980 research outputs found

    Vicinity-based DTN Characterization

    Get PDF
    International audienceWe relax the traditional definition of contact and intercontact times by bringing the notion of vicinity into the game. We propose to analyze disruption-tolerant networks (DTN) under the assumption that nodes are in k-contact when they remain within a few hops from each other and in k-intercontact otherwise (where k is the maximum number of hops characterizing the vicinity). We make interesting observations when analyzing several real-world and synthetic mobility traces. We detect a number of unexpected behaviors when analyzing k-contact distributions; in particular, we observe that in some datasets the average k-contact time decreases as we increase k. In fact, we observe that many nodes spend a non-negligible amount of time in each other's vicinity without coming into direct contact. We also show that a small k (typically between 3 and 4) is sufficient to capture most communication opportunities

    On the feasibility of monitoring DTN: Impacts of fine tuning on routing protocols and the user experience

    Get PDF
    The “machine to machine” communication paradigm will become a central element for mobile networks. This paradigm can be easily constructed by a contact-based network, notably a disruption/delay tolerant networks (DTN). To characterize a DTN, we can use the Inter-contact time among the nodes. The better understanding of inter-contact time (ICT) has practical applications on the tuning of forwarding strategies, and hence in the quality of the User Experience. Nevertheless, the fine tuning of those parameters is tight to a set of assumptions about the regularity of movement or periodicity of patterns in an usually non complete and cumbersome statistical analysis. That is why in a dynamic environment where we cannot assume any previous information the tuning of parameters is usually overestimated. In this work we study how monitoring can help to adapt those parameters to give a better understanding of both natural evolution of the network and non periodical events

    On the limits of DTN monitoring

    Get PDF
    Compared to wired networks, Delay/Disruption Tolerant Networks (DTN) are challenging to monitor due to their lack of infrastructure and the absence of end-to-end paths. This work studies the feasibility, limits and convergence of monitoring such DTNs. More specifically, we focus on the efficient monitoring of intercontact time distribution (ICT) between DTN participants. Our contribution is two-fold. First we propose two schemes to sample data using monitors deployed within the DTN. In particular, we sample and estimate the ICT distribution. Second, we evaluate this scheme over both simulated DTN networks and real DTN traces. Our initial results show that (i) there is a high correlation between the quality of sampling and the sampled mobility type, and (ii) the number and placement of monitors impact the estimation of the ICT distribution of the whole DTN

    Using Neighborhood Beyond One Hop in Disruption-Tolerant Networks

    Full text link
    Most disruption-tolerant networking (DTN) protocols available in the literature have focused on mere contact and intercontact characteristics to make forwarding decisions. Nevertheless, there is a world behind contacts: just because one node is not in contact with some potential destination, it does not mean that this node is alone. There may be interesting end-to-end transmission opportunities through other nearby nodes. Existing protocols miss such possibilities by maintaining a simple contact-based view of the network. In this paper, we investigate how the vicinity of a node evolves through time and whether such information can be useful when routing data. We observe a clear tradeoff between routing performance and the cost for monitoring the neighborhood. Our analyses suggest that limiting a node's neighborhood view to three or four hops is more than enough to significantly improve forwarding efficiency without incurring prohibitive overhead.Comment: 5 pages, 5 figures, 1 tabl

    Propriétés et impact du voisinage dans les réseaux mobiles opportunistes

    Get PDF
    Les réseaux opportunistes (DTN) permettent d'utiliser de nouveaux vecteurs de transmissions. Avant de pouvoir profiter de toutes les capacités des DTN, nous devons nous pencher sur la compréhension de ce nouveau paradigme. De nombreuses propriétés des réseaux DTN sont maintenant reconnues, cependant les relations entre un noeud du réseau et son voisinage proche ne semblent pas encore avoir été passée au crible. Souvent, la présence de noeuds voisins proches mais pas directement lié par le contact est ignorée. Dans cette thÚse, nous montrons à quel point considérer les noeuds à proximité nous aide à améliorer les performances DTNs.En identifiant le paradoxe binaire dans les DTN, nous montrons que les caractérisations actuelles ne sont pas suffisantes pour bénéficier de toutes les possibilités de transmission dans les DTN. Nous proposons une définition formelle du voisinage pour les DTNs avec le k-vicinity''. Nous étudions les caractérisations temporelles du k-vicinity avec différentes données. Ensuite, nous nous concentrons sur l'étude de l'organisation interne du k-vicinity. Nous avons crée le Vicinity Motion qui permet d'obtenir un modÚle markovien à partir de n'importe quelle trace de contact. Nous en extrayions trois mouvements principaux: la naissance, la mort et les mouvements séquentiels. Grùce aux valeurs du Vicinity Motion, nous avons pu créer un générateur synthétique de mouvements de proximité nommé TiGeR. Enfin, nous posons la question de la prévisibilité des distances entre deux noeuds du k-vicinity. En utilisant le savoir emmagasiné dans le Vicinity Motion, nous mettons au point une heuristique permettant de prédire les futures distances entre deux noeuds.The networking paradigm uses new information vectors consisting of human carried devices is known as disruption-tolerant networks (DTN) or opportunistic networks. We identify the binary assertion issue in DTN. We notice how most DTNs mainly analyze nodes that are in contact. So all nodes that are not in contact are in intercontact. Nevertheless, when two nodes are not in contact, this does not mean that they are topologically far away from one another. We propose a formal definition of vicinities in DTNs and study the new resulting contact/intercontact temporal characterization. Then, we examine the internal organization of vicinities using the Vicinity Motion framework. We highlight movement types such as birth, death, and sequential moves. We analyze a number of their characteristics and extract vicinity usage directions for mobile networks. Based on the vicinity motion outputs and extracted directions, we build the TiGeR that simulates how pairs of nodes interact within their vicinities. Finally, we inquire about the possibilities of vicinity movement prediction in opportunistic networks. We expose a Vicinity Motion-based heuristic for pairwise shortest distance forecasting. We use two Vicinity Motion variants called AVM and SVM to collect vicinity information. We find that both heuristics perform quite well with performances up to 99% for SVM and around 40% for AVM.PARIS-JUSSIEU-Bib.électronique (751059901) / SudocSudocFranceF

    A double-sided, shield-less stave prototype for the ATLAS upgrade strip tracker for the high luminosity LHC

    Get PDF
    A detailed description of the integration structures for the barrel region of the silicon strips tracker of the ATLAS Phase-II upgrade for the upgrade of the Large Hadron Collider, the so-called High Luminosity LHC (HL-LHC), is presented. This paper focuses on one of the latest demonstrator prototypes recently assembled, with numerous unique features. It consists of a shortened, shield-less, and double sided stave, with two candidate power distributions implemented. Thermal and electrical performances of the prototype are presented, as well as a description of the assembly procedures and tools

    Construction of the dirichlet to neumann boundary operator for triangles and applications in the analysis of polygonal conductors

    Get PDF
    This paper introduces a fast and accurate method to investigate the broadband inductive and resistive behavior of conductors with a nonrectangular cross section. The presented iterative combined waveguide mode (ICWM) algorithm leads to an expansion of the longitudinal electric field inside a triangle using a combination of parallel-plate waveguide modes in three directions, each perpendicular to one of the triangle sides. This expansion is used to calculate the triangle's Dirichlet to Neumann boundary operator. Subsequently, any polygonal conductor can be modeled as a combination of triangles. The method is especially useful to investigate current crowding effects near sharp conductor corners. In a number of numerical examples, the accuracy of the ICWM algorithm is investigated, and the method is applied to some polygonal conductor configurations

    DTN routing for quasi-deterministic networks with application to LEO constellations

    Get PDF
    We propose a novel DTN routing algorithm, called DQN, specifically designed for quasi-deterministic networks with an application to satellite constellations. We demonstrate that our proposal efficiently forwards the information over a satellite network derived from the Orbcomm topology while keeping a low replication overhead. We compare our algorithm against other well-known DTN routing schemes and show that we obtain the lowest replication ratio with a delivery ratio of the same order of magnitude than a reference theoretical optimal routing. We also analyze the impact of terrestrial gateways density and analyze DQN performances in heterogeneous cases

    Geometrical theory of diffraction and spectral statistics

    Full text link
    We investigate the influence of diffraction on the statistics of energy levels in quantum systems with a chaotic classical limit. By applying the geometrical theory of diffraction we show that diffraction on singularities of the potential can lead to modifications in semiclassical approximations for spectral statistics that persist in the semiclassical limit ℏ→0\hbar \to 0. This result is obtained by deriving a classical sum rule for trajectories that connect two points in coordinate space.Comment: 14 pages, no figure, to appear in J. Phys.
    • 

    corecore