222 research outputs found

    Audio Coding Based on Integer Transforms

    Get PDF
    Die Audiocodierung hat sich in den letzten Jahren zu einem sehr populären Forschungs- und Anwendungsgebiet entwickelt. Insbesondere gehörangepasste Verfahren zur Audiocodierung, wie etwa MPEG-1 Layer-3 (MP3) oder MPEG-2 Advanced Audio Coding (AAC), werden häufig zur effizienten Speicherung und Übertragung von Audiosignalen verwendet. Für professionelle Anwendungen, wie etwa die Archivierung und Übertragung im Studiobereich, ist hingegen eher eine verlustlose Audiocodierung angebracht. Die bisherigen Ansätze für gehörangepasste und verlustlose Audiocodierung sind technisch völlig verschieden. Moderne gehörangepasste Audiocoder basieren meist auf Filterbänken, wie etwa der überlappenden orthogonalen Transformation "Modifizierte Diskrete Cosinus-Transformation" (MDCT). Verlustlose Audiocoder hingegen verwenden meist prädiktive Codierung zur Redundanzreduktion. Nur wenige Ansätze zur transformationsbasierten verlustlosen Audiocodierung wurden bisher versucht. Diese Arbeit präsentiert einen neuen Ansatz hierzu, der das Lifting-Schema auf die in der gehörangepassten Audiocodierung verwendeten überlappenden Transformationen anwendet. Dies ermöglicht eine invertierbare Integer-Approximation der ursprünglichen Transformation, z.B. die IntMDCT als Integer-Approximation der MDCT. Die selbe Technik kann auch für Filterbänke mit niedriger Systemverzögerung angewandt werden. Weiterhin ermöglichen ein neuer, mehrdimensionaler Lifting-Ansatz und eine Technik zur Spektralformung von Quantisierungsfehlern eine Verbesserung der Approximation der ursprünglichen Transformation. Basierend auf diesen neuen Integer-Transformationen werden in dieser Arbeit neue Verfahren zur Audiocodierung vorgestellt. Die Verfahren umfassen verlustlose Audiocodierung, eine skalierbare verlustlose Erweiterung eines gehörangepassten Audiocoders und einen integrierten Ansatz zur fein skalierbaren gehörangepassten und verlustlosen Audiocodierung. Schließlich wird mit Hilfe der Integer-Transformationen ein neuer Ansatz zur unhörbaren Einbettung von Daten mit hohen Datenraten in unkomprimierte Audiosignale vorgestellt.In recent years audio coding has become a very popular field for research and applications. Especially perceptual audio coding schemes, such as MPEG-1 Layer-3 (MP3) and MPEG-2 Advanced Audio Coding (AAC), are widely used for efficient storage and transmission of music signals. Nevertheless, for professional applications, such as archiving and transmission in studio environments, lossless audio coding schemes are considered more appropriate. Traditionally, the technical approaches used in perceptual and lossless audio coding have been separate worlds. In perceptual audio coding, the use of filter banks, such as the lapped orthogonal transform "Modified Discrete Cosine Transform" (MDCT), has been the approach of choice being used by many state of the art coding schemes. On the other hand, lossless audio coding schemes mostly employ predictive coding of waveforms to remove redundancy. Only few attempts have been made so far to use transform coding for the purpose of lossless audio coding. This work presents a new approach of applying the lifting scheme to lapped transforms used in perceptual audio coding. This allows for an invertible integer-to-integer approximation of the original transform, e.g. the IntMDCT as an integer approximation of the MDCT. The same technique can also be applied to low-delay filter banks. A generalized, multi-dimensional lifting approach and a noise-shaping technique are introduced, allowing to further optimize the accuracy of the approximation to the original transform. Based on these new integer transforms, this work presents new audio coding schemes and applications. The audio coding applications cover lossless audio coding, scalable lossless enhancement of a perceptual audio coder and fine-grain scalable perceptual and lossless audio coding. Finally an approach to data hiding with high data rates in uncompressed audio signals based on integer transforms is described

    Audio Coding Based on Integer Transforms

    Get PDF
    Die Audiocodierung hat sich in den letzten Jahren zu einem sehr populären Forschungs- und Anwendungsgebiet entwickelt. Insbesondere gehörangepasste Verfahren zur Audiocodierung, wie etwa MPEG-1 Layer-3 (MP3) oder MPEG-2 Advanced Audio Coding (AAC), werden häufig zur effizienten Speicherung und Übertragung von Audiosignalen verwendet. Für professionelle Anwendungen, wie etwa die Archivierung und Übertragung im Studiobereich, ist hingegen eher eine verlustlose Audiocodierung angebracht. Die bisherigen Ansätze für gehörangepasste und verlustlose Audiocodierung sind technisch völlig verschieden. Moderne gehörangepasste Audiocoder basieren meist auf Filterbänken, wie etwa der überlappenden orthogonalen Transformation "Modifizierte Diskrete Cosinus-Transformation" (MDCT). Verlustlose Audiocoder hingegen verwenden meist prädiktive Codierung zur Redundanzreduktion. Nur wenige Ansätze zur transformationsbasierten verlustlosen Audiocodierung wurden bisher versucht. Diese Arbeit präsentiert einen neuen Ansatz hierzu, der das Lifting-Schema auf die in der gehörangepassten Audiocodierung verwendeten überlappenden Transformationen anwendet. Dies ermöglicht eine invertierbare Integer-Approximation der ursprünglichen Transformation, z.B. die IntMDCT als Integer-Approximation der MDCT. Die selbe Technik kann auch für Filterbänke mit niedriger Systemverzögerung angewandt werden. Weiterhin ermöglichen ein neuer, mehrdimensionaler Lifting-Ansatz und eine Technik zur Spektralformung von Quantisierungsfehlern eine Verbesserung der Approximation der ursprünglichen Transformation. Basierend auf diesen neuen Integer-Transformationen werden in dieser Arbeit neue Verfahren zur Audiocodierung vorgestellt. Die Verfahren umfassen verlustlose Audiocodierung, eine skalierbare verlustlose Erweiterung eines gehörangepassten Audiocoders und einen integrierten Ansatz zur fein skalierbaren gehörangepassten und verlustlosen Audiocodierung. Schließlich wird mit Hilfe der Integer-Transformationen ein neuer Ansatz zur unhörbaren Einbettung von Daten mit hohen Datenraten in unkomprimierte Audiosignale vorgestellt.In recent years audio coding has become a very popular field for research and applications. Especially perceptual audio coding schemes, such as MPEG-1 Layer-3 (MP3) and MPEG-2 Advanced Audio Coding (AAC), are widely used for efficient storage and transmission of music signals. Nevertheless, for professional applications, such as archiving and transmission in studio environments, lossless audio coding schemes are considered more appropriate. Traditionally, the technical approaches used in perceptual and lossless audio coding have been separate worlds. In perceptual audio coding, the use of filter banks, such as the lapped orthogonal transform "Modified Discrete Cosine Transform" (MDCT), has been the approach of choice being used by many state of the art coding schemes. On the other hand, lossless audio coding schemes mostly employ predictive coding of waveforms to remove redundancy. Only few attempts have been made so far to use transform coding for the purpose of lossless audio coding. This work presents a new approach of applying the lifting scheme to lapped transforms used in perceptual audio coding. This allows for an invertible integer-to-integer approximation of the original transform, e.g. the IntMDCT as an integer approximation of the MDCT. The same technique can also be applied to low-delay filter banks. A generalized, multi-dimensional lifting approach and a noise-shaping technique are introduced, allowing to further optimize the accuracy of the approximation to the original transform. Based on these new integer transforms, this work presents new audio coding schemes and applications. The audio coding applications cover lossless audio coding, scalable lossless enhancement of a perceptual audio coder and fine-grain scalable perceptual and lossless audio coding. Finally an approach to data hiding with high data rates in uncompressed audio signals based on integer transforms is described

    High Quality Audio Coding with MDCTNet

    Full text link
    We propose a neural audio generative model, MDCTNet, operating in the perceptually weighted domain of an adaptive modified discrete cosine transform (MDCT). The architecture of the model captures correlations in both time and frequency directions with recurrent layers (RNNs). An audio coding system is obtained by training MDCTNet on a diverse set of fullband monophonic audio signals at 48 kHz sampling, conditioned by a perceptual audio encoder. In a subjective listening test with ten excerpts chosen to be balanced across content types, yet stressful for both codecs, the mean performance of the proposed system for 24 kb/s variable bitrate (VBR) is similar to that of Opus at twice the bitrate.Comment: Five pages, five figure

    Recognizing Voice Over IP: A Robust Front-End for Speech Recognition on the World Wide Web

    Get PDF
    The Internet Protocol (IP) environment poses two relevant sources of distortion to the speech recognition problem: lossy speech coding and packet loss. In this paper, we propose a new front-end for speech recognition over IP networks. Specifically, we suggest extracting the recognition feature vectors directly from the encoded speech (i.e., the bit stream) instead of decoding it and subsequently extracting the feature vectors. This approach offers two significant benefits. First, the recognition system is only affected by the quantization distortion of the spectral envelope. Thus, we are avoiding the influence of other sources of distortion due to the encoding-decoding process. Second, when packet loss occurs, our front-end becomes more effective since it is not constrained to the error handling mechanism of the codec. We have considered the ITU G.723.1 standard codec, which is one of the most preponderant coding algorithms in voice over IP (VoIP) and compared the proposed front-end with the conventional approach in two automatic speech recognition (ASR) tasks, namely, speaker-independent isolated digit recognition and speaker-independent continuous speech recognition. In general, our approach outperforms the conventional procedure, for a variety of simulated packet loss rates. Furthermore, the improvement is higher as network conditions worsen.Publicad

    Apprentissage automatique pour le codage cognitif de la parole

    Get PDF
    Depuis les années 80, les codecs vocaux reposent sur des stratégies de codage à court terme qui fonctionnent au niveau de la sous-trame ou de la trame (généralement 5 à 20 ms). Les chercheurs ont essentiellement ajusté et combiné un nombre limité de technologies disponibles (transformation, prédiction linéaire, quantification) et de stratégies (suivi de forme d'onde, mise en forme du bruit) pour construire des architectures de codage de plus en plus complexes. Dans cette thèse, plutôt que de s'appuyer sur des stratégies de codage à court terme, nous développons un cadre alternatif pour la compression de la parole en codant les attributs de la parole qui sont des caractéristiques perceptuellement importantes des signaux vocaux. Afin d'atteindre cet objectif, nous résolvons trois problèmes de complexité croissante, à savoir la classification, la prédiction et l'apprentissage des représentations. La classification est un élément courant dans les conceptions de codecs modernes. Dans un premier temps, nous concevons un classifieur pour identifier les émotions, qui sont parmi les attributs à long terme les plus complexes de la parole. Dans une deuxième étape, nous concevons un prédicteur d'échantillon de parole, qui est un autre élément commun dans les conceptions de codecs modernes, pour mettre en évidence les avantages du traitement du signal de parole à long terme et non linéaire. Ensuite, nous explorons les variables latentes, un espace de représentations de la parole, pour coder les attributs de la parole à court et à long terme. Enfin, nous proposons un réseau décodeur pour synthétiser les signaux de parole à partir de ces représentations, ce qui constitue notre dernière étape vers la construction d'une méthode complète de compression de la parole basée sur l'apprentissage automatique de bout en bout. Bien que chaque étape de développement proposée dans cette thèse puisse faire partie d'un codec à elle seule, chaque étape fournit également des informations et une base pour la prochaine étape de développement jusqu'à ce qu'un codec entièrement basé sur l'apprentissage automatique soit atteint. Les deux premières étapes, la classification et la prédiction, fournissent de nouveaux outils qui pourraient remplacer et améliorer des éléments des codecs existants. Dans la première étape, nous utilisons une combinaison de modèle source-filtre et de machine à état liquide (LSM), pour démontrer que les caractéristiques liées aux émotions peuvent être facilement extraites et classées à l'aide d'un simple classificateur. Dans la deuxième étape, un seul réseau de bout en bout utilisant une longue mémoire à court terme (LSTM) est utilisé pour produire des trames vocales avec une qualité subjective élevée pour les applications de masquage de perte de paquets (PLC). Dans les dernières étapes, nous nous appuyons sur les résultats des étapes précédentes pour concevoir un codec entièrement basé sur l'apprentissage automatique. un réseau d'encodage, formulé à l'aide d'un réseau neuronal profond (DNN) et entraîné sur plusieurs bases de données publiques, extrait et encode les représentations de la parole en utilisant la prédiction dans un espace latent. Une approche d'apprentissage non supervisé basée sur plusieurs principes de cognition est proposée pour extraire des représentations à partir de trames de parole courtes et longues en utilisant l'information mutuelle et la perte contrastive. La capacité de ces représentations apprises à capturer divers attributs de la parole à court et à long terme est démontrée. Enfin, une structure de décodage est proposée pour synthétiser des signaux de parole à partir de ces représentations. L'entraînement contradictoire est utilisé comme une approximation des mesures subjectives de la qualité de la parole afin de synthétiser des échantillons de parole à consonance naturelle. La haute qualité perceptuelle de la parole synthétisée ainsi obtenue prouve que les représentations extraites sont efficaces pour préserver toutes sortes d'attributs de la parole et donc qu'une méthode de compression complète est démontrée avec l'approche proposée.Abstract: Since the 80s, speech codecs have relied on short-term coding strategies that operate at the subframe or frame level (typically 5 to 20ms). Researchers essentially adjusted and combined a limited number of available technologies (transform, linear prediction, quantization) and strategies (waveform matching, noise shaping) to build increasingly complex coding architectures. In this thesis, rather than relying on short-term coding strategies, we develop an alternative framework for speech compression by encoding speech attributes that are perceptually important characteristics of speech signals. In order to achieve this objective, we solve three problems of increasing complexity, namely classification, prediction and representation learning. Classification is a common element in modern codec designs. In a first step, we design a classifier to identify emotions, which are among the most complex long-term speech attributes. In a second step, we design a speech sample predictor, which is another common element in modern codec designs, to highlight the benefits of long-term and non-linear speech signal processing. Then, we explore latent variables, a space of speech representations, to encode both short-term and long-term speech attributes. Lastly, we propose a decoder network to synthesize speech signals from these representations, which constitutes our final step towards building a complete, end-to-end machine-learning based speech compression method. The first two steps, classification and prediction, provide new tools that could replace and improve elements of existing codecs. In the first step, we use a combination of source-filter model and liquid state machine (LSM), to demonstrate that features related to emotions can be easily extracted and classified using a simple classifier. In the second step, a single end-to-end network using long short-term memory (LSTM) is shown to produce speech frames with high subjective quality for packet loss concealment (PLC) applications. In the last steps, we build upon the results of previous steps to design a fully machine learning-based codec. An encoder network, formulated using a deep neural network (DNN) and trained on multiple public databases, extracts and encodes speech representations using prediction in a latent space. An unsupervised learning approach based on several principles of cognition is proposed to extract representations from both short and long frames of data using mutual information and contrastive loss. The ability of these learned representations to capture various short- and long-term speech attributes is demonstrated. Finally, a decoder structure is proposed to synthesize speech signals from these representations. Adversarial training is used as an approximation to subjective speech quality measures in order to synthesize natural-sounding speech samples. The high perceptual quality of synthesized speech thus achieved proves that the extracted representations are efficient at preserving all sorts of speech attributes and therefore that a complete compression method is demonstrated with the proposed approach

    Frequency-warped autoregressive modeling and filtering

    Get PDF
    This thesis consists of an introduction and nine articles. The articles are related to the application of frequency-warping techniques to audio signal processing, and in particular, predictive coding of wideband audio signals. The introduction reviews the literature and summarizes the results of the articles. Frequency-warping, or simply warping techniques are based on a modification of a conventional signal processing system so that the inherent frequency representation in the system is changed. It is demonstrated that this may be done for basically all traditional signal processing algorithms. In audio applications it is beneficial to modify the system so that the new frequency representation is close to that of human hearing. One of the articles is a tutorial paper on the use of warping techniques in audio applications. Majority of the articles studies warped linear prediction, WLP, and its use in wideband audio coding. It is proposed that warped linear prediction would be particularly attractive method for low-delay wideband audio coding. Warping techniques are also applied to various modifications of classical linear predictive coding techniques. This was made possible partly by the introduction of a class of new implementation techniques for recursive filters in one of the articles. The proposed implementation algorithm for recursive filters having delay-free loops is a generic technique. This inspired to write an article which introduces a generalized warped linear predictive coding scheme. One example of the generalized approach is a linear predictive algorithm using almost logarithmic frequency representation.reviewe

    Frequency Domain Methods for Coding the Linear Predictive Residual of Speech Signals

    Get PDF
    The most frequently used speech coding paradigm is ACELP, famous because it encodes speech with high quality, while consuming a small bandwidth. ACELP performs linear prediction filtering in order to eliminate the effect of the spectral envelope from the signal. The noise-like excitation is then encoded using algebraic codebooks. The search of this codebook, however, can not be performed optimally with conventional encoders due to the correlation between their samples. Because of this, more complex algorithms are required in order to maintain the quality. Four different transformation algorithms have been implemented (DCT, DFT, Eigenvalue decomposition and Vandermonde decomposition) in order to decorrelate the samples of the innovative excitation in ACELP. These transformations have been integrated in the ACELP of the EVS codec. The transformed innovative excitation is coded using the envelope based arithmetic coder. Objective and subjective tests have been carried out to evaluate the quality of the encoding, the degree of decorrelation achieved by the transformations and the computational complexity of the algorithms

    LACE: A light-weight, causal model for enhancing coded speech through adaptive convolutions

    Full text link
    Classical speech coding uses low-complexity postfilters with zero lookahead to enhance the quality of coded speech, but their effectiveness is limited by their simplicity. Deep Neural Networks (DNNs) can be much more effective, but require high complexity and model size, or added delay. We propose a DNN model that generates classical filter kernels on a per-frame basis with a model of just 300~K parameters and 100~MFLOPS complexity, which is a practical complexity for desktop or mobile device CPUs. The lack of added delay allows it to be integrated into the Opus codec, and we demonstrate that it enables effective wideband encoding for bitrates down to 6 kb/s.Comment: 5 pages, accepted at WASPAA 202

    SpatialCodec: Neural Spatial Speech Coding

    Full text link
    In this work, we address the challenge of encoding speech captured by a microphone array using deep learning techniques with the aim of preserving and accurately reconstructing crucial spatial cues embedded in multi-channel recordings. We propose a neural spatial audio coding framework that achieves a high compression ratio, leveraging single-channel neural sub-band codec and SpatialCodec. Our approach encompasses two phases: (i) a neural sub-band codec is designed to encode the reference channel with low bit rates, and (ii), a SpatialCodec captures relative spatial information for accurate multi-channel reconstruction at the decoder end. In addition, we also propose novel evaluation metrics to assess the spatial cue preservation: (i) spatial similarity, which calculates cosine similarity on a spatially intuitive beamspace, and (ii), beamformed audio quality. Our system shows superior spatial performance compared with high bitrate baselines and black-box neural architecture. Demos are available at https://xzwy.github.io/SpatialCodecDemo. Codes and models are available at https://github.com/XZWY/SpatialCodec.Comment: Paper in Submissio
    • …
    corecore