4,581 research outputs found

    J Fluorescence

    Get PDF
    The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards

    Continuous volumetric imaging via an optical phase-locked ultrasound lens

    No full text
    In vivo imaging at high spatiotemporal resolution is key to the understanding of complex biological systems. We integrated an optical phase-locked ultrasound lens into a two-photon fluorescence microscope and achieved microsecond-scale axial scanning, thus enabling volumetric imaging at tens of hertz. We applied this system to multicolor volumetric imaging of processes sensitive to motion artifacts, including calcium dynamics in behaving mouse brain and transient morphology changes and trafficking of immune cells

    The Wiltshire Wills Feasibility Study

    Get PDF
    The Wiltshire and Swindon Record Office has nearly ninety thousand wills in its care. These records are neither adequately catalogued nor secured against loss by facsimile microfilm copies. With support from the Heritage Lottery Fund the Record Office has begun to produce suitable finding aids for the material. Beginning with this feasibility study the Record Office is developing a strategy to ensure the that facsimiles to protect the collection against risk of loss or damage and to improve public access are created.<p></p> This feasibility study explores the different methodologies that can be used to assist the preservation and conservation of the collection and improve public access to it. The study aims to produce a strategy that will enable the Record Office to create digital facsimiles of the Wills in its care for access purposes and to also create preservation quality microfilms. The strategy aims to seek the most cost effective and time efficient approach to the problem and identifies ways to optimise the processes by drawing on the experience of other similar projects. This report provides a set of guidelines and recommendations to ensure the best use of the resources available for to provide the most robust preservation strategy and to ensure that future access to the Wills as an information resource can be flexible, both local and remote, and sustainable

    Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    Get PDF
    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored

    Characteristics of flight simulator visual systems

    Get PDF
    The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality

    State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation

    Get PDF
    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a “sensor fusion” approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications

    Reflectance Transformation Imaging (RTI) System for Ancient Documentary Artefacts

    No full text
    This tutorial summarises our uses of reflectance transformation imaging in archaeological contexts. It introduces the UK AHRC funded project reflectance Transformation Imaging for Anciant Documentary Artefacts and demonstrates imaging methodologies

    Image processing mini manual

    Get PDF
    The intent is to provide an introduction to the image processing capabilities available at the Langley Research Center (LaRC) Central Scientific Computing Complex (CSCC). Various image processing software components are described. Information is given concerning the use of these components in the Data Visualization and Animation Laboratory at LaRC

    IceBird Winter 2023 Campaign Report

    Get PDF
    IceBird Winter 2023 is part of a long-term sea ice observation program within the IceBird aircraft campaign series. IceBird was initiated in 2018 with the objective to ensure the long-term availability of a unique data record of direct sea-ice thickness observations to understand the role of the sea ice component for the causes and consequences of Arctic change, but is built on the heritage of airborne sea-ice thickness observations that date back to 2004. Compared to earlier airborne programs, IceBird has been enhanced with an improved sensor setup that also allows measuring snow depth on sea ice, fully collocated with sea-ice thickness and surface roughness at high resolution. The objectives of IceBird Winter 2023 include the continued quantification of trends, the separation of variability and extreme events of sea ice thickness and its snow cover in the Western Seas of the Arctic Ocean. The continuation of airborne sea-ice observation programs fulfils the requirement of consistent and long-term observations of key climate parameters. The data will be used to improve understanding of the response of sea ice and its snow cover to the ongoing warming of the Arctic and to improve snow models. Airborne data of snow and sea-ice thickness are also critically needed for the evaluation of sea-ice remote sensing products as well as for the evolution of algorithms for current and future satellite missions. Surveys from IceBird Winter 2023 will target the validation of sea-ice freeboard and snow depth estimates from CryoSat-2, ICESat-2, Sentinel-3A/B and AltiKa altimeters

    A Calibration study of a still video system and photomatic color separation program

    Get PDF
    None provided
    • …
    corecore