour perception.

In [9], Lv et al. propose a blind (no-reference) stereo-
scopic image quality assessment method based on learning
the receptive fields’ characteristics. In this work, dictionary
learning for constructing a quality lookup was used to predict
subjective scores. Although good performance is reported,
limited ability for dealing with asymmetrical distortion is also
noted as a weakness of this approach. A full reference metric
was proposed in [11] by jointly considering binocular energy
and contrast perception. The approach offers mechanisms for
binocular fusion and rivalry with a high prediction accuracy
of perceived stereoscopic image quality.

A perceptual stereoscopic image quality approach based on
modelling the properties of the primary visual cortex was
proposed in [10]. This was achieved by introducing a new
feature encoding approach and a tailored similarity measure
that was shown to achieve high correlation with subjective
scores. An effective human binocular combination model for
Cyclopean image was proposed in [30], where a full-reference

stereoscopic image quality assessment model was built based
on binocular summation and binocular difference channels.

The survey of the state-of-the-art in stereoscopic image
quality perception reveals that high accuracy prediction of
subjective quality can be achieved, particularly with the recent
developments in HVS-based models that outperform earlier
approaches. However, better tailored approaches are required
for highly reliable assessment of the stereoscopic video quality.

D. Stereoscopic video quality metrics

In [4], a comprehensive set of subjective experiments was
performed with stereoscopic video sequences, which were
encoded using both H.264/Advanced Video Coding (AVC)
and High Efficiency Video Coding (HEVC) standards. Results
of the subjective experiments on symmetrically and asym-
metrically encoded stereoscopic videos were analysed using
statistical techniques to reveal subjective scoring patterns.
Structural distortion caused by compression was the main fea-
ture used in the metric introduced in this work. Measurement
of asymmetric blur and content complexity were also used
as objective measures. However, it does not consider ringing
artefacts commonly present in wavelet based video codecs.

The metric presented in [31] quantifies the distortion in
luminance and contrast using an approximation (variances)
weighted by the mean of each pixel block to obtain the
overall image distortion. The distortion on the block level
is weighted to measure the frame level perceptual distortion.
This metric does not account for chrominance. A stereoscopic
video quality assessment method based on block-matching of
left and right views via a 3D-DCT transform was proposed in
[32]. However, this ignores masking effects due to motion.

In [33], spatio-temporal structural information was utilized
by an algorithm which jointly represented and evaluated two
views. In particular, the algorithm firstly selected salient pixels
based on the results of a 3D Sobel filter. Then, the similarity
of joint descriptors constructed from eigenvalues and eigen-
vectors of pixels in the left and right views was calculated at
the pixel level. Finally, all of the local scores were pooled into
one global score. This metric does not account for different
degrees of the influence of salient pixels on HVS.

A novel Stereoscopic Video Quality Assessment (SVQA)
metric was introduced in [34], based on the multiple vi-
sual masking characteristics of HVS, a stereoscopic just-
noticeable difference model to compute the perceptual visibil-
ity for stereoscopic video. Using a stereoscopic visual attention
model, stereoscopic visual saliency information was extracted
first. Then, the quality maps were calculated by the similarity
of the original and distorted stereoscopic videos perceptual
visibility. Lack of integrity between the two models is a major
drawback in this metric.

A compound stereo-video quality metric was proposed in
[16] composed of monoscopic and stereoscopic quality com-
ponents. Distortions causing blur, noise and contrast change
were considered as monoscopic cues whereas binocular depth
was the only stereoscopic cue considered. The assessment
framework was based on the SSIM quality index which iden-
tified the limited perceptual measures as a major drawback.
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A perceptual quality assessment metric using temporal
complexity and disparity information for stereoscopic video
was proposed in [35]. Temporal variance, disparity variance
in intra-frames, disparity variance in inter-frames and disparity
distribution of frame boundary areas were used to design a no-
reference stereoscopic video quality perceptual model. When
the disparity in the content was high, the estimation error
increased due to the incomplete disparity estimation algorithm.
Direction of disparity change was not considered in this work.

[36] introduced a quality assessment model based on the
observed phenomenon that spatial frequency determines view
domination in the HVS. Based on the binocular fusion process
characterising 3D human perception, a full-reference metric
was proposed for quality assessment of stereoscopic images in
[2]. The Binocular Energy Quality Metric (BEQM) introduced
was modelled following a reproduction of the binocular signal
generated by simple and complex cells. However, the compu-
tation of binocular energy for perceptual evaluation was poor
due to the simplicity of the complex cell model. This metric
was later extended to the video domain in [8] by introducing
a more accurate complex cell model and an adaptive temporal
pooling strategy to define the BEVQM. Despite correlating
well with the subjective scores, the BEVQM lacks physiolog-
ical plausibility in the time domain as it does not explicitly
model motion sensitivity.

Despite considerable progress in stereoscopic video quality
assessment, there is no metric making use of a motion sensitive
HVS model. This paper addresses this gap by building on
the recent research on HVS-based stereoscopic video quality
assessment and generalising it to incorporate for the first time
a physiologically inspired model of motion sensitivity. The
importance of considering motion sensitivity in enhancing
the accuracy of 2D video quality assessment modelling was
highlighted in previous research [37], [38]. This importance is
particularly magnified for realising a precise 3D video quality
assessment model. As such, this paper makes its original
research contribution by introducing motion sensitivity into
3D video quality assessment modelling.

III. MOTION-SENSITIVE HVS MODEL

A. Overview of the model’s architecture

The proposed motion sensitive model aims to mimic the
processing taking place in the primary visual cortex (V1
area) by modelling the response of simple and complex cells.
The key contribution is the introduction of a generalised
complex cell architecture able to account for the behaviour of
motion-sensitive complex cells as well as non-motion sensitive
complex cells. The model generalises the earlier Extended
Binocular Energy Model (EBEM) from [8]. A system diagram
of the proposed motion sensitive model highlighting how it
extends our previous model is shown in Fig. 3.

The earlier EBEM (shaded in Fig. 3) introduced a model
of simple and complex cells to characterise the binocular
response of the HVS. Temporal pooling of the objective
scores obtained for each video frame was used to learn a
metric to predict subjective perception of stereoscopic video
quality. The model improved perceptual modelling compared
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Fig. 3. System diagram of the proposed Motion Sensitive Binocular Energy
Quality Metric (MSBEQM). Components from the Binocular Energy Video
Quality Metric (BEVQM) system are shaded.

to other approaches. However, the complex cell model lacked
physiological plausibility as it ignored motion sensitivity.

In contrast, the model introduced in this paper generalises
the previous model by incorporating motion response maps to
modulate the output of complex cells according to perceived
motion. This results in a more physiologically plausible model
of the response of complex cells and allows computation of
a new class of objective scores capturing motion sensitive
perception of stereoscopic video quality. The final model
is obtained by combining motion and non-motion sensitive
objective scores and is shown to result in a significant increase
in its ability to predict perceived stereoscopic video quality.

Motion response maps are computed for each perceptual
channel by estimating the velocity seen by the channel and
then applying a velocity response function characteristic of the
type of complex cell considered. Fig. 4 summarises the key
processing steps to compute the motion response maps. This
generalisation allows a broad variety of motion sensitive com-
plex cell behaviours to be modelled depending on the choice of
velocity response function, while retaining the ability to model
simpler non-motion sensitive complex cell behaviour using
a constant velocity response function. The new architecture
leads to two different types of binocular energy outputs: one
modelling the non-motion sensitive response of complex cells
(similar to that proposed in [8]), the other one modelling the
response of motion sensitive complex cells. The remainder of
this section describes the key steps in the processing pipeline.

B. Simple cell model

The simple cell model used in this paper is similar to that
used in [2], [8]. Stereoscopic pairs of images are represented
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Fig. 4. Flow chart summarising the key processing stages in the computation
of the motion response maps. The output of each processing stage is shown
on the bottom row under its corresponding block. The motion response map
illustrated in this example was obtained using a binary velocity response
function.

using complex functions Cl(p, c) and Cr(p, c) which denote
the monocular signals in the left and right images at pixel p
and for a given perceptual channel c. These are defined as

Cl(p, c) = Al(p, c)e
φl(p,c) and Cr(p, c) = Ar(p, c)e

φr(p,c)

(1)
where Al and Ar denote the amplitudes while φl and φr denote
the phases of the left and right signals. A brief description of
the simple cell model computation is provided here, the reader
being referred to [2], [8] for the full details.

A Complex Wavelet Transform (CWT) is used to model
the spatial frequency response of the simple cells for both
luminance and chrominance components. A dual-tree method
[39] is used to analyse the image using two different Discrete
Wavelet Transforms (DWTs). The real and imaginary parts
of the CWT are computed by applying a pair of filters, each
composed of a low-pass and a high pass filters with the first
couple computing the real parts of the CWT and the second
couple computing the imaginary parts.

A pre-processing step is used to convert the chrominance
channels in a stereoscopic image into a colour space more
representative of the HVS. CIE L*a*b* [40] is chosen where
a single channel of luminance L* and two mutually orthog-
onal channels of chrominance a* and b* are used. With
the intention to represent stereoscopic images using a set of
complex functions, real and imaginary parts of the response
to luminance are separated using the CWT on the luminance
component. The chrominance response is computed using
two DWTs as they are mutually orthogonal being real and
imaginary parts of a complex function.

The bandelet transform is used to analyse the wavelet
components due to its similar behaviour to simple cell charac-
teristics [41]. The set of sub-bands obtained using the analysis
are organised in a quadtree of variable size following the image
geometry. An orientation is computed and assigned to each
block as a dyadic square depending on the coefficients.

C. Generalised complex cell model

The binocular energy is generated in the receptive fields
of the binocular complex cells. The most common type of

complex cells are known to perform a SUM-like operation
on the responses of simple cells with similar orientation
preference [42]. Another type of complex cells are known to
perform MAX-like operation [43]. Both types of operations
have been modelled in [8] which defined the energy terms

ESUM(c) =
∑
p

sum(A2
l (p, c),A2

r (p, c)) (2)

EMAX(c) =
∑
p

max(A2
l (p, c),A2

r (p, c)) (3)

based on the functions Al(p, c) and Ar(p, c) introduced in
(1). For luminance the binocular signal is a complex function
and for chrominance it is a real function. In this model, the
different perceptual channels account for the different orienta-
tions and scales extracted as depicted in Fig. 1. Even though
effective at modelling the orientation and scale sensitivities of
the HVS, this model completely ignores motion sensitivity.

The proposed model generalises this earlier model by in-
troducing the motion response maps Hl(p, c) and Hr(p, c)
characterising the motion response at a pixel p for a given
perceptual channel c in the left and right images respectively.
Hence, the following energy terms are defined:

ESUM(c) =
∑
p

sum(Hl(p, c)A
2
l (p, c),Hr(p, c)A

2
r (p, c)) (4)

EMAX(c) =
∑
p

max(Hl(p, c)A
2
l (p, c),Hr(p, c)A

2
r (p, c)) (5)

In these equations, the binocular energy for a given channel c
is obtained by first weighting the amplitude of the monocular
signals in the left and right images using their respective
motion response maps at each pixel, and then summing
the resulting binocular energies contributed by each pixel p
over the entire image. This allows complex cells to respond
selectively to a particular motion.

The motion response maps for the left and right images are
defined respectively as

Hl(p, c) = h(Vl(p, c)) and Hr(p, c) = h(Vr(p, c)) (6)

where Vl(p, c) and Vr(p, c) denote the velocity maps in the
left and right images, and h is the velocity response function
of the type of complex cell considered.

The velocity maps Vl(p, c) and Vr(p, c) represent the ampli-
tude of the motion at pixel p for a given perceptual channel c
in the left and right views respectively. This requires a dense
estimate of scene motion characterising the displacement at
each pixel in the pair of image frames. It should be noted that
the amplitude of the motion at a given pixel is dependent
on the perceptual channel considered since it depends on
both scale and orientation. Velocity map estimation will be
discussed in more detail in Section III-D.

The velocity response function h is specific to a given
type of complex cell. In the case of a non-motion sensitive
complex cell, this is a constant function. In the case of a
motion sensitive complex cell, this is a motion dependent
function with profile depending on the nature of the complex
cell. The motion model considered in this paper is based
on implementing a high-pass filter behaviour since previous
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research has identified this type of behaviour as predominant
[19]. The definition of the velocity response function and its
effect will be discussed in more detail in Section III-E.

A two layer architecture containing both motion-sensitive
(characterised by a velocity response function hmotion) and non-
motion sensitive (characterised by a constant velocity response
function hstill) complex cell models is considered in this paper.
The binocular energy scores obtained for the different SUM
and MAX operations and the different perceptual channels can
be concatenated into vectors Estill and Emotion in the case of
the non-motion sensitive and motion-sensitive complex cell
models. To the authors’ knowledge, there is no physiological
evidence to suggest what proportion of complex cells response
is related to motion. Hence both motion sensitive and non-
motion sensitive models are considered in equal proportion
and the contribution of different types of complex cells will
be learnt later on together with the specific weights of each
objective scores when building a metric. Hence, this results in
a vector of binocular energy scores with four times as many
elements as the number of perceptual channels considered
(half of the binocular energy term relating to motion sensitive
complex cells, the other half being non-motion sensitive).

Similarly to [8], the proposed approach models the in-
teractions between complex cell outputs using a Recurrent
Excitation Model (REM) where the output of one complex cell
is modulated by the output of another complex cell according
to the physiological findings reported in [44]. In the proposed
model, the two layers do not converge until a common
REM combines them using a regression model to produce
final binocular energy elements. This generalises the previous
approach by allowing modulation across complex cells with
different types of motion response as well as complex cells
with the same motion response. The remaining of this section
provides more detail on the velocity map estimation and the
definition of the velocity response function.

D. Velocity map estimation

A per pixel measure of velocity for each perceptual channel
c in both left and right images is required in order to weigh
the contribution of each pixel when computing the binocular
energy scores in (4) and (5) and thereby represent the orienta-
tion selectivity of motion sensitive complex cells. A two-stage
approach is proposed to efficiently compute the velocity maps.

a) Multi-scale optical flow estimation: First, an optical
flow algorithm is used to estimate the left and right mo-
tion vectors ul(p, c) and ur(p, c) at each pixel p and for
each perceptual channel c. The dense optical flow algorithm
proposed by Farnebäck [45] is used in this paper using
both the previous and the next frame to estimate the motion
vectors at any given frame. The algorithm was chosen for its
computational efficiency and its robustness at the time our
study was performed. Optical flow is calculated separately
for the left and right views. The perceived optical flow is
dependent on the scale considered. For example, optical flow
induced by the motion of a high frequency texture may only
be visible at high resolution, disappearing when the texture
becomes blurred at the lower levels of resolution. Similarly,

u u u 
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Fig. 5. Illustration of the decomposition of the motion vectors ul(p, c) and
ur(p, c) into channel-dependent velocity components Vl(p, c) and Vr(p, c).
For clarity, all indices have been omitted in the figure. One example is
provided for each orientation in the decomposition.

small scale motion may only be perceptible at the higher
resolution levels as its amplitude may be too small to generate
a response at the lower resolution levels. Hence a multi-scale
approach is used to compute the optical flow at each scale
(three scales corresponding to three decomposition levels are
considered in this paper). To reduce computational complexity
and improve the accuracy of the motion vectors, optical flow
is computed on the luminance channel only. Therefore, each
image requires only three optical flow computations at the
different scales considered. Optical flow estimation may be
prone to inaccuracies in the presence of rapid scene motion. To
some extent, the proposed HVS architecture is resilient to such
errors as it does not require a very precise estimate of motion
as long as the algorithm is able to distinguish pixels associated
with moving scene points from static scene points, especially
when using a binary velocity response function as discussed
in Section III-E. Also, summation over the image provides
robustness by effectively weighting down the contribution of
outlier pixels with inaccurate flow.

b) Multi-channel velocity estimation: Second, the
amount of motion in the left and right images at each pixel
p for a given perceptual channel c is calculated in order to
define the velocity maps. These are both scale and orientation
dependent. The multi-channel image decomposition used in
this paper considers three different orientations (horizontal,
vertical and diagonal) at three scales and a low resolution
residual. Denoting by ec the unit vector corresponding to the
orientation and scale used in the perceptual channel c, the
left and right velocity components at pixel p in channel c are
given by

Vl(p, c) = |ul(p, c) ·ec| and Vr(p, c) = |ur(p, c) ·ec| (7)

in the case of the perceptual channels representing scale
and orientation. This is illustrated in Fig. 5. For the last
channel representing the low resolution residual, the velocity
components in the left and right images are given by

Vl(p, c) = ‖ul(p, c)‖ and Vr(p, c) = ‖ur(p, c)‖ (8)

The unit vectors ec, with respect to which motion is measured,
define the three orientations (horizontal, vertical and diagonal)
and the three scales with scale halved when moving from one
level to the next. A total of only nine projections and one
magnitude are required to compute all the velocity compo-
nents for a given image. This avoids separate computation of
the velocity components for the luminance and chrominance
channels which share the same velocity maps.
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E. Velocity response function

The velocity response of a given type of complex cell
is represented using the velocity response function h. The
proposed formulation is generic and versatile in that it is
able to model the behaviour of both non-motion sensitive and
motion sensitive complex cells including the various types of
responses discussed in the literature. This paper considers the
most common type of motion sensitive complex cells which
are known to behave as high pass filters. The exact profile of
the velocity response function for this type of complex cell is
unclear. Hence two different models are considered: a binary
velocity response model and a linear velocity response model
as illustrated in Fig. 6.

The binary velocity response model uses a binary velocity
response function hbin to reject pixels with perceived velocity
falling below a given threshold Vbin and accepts all other pixels
with equal weight. This threshold is determined empirically as
discussed in Section V-A. It is defined as follows:

hbin(V ) =

{
0 if V < Vbin

1 if V > Vbin
(9)

In contrast, the linear velocity response model uses a binary
velocity response function hlin to reject pixels with small
motion while weighting linearly the contribution of pixels
exceeding the minimum threshold Vlin. It is defined as follows:

hlin(V ) =

{
0 if V < Vlin

V if V > Vlin
(10)

The binary velocity response function is a simple yet
effective way of distinguishing moving scene points from
static ones with the merit of being resilient to inaccuracies
in optical flow estimation since it does not consider the exact
amplitude of a given velocity component as long as it exceeds
the minimum threshold. The linear velocity response function
provides a finer grain analysis by offering the ability to take
into account the actual motion amplitude when computing the
binocular energy but may be more sensitive to inaccuracies in
optical flow estimation. Both models will be investigated to
build the stereoscopic video quality metrics in Section V.

Both models require the use of a minimum motion threshold
which must be appropriately set. The threshold needs to be
larger than the noise level present in the input video and
smaller than the level at which object motion becomes notice-
able. This threshold must also be able to mitigate any noise
measured in velocity and to represent the motion sensitivity’s
lower threshold of the velocity response. In this paper, a
common threshold of 3 pixels, measured at the resolution
of the first decomposition level (highest resolution image),
was used for both models. The same threshold is used at
all decomposition levels since scale changes are accounted
by appropriate changes in the unit vectors ec with respect
to which motion vectors are expressed. Further, to address
the variability in input video resolution, all input frames are
normalised to a 512× 512 pixel resolution with referenced to
which the threshold is defined. Further discussion and analysis
of the effect of the threshold and justification of the choice of
value is provided in Section V-A.
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Fig. 6. Velocity response model. Left: Binary velocity response function.
Right: Linear velocity response function.

IV. MOTION SENSITIVE BINOCULAR ENERGY QUALITY
METRIC (MSBEQM)

This section introduces two full reference motion-sensitive
stereoscopic video quality metrics based on the generalised
HVS model introduced in the previous section.

A. Normalised motion-sensitive objective scores

Let us consider a given frame t in a video sequence.
The generalised HVS model can be used to calculate two
sets of objective scores: Estill(t), representing the behaviour
of non-motion sensitive complex cells and obtained using a
constant velocity response function hstill(V ) = 1 for any V ,
and Emotion(t), representing the behaviour of motion sensitive
complex cells and obtained using velocity response function
hmotion (two types of velocity response functions hbin and hlin
are considered). These can be concatenated into a single vector
containing all energy terms E(t) = [Estill(t);Emotion(t)].
Similarly, the non-motion sensitive and the motion sensitive
objective scores for the same frame reference stereoscopic pair
can be calculated and concatenated into a vector Eref(t) with
the same dimension as E(t). Eref(t) and E(t) are then com-
bined to compute a vector X(t) = [Xstill(t),Xmotion(t)] =
[X1(t), X2(t), . . . , Xn(t)] of normalised objective scores for
the given frame and defined by:

X(t) = (Eref(t)−E(t))/(Eref(t) + E(t)) (11)

where the symbol / denotes an element-wise vector division.
Further, a vector Z(t) = [X1(t).X2(t), . . . , X1(t).Xn(t),

X2(t).X3(t), . . . , X2(t).Xn(t), . . . , Xn−1(t).Xn(t)] is also
introduced. It consists of the product of all pairs of normalised
objective scores in X(t) and is used to implement the REM
which allows complex cells to mutually interact and modulate
their outputs. Unlike the previous work in which this effect
was limited to non-motion sensitive complex cells, this allows
different types of complex cells to modulate their outputs.

For an N -level spatial frequency decomposition in the
simple cell model, 3N + 1 different spatial frequency sub-
bands are obtained considering 3 orientations as illustrated in
Fig. 1. Separate analyses are carried out on the luminance (L*)
and the two chrominance channels (a* and b*), resulting in
2× 3× (3N + 1) objective scores (half of them representing
SUM-like operations, while the other half modelling MAX-
like operations). The proposed model considers both motion
sensitive and non-motion sensitive objective scores thus dou-
bling the number of objective scores and resulting in a total of
n = 12× (3N + 1). In this paper, N = 3 was used, as in [2],
[8], which results in a total of n = 120 objective scores for the
proposed MSBEQM (as opposed to 30 for the BEQM and 60
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for the EBEQM) for each frame. The increased dimensionality
when considering each frame poses a major challenge in terms
of extracting a reliable model via regression. The remainder
of this section introduces a robust approach which makes use
of dimensionality reduction to build a metric.

B. Motion response weighted temporal pooling

The objective scores for the different frames are combined
via temporal pooling based on Minkowski summation which
was found to be the most effective in [8] in the case of
non-motion sensitive objective scores. Unlike the approach
proposed in [8], which equally weights the contribution of
all frames, a motion response weighted temporal pooling
approach is proposed here. The key idea is to measure the
extent to which a particular type of motion is represented
within each frame and use this information to inform the
choice of pooling weight. This measure of motion at a given
frame is referred to hereafter as the motion support. More
formally, the motion support at frame t for a given perceptual
channel c is defined as the number of pixels with non-zero
motion response, that is the number of pixels p such that
h(Vl(p, c)) > 0 in the case of the left view (and similarly
in the case of the right view). Denoting the motion support by
wh(t) , the sequence of values taken by the ith objective score
over time Xi(t) with t = 1, . . . , f are pooled into a single
motion-response weighted objective score

X̄i =
β

√√√√ 1

f

f∑
t=1

|Xi(t)wh(t)|β (12)

Here, β is the Minkowski parameter set to 0.66. This value
was found to be optimal in the case of the BEVQM and was
observed to work well in the generalised model proposed here.

This generalises the previous approach by allowing to take
into account the motion support at each frame for a particular
type of motion response. It should be noted that in the case of
a non-motion sensitive complex cell, the generalised approach
is equivalent to the traditional temporal pooling approach
since the number of pixels with non-zero motion response is
constant and equal to the total number of pixels.

C. Motion sensitive stereoscopic video quality metric

Having computed the normalised objective scores
and pooled them into objective scores reflecting
both non-motion and motion sensitive complex cell
behaviours, the next step is to identify a relationship
expressing the subjective score Y as a function of
the pooled objective scores X̄ = [X̄still, X̄motion] =
[X̄1, X̄2, . . . , X̄n] and their recurrent variables Z̄ =
[X̄1.X̄2, . . . , X̄1.X̄n, X̄2.X̄3, . . . , X̄2.X̄n, . . . , X̄n−1.X̄n]. In
[8], only one type of objective scores was used. However, in
this paper, there are two types of objective scores representing
motion sensitivity and non-motion sensitivity. The resulting
increase in the number of objective scores (120 in total)
poses a challenge in identifying a metric as this considerably
increases run-time but also affects the convergence of the
regression technique. To address this challenge, a two-stage

approach is proposed where regression is first performed
separately on the non-motion sensitive and the motion
sensitive objective scores to select the meaningful objective
scores for each type of the motion response. In the second
stage, regression is performed on the reduced set of objective
scores which have been selected in the first stage. An
overview of the approach is given in Fig. 3.

1) Initial regression and objective scores selection: First,
two separate multi-variate regressions are performed to deter-
mine the relationships predicting the subjective score from the
non-motion and the motion sensitive coefficients respectively:

Y = kstill + astillX̄
>
still + bstillZ̄

>
still (13)

Y = kmotion + amotionX̄
>
motion + bmotionZ̄

>
motion (14)

In these Equations, the vectors astill, bstill, amotion
and bmotion and the constants kstill and kmotion denote
the regression coefficients for the two models. As the
HVS model requires cross relationships among objective
outputs to meet the recurrent excitation in the complex
cells model, the recurrent objective scores Z̄still =
[X̄1.X̄2, . . . , X̄1.X̄n

2
, X̄2.X̄3, . . . , X̄2.X̄n

2
, . . . , X̄n

2−1.X̄
n
2

]
and Z̄motion = [X̄n

2 +1.X̄n
2 +2, . . . , X̄n

2 +1.X̄n, X̄n
2 +2.X̄n

2 +3,
. . . , X̄n

2 +2.X̄n, . . . , X̄n−1.X̄n] are required.
Due to the number of components in the analysis, a sup-

pression technique is required to remove terms which are
not required to stabilise the regression model. Therefore,
stepwise linear regression is used over linear regression due
to its ability to suppress the least meaningful components
from the analysis [46]. The stepwise regression results in
models containing a relatively small number of non-zero
coefficients (approximately 20 overall). Only these selected
objective scores will be considered in the final regression stage
thus significantly reducing the pool of objective scores used
in the final regression.

2) Final regression on selected objective scores: The final
regression is performed by considering the selected objective
scores for each type of motion. These are typically of signif-
icantly smaller size than the complete set of objective scores.
The final multi-variate stepwise regression is performed to
estimate the following relationship

Y = k + aX̄
>

+ bZ̄
> (15)

where the constant k and the vectors a and b are the regres-
sion parameters defining the metric. All values in a and b
corresponding to non-selected objective scores are enforced
to be zero. The two-stage approach results in a metric with
a significantly reduced number of non-zero coefficients and a
reduction in computation time by several orders of magnitude
compared to a classical single-stage approach which does not
perform objective score selection. Objective score selection
and the obtained metrics will be discussed in Section V.

V. RESULTS AND DISCUSSION

The proposed motion sensitive approach is evaluated using
the ROMEO project1 dataset [4] and the publicly available

1https://cordis.europa.eu/project/rcn/100106 en.html

https://cordis.europa.eu/project/rcn/100106_en.html
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TABLE I
CHARACTERISTICS OF THE STEREOSCOPIC VIDEO DATASETS

dataset name Number
of SRC Distortion types Number

of HRC
Resolution

(pixels)
NAMA3DS1-
CoSpaD1 [47] 10 H264, JPEG2K,

downsample, sharpen 10 1920×1080
ROMEO [4] 6 H.264 7 960×1080

Waterloo
3D-VQA [48] 6 H.264 44 1024×768

datasets NAMA3DS1-CoSpaD1 [47] and Waterloo 3D-VQA
[48]. All of the datasets consist of stereoscopic video se-
quences with additional information on associated subjective
scores. The characteristics of these datasets are summarised in
Table I and sample images from the different sequences from
each dataset are shown in our supplementary report [49].

Two separate evaluations are conducted. First, the effects
of the different approaches to model motion sensitivity and
perform regression are evaluated and discussed. The anal-
ysis is performed in a leave-one-out fashion on the com-
bined NAMA3DS1-CoSpaD1 and ROMEO datasets. Then,
two motion sensitive binocular energy video quality metrics
are built and evaluated against existing metrics to validate the
importance of accounting for motion sensitivity. This is the
core part of the evaluation which is performed by training and
validating models on the NAMA3DS1-CoSpaD1 dataset and
then evaluating the models independently on the ROMEO and
Waterloo 3D-VQA datasets.

A. Evaluation of the effects of motion sensitivity

We proposed different approaches to model motion sensi-
tivity depending on the motion model used and the regression
approach performed on the combined set of objective scores.
This results in four possible combinations of methods. To
better understand the effects of the different objective scores,
the models built from purely non-motion sensitive and purely
motion-sensitive objective scores are also evaluated. The fol-
lowing seven models are therefore considered:
• NoMo: Regression on only the non-motion sensitive

objective scores (similar to the EBEQM),
• MoBin: Regression on only the motion sensitive objec-

tive scores with binary velocity response function,
• MoLin: Same as above with linear velocity response

function,
• ComBin: Single-stage regression on combined non-

motion sensitive and the motion sensitive objective scores
with binary velocity response function,

• ComLin: Same as above with linear velocity response
function,

• SelBin: Two-stage regression on combined non-motion
sensitive and the motion sensitive objective scores with
binary velocity response function,

• SelLin: Same as above with linear velocity response
function.

All approaches are evaluated on the combined NAMA3DS1-
CoSpaD1 and ROMEO datasets in a leave-one-out fashion
where each sequence is excluded in turn and used for testing
purposes while the other sequences are used for training.

Fig. 7. Effect of the thresholds Vbin and Vlin on correlation between objective
scores and subjective scores in the case of the binary and linear velocity
response models.

TABLE II
SIZE AND AVERAGE COMPUTATION TIME FOR THE DIFFERENT

REGRESSION METHODS

Regression method Number of non-zero
regression coefficients

Average computation time
(s)

Single-stage regression 41 (binary model) 2354.11 (binary model)
43 (linear model) 2468.94 (linear model)

Stage 1 22 (binary model) 13.97 (binary model)
Two-stage 23 (linear model) 14.75 (linear model)
regression Stage 2 8 (binary model) 4.77 (binary model)

7 (linear model) 3.37 (linear model)

First, to understand the effect of the choice of threshold
value used in the velocity response function and to select an
optimal value, the performances of the MoBin and MoLin
methods are evaluated for different threshold values ranging
from 1 to 10 pixels. For each value, the correlation between
objective and subjective scores is used to measure the ability of
the velocity response function to predict quality of experience
based on motion alone. Results, shown in Fig. 7, indicate that
a threshold of 3 pixel is optimal for both types of response
functions and is therefore used in the rest of the paper.

Next, the performance of the different methods is evaluated
by calculating the Pearson’s Linear Correlation Coefficient
(PLCC) between predicted scores and subjective scores over
the entire set of test sequences. The performance of each
method is shown in Fig. 8. Considering first the effect of the
velocity response function, one can observe that the binary
motion response model usually outperforms the linear model.
The binary motion sensitive objective scores considered on
their own appear to be better predictors than their linear
counterpart as well as the non-motion sensitive objective
scores as can be seen when comparing the performance of
MoBin against MoLin and NoMo. This suggests that they are
the most important type of objective scores. When combined
with non-motion sensitive objective scores, the binary model
remains a better predictor than the linear model, although the
difference between the two becomes marginal. As for the effect
of the regression method, it can be observed that the two-stage
approach significantly improves performance compared to the
single-stage approach for both types of velocity response func-
tions. This can be attributed to improved convergence resulting
from objective score selection. The detrimental effects of high
dimensionality are evidenced by the poor performance of
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Fig. 8. Correlations between predicted scores and subjective scores for the
different models considered with 95% confidence intervals.

the single-stage regression approaches (ComBin and ComLin)
which perform more poorly than the non-motion sensitive
model alone (NoMo).

Finally, Table II provides some information on the average
size of the models built by the two regression approaches to-
gether with their computational time. The single-stage regres-
sion approach performs regression over 120 objective scores
which results in models with large numbers of objective scores
(over 40) and slow convergence (over 2000 s). In contrast, the
two-stage approach enables selection of only a small number
of coefficients (about 20) in the first stage which translates into
significantly smaller final models (less than 10 coefficients)
and reduces computation time by two orders of magnitude
(less than 20 s for the combined two stages).

Overall, the models using either a binary or a linear velocity
response function with a two-stage selective regression method
are the top performers, resulting in the highest correlation
scores while at the same time being significantly more compact
and faster to compute. They are therefore the methods of
choice that will be used in Section V-B to build the metrics.

B. Metric construction and evaluation

To build the metrics and evaluate their performances, the
NAMA3DS1-CoSpaD1 dataset [47] is used for training and
validation, while the ROMEO and Waterloo 3D-VQA datasets
are used for testing. This ensures that there is no overlap
between training and testing datasets and enables evaluation
under diverse datasets covering a broad range of scenes and
motion activity levels. The NAMA3DS1-CoSpaD1 dataset is
split into a training set (9 sequences) and a validation set
(1 sequence) to build different models. The model achieving
the best performance on the validation set is used to build
the metric. Metrics are then evaluated by calculating the
Pearson’s Linear Correlation Coefficient (PLCC), Spearman’s
Rank Correlation Coefficient (SRCC) and Kendall’s Rank
Correlation Coefficient (KRCC) between the predicted scores
and the subjective scores over the testing datasets.

Two variants of motion sensitive metric are proposed de-
pending on whether a binary or a linear velocity response
function is used. These are evaluated against state-of-the-art
quality metrics. More specifically the proposed metrics are
compared against an image quality metric [28], a stereoscopic
image quality metric [50], a video quality metric [51] and six
stereoscopic video quality metrics [4], [8], [31], [33], [34].
The complete set of quality metrics evaluated and their key
characteristics are listed as follows:
• SSIM: based on luminance, contrast and structural com-

parison [28],
• SSIM Ddl: based on a global 2D image distortion mea-

sure and differences in disparity maps of stereo pairs [50],
• VQM: standardised method for objective evaluation of

video quality [51],
• StSD: based on structural distortion, asymmetric blur and

content complexity [4],
• PQM: based on distortions in luminance and contrast

[31],
• 3D-STS: based on spatio-temporal structure [33],
• SJND-SVA: based on visual attention and just-noticeable

difference models [34],
• BEVQMµ: based on a non-motion sensitive HVS model

with temporal pooling using averaging [8],
• BEVQMβ: same as above with temporal pooling using

Minkowski summation [8],
• MSBEQMbin: this is based on the proposed motion-

sensitive HVS model with a binary velocity response
function and two-stage regression,

• MSBEQMlin: same as above with a linear velocity re-
sponse function.

In the case of monoscopic quality metrics such as SSIM and
VQM, stereoscopic quality scores are obtained by applying
the quality metric separately to the left and right inputs and
then averaging the left and right quality scores obtained. For
the image quality metrics, mean temporal pooling is also
performed to obtain a score for the entire video.

Fig. 9 shows the results obtained for the different quality
metrics and for each sequence from the ROMEO and Waterloo
3D-VQA datasets based on PLCC. Further, Fig. 10 shows
the average correlation on each dataset as well as the overall
performance based on PLCC, SRCC and KRCC. In all cases,
top performance has been highlighted in bold. Scatter plots
showing the distribution of predicted scores against subjective
scores are also provided in our supplementary report [49].

The image quality metrics, SSIM and SSIM Ddl, are the
two worst performers with average scores significantly lower
than any video quality metric tested, whether stereoscopic
or not. This confirms the importance of considering tempo-
ral information. The monoscopic video quality metric VQM
performs less than the binocular video metrics considered,
except for StSD which performs less well on these datasets.
This demonstrates the benefit of accounting for binocular
visual effects to achieve a high performance stereoscopic video
quality assessment.

Considering now the performance of the different stereo-
scopic video quality metrics, it can be observed that the top
four performers are all based on HVS models, being either
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Beergarden2 RaceStart Poker Ochestra Water splash Musicians Balloons Book Kendo Lovebird Craft Dancer
SSIM 0.1384 0.2870 0.6614 0.7921 0.8156 0.5544 0.5349 0.4357 0.3956 0.6142 0.5038 0.5370
SSIM_Ddl 0.1053 0.2908 0.7326 0.7722 0.6666 0.5566 0.5987 0.5834 0.5251 0.6481 0.5266 0.5649
VQM 0.6845 0.7342 0.7541 0.8384 0.8752 0.7895 0.7156 0.7901 0.7958 0.8132 0.7791 0.7877
StSD 0.6248 0.7531 0.8803 0.4447 0.5557 0.7095 0.5385 0.5145 0.5992 0.5936 0.6171 0.6164
PQM 0.6987 0.7258 0.8041 0.8954 0.8451 0.7984 0.7225 0.7756 0.8143 0.8085 0.7894 0.7976
3D-STS 0.7182 0.7149 0.7748 0.8874 0.8357 0.8411 0.7198 0.8007 0.8098 0.8941 0.7993 0.8066
SJND-SVA 0.7084 0.7338 0.8225 0.8537 0.8759 0.8642 0.6584 0.8257 0.8743 0.8451 0.8065 0.8154
BEVQMμ 0.8578 0.8269 0.9171 0.8614 0.8512 0.8371 0.8152 0.8381 0.8109 0.8082 0.8439 0.8426
BEVQMβ 0.8594 0.8331 0.9527 0.9153 0.8681 0.8530 0.8157 0.8349 0.8058 0.8439 0.8602 0.8603
MSBEQM_bin 0.9414 0.9180 0.8243 0.9791 0.9728 0.9273 0.9451 0.9346 0.9145 0.9006 0.9259 0.9245
MSBEQM_lin 0.7068 0.9602 0.9592 0.9796 0.9783 0.9781 0.9048 0.9159 0.9271 0.9304 0.9243 0.9441

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Co
rr

el
at

io
n

SSIM SSIM_Ddl VQM StSD PQM 3D-STS SJND-SVA BEVQMμ BEVQMβ MSBEQM_bin MSBEQM_lin

Fig. 9. Performances of the proposed metrics against state-of-the-art metrics on each of the sequences from the ROMEO dataset (first 6 sequences) and the
Waterloo 3D-VQA dataset (last 6 sequences) based on PLCC score.

Romeo_PLCC Romeo_SRCC Romeo_KRCC Waterloo_PLCC Waterloo_SRCC Waterloo_KRCC Overall_PLCC Overall_SRCC Overall_KRCC
SSIM 0.3120 0.5119 0.3016 0.5035 0.4944 0.4734 0.5225 0.5031 0.3875
SSIM_Ddl 0.3133 0.3988 0.3333 0.5745 0.5893 0.5438 0.5476 0.4941 0.4386
VQM 0.7793 0.7679 0.6190 0.7802 0.8088 0.7570 0.7798 0.7884 0.6880
StSD 0.5746 0.5546 0.5397 0.5799 0.5885 0.5459 0.6206 0.6425 0.5428
PQM 0.7946 0.7679 0.6190 0.7846 0.7680 0.6829 0.7896 0.6510 0.7679
3D-STS 0.7954 0.7798 0.6032 0.8050 0.7519 0.7045 0.8002 0.7659 0.6538
SJND-SVA 0.8098 0.8155 0.6984 0.8042 0.7550 0.6722 0.8070 0.7852 0.6853
BEVQMμ 0.8586 0.9048 0.8095 0.8265 0.7698 0.6836 0.8425 0.8373 0.7466
BEVQMβ 0.8803 0.8690 0.7619 0.8368 0.8101 0.7386 0.8585 0.8396 0.7502
MSBEQM_bin 0.9272 0.9345 0.8413 0.9242 0.9332 0.8832 0.9257 0.9338 0.8622
MSBEQM_lin 0.9270 0.8988 0.8095 0.9244 0.9253 0.8517 0.9257 0.9120 0.8306
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Fig. 10. Average performances of the proposed metrics against state-of-the-art metrics on the ROMEO dataset, the Waterloo 3D-VQA dataset and the combined
ROMEO and Waterloo 3D-VQA datasets based on PLCC, SRCC and KRCC scores.

variants of the BEQM or the proposed BEVQM. Looking more
closely at the performance of these four methods, it can be
seen that the two variants of the proposed MSBEQM metric
outperform their non-motion sensitive BEVQM counterparts
by a significant margin. These results confirm the importance
of modelling the motion sensitivity of the HVS when devising
a stereoscopic video quality metric.

The two variants of the MSBEQM perform similarly with
MSBEQMbin and MSBEQMlin achieving average correlations
of 0.9257 (PLCC), 0.9338 and 0.9120 (SRCC), 0.8622 and
0.8306 (KRCC). This is in agreement with the results shown in
Section V-A which suggested that the two models have similar
performance. For the ‘Beergarden2’ sequence, a reduction
in performance can be noted for MSBEQMlin compared to
MSBEQMbin; this may be due to the high texture details
present in the video which may lead to complex optical flows.

The complete list of non-zero coefficients for the
MSBEQMbin and MSBEQMlin are given in Table III. These
specify all the regression parameters defining the metric in
(15). The listed coefficients specify the constant k and the non-
zero entries of the vectors a and b identified by their indices.
The coefficient indices in the range 1 to 60 refer to non-motion
sensitive coefficients, while indices in the range 61 to 120
refer to motion sensitive coefficients. It can be observed that
the MSBEQMbin and MSBEQMlin present some similarities
in terms of coefficients that are selected with, in particular,
the third motion sensitive objective score playing the most
significant role in both models.

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced a motion sensitive HVS model
based on physiological observations describing the response
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TABLE III
COMPLETE LIST OF NON-ZERO COEFFICIENTS FOR THE MSBEQMBIN AND

MSBEQMLIN . ALL COEFFICIENTS ARE SORTED IN ORDER OF
DECREASING IMPORTANCE BASED ON THEIR p-VALUE.

MSBEQMbin MSBEQMlin
Coeff. Estimate SE p-value Coeff. Estimate SE p-value
k 4.348 0.12 0 k 3.927 0.10 0
a63 -2.571 0.62 6.3E-5 a63 -1.740 0.41 3.9E-5
b3,63 -1.890 0.52 4.2E-4 a3 -1.608 0.42 1.8E-4
a117 1.169 0.32 4.4E-4 a114 1.336 0.39 9.3E-4
a13 -1.137 0.33 9.0E-4 b3,114 -2.030 0.84 1.2E-2
a92 1.764 0.56 2.1E-3
a89 -0.567 0.25 2.4E-2
a3 -0.621 0.46 1.8E-1

of complex cells to motion. The approach is based on a
generalised model of complex cells whose behaviour is defined
by a velocity response function. Depending on the choice of
velocity response function, the model is able to describe the
behaviour of a wide range of complex cells including both
non-motion sensitive and motion sensitive types. Although
this paper only implemented the predominant type of motion
sensitive complex cells, known to behave as high pass filters,
the approach is generalisable to other types of complex cells.

This paper has demonstrated an application of the proposed
model in stereoscopic content production. The model was used
to define binocular energy terms capturing the non-motion sen-
sitive and motion sensitive characteristics of each video frame.
Temporal pooling and a two-stage regression approach were
introduced to reduce dimensionality and improve the efficiency
and accuracy of the estimation of a stereoscopic video quality
metric. Two variants were proposed depending on whether
a binary or a linear velocity response function is used to
describe the behaviour of motion sensitive complex cells. Both
metrics were evaluated on three stereoscopic video datasets
containing a wide range of scenes and motion activity levels.
The evaluation has showed that the two proposed metrics
perform better than existing stereoscopic video quality metrics
including other HVS-based metrics, and are able to achieve
average correlations to subjective scores of 0.9257 (PLCC),
0.9338 and 0.9120 (SRCC), 0.8622 and 0.8306 (KRCC).

Further advances in understanding the physiology of the
HVS are likely to open up new avenues to extend this research.
For instance, a better understanding of the proportion of
complex cells with motion sensitivity and more precise models
of their velocity response functions would help increase the
accuracy of the proposed approach. The present study assumed
a common velocity threshold for all complex cells, however it
may be beneficial to introduce cells with a variety of threshold
values to better capture the effects of scene motion amplitude.

Furthermore, incorporating complex cells with different
motion sensitivity responses such as low pass filter and band
pass filter or even other types of non-linear velocity responses
has the potential to increase the performance of the model and
resulting metric. However, this is likely to also open up new
computational challenges as the number of objective scores
increases. Another interesting avenue for future research would
be to extend the model by incorporating physiological findings
modelling the response of other parts of the brain beyond the
V1 area.

Another research direction would be to extend the approach
by treating the stereoscopic video input as a 3D signal instead
of two separate video streams, applying 3D image processing
techniques such as the 3D transform to derive the objective
scores. In this approach, motion sensitivity may be incorpo-
rated using scene flow instead of optical flow. Finally, it would
be interesting to investigate the use of the proposed model in
other application domains such as 3D video compression.
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[12] K. Foster, J. Gaska, S. Marčelja, and D. Pollen, “Phase relationships
between adjacent simple cells in the feline visual cortex,” J. Physiol.,
vol. 345, no. 1, p. 22P, 1983.

[13] D. A. Pollen and S. F. Ronner, “Phase relationships between adjacent
simple cells in the visual cortex,” Science, vol. 212, no. 4501, pp. 1409–
1411, 1981.

[14] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,” J. Physiol., vol.
160, no. 1, pp. 106–154, 1962.

[15] E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the
perception of motion,” JOSA A, vol. 2, no. 2, pp. 284–299, 1985.

[16] A. Boev, A. Gotchev, K. Egiazarian, A. Aksay, and G. B. Akar, “To-
wards compound stereo-video quality metric: a specific encoder-based
framework,” in Proc. IEEE Southwest Symp. Image Anal. Interpretation,
2006, pp. 218–222.

[17] G. C. DeAngelis, I. Ohzawa, and R. D. Freeman, “Depth is encoded in
the visual cortex by a specialized receptive field structure,” Nature, vol.
352, no. 6331, pp. 156–159, 1991.

[18] Z. Liu, J. P. Gaska, L. D. Jacobson, and D. A. Pollen, “Interneuronal
interaction between members of quadrature phase and anti-phase pairs
in the cat’s visual cortex,” Vision Res., vol. 32, no. 7, pp. 1193–1198,
1992.

[19] W. Waleszczyk, C. Wang, W. Burke, and B. Dreher, “Velocity response
profiles of collicular neurons: parallel and convergent visual information
channels,” Neuroscience, vol. 93, no. 3, pp. 1063–1076, 1999.

[20] E. P. Simoncelli and D. J. Heeger, “A model of neuronal responses in
visual area MT,” Vision Res., vol. 38, no. 5, pp. 743–761, 1998.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. X, NO. X, XXX 2020 14

[21] N. Qian and R. A. Andersen, “A physiological model for motion-stereo
integration and a unified explanation of Pulfrich-like phenomena,” Vision
Res., vol. 37, no. 12, pp. 1683–1698, 1997.

[22] Z.-L. Lu and G. Sperling, “The functional architecture of human visual
motion perception,” Vision Res., vol. 35, no. 19, pp. 2697–2722, 1995.

[23] J. You, L. Xing, A. Perkis, and X. Wang, “Perceptual quality assessment
for stereoscopic images based on 2D image quality metrics and disparity
analysis,” in Proc. Int. Workshop Video Process. Qual. Metrics Consum.
Electronics, 2010.

[24] P. Campisi, P. Le Callet, and E. Marini, “Stereoscopic images quality
assessment,” in Proc. European Signal Processing Conference (EU-
SIPCO), 2007, pp. 2110–2114.

[25] R. G. Kaptein, A. Kuijsters, M. T. M. Lambooij, W. A. IJsselsteijn, and
I. Heynderickx, “Performance evaluation of 3D-TV systems,” in Proc.
SPIE Image Qual. Syst. Perform. V,, vol. 6808, 2008.

[26] L. Goldmann, F. De Simone, and T. Ebrahimi, “A comprehensive
database and subjective evaluation methodology for quality of expe-
rience in stereoscopic video,” in Proc. SPIE 3D Image Proc. Appl., vol.
7526, 2010.

[27] A. Tikanmaki, A. Gotchev, A. Smolic, and K. Miller, “Quality assess-
ment of 3D video in rate allocation experiments,” in Proc. Int. Symp.
Consum. Electronics, 2008.

[28] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.

[29] L. Xing, J. You, T. Ebrahimi, and A. Perkis, “A perceptual quality metric
for stereoscopic crosstalk perception,” in Proc. Int. Conf. Image Process.,
2010, pp. 4033–4036.

[30] J. Yang, Y. Liu, Z. Gao, R. Chu, and Z. Song, “A perceptual stereoscopic
image quality assessment model accounting for binocular combination
behavior,” J. Vis. Commun. Image R., vol. 31, pp. 138–145, 2015.

[31] P. Joveluro, H. Malekmohamadi, W. C. Fernando, and A. Kondoz,
“Perceptual video quality metric for 3D video quality assessment,” in
Proc. 3DTV Conf., 2010, pp. 1–4.

[32] L. Jin, A. Boev, A. Gotchev, and K. Egiazarian, “3D-DCT based
perceptual quality assessment of stereo video,” in Proc. Int. Conf. Image
Process., 2011, pp. 2521–2524.

[33] J. Han, T. Jiang, and S. Ma, “Stereoscopic video quality assessment
model based on spatial-temporal structural information,” in Proc. IEEE
Int. Conf. Vis. Commun. Image Process., 2012, pp. 1–6.

[34] F. Qi, D. Zhao, X. Fan, and T. Jiang, “Stereoscopic video quality
assessment based on visual attention and just-noticeable difference
models,” Signal Image Video Process., vol. 10, no. 4, pp. 737–744, 2016.

[35] K. Ha and M. Kim, “A perceptual quality assessment metric using
temporal complexity and disparity information for stereoscopic video,”
in Proc. Int. Conf. Image Process., 2011, pp. 2525–2528.

[36] F. Lu, H. Wang, X. Ji, and G. Er, “Quality assessment of 3D asymmetric
view coding using spatial frequency dominance model,” in Proc. 3DTV
Conf., 2009, pp. 1–4.

[37] K. Seshadrinathan and A. C. Bovik, “Motion-tuned spatiotemporal
quality assessment of natural videos,” IEEE Trans. Image Process.,
vol. 19, no. 2, pp. 335–350, 2010.

[38] L. K. Choi and A. C. Bovik, “Video quality assessment accounting
for temporal visual masking of local flicker,” Signal Process. Image
Commun., vol. 67, pp. 182–198, 2018.

[39] I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury, “The dual-tree
complex wavelet transform,” IEEE Signal Process. Mag., vol. 22, no. 6,
pp. 123–151, 2005.

[40] J. Schanda, Colorimetry: Understanding the CIE system. John Wiley
& Sons, 2007.
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