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RÉSUMÉ

Depuis les années 80, les codecs vocaux reposent sur des stratégies de codage à court terme qui fonctionnent
au niveau de la sous-trame ou de la trame (généralement 5 à 20 ms). Les chercheurs ont essentiellement
ajusté et combiné un nombre limité de technologies disponibles (transformation, prédiction linéaire, quan-
tification) et de stratégies (suivi de forme d’onde, mise en forme du bruit) pour construire des architectures
de codage de plus en plus complexes.

Dans cette thèse, plutôt que de s’appuyer sur des stratégies de codage à court terme, nous développons
un cadre alternatif pour la compression de la parole en codant les attributs de la parole qui sont des
caractéristiques perceptuellement importantes des signaux vocaux. Afin d’atteindre cet objectif, nous
résolvons trois problèmes de complexité croissante, à savoir la classification, la prédiction et l’apprentissage
des représentations. La classification est un élément courant dans les conceptions de codecs modernes. Dans
un premier temps, nous concevons un classifieur pour identifier les émotions, qui sont parmi les attributs
à long terme les plus complexes de la parole. Dans une deuxième étape, nous concevons un prédicteur
d’échantillon de parole, qui est un autre élément commun dans les conceptions de codecs modernes, pour
mettre en évidence les avantages du traitement du signal de parole à long terme et non linéaire. Ensuite,
nous explorons les variables latentes, un espace de représentations de la parole, pour coder les attributs de
la parole à court et à long terme. Enfin, nous proposons un réseau décodeur pour synthétiser les signaux
de parole à partir de ces représentations, ce qui constitue notre dernière étape vers la construction d’une
méthode complète de compression de la parole basée sur l’apprentissage automatique de bout en bout.

Bien que chaque étape de développement proposée dans cette thèse puisse faire partie d’un codec à elle
seule, chaque étape fournit également des informations et une base pour la prochaine étape de dévelop-
pement jusqu’à ce qu’un codec entièrement basé sur l’apprentissage automatique soit atteint.

Les deux premières étapes, la classification et la prédiction, fournissent de nouveaux outils qui pourraient
remplacer et améliorer des éléments des codecs existants. Dans la première étape, nous utilisons une combi-
naison de modèle source-filtre et de machine à état liquide (LSM), pour démontrer que les caractéristiques
liées aux émotions peuvent être facilement extraites et classées à l’aide d’un simple classificateur. Dans
la deuxième étape, un seul réseau de bout en bout utilisant une longue mémoire à court terme (LSTM)
est utilisé pour produire des trames vocales avec une qualité subjective élevée pour les applications de
masquage de perte de paquets (PLC).

Dans les dernières étapes, nous nous appuyons sur les résultats des étapes précédentes pour concevoir
un codec entièrement basé sur l’apprentissage automatique. un réseau d’encodage, formulé à l’aide d’un
réseau neuronal profond (DNN) et entraîné sur plusieurs bases de données publiques, extrait et encode les
représentations de la parole en utilisant la prédiction dans un espace latent. Une approche d’apprentissage
non supervisé basée sur plusieurs principes de cognition est proposée pour extraire des représentations à
partir de trames de parole courtes et longues en utilisant l’information mutuelle et la perte contrastive.
La capacité de ces représentations apprises à capturer divers attributs de la parole à court et à long terme
est démontrée.

Enfin, une structure de décodage est proposée pour synthétiser des signaux de parole à partir de ces repré-
sentations. L’entraînement contradictoire est utilisé comme une approximation des mesures subjectives
de la qualité de la parole afin de synthétiser des échantillons de parole à consonance naturelle. La haute
qualité perceptuelle de la parole synthétisée ainsi obtenue prouve que les représentations extraites sont
efficaces pour préserver toutes sortes d’attributs de la parole et donc qu’une méthode de compression
complète est démontrée avec l’approche proposée.

Mots-clés : codage de la parole, codage cognitif, apprentissage automatique, apprentis-
sage des représentations, apprentissage non supervisé, réseaux de neurones.





ABSTRACT

Since the 80s, speech codecs have relied on short-term coding strategies that operate at the
subframe or frame level (typically 5 to 20ms). Researchers essentially adjusted and combined a
limited number of available technologies (transform, linear prediction, quantization) and strate-
gies (waveform matching, noise shaping) to build increasingly complex coding architectures.

In this thesis, rather than relying on short-term coding strategies, we develop an alternative
framework for speech compression by encoding speech attributes that are perceptually important
characteristics of speech signals. In order to achieve this objective, we solve three problems of
increasing complexity, namely classification, prediction and representation learning. Classification
is a common element in modern codec designs. In a first step, we design a classifier to identify
emotions, which are among the most complex long-term speech attributes. In a second step, we
design a speech sample predictor, which is another common element in modern codec designs,
to highlight the benefits of long-term and non-linear speech signal processing. Then, we explore
latent variables, a space of speech representations, to encode both short-term and long-term
speech attributes. Lastly, we propose a decoder network to synthesize speech signals from these
representations, which constitutes our final step towards building a complete, end-to-end machine-
learning based speech compression method.

The first two steps, classification and prediction, provide new tools that could replace and improve
elements of existing codecs. In the first step, we use a combination of source-filter model and liquid
state machine (LSM), to demonstrate that features related to emotions can be easily extracted
and classified using a simple classifier. In the second step, a single end-to-end network using long
short-term memory (LSTM) is shown to produce speech frames with high subjective quality for
packet loss concealment (PLC) applications.

In the last steps, we build upon the results of previous steps to design a fully machine learning-
based codec. An encoder network, formulated using a deep neural network (DNN) and trained on
multiple public databases, extracts and encodes speech representations using prediction in a latent
space. An unsupervised learning approach based on several principles of cognition is proposed
to extract representations from both short and long frames of data using mutual information
and contrastive loss. The ability of these learned representations to capture various short- and
long-term speech attributes is demonstrated.

Finally, a decoder structure is proposed to synthesize speech signals from these representations.
Adversarial training is used as an approximation to subjective speech quality measures in order to
synthesize natural-sounding speech samples. The high perceptual quality of synthesized speech
thus achieved proves that the extracted representations are efficient at preserving all sorts of
speech attributes and therefore that a complete compression method is demonstrated with the
proposed approach.

Keywords: speech coding, cognitive coding, machine learning, representation learning,
unsupervised learning, neural networks.
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CHAPTER 1

Introduction

1.1 Problem statement
For decades, speech has been coded using classical signal processing methods such as linear
adaptive filters, linear predictors, analysis-by-synthesis search of an optimal excitation
signal, and waveform matching in a perceptually weighted domain. In the range of medium
bit rates such as the one used in mobile telephony (around 13 kbits/s), the primary
objective and main strategy was to synthesize a speech signal that is as close as possible to
the original one using objective measures such as the signal-to-noise ratio (SNR) measured
on short segments of speech signal. Most of the time, a weighted SNR is used so that coding
noise is properly shaped according to the properties of human perception, which is the
second main strategy used in this range of bit rates.

It is a known fact that objective measures do not always correlate well with perceived
speech quality. The short-term waveform-matching strategy does not correspond to what
is known about the biological mechanism of hearing, and speech is processed very dif-
ferently in the human auditory system compared to conventional signal-processing based
coding methods. Biological speech processing includes a preprocessing of speech in the
auditory periphery, hierarchical processing in several auditory nuclei, and a primary pro-
cessing in the auditory cortex. The combination of data-driven acoustic features (bottom-
up knowledge) with context-driven perceptual conclusions (top-down knowledge) in the
auditory system results in a long-term processing of the speech signal. Although classical
speech coders use only a fraction of what is known about human auditory perception, they
are already extremely efficient. Perceptual transform coders such as MP3 [1], AAC [2] and
HE-AAC [3] use even more, but not all, of this knowledge. However, they are general-
audio codecs that normally require a higher bit rate than speech-specific coders to achieve
the same level of subjective quality on speech signals.

Long-term processing of the speech signal, similar to that done in the human auditory
system, is a complex task. On a large temporal scale, speech signals are not stationary.
Traditional manually-engineered approaches do not scale well for processing of large chunks
of signal, either because their complexity grows very rapidly with size of the chunk, or
because the objective can not be clearly defined for a non-stationary signal. Alternatively,

1
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machine learning tools such as artificial neural networks have recently proven to be very
successful in dealing with all sorts of complex signals and have been used in many speech-
related applications. Many speech databases have also been created for training machine
learning tools. In the field of speech coding, large sections of machine learning knowledge
and tools have simply not been used in the past, either because of a lack of processing
power, or simply because this knowledge is incompatible with established strategies of
speech coding. There is still much to be learned and there is a potential to improve speech
and audio coders.

1.2 Opportunity for contributions
Conventional strategies such as waveform matching operate on short (normally less than
30ms) frames of audio signal, parametrize each frame of signal independently of the others,
and reconstruct it in such a way that it minimizes some objective measures such as the
SNR. Although conventional speech coding approaches are very good in capturing details
of the speech signal along with reducing the bitrate, recent evidence from the Speech
and Audio Research Group at the Université de Sherbrooke and other research groups
showed that some higher-level speech information, like speaker identity or emotion, can
be degraded [4].

Due to the long-term nature of such lost information, we postulate that some long-term
attributes of the audio signal are not completely captured and preserved by current tech-
niques. Processing the speech signal in the long-term to extract and code its long-term
attributes is a new task which includes the selection or design of the necessary tools and
strategies. Tools and techniques developed in other fields of speech processing such as
speech recognition have been shown to be efficient at capturing some of the desired long-
term details of speech. These methods have the potential to be introduced into current
coders in order to preserve the aforementioned attributes. Artificial neural networks are
very successful in many speech-related applications and seem to be good candidates to
recognize, extract and code the attributes not adequately captured by current codecs.
Finally, many biological and perceptual theories have been proposed that were either not
computationally implementable until recently or just neglected by speech coding research
groups because speech coding methods, biological models and perceptual theories were
developed separately. These relevant and complementary disciplines are a source of in-
spiration for the improvements of speech codecs. In conclusion, in recent years, several
new tools and methods emerged that lead to successful results in many signal processing
areas. The research questions addressed by this project is therefore: How can machine
learning tools be used to extract a compact representation of all short and
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long-term perceptually relevant attributes of the speech signal and to recon-
struct a natural-sounding signal from this representation? To test these new
emerging methods in the field of speech coding, we identified the tools with the most po-
tential for the purpose of speech coding. We evaluated their ability to capture the speech
information that current codecs miss. Hence, the contributions of this study are: first,
extracting both short-term and long-term speech information and preserving them dur-
ing the encoding and the decoding process; second, introducing new tools from machine
learning and statistics in the structure of speech coders.

 
 

 
 

Figure 1.1 Illustration of the tasks performed in this thesis where four tasks are
performed. Each task further extends the objective towards the development
of fully machine learning-based. Simultaneously, we explore different machine
learning tools and design different key elements in a speech codec.

1.3 Proposed approach
After considering the nature of the problem and in order to answer the research question,
we performed several tasks, each touching different key elements in a speech codec. This
includes classification, prediction and speech representations. Although the results of
each of these tasks can be a part of a codec on its own, each task provides insights and
basis for the next and adds more elements from the field of machine learning towards
the development of a fully machine learning-based codec. Fig. 1.1 illustrates the tasks
performed in this thesis.

For the first task, we designed a speech classifier. The classification task can be performed
on any of the types of information that we plan to preserve in the speech coding pro-
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cess. We could choose to design a voice activity detector, a voiced/unvoiced classifier, a
speech/music classifier, or any other type of classifier commonly found in speech coders.
Instead, we decided to design an automatic emotion classifier. We focused on extracting
a set of unsupervised features x′ from an input signal x followed by a simple classifier to
test if long-term attributes C are preserved and easily identifiable. To extract features x′,
a two stage design is used, including a biologically-inspired preprocessing and a processing
stage using spiking neural networks (SNNs). This task is interesting because it is complex.
Also, it deals with one of the long-term speech attributes which are the focus of the study.

For the second task, we designed a speech sample predictor. Prediction deals with a more
complicated objective compared to classification and it involves producing a waveform
rather than class labels in the previous task. Prediction of speech signal samples is central
in many speech coders [1]. Improvement in sample prediction will affect performance of
these coders. This task does not focus on decomposition and reconstruction of speech
signals information, instead it focuses on decorrelation of the past information from each
speech signal sample. Recurrent neural networks (RNNs) are used for capturing all sorts of
correlations between speech samples. We propose the prediction task as a way to improve
prediction-based speech coders. In addition, development of a machine learning-based
predictor is a core element in the final step of the proposed approach i.e. development of
fully machine learning-based codec.

For the third task, we designed and trained a neural network to recognize the building
blocks of speech signals as representations in its layers. Perceptual theories of the human
auditory system introduce a way to see the speech signal as building blocks (such as
vocal tract movements, phones, phonemes,...) that are joined together to form speech
signals. These theories, specially the ones that consider long-term attributes such as speech
perception theories, can improve the performance of speech processing systems. Encoding
fundamental building blocks of speech offers a great potential for further compression
and enhanced speech quality that can not be achieved with conventional methods. In
this task, we designed an encoder to extract two sets of representations Cs and Cl which
encode short-term and long-term speech attributes respectively using convolutional neural
networks (CNNs) and RNNs.

Finally, by designing a decoder, we verified the fact that the extracted representations
are complete. While representations can be tested using labeled data for their capacity
in preserving speech attributes, only resynthesizing speech signals with high perceptual
quality proves that all sorts of speech attributes are preserved in representations. We used
adversarial training, as an arbitrarily complex method to approximate speech subjective
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quality measures, to synthesize speech signals from representations. A two stage design is
used to resynthesize natural-sounding speech signals x from the quantized representations
Cŝ and Cl

ˆ extracted by the encoder using CNNs and residual neural networks (ResNet).
Designing a decoder is the last step in the development of a fully machine learning-based
codec and towards the completion of the objective of this project.

To summarize, the first two tasks explore useful design concepts for a speech codec with
intermediate results which can be used as a building block of a codec. The last two tasks
are the encoder and the decoder structure for a fully machine learning-based codec. An
overview of the experiments is presented in Chapter 4 including further details about
each step, a summary of experimental results, further insights and links between the
development steps.

1.4 Overview of the thesis
This document is organized as follows. In Chapter 2 and 3, we briefly review the literature
relevant to this project. In Chapter 2, speech and codec attributes are presented to clarify
what are the speech signal characteristics and speech codec criteria to successfully encode
and decode speech signals. An example of a modern codec, specifically the 3GPP enhanced
voice services (EVS) codec [5, 6], is given to show how current technology deals with the
dynamic nature of audio signals in general and how this technology can be compared
with the proposed method. In Chapter 3, state-of-the-art machine learning techniques
relevant to this project are explained to facilitate understanding of experimental results.
An overview of the experiments is presented in Chapter 4 to explain insights and links
between experiments. Chapters 5-8 are published papers presenting the experimental
results of this project in the fields of speech classification, prediction, representations
and machine learning-based compression, respectively. Finally, the thesis concludes with
a comparison of the proposed approaches with existing approaches, a summary of the
contributions, and the prospects for future research.
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CHAPTER 2

Speech coding

2.1 Introduction
This chapter is the first of two chapters about the state of the art relevant to the research
question. The general topics about speech and audio codecs are presented in this chapter.
An expert researcher in the field of speech and audio coding can study other chapters
independently and skip this chapter.

In Section 2.2 of this chapter, speech attributes are discussed and relevant theories for
their understanding are introduced. Some examples from current codecs that utilize those
theories are given. In Section 2.3, codec attributes and their trade-offs are considered.
Next, in Section 2.4, building blocks of enhanced voice services (EVS) codec, which is
representative of most modern speech codecs, are discussed to give a review of modern
signal processing techniques used in the field of speech and audio coding. EVS exemplifies
a common trend in modern standardized codec design, which is to increase the number of
sub-blocks to deal with the diversity of contents in the speech signals and audio signals in
general. This trend increasingly complicates the design of codecs, an issue that we address
with the uniform codec design presented in Chapters 7 and 8.

2.2 Speech attributes
Speech attributes refer to any kind of characteristics in the speech signal that create a sort
of sensation when it is perceived by a listener. Speech attributes can be divided into short-
term and long-term attributes based on the time scale at which they can be identified.
Short-term attributes are extracted from a short frame of speech signal (typicaly 10 to 30
ms). Long-term attributes, on the other hand, are present for a long period of time and in
some cases for the whole duration of a speech signal. Long-term attributes are the result
of within-speaker variability, between-speakers variability, and speaker’s environmental
properties. They are much more diverse than short-term attributes [7, 8]. These two
categories of attributes are not independent, and to some extent, long-term attributes
arise from short-term attributes over a longer period of time.

7
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In this section, speech attributes are discussed based on their relationship with the phys-
iological structure of the human speech production and auditory systems as well as some
auditory perceptual theories.

2.2.1 Human speech production system
Speech is a non-stationary signal which is produced by air pressure passing through an
acoustic filter. For unvoiced speech, air pressure is a noise-like turbulence, while for voiced
speech, it also includes a quasi periodic vibration produced by vocal folds. The frequency
of vibrations is called fundamental frequency or pitch. The vocal tract acoustic filter is
mainly characterized by the peaks of its frequency response which are called formants.

The speech production system can be modeled using a source-filter model. The linear
source-filter model of speech production, commonly used in the field of speech coding,
assumes that the source of the speech sounds is independent of the filter [9]. In this
model speech is decomposed into source and filter components using short windows of
speech signal. When using a source-filter model, the characteristics of the source and the
filter are examples of short-term attributes. More elaborate models of speech production
consider nonlinear effects of source and filter interactions [10].

2.2.2 Auditory system
The human auditory system consists of several subsystems. There is first the auditory
periphery, then millions of neurons in various auditory nuclei that perform various inter-
mediate auditory stages, and finally the auditory cortex.

The peripheral auditory system includes the outer ear, the middle ear and the inner ear.
The outer ear can be seen as an acoustic resonant cavity which modifies the sound pressure
in the frequency range of 2-7 khz. The middle ear provides some impedance matching and
also amplifies the frequencies above 100 hz with a maximum amplification around 1 khz.
The inner ear (cochlea) is the organ of signal transduction. It performs a frequency-
to-place mapping. Finally, hair cells in the cochlea convert mechanical vibration into
electrical pulses.

Signals produced by hair cells are sent to the intermediate auditory stages. These stages
include multiple nuclei 1 which all play a different part in auditory processing. The func-
tionalities of these nuclei are not all known but some facts about them are well understood.
For example, it is known that they perform tasks such as encoding binaural cues for source
localization and preprocessing complex sounds. The auditory cortex, including AI and

1. The cochlear nucleus (CN), the superior olivary complex (SON), the inferior colliculus (IC) and the
medial geniculate nucleus (MGB)
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AII, is the final stage of the auditory system. The auditory cortex includes neurons which
receive projections from auditory nuclei and other regions of the auditory cortex [11].

The properties of the peripheral auditory system, and especially those of the cochlea,
are the most commonly used in speech coders. Logarithmic frequency scales including
mel, Bark and ERBs correspond to the properties of the human ear and are used in
perceptual codecs such as AAC and MP3. These codecs model the peripheral auditory
system by analysing short frames of signal. Therefore, it can be considered that their
strategy for extracting and encoding parameters aims at preserving short-term attributes
in the spectral domain.

Identifying speech attributes that result from neural processes have also been studied to
some extent and the evidence of phonetic features [12] and representations of multi-talker
speech perception [13] are identified in the human cortex. In parallel with studies of
the human brain, machine learning tools are also developed with the ability to process
information in comparable ways. Tools from artificial neural networks (ANNs) such as
convolutional neural networks (CNNs) and recurrent neural networks(RNNs) are often
compared to the way that the brain achieves different types of processing. Non-linearities
and a long receptive field makes ANNs capable of processing long-term attributes. In recent
years, techniques such as GANs [14], Wavenet [15] and WaveRNN [16] with receptive fields
in the range of hundreds of milliseconds have been used for speech synthesis and bandwidth
extension and VAE’s [17] have been employed to extract speech representations. While
speech processing methods based on these approaches show improvements in perceptual
quality of speech [18], ANN-based approaches have not been used in standardized speech
codecs yet. These methods will be discussed in detail in Chapter 3 of this thesis.

2.2.3 Auditory perception
The functionality of the auditory system can be understood not only from its physiolog-
ical organization, but also from auditory perceptual theories. Auditory perception is the
process by which people sense, organize and interpret auditory information. Theories of
auditory perception can be divided into two groups. One group addresses speech attributes
such as pitch perception, localization and speech perception. Another group focuses on
examining variations in speech signals that do not disturb the perceived attributes in a
significant way or are not perceived by a listener at all. Examples of these theories are
hearing thresholds and masking phenomenon. We first present the first group of percep-
tual theories. We then discuss the second group which played a much more significant role
in the development of current speech and audio codecs.
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Pitch is a perceived quantity relating to tones and complex sounds. In the case of a sin-
gle tone, the perceived pitch can be related to the operation of the peripheral auditory
system, which operates on a logarithmic (mel) scale. For complex tones, things are quite
different. For example, some combinations of high-frequency tones can be perceived as
low-pitch signals. Such examples suggest the involvement of structures beyond the periph-
eral auditory system for pitch perception [19]. In the case of speech, pitch perception is
related to fundamental frequency but still has a long-term nature, and it is believed that
it contributes to the identification of speaker, age, gender and emotions [11].

Speech perception involves many types of processes from ear to brain. It starts with
the extraction of acoustic cues, such as formants, and continues with the formation of
phonemes, syllables, words and sentences. Speech motor theory is one of the traditional
speech perception theories which relates speech perception to movements of the speech
production system. It also indicates that motor commands involved in speech production
also help in speech perception [20]. Another theory in speech perception is the trace model
which decomposes speech perception into three levels of features, phonemes and words.
In addition to this bottom-up process of assembling parts, this theory puts emphasis on
interactions with a top-down process (prior knowledge) [21].

Sound localization is the result of the way the auditory system processes spectral cues
as well as binaural cues such as interaural time difference and interaural level distance.
Qualitative characteristics depend on the sound source characteristics as well as environ-
mental properties. Source characteristics include harmonic content, temporal envelope
and spectral envelope (these types of characteristics are also called timbre). Properties of
the environment, which can be characterized by methods such as room impulse response,
also influence the sound quality. Finally, auditory scene perception consists in grouping
and segregating the different sound sources based on their location, pitch, timbre, etc. [11].

The majority of speech attributes discussed in this section have a long-term nature, hence
extraction of such attributes were not considered in standardized speech codecs due to
the common short-term processing methods. Instead, subjective tests are used during the
development phase of these codecs to measure the extent to which such attributes are
preserved. However, the second group of perceptual theories have been frequently used
in classical codecs over the last few decades since those theories are applicable for short-
term processing of speech signals. As a result, instead of extracting long-term features,
codecs attempt to encode and decode speech signals while limiting the short-term artifacts
in forms that can not be perceived by a listener. These perceptual theories describe



2.2. SPEECH ATTRIBUTES 11

limitations of the auditory system and the most notable ones are hearing thresholds,
temporal and spectral resolution, and masking phenomena.

Hearing threshold and resolution

Hearing threshold is a minimum threshold under which an audio signal can not be heard;
it is a function of the signal’s frequency and duration. A pure tone is used to measure
auditory threshold. The lowest threshold happens between 1 and 3 kHz and the threshold
increases for both lower and higher frequency tones. If the duration of the tone is less
than 500 ms, the hearing threshold depends on the duration of the tone and is higher for
shorter tones. Above hearing threshold, the temporal resolution of hearing is variable and
depends on two main processes: the time pattern in each frequency channel and the time
patterns across multiple frequency channels. Overall, the resolution decreases as the sound
intensity increases [22]. Spectral resolution also depends on signal intensity and frequency.
In general, changes in signal intensity have a stronger effect at low frequencies [23].

In audio coding, the hearing threshold information can be used to define the acceptable
noise floor for a system. Spectral and temporal resolution are also useful in perceptual
codecs. Audio quality at low bitrates can be improved significantly if spectral and temporal
resolution of input signal is considered.

Time and frequency masking

Presence of other sounds can affect the threshold of hearing for each sound. This phe-
nomenon is called masking and it depends on relative time, frequency and intensity char-
acteristics of sound components.

In frequency masking, the energy content of the signal in one frequency band can affect
the hearing threshold in other energy bands. Frequency masking is a result of the behavior
of the basilar membrane. Excitation of the auditory system happens in a frequency range
wider than the sound’s bandwidth. A similar phenomenon can be observed in the time
domain. It is called temporal masking and is a result of the temporal inertia of the basilar
membrane. Before and after an intense sound, the human auditory threshold changes for
a limited duration of time because of temporal masking. Temporal masking can persist
up to 200ms depending on the masking signal’s strength.

The excitation patterns in frequency domain are used in codecs to calculate a curve of
masking which determines the level of quantization noise that can be tolerated in each
frequency band. The shape of auditory filters are also determined by these patterns.
Simplified forms of auditory filters, known as critical bands and equivalent rectangular
bandwidth (ERB), are used for audio coding. [23]. Temporal masking is also used in
speech coding to adjust the block size and quantization in time domain [24, 25].
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2.3 Codec attributes
The main characteristics of codecs are complexity, delay, bit rate, quality and robustness.
Codecs aim for a trade-off between these measures for some target applications. In this
section, the main characteristics of speech codecs are explained.

2.3.1 Algorithmic complexity
The complexity of a codec is related to memory and processing power usage. The complex-
ity is a major factor of hardware cost and energy usage. The monetary cost is important
in all applications. The energy consumption is also important in some applications, es-
pecially for devices powered by batteries, and some devices have very limited computing
power.

2.3.2 Delay
The algorithmic delay is the maximum delay caused by the coding algorithm between the
entry of a speech sample into the encoder and its output from the decoder. In real world
applications, there are other sources of delay. The data transmission time on the network
and the calculation time of devices also should be added to the delay time. Delay is an
important factor in real-time conversations since more than 300 ms round-trip can cause
difficulties in communication between people [26].

2.3.3 Bitrate
Bitrate is determined by channel capacity for different applications. When transmission
bandwidth is limited, it results in a trade-off between all other codec attributes. Some
elements of codecs (such as entropy coding) produce variable bitrates which are not suitable
for a channel with fixed bitrate. To mitigate this problem, some codecs have an increased
algorithmic delay and spread information between multiple frames of speech to produce
constant bitrate [27]. Codecs with multiple bitrates are also common since they can
achieve the best quality for available channel capacity. Embedded (scalable) codecs are a
family of codecs designed to have a bitstream arranged in layers, and some information
in the bitstream can be discarded by communication chain components depending on the
available capacity [26].

2.3.4 Quality
While speech quality depends on many complex factors, signal bandwidth is a major factor
which is easily quantifiable . The narrowband telephony bandwidth is approximately from
300Hz to 3.4 kHz. This bandwidth is used in public switched telephone networks (PSTN)
for wired or wireless communication. Most older low-bit-rate codecs aimed to code this
audio bandwidth. To achieve higher quality, the next extension of bandwidth are wideband
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(approximately 50-7000 Hz), superwideband (approximately 50-14000 Hz) and full band
(approximately 20-20000 Hz).

Quality of speech signals can be measured based on objective or subjective measures. The
most common objective measure is the signal to noise ratio (SNR), normally expressed
in dB. Objective measures can be advantageous since their measurements do not depend
on human interaction and the results are easily reproducible. On the other hand, they
do not correlate well with subjective speech quality. Subjective measures rely on listeners
to evaluate perceived quality of speech signals in a blinded test. One common subjective
measure for quality is the mean opinion score (MOS) which has a scale between 1-5 with 5
being the maximum possible score [28]. There are alternatives to MOS such as MUSHRA
[29] and AB test [30].

To evaluate new algorithms, subjective testing is normally favored over objective measures.
However, time and costs required by these tests can be problematic since normally multiple
measurements are required during the development phase of a codec. Therefore, objective
quality measurements have been developed to approximate subjective quality measures.
Normally, a model of the auditory system that includes modeling of the external ear,
internal ear and basic brain functions is used to predict the subjective quality. An example
of such measurement method is perceptual evaluation of speech quality (PESQ) [31].

2.3.5 Robustness
Communication networks can introduce unwanted effects on a coded data stream. For
example, errors can happen for individual bits, or a packet of data can be lost completely.
Normally, a packet loss concealment method is added to decoder to deal with lost data. In
some networks, packet delays are unpredictable and many codecs have limited tolerance
for delays. A delayed packet could be considered lost or in some cases a decoder can still
use a delayed packet to update its internal status and minimize error propagation [32].

2.4 Modern standardized speech and audio codecs
To address the variety of needs and requirements in the market, many different speech
and audio codecs have been developed. Most of the techniques used in their development
is a combination of mathematical tools and strategies such as quantization, prediction,
transformation, noise shaping and entropy coding [33]. This section explores some of the
important methods used in modern speech coding. Enhanced voice services (EVS) [5, 6],
a recently standardized codec, is chosen as an example of modern codecs to explain the
technologies currently in use. Moreover, signal processing methods used in EVS provide
further insights into the nature of speech signals.
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Figure 2.1 Overview of EVS codec.

2.4.1 General description of EVS
EVS was standardized by the 3rd generation partnership project (3GPP) in 2014. It is
the successor of the mobile HD voice codec AMR-WB. It conforms to the low latency
requirement of real-time communication and supports multiple bitrates for different band-
widths. Supported sampling rates are 8000, 16000, 32000 and 48000 samples/s with 16-bit
uniform PCM format for single channel audio. Coding of stereo signals is also supported
by means of coding two mono channels. The audio samples forming 20 ms input blocks are
mapped to encoded blocks of bits, which may result in several possible choice of bitrates
ranging between 5.9 kbps to 128 kbps depending on the configuration of the encoder. The
combined algorithmic delay for the encoder and the decoder is 32 ms.

Using a built-in classifier, EVS chooses different strategies for coding of speech, music,
mixed and noisy contents. It uses algebraic code excited linear prediction (ACELP),
which is a variant of CELP [1], and modified discrete cosine transform (MDCT) for speech
and audio compression, respectively. An overview of the EVS codec is illustrated in Fig.
2.1. Some other notable features present in EVS are source-controlled variable bit-rate
(SC-VBR), voice/sound activity detector (SAD), comfort noise generation (CNG), error
concealment (EC) for packet loss in communication networks, channel-aware mode to
improve frame/packet error resiliency, and jitter buffer management (JBM) [34].

2.4.2 Preprocessing and resampling
Encoding speech signals starts with a set of common pre-processing steps. The purpose of
preprocessing is to prepare input signals for the codec’s functions as well as extracting some
parameters for frame classification to decide which subset of functions should be used for
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encoding each frame of speech signal. Preprocessing steps have been tuned over generations
of standard codecs and have become common practices and were further developed and
tuned in EVS. It should be noted that there is no clearly defined borderline between
preprocessing steps and other functions in the codec. Nevertheless, preliminary functions,
which also can be commonly found in other speech and audio codecs, are presented here
as preprocessing steps.
High-pass Filtering

Very low frequency components of speech signals do not carry useful information and they
can interfere with codec functions. As a result, the input signal is processed to eliminate
undesirable low frequency components below 20Hz with the following transfer function in
EVS:

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(2.1)

The coefficients in Equation 2.1 are calculated for a -3 dB gain at the 20Hz cut-off frequency
for different signal bandwidths.
Sub-band analysis

All input signals are upsampled to 48kHz and passed through a low delay filter bank with
filters of 400 Hz bandwidth to decompose the input signal. The output of the filter bank is
further analyzed to estimate parameters such as sub-band energies to be used in following
operations such as classification of frame contents.
Resampling

Regardless of the input sampling rate, many internal blocks such as the linear predictive
(LP) analysis, the long-term prediction (LTP) and the voice activity detection (VAD)
algorithm only operate at 12.8 kHz (or 16kHz in some cases). Using specific bandwidth
not only simplifies the optimization of these functions, it also reduces complexity of the
codec by avoiding processing upper bands which do not carry significant information for
functionality of these blocks. For the majority of encoder configurations, the input signal
is converted from the input sampling frequency to 12.8 kHz, while an internal 16 kHz
sampling frequency is only used when the input sampling frequency is 32kHz or 48kHz at
bitrates higher than 13.2 kbps.
Pre-emphasis

Due to the wide dynamic range between low and high frequencies, the spectral tilt of
speech signals is pronounced. To eliminate this problem, a pre-emphasis filter given by
Equation 2.2 is used at the input to enhance the high frequency content of the signal. The
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pre-emphasis factor b is tuned based on the bitrate, the bandwidth of the input signal and
the selected coding mode.

H(z) = 1− bz−1 (2.2)

Spectral analysis

EVS extracts a 256-point fast Fourier transform (FFT) for signal classification functions
and signal activity detection (SAD). Several energy-related parameters, such as average
energy per critical band (which is calculated using a subset of frequency bins), energy
per frequency bin and average total energy in 20 ms frames, are also calculated. Another
set of parameters are calculated based on the history of extracted parameters to derive
long-term features. Examples of such parameters are long-term active signal energy and
relative frame energy.
Linear prediction analysis

Using linear prediction (LP), the encoder determines the coefficients of the synthesis filter
of the CELP model. For each frame, two sets of sixteen LP coefficients are extracted, one
using a 25 ms symmetric mid-frame analysis window and the other using a 25 ms asym-
metric frame-end window. Next, to extend bandwidth, an adaptive lag window is applied
to autocorrelations according to Equation 2.3. The lag window decays exponentially and
is also a function of the fundamental frequency extracted with the open-loop pitch analysis
(see Section 2.4.2).

W (i) = exp[−1

2
(
2πf0i

fs
)2], i = 1, 2, ..., 16 (2.3)

Then, for stability purposes, some autocorrelation coefficients are modified, for example a
white noise correction factor is added to the first coefficient. Finally, the Levinson-Durbin
algorithm is used to convert the autocorrelations to LP coefficients. For quantization and
interpolation purposes, the LP coefficients are transformed to line spectral pairs (LSP)
and then to line spectral frequencies (LSF). The interpolated quantized coefficients are
converted back to LP coefficients to construct the synthesis and weighting filters.
Open-loop pitch analysis

EVS performs an open-loop (OL) pitch analysis to calculate three estimates of the pitch
for each frame. OL estimates are used to smoothen the pitch evolution contour and to
confine the closed-loop pitch search (Section 2.4.4) to a small number of OL estimates.
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The first two estimates of the pitch value are based on 10-ms segments of the current frame
and the third one corresponds to the look-ahead window which is a 8.75 ms segment.

To calculate pitch values, the input signal is filtered by a pre-emphasis filter (Section 2.4.2)
to eliminate the pronounced spectral tilt of the speech signal. Then the signal is filtered by
a perceptual weighting filter which is derived from the LP filter transfer function A shown
in Equation 2.4. The denominators have coefficients equal to the pre-emphasis filter and
act as a de-emphasis filter. γ value is equal to 0.92 and is used to shape the LP transfer
function. Such a combination of filters decouples the weighting in formant regions from
the spectral tilt.

W (z) =
A( z

γ
)

1− bz−1
(2.4)

Following perceptual weighting, the following steps are performed to calculate pitch val-
ues. Further details about these steps can be found in EVS Codec detailed algorithmic
description (3GPP TS 26.445).

• Autocorrelation of decimated weighted signal is calculated.

• Correlation is reinforced with past pitch values using a triangular window.

• Normalized correlation is computed.

• In order to avoid selecting pitch multiples within each pitch value range, the lower
section is further emphasized.

• Initial pitch value is determined by finding maximum values of correlation.

• Fractional open-loop pitch estimate is calculated for each subframe by interpolating
correlation function.

Background noise energy estimation

To further improve the effectiveness of LP-based coding, EVS measures the level of back-
ground noise. Followings are examples of additional measures taken when speech over
background noise is detected: enhancement of formants, use of dedicated cores for coding
the background noise including a variant of generic audio signal coding mode (GSC) or
the MDCT-based transform coded excitation (TCX) core and comfort noise generation
(CNG) core.

Equation 2.5 describes the recursive process to update the background noise estimate per
critical band in which E

(−1)
CB and E

(0)
CB stand for energy per critical band in the previous
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and current frame, respectively. The noise energy in each critical band is initialized to
0.0035 dB.

N(i) = 0.9N
(−1)
CB (i) + 0.1

[︂
0.25E

(−1)
CB (i) + 0.75

(︂
E

(0)
CB(i) + 0.5E

(1)
CB(i)

)︂]︂
(2.5)

The amount of background noise energy in EVS is estimated in two stages. In the first
stage, noise energy estimated for each critical band can only be updated downward in
an active signal. If signal energy in the current frame is below the previous estimate
of background noise energy, the estimation will be updated. In the second stage, if an
inactive frame is detected, EVS allows the noise estimation to be updated for the critical
bands regardless of the current frame energy only if sensitivity to noise variation is low.
Parameters such as spectral diversity, HF energy and tonal stability and complementary
non-stationarity are some of the factors used to decide if the noise energy estimation can
be increased.
Bandwidth decision

Regardless of the input sampling frequency, EVS examines the content of the input signal
for existence of meaningful spectral content in different bands to choose one of the pos-
sible operational modes including: NB (maximum 4 kHz), WB (maximum 8 kHz), SWB
(maximum 16 kHz) and FB (maximum 24 kHz). The decision is made by comparing the
energy content in spectral regions with certain thresholds.

2.4.3 Classification of frame contents
Audio signals have very diverse content. To deal with such diversity, the general approach
is to classify audio frames and select the proper compression method so that each frame
is coded with maximum efficiency. The trade-off for increased coding performance is the
added complexity of classification and the added complexity in the design of compression
method for each class. Classification of content cannot be done efficiently without the
context. As a result, EVS classifiers utilize long-term features from multiple frames of
signal, while many other stages of coding only focus on processing the contents of a single
frame. Transitioning between different compression methods without introducing artifacts
is also a technical challenge. In this section, classification of contents by the EVS codec is
discussed. The details on the corresponding coding approaches will be presented in later
sections.
Signal activity detection

The purpose of signal activity detection (SAD) is to determine if speech or music or any
meaningful signal content is present in a frame of speech signal. Information provided
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by SAD is used by various subsequent modules to determine necessary trade-offs between
quality and efficiency of coding. By distinguishing active speech, active music and inactive
periods (or recording noise/background noise), EVS determines the appropriate operation
mode as well as adaptive configuration of LP-based or MDCT-based coding cores.

The SAD module consists of three sub-SAD modules. Two of the modules are improved
versions of a VAD from G.718. They operate on the spectral analysis of the 12.8 kHz
sampled signal and provide preliminary activity decisions. The third one works on the
QMF subband filter, which runs with the input sampling frequency, and is used to refine
the decision and increase the reliability.

Coding mode determination

EVS uses dedicated LP-based coding modes for different speech classes. This principle is
an extension of the mode classification technique used in the 3GPP2 VMR-WB standard
[35] and ITU-T G.718 standard [36].

The LP-based core of EVS uses a signal classification algorithm with six coding modes
which are customized for different classes of signal. This coding modes, arranged from
highest priority to lowest, are: inactive coding (IC) mode, audio coding (AC) mode, the
unvoiced coding (UC) mode, transition coding (TC) mode, voiced coding (VC) mode and
generic coding (GC) mode. A classification algorithm determines the coding mode based
on several parameters. Some of the parameters are optimized separately for NB and WB
inputs. Based on classification results, different technologies are used for coding. Fig. 2.2
illustrates decisions taken by the classification algorithm in the EVS codec for two audio
samples.

To carry out the mode decision, the SAD decision is first (Section 2.4.3), and if an inactive
frame is detected, the IC mode is selected and the procedure is terminated. In the IC mode,
two encoding technologies are used. For bitrates below 32 kbps, generic signal audio coder
(GSC), which is a hybrid between an LP-based coder and a transform-domain coder, is
used. Otherwise, only a transform domain method is used along with algebraic vector
quantizer (AVQ) technology to quantize the frequency-domain coefficients.

Music signals are more complex than speech signals and can not be modeled efficiently with
linear prediction. The AC mode is optimized to encode generic audio signals (particularly
music) based on the GSC technology. A two stage speech/music classifier is used to detect
suitable frames for the AC mode. First, a gaussian mixture model (GMM) is used to
separate speech form music based on features such as the OL pitch, the spectral envelope
(LSPs) and tonal stability. The second stage of speech/music classification only selects a
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Figure 2.2 Decisions taken by the classifiers in the EVS codec. (a)
Speech/Music classification for an audio signal with mixed contents (the sample
includes both music and speech). (b) A detailed classification of a small speech
segment selected from the long sample in (a).

subset of music frames (from the first stage) which are suitable for the GSC technology.
In the second stage, up to the last 40 frames are analyzed based on their energy content to
estimate stability measures and identify attacks in music signals. If a frame is not selected
in the second stage, the decision is reverted back to speech and the CELP models are
used.

Speech frames are further classified to voiced/ unvoiced frames based on the presence or
absence of periodic components of the signal. To characterize periodicity, the following
parameters are used as deciding factors: voicing, spectral tilt, sudden energy increase,
total frame energy difference and energy decrease after a spike. If periodic components
are missing, the signal is classified as unvoiced. For unvoiced frames, the UC mode is
used to encode signals. The UC algorithm does not use adaptive codebooks for encoding
the excitation of signals, instead a linear Gaussian codebook is used. If a voiced frame is
detected, the VC mode is used to encode the quasi-periodic segment of signal which has a
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smooth pitch evolution. ACELP is used to encode the frame and more bits are assigned
to the algebraic codebook relative to a generic frame (GC mode).

In speech, transients occur at the beginning of speech segments and also when signal
characteristics change, such as boundaries between voiced and unvoiced parts. Transients
are characterized by rapid changes in signal energy and spectral distribution of the energy.
If the TC mode is selected, due to the non-stationary nature of transient frames, the usage
of past information is limited. The TC mode is limited to the most critical frames since
limiting past information can have a negative impact on encoding clean speech when voiced
frames follow voiced onsets.

If none of the above modes is selected, the most likely content of the frame is non-stationary
speech, and the content is encoded with a generic ACELP model which allocates less bits
to the algebraic codebook relative to viced frames.

Coder technology selection

The two generic principles for speech and audio coding are the LP-based (analysis-by-
synthesis) method and the transform-domain (MDCT) method. The LP-based technology
is based on CELP and is optimized for different bitrates, while the HQ MDCT technology
is adopted as the transform domain method in EVS. There are also two hybrid methods,
GSC and TCX technology, in which both LP-based and transform-domain-based methods
are combined. The choice of technology for coding is decided based on the configurations
of of the encoder, including the bitrate, the bandwidth as well as the selected coding mode.
Even in a single mode, different technologies are usually used depending on the bitrate.
The main reason for switching between technologies based on the bitrate is the tendency
of CELP to saturate in coding efficiency after a certain bitrate. To achieve high speech
quality at higher bitrates, frequency domain technologies are prefered.

2.4.4 LP-based coding modes
Speech-dominated contents at bitrates up to 64 kbps and generic audio at some lower
bitrates are encoded using the analysis-by-synthesis linear prediction (LP) paradigm. The
LP-based modes are variants of Algebraic Code-Excited Linear Prediction (ACELP) that
are specialized for different speech classes. In these modes, the spectral envelope is modeled
by LP coefficients. The LP excitation is encoded depending on the signal characteristics,
such as whether it is voiced or unvoiced speech, general audio, inactive, etc. The coding
efficiency of EVS depends on the bitrate but is rather independent of the input sampling
rate. The input sampling frequency is either 12.8 kHz for lowbitrate or 16 kHz for high
bitrates. Encoding the upper band in LP mode, which is not covered by LP-based cod-
ing, is achieved by means of bandwidth extension (BWE) technologies. Different BWE
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strategies are used depending on the bitrate, including blind BWE, parametric BWE or
full encoding of the upper band. Fig. 2.3 illustrates a speech sample encoded with the
ACELP technology in both time and spectral domain. When the bitrate increases, the
codec produces a waveform that is closer to the original waveform in the perceptual do-
main as well as in the original domain. In this section, details about waveform matching
using the ACELP algorithm are presented.
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Figure 2.3 A speech sample encoded with the ACELP technology presented
in time domain and spectral domain. When the bitrate increases, the codec
produces a waveform that is closer to the original in a perceptually weighted
domain.



2.4. MODERN STANDARDIZED SPEECH AND AUDIO CODECS 23

LP-based coding starts with perceptual weighting, the same weighting approach used
for OL pitch analysis (Section 2.4.2) and also calculated LP coefficients are quantized.
Subsequently, the LP residual is calculated based on the following equation:

r(n) = spre(n) +
16∑︂
i=1

ˆ︁aispre(n− i), n = 0, ..63 (2.6)

where ˆ︁ai are the quantized LP filter coefficients and spre(n) is the pre-emphasized input
signal.

Excitation coding

Fig. 2.4 illustrates excitation coding in the GC and VC ACELP modes. In general, the
excitation signal is coded using subframes of 64 samples. As a result, excitation is encoded
four times per frame when the 12.8 kHz internal sampling rate is used and 5 times per
frame in the case of the 16 kHz internal sampling rate. In some modes such as GSC, longer
subrames are used to achieve lower bitrate. Adaptive and algebraic codebook search are
further explained in following sections.

+

+

+

_
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_

Figure 2.4 Schematic diagram of excitation coding in the GC and VC ACELP
modes.

Adaptive codebook To perform the adaptive codebook search, a target signal com-
puted according to Fig. 2.4 in which the zero-input response of the weighted synthesis filter
W (z)H(z) = A(z/γ1)Hde−emph(z)/Â(z) is substracted from the weighted pre-emphasized
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input signal computed using W (z) = A(z/γ1)Hde−emph(z) filter. Using the calculated
target signal, the adaptive codebook encodes pitch parameters for every subframe includ-
ing closed-loop pitch value and pitch gain (adaptive codebook gain). For the adaptive
codebook search, a closed-loop pitch search is performed and the adaptive code vector is
computed by interpolating the past signal using the selected fractional pitch values from
the open-loop pitch estimates. For the closed-loop pitch search, a mean-squared weighted
error between the target signal and the past filtered excitation is minimized which is
equivalent to maximizing the correlation given by Equation 2.7.

Ccl =

∑︁63
n=0 x(n)yk(n)√︂∑︁63
n=0 yk(n)yk(n)

(2.7)

where x(n) is the target signal and yk(n) is the filtered excitation at delay k. The fractional
pitch search is calculated by normalizing and interpolating Equation 2.7 and finding its
maximum. Calculating fractional pitch values is concluded by applying a lowpass filter
for further improvement. Subsequently, pitch gain is found by

Gp =

∑︁63
n=0 x(n)yk(n)∑︁63
n=0 yk(n)yk(n)

(2.8)

Algebraic codebook Following the adaptive codebook, the algebraic codebook is used
to model more pulses in the excitation signal and further reduce the error between the
target signal and the input signal in the perceptual domain. The algebraic codebook
structure and pulse indexing can be classified to 7-bit codebooks, 12-bit codebooks, 20-
bit codebooks and above. For a 7-bit codebook, the algebraic vector only includes one
non-zero pulse at one of 64 positions of a subframe. Six bits are used for the position of
the pulse and one bit for the sign. For a 12-bit codebook, the algebraic vector includes
two non-zero pulses. Positions in a subframe are divided into two tracks of odd and even
positions. For each track, five bits are used for the position of the pulse and one bit for
the sign. Similarly, up to four positions are encoded by dividing positions to more tracks
and allocating bits to encode the position and the sign of pulses in the case of a 20-bit
algebraic codebook. To extend the ability of codebooks to encode more pulses, a variety
of joint indexing techniques are implemented to code multiple pulses in one track as well
as multi-track joint coding.
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Before codebook search in the algebraic domain, the algebraic code vectors are filtered
using a pre-filter followed by a weighted synthesis filter. The pre-filter is given in Equation
2.9. It includes a periodicity enhancement part (denominator) and a tilt part (nominator):

F (z) =
1− β1z

−1

1− 0.85z−T
(2.9)

where the parameter T is the integer part of the closed-loop pitch value in a given subframe
and the parameter β1 is related to the voicing of the previous subframe. Depending on
the bitrate, the coding mode and the estimated level of background noise, a filter based
on the spectral envelope is also included in the pre-filter to dampen frequencies between
formant regions. Finally, the search criterion and the gain Gc for the algebraic codebook
are derived from Equations 2.7 and 2.8 by replacing the target signal and the filtered
excitation by the updated target signal and the filtered algebraic code, respectively.

The techniques covered in this section describe general notions of excitation coding and in
practice the described approaches are tuned for different bitrates, bandwidths and oper-
ating modes in EVS. Most notably, in the IC mode and high bitrate GC mode, excitation
coding also includes a frequency-domain coding stage in the form of a combined algebraic
codebook. While the complexity of an algebraic codebook increases with codebook size,
a combined algebraic codebook provides reasonable coding complexity.

Variable Bitrate (VBR) Coding

The amount of information in speech signals varies across time. Some contents, such
as stationary voiced and unvoiced segments, can be encoded with lower bitrates with a
minimal effect on subjective quality, while transients, due to lack of correlation with the
past, carry more information and must be encoded with higher bitrates. This property of
speech is used for VBR coding (sometimes called source controlled VBR Coding). Two
low bitrate VBR coding modes at 2.8 kbps are included in EVS, specifically, the prototype
pitch period (PPP) and the noise-excited linear prediction (NELP). These two methods
are used for encoding stationary voiced and unvoiced frames, respectively.

The development of the PPP mode was inspired by the perceptual importance of periodic-
ity in voiced speech. In this mode, a single representative PPP waveform is encoded in the
frequency domain using discrete Fourier series (DFS). Due to the slow varying nature of
waveforms in pitch-cycles of voiced segments, non-transmitted pitch-cycles are synthesized
by means of interpolation. To encode the entire frame, in addition to a single pitch period,
pitch lag values and phase offsets are encoded for time alignment of pitch periods within
each frame. In the NELP coding mode, the objective is to encode excitation signals with a
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minimum amount of data. As a result, the LPC analysis is the same for this scheme, while
randomly generated sparse excitation signals are shaped in time and frequency domain to
model prediction residual instead of adaptive and algebraic codebooks.

2.4.5 Frequency domain coding modes

Figure 2.5 Frequency domain encoder based on MDCT.

Fig. 2.5 illustrates frequency domain coding in EVS, which is based on the MDCT trans-
form. In general, the MDCT coding mode is used for signals other than speech, or when
the bit rate for encoding is high enough for the transform coder to be used. Low delay
communications constrains the overlap between consecutive frames in EVS compared to
codecs such as AAC [2] that are designed for content distribution. Two variants of MDCT
coding are implemented in the EVS codec to deal with the small frame overlap con-
straint: the Low-Rate/High-Rate High Quality-MDCT coding (LR/HR-HQ) [37], which
is an advanced version of ITU G.719, and TCX [38], which is a low delay version of the
homonymous core from the MPEG USAC standard [39]. To mitigate the effect of short
frame overlap, several additionnal tools implemented in EVS, including an LTP post-filter,
a harmonic model in the TCX algorithm, and a noise fill method [40]. For the MDCT
cores, the coding of the upper band is considered as a part of the algorithm instead of
being done by a bandwidth extension approach as in speech cores. Fig. 2.6 shows a speech
sample encoded with MDCT in both time and spectral domain. Similar to ACELP, when
the bitrate increases, the codec matches the waveform closer to its original shape in the
perceptual domain and also converges to the original waveform with sufficient bitrate. In
this section, details about waveform matching with MDCT are presented.

Starting with windowing, an asymmetrical low delay optimized (ALDO) window is used
for long block transformation. The ALDO window is illustrated in figure 2.7 where L is 20
ms and Lz is 4,375 ms. The slopes of the window are made of sinusoidal functions raised
to the power of a constant value which is tuned based on the sampling frequency.
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Figure 2.6 A speech sample encoded with MDCT is presented in time domain
and spectral domain. When the bitrate increases, the codec produces a waveform
that better matches the original in a perceptually weighted domain.

Figure 2.7 Asymmetrical low delay optimized (ALDO) window used for long
block transformation in EVS.
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After windowing the input signal, eDCT, which is a discrete cosine transform type IV
variant with less storage and complexity requirement, is performed to transfer the signal
to frequency domain. DCT type IV is described by Equation 2.10:

y(k) =
L−1∑︂
i=0

˜︁x(i)cos [︂(n+ 1
2
(k + 1

2
) π
L
)
]︂

(2.10)

where y(k) is the k-th DCT component and ˜︁x(i) is the windowed input signal.

MDCT-based TCX

To introduce noise shaping tools in spectral coding, an MDCT-based TCX mode is used
in EVS. As a result, coding tools such as adaptive low frequency emphasis, temporal noise
shaping, and noise filling can be used in this mode. The LPC parameters are calculated
in the time domain and applied in the spectral domain. While the analysis methods are
identical to that of ACELP, quantization of LSF can be different for some bitrates.

An example of how to apply LPC parameters in the spectral domain is by applying shaping
gains to the MDCT spectrum. In this case, the MDCT coefficients corresponding to the
CELP frequency range are grouped into sub-bands and multiplied by the corresponding
LPC shaping gain.

High Quality MDCT coder (HQ)

The low-rate variant of HQ is limited to bitrates below 16.4 kbps and input signal is
only encoded using the transient mode, the normal mode, and the harmonic mode. The
harmonic mode is only available for SWB signals. The high-rate HQ is used for WB, SWB,
and FB signals at bit-rates of 24.4, 32, and 64 kb/s. There are two more modes available
in the high-rate HQ coder: the HVQ mode and the generic mode. A brief description of
HQ MDCT modes is as follows: transient signals are handled by the transient mode using
shorter transforms, harmonic signals are handled by harmonic mode, strongly harmonic
signals are handled by the HVQ mode, and finally, for all other signals, the normal and
generic modes are used.

The encoded parameters of HQ-MDCT are: the mode selection, energy envelope infor-
mation, the quantized spectral coefficients, some LF parameters and the HF parameters.
These parameters are extracted as follows. To encode the spectral envelope, the spectral
coefficients are grouped into bands with unequal widths. The spectral envelope is calcu-
lated based on the quantized energies of bands, encoded using Huffman coding and finally
the quantized energies are used for bit allocation. The calculated spectral coefficients are
quantized using trellis vector quantization (TCQ) and uniform scalar quantization (USQ)
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and then encoded based on the allocated bits for each frequency band. The level of the
most significant spectral coefficients is also adjusted using an estimated gain then coded
for transmission. Relatively few bits are also allocated for encoding the spectral bands
which are not quantized in the HF regions.

2.4.6 Inactive signal coding/ CNG coding mode
The DTX/CNG strategy is to reduce the transmission rate by simulating background
noise during inactive frames. Another benefit of this strategy is to make more efficient
use of battery life in mobile communications. The regular DTX/CNG mode operates in
bit rates up to 24.4 kbps; for higher bit rates, it is only used when the input signal power
is low. The transmission rate is reduced by replacing background noise with CNG in the
decoder. Comfort noise (CN) parameters are used to model the spectral and temporal
content of the background noise at the encoder.

In the EVS Codec, two types of CNG algorithms are implemented: a linear prediction-
domain based coding mode (LP-CNG) [41] and a frequency-domain based coding mode
(FD-CNG) [42]. One of two modes is selected according to the input characteristics, and
a different set of CN parameters is utilized for each coding mode. If the LP-CNG mode is
used, four CN parameters are extracted and encoded: the low-band excitation energy, the
low-band excitation envelope, the low-band signal spectrum, and the high-band energy.
In the FD-CNG mode, the CN parameters include global gain and spectral energies which
are grouped in critical bands. Finally, the extracted parameters are encoded using a vector
quantizer.

2.4.7 Description of the decoder
The majority of decoder functions perform the inverse of the encoder’s operations from
quantized values. The decoder is also computationally less complex than the encoder
since some functionalities such as classification of frame content, extraction of features
for classification and codebook search are unique to the encoder. However, there are
some operations that are unique to the decoder and that are performed in addition to the
generation of signal components from transmitted data. The most notable such operations
are bandwidth extension and frame loss concealment.

Bandwidth Extension

The EVS decoder performs estimates of signal regions where the transmitted signal rep-
resentation is not complete. Noise fill and blind bandwidth extension are examples of
techniques used for this purpose. Based on the characteristics of the input signal and
on the coding mode (decided based on the low band part of signal), two technologies are
used in EVS for bandwidth extension, time domain BWE (TD BWE or TBE) and multi-
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mode frequency domain BWE (FD BWE). For speech signals, the high-band signal (or
the super-high-band signal) is encoded by TD BWE, while multi-mode FD BWE is used
for music and IC mode. In TBE, the output of the QMF filter bank is used to construct
an estimation of the upper band signal from lower band using operations such as spectral
flip and down mix. Decoding FD BWE is achieved based on spectral and time envelope
indices which are extracted in the encoder. While for transient frames both time and
spectral envelopes are constructed based on the received bitstream, in all other cases only
spectral envelopes are used.
Frame loss concealment

Extrapolation algorithms for all of the coding modes are considered in the decoder in
the case that a frame is lost in transmission. For both LP-based coding and frequency
domain coding, information from the last received frame is used to extrapolate the signal
and produce a smooth time evolution of signal from the last frame into the lost frame.
Following a lost frame, received good frames are used to update the codec memory and
to minimize the mismatch resulting from the lost frame. If the loss occurred for multiple
consecutive frames and no reasonable extrapolation can be made, the signal is gradually
faded to background noise or silence.

Another technique to improve the resiliency of codec against frame loss is the "channel
aware" mode used in VoIP systems. In this mode, partial copies of the information from
the last two frames are included in the current frame, and in the case of packet loss this
information can be used to improve the recovery from the lost frame.

2.4.8 Other features
Backward Compatibility

Backward compatibility of a codec allows for interoperability with a previous generation
of codecs in telecommunications. In the EVS codec, backward compatibility with the
AMR-WB codec is considered using an interoperable (IO) mode. While this mode offers
functions for decoding an AMR-WB bitstream, some improvements are made over AMR-
WB by means of the post processing technologies that are implemented in EVS. Post
processing of noisy content, mixed content and improved performance for low-level input
signals are examples of improvements implemented in the IO mode relative to AMR-WB.
Jitter Buffer

Jitter in codecs is the deviation from true periodicity when receiving packets of encoded
signal. Jitter buffers are buffers used to counter the introduced jitter. They operate
by queuing received packets to ensure a continuous audio stream transmitted over the
network. In the EVS decoder a jitter buffer management (JBM) solution is included
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to compensate for variations in transmission delay. Depending on channel conditions,
the JBM system uses time scaling methods and packet loss concealment to provide a
continuous audio stream. JBM operation is balanced based on a trade-off between the
amount of delay and the perceptual quality of speech.

2.5 Summary
In this chapter, the knowledge about speech and audio signals and codecs that is relevant
to this thesis has been presented. An introduction to speech attributes makes it possible
to understand speech and audio signals as well as the auditory system. This knowledge
helps to justify certain strategies in codecs. Then, a summary of codec attributes makes it
possible to define important criteria in designing codecs and to identify necessary trade-offs
between these criteria.

An overview of the EVS codec, which is taken as an example of modern standardized
codec is also provided with several goals in mind. First, EVS is a recently standardized
codec and its attributes define a threshold of performance that any new research project
should aim for. Second, techniques used in EVS further clarifies the nature of speech and
audio signals and how this knowledge is exploited by technology currently in use. Finally,
this description of EVS reveals some limitations of the current approach for codec design.
Waveform matching strategies progressively increase the number of coding modes. This
approach increases the chance of mistakes in classification of frame contents, and also
increases the number of sub-blocks which should be designed and optimized. In other
words, the proliferation of local frame-based optimizations in the codec tends to create
global issues.

In the next chapter, we review the state-of-the-art machine learning tools and approaches
that we will use to design a uniform codec that can process large chunks of speech signal,
be optimized globally, and be used to build an alternative strategy to waveform matching.
The alternative strategy will consist in extracting high-level and long-term attributes and
preserving them in the synthesized speech.
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CHAPTER 3

Machine learning in speech processing

3.1 Introduction
A sufficient knowledge about machine learning techniques is provided in this chapter to
enable the reader to understand the experiments presented in Chapters 5 to 8. State-of-
the-art machine learning-based speech coding techniques relevant to this thesis are also
presented. An expert in the field of machine learning can skip this chapter.

In Sections 3.2 and 3.3, machine learning tasks and paradigms are introduced to explain
how current machine learning knowledge is applied to optimization problems with a spe-
cial focus on speech processing. In Sections 3.4, several artificial neural network (ANN)
architectures relevant to this thesis are introduced, and in Section 3.5, training of ANNs
is presented. Spiking neural networks (SNNs), an alternative to conventional artificial
neural networks, are presented in section 3.6 and their training is also discussed. Finally,
in section 3.7, generative models that are particularly interesting for speech compression
and speech synthesis are presented.

3.2 Machine learning tasks
There are a wide range of tasks that can be performed with machine learning algorithms.
Classification, regression and denoising are widely considered tasks in the field of speech
processing. A more comprehensive description of machine learning tasks in general can be
found in the Deep Learning [43] textbook.

Classification The objective of a classification algorithm is to recognize which one of
the k categories the input sample belongs to. In other words, the model y = f(x) produces
a numeric value y for an input vector x. In probabilistic formulation, function f models the
probability distribution over classes. Examples of classification tasks in speech coding are
speech/music classification, speaker identification and emotion recognition. Classification
algorithms are already an essential part of standardized speech codecs to distinguish signal
frame contents and to choose the proper compression algorithm accordingly (see Section
2.4.3).

33
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Regression The regression task is similar to classification task except that the output
y has a continuous format. As for the classification task, a function f can be defined
to model the probability distribution of outputs. Then an output can be generated by
sampling the probability distribution. Linear regression, where f is a linear function,
is a widely used regression method for predicting and forecasting because of its ease of
use. A popular regression method in audio coding is the autoregressive function in which
previously generated audio samples are fed to the model as an input to produce a sequence
of signal samples. For example, in WaveNet [15], a generative model for raw audio is
constructed to model the joint probability of a waveform x = {x1, ..., xN} by factorizing
it as a product of conditional probabilities as:

p(x) =
N∏︂
i=1

p(xi|x1, ..., xi−1) (3.1)

where each audio sample xi is conditioned on the previous samples. After the probability
function has been learned, it can be sampled to produce an audio waveform.

Denoising In denoising tasks, a clean input vector x is corrupted by an unknown noise
source, and the machine learning algorithm is trained to predict the clean sample from
the corrupted vector x̂ by learning the conditional probability distribution p(x|x̂). One of
the common neural network structures used for denoising is the autoencoder (see Section
3.7.1 for autoencoders) and more specifically denoising autoencoders (DAEs) [44]. Their
efficiency for speech enhancement has been clearly demonstrated [45, 46]. Adding noise to
the input vector x also improves the robustness of the model in any machine learning task.
If the noise is applied by forcing some values to be zero, denoising becomes very similar to
dropout regularization, which is widely used for regularization of neural networks currently
in use (Section 3.5.2).

Application of machine learning in the field of speech processing is not limited to the three
tasks presented in this section. Other tasks such as automatic transcription and machine
translation also deal with processing of speech signals. In some cases, other modalities
or types of information, such as natural language, image and video, are combined with
speech processing for achieving a machine learning task.

3.3 Learning paradigms
The ability of machine learning algorithms to learn from large amounts of data distin-
guishes them from traditional signal processing techniques. In machine learning, paradigms
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are defined based on how data is utilized for learning. Supervised learning and unsuper-
vised learning are widely used learning paradigms for speech processing.

Supervised learning In supervised learning, the outputs y as well as the inputs x are
available for training, and the algorithm determines the relationship between them. In
the probabilistic formulation, the algorithm estimates the probability distribution p(y|x).
Maximum likelihood estimation is one of the most common methods used for finding the
best set of parameters for modeling the probability distribution. Logistic regression, sup-
port vector machine (SVM) and k-nearest neighbors are examples of supervised learning
approaches. While supervised learning is the most commonly used method in machine
learning, its use is limited by difficulties of collecting, either by humans or by automatic
methods, reliable outputs y for training.

Unsupervised learning In general, the goal of unsupervised learning is to learn a den-
sity estimation similar to that learned by supervised learning, but without any information
labeled by a supervisor. The goal is to find a data representation that preserves most of
the useful information about the input, but in a simpler form than the raw input. The
simplicity of representation can be defined in many different ways. Having lower dimen-
sion or sparsity are prefered attributes for a representation in many applications. Principal
components analysis (PCA) and K-means clustering are examples of unsupervised learning
approaches.

There are other categories of learning paradigms in machine learning depending on the
nature of data. Aside from supervised and unsupervised learning, the most notable ones
are semi-supervised and reinforcement learning. In semi-supervised learning, the output
y is available to the learning algorithm only for a subset of samples. In reinforcement
learning, the data is in the form of an environment instead of a fixed dataset, and feedback
from the environment guides the learning algorithm to optimize the parameters.

3.4 Artificial neural network architectures
Initially, the development of artificial neural networks (ANNs) was inspired by biologi-
cal neural networks. As a result of decades of research, a wide range of ANNs are now
available. This section is dedicated to the subset of ANNs architectures that is used
in the experiments presented in the Chapters 5-8 of this thesis, including convolutional
neural networks (CNNs), recurrent neural networks (RNNs) and residual neural networks
(ResNets). These architectures, because of their inherent ability for processing sequential
data, are currently very common for processing speech signals. In this thesis, an appli-
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cation of CNNs can be found in the experiments presented in Chapters 7 and 8. An
application of RNNs also can be found in the experiments presented in Chapters 6 and
7. An example of utilization of ResNet blocks also can be found in the structure of the
decoder in the cognitive speech codec presented in Chapter 8.

3.4.1 Feed-forward neural networks
Feed-forward neural networks (FFNNs) are a widely used architecture, and they are the
basis for many other architectures such as CNNs and RNNs. A diagram of a FFNN is
illustrated in Fig. 3.1 that includes l hidden layers and m unit in each layer. The network
models a desired funcion F (x) as a chain of nested functions fl+1 ◦ fl ◦ ...f1(x) in which
function fi is implemented by ith layer of the network. The functions of the different layers
are recursively defined as:

fi = ϕ(W T
i fi−1 + bi) 1 < i < l + 1

f0 = x
(3.2)

in which ϕ(.) is the activation function (a nonlinear function such as sigmoid) and param-
eters Wi and bi define an affine transformation. Back-propagation is commonly used to
compute the gradients necessary for learning parameters of this model, which is presented
in Section 3.5.2.
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Figure 3.1 Architecture of a FFNN with l hidden layers, i input units, m hidden
units in each layer and o output units.
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3.4.2 Convolutional neural networks
While FFNNs use matrix multiplication in their layers, CNNs are based on the convolution
operation described as:

s(t) = (x ∗ w)(t) =
+∞∑︂

i=−∞

x(i)w(t− i) (3.3)

In practice, many implementations of CNNs use a version of the cross-correlation function
in which the kernel w is not flipped, but that function is still referred to as a convolution.
Using convolution makes CNNs more suitable for processing data with strong local depen-
dencies, such as image and audio signals, because of following reasons: First, length of the
convolution can be limited to a small fraction of the input signal in which data exhibits
meaningful dependencies. In other words, the connection in CNNs can be made sparse.
Second, parameters defined by the convolution operation do not depend on a specific lo-
cation of features in the input data, and a single set of parameters can learn the patterns
that are present in the data regardless of certain variations, such as a uniform shift in the
position of features [43].

speech signal
l = 0

l = 1

...

l = 2

...

l = 3

...
. . .

l = n

Figure 3.2 An example of convolutional neural networks for processing one-
dimensional inputs such as audio signals. Each layer includes the convolution
operation and a non-linearity. Vectors of features are shown as gray boxes.
The second and third layer in this example include a pooling operation such as
subsampling which reduces the length of feature vectors. The temporal resolu-
tion of the input is reduced in these layers until eventually it is reduced to a
one-dimensional feature space at the nth layer.

Fig. 3.2 illustrates the operation of CNNs. Similar to FFNNs, CNN layers also include
a non-linear activation which is sometimes called a detector. Another operation that
almost all CNNs use is the pooling function. Pooling replaces some adjacent outputs of a
layer with a summary statistic. Common examples of pooling functions are subsampling
and selection of maximal output from a rectangular region (also called max pooling)
. As a result of the pooling function, learned representations become robust to small
input translations. Other parameters of convolution operation such as padding, strides
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and kernel size are also useful for customizing CNNs for different applications.Padding
describes the number of features (which their value is usually zero) added to the extremities
of the input of convolution to control the length of output of convolution. Stride describes
the step size by which the convolution filter slides over an input. Finally, kernel size defines
the length of the convolution filter.

3.4.3 Recurrent neural networks
Recurrent neural networks (RNNs) are a family of neural networks architecture specifi-
cally designed for processing sequential data, such as audio waveforms and text sentences.
Similar to CNNs, RNNs are based on the idea of sharing parameters for learning patterns
regardless of where in the sequence they occur. While each layer of a FFNN models a
function fi as an element in a chain to model a desired function F (x), in RNNs, a single
function f is used in a recursive manner to process the sequence x described by:

hi = f(hi−1, xi; θ) 1 < i < l

F (x) = hi
(3.4)

where xi is the ith element in the sequence x and θ is the parameters of the function f .
Fig. 3.3 illustrates the RNN architecture and its recursive process that can be unfolded
over time. While originally the parameters θ in RNNs were arranged in the form of an
affine transformation similar to a FFNN, more elaborate designs introduced gates to the
model. The most common examples of RNNs with gates are long short-term memory
(LSTM) and gated recurrent unit (GRU), which we discuss next.
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xt . . .

(a) (b)

Figure 3.3 (A)Architecture of a RNN. xt is the input, Ft is the output and ht

is the hidden state. (b) Architecture of a RNN unfolded over time.
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LSTM and GRU

One of the main challenges in training RNNs is the vanishing gradients problem caused
by long-term dependencies. In other words, when gradient-based optimization methods
(see section 3.5.2) are used, the magnitude of gradients turns to a very small amount
in long sequences, which reduces the ability of RNN architectures to capture long-term
dependencies. Gates are introduced in RNNs architecture such as LSTM [47] and GRU
[48] to mitigate this issue. A modern LSTM includes a cell and tree gates. The cell retains
values over the time intervals and the gates regulate the flow of information into the cell
and out of the cell. The following set of equations describe the process in LSTM:

it = σ(Wi.[ht−1, xt] + bi)

ft = σ(Wf .[ht−1, xt] + bf )

ot = σ(Wo.[ht−1, xt] + bo)

zt = tanh(Wz.[ht−1, xt] + bz)

ct = ft ∗ ct−1 + it ∗ zt
ht = ot ∗ tanh(ct)

(3.5)

where ht is the hidden state vector (also known as the output vector of the LSTM). The
input gate it and the output gate ot regulate inward and outward information flow, and
the forget gate ft controls the amount of information which should be retained in the cell.
A visualization of this process is provided in Fig. 3.4. GRU is an alternative to LSTM
in which the output gate is removed to reduce the number of parameters. However, both
have been shown to have a similar performance in many tasks.
3.4.4 Residual neural networks

Residual neural networks (ResNet) are a family of ANNs that utilize skip connections
in their architecture. A skip connection is a path that avoids one or several layers and
nonlinearities. Fig 3.5 illustrates the architecture of ResNet. In some architectures, such as
HighwayNets [50], inspired by LSTM, a desired transfer function is also used to learn skip
weights. Skip connections help to mitigate the vanishing gradients problem, and ResNet
models with more than 100 layers can be trained successfully. In recent years, ResNet
blocks have been used for speech processing especially in the design of speech synthesizers
[51, 52, 53, 54].
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Figure 3.4 Architecture of an LSTM cell. The diagram provides a visual rep-
resentation of Equations 3.5. Further explanation of architecture of an LSTM
cell can be found in [49]

3.5 Training artificial neural networks

In previous section, different architectures of neural networks have been described as non-
linear functions which are able to map an input vector x to an output vector y. Training
neural networks is the process of learning the correct mapping from the input vector to
the output vector. Training includes specification of a criterion and choice of a parameter
optimization technique. There are numerous techniques for training neural networks. A
general review of these techniques can be found in [55]. In this section, a subset of training
techniques relevant to this thesis are presented.
3.5.1 Training criterion

To optimize the parameters θ of a neural network (or to train the network), a criterion (also
called a loss, cost or objective function) should be defined. The criterion L(θ,D) is a scalar
value that defines the fitness of the set of parameters θ optimized on a dataset D to achieve
a certain objective. The mean squared error (MSE) and the cross entropy are examples of
training criterion widely used for regression and classification tasks, respectively. There
are more elaborate training criterions for complex structures, especially when multiple
networks are trained together to perform a single task. Examples of such criterions are
given in Section 3.7.
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+

Figure 3.5 Illustration of the Residual neural networks. By adding a skip
connection, an extra path that avoids layeri is added to the network.

Mean squared error

The mean squared error (MSE) is the expected value of the squared error over the dataset
as:

L(θ,D) = E
x∼pdata(x)

[︁
(y − ŷθ(x))

2
]︁

(3.6)

where y is the true output and ŷθ is the predicted output vector. This criterion is derived
from the square of the Euclidean distance; it is always positive and decreases as the error
approaches zero.
Cross entropy

The cross entropy between the ground truth and the predicted probability vector is a
widely used training criterion in classification tasks. It is defined as:

L(θ,D) = − E
x∼pdata(x)

[H(y, yθ̂(x)] = − E
x∼pdata(x)

[︄∑︂
j

yjlog(ŷjθ(x)

]︄
(3.7)

where j is the number of classes, y is the ground-truth vector and ŷθ is the predicted proba-
bility vector. In this formulation, minimizing the cross-entropy loss is same as maximizing
the likelihood of generated targets with respect to the set of parameters θ.
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3.5.2 Parameter optimization
Gradient descent (also known as steepest descent) is a widely used algorithm in training
neural networks. Gradient descent iteratively updates the parameters θ in the direction
of steepest gradient in order to minimize the criterion L(θ,D) according to:

θτ+1 = θτ − η
∂L(θ,D)

∂θ

⃓⃓⃓⃓
θ=θτ

(3.8)

where η is the learning rate, which controls the size of the steps for updating the param-
eters. Since this simple gradient descent technique is not sufficient for training practical
neural networks, several other techniques have been developed to extend the simple gra-
dient for efficient training of multi-layer neural networks on large datasets. Optimization
algorithms use other techniques to accelerate gradient descent algorithms. For example,
Adam [56] replaces a simple gradient with an exponentially weighted average of the gradi-
ents. This technique is shown to converge towards the minimum with a faster pace. Some
other notable optimization techniques are stochastic gradient descent, back-propagation,
regularization and normalization.
Stochastic gradient descent

Computing an accurate gradient for training a neural network based on a complete dataset
(also known as batch-mode gradient descent) needs extremely intense computation for a
large dataset. Stochastic gradient descent (SGD) is an alternative approach in which
an approximation of the accurate gradient is computed based on a single data point or
on a small subsets of the dataset called mini-batches in each step of optimization [55].
While this approximation is less accurate than batch gradient descent, randomly shuffling
the dataset and reducing bias in each minibatch can improve the accuracy of generated
gradients. To reduce bias in mini-batches of speech datasets, a subset of samples can
be selected to feature different speaker, phonetically diverse sentences, diverse recording
conditions and environmental conditions. This practice helps train a generalized neural
network for speech and audio processing.
Error backpropagation

Error backpropagation (BP) is an efficient algorithm to calculate partial derivatives with
respect to the parameters of a neural network for the gradient descent algorithm. In
Section 3.4, several ANN architectures have been discussed that, in multi-layer form, can
be seen as series of nested functions. Direct computation of the gradient with respect to
each weight in the network is not efficient because many operations should be repeated
unnecessarily. In the backpropagation algorithm, starting from the output layer, gradients
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are computed one layer at a time, and redundant calculation of intermediate terms is
avoided. A detailed description of the backpropagation algorithm can be found in [55].
Regularization

Regularization is a technique to improve generalization and avoid over-fitting when train-
ing a neural network. In other words, regularization helps the model to perform on un-
seen data and not only the data that is used for training the model. Regularization is
particularly necessary in neural networks which have a large capacity (large number of
parameters) relative to the size of the dataset. Large capacity of a model can lead to
memorizing the data instead of learning the underlying structure of the data. Parame-
ter norm penalty, dropout and early stopping are examples of regularization methods in
training neural networks.

Parameter norm penalty is a regularization term added to the loss function in the form of
1
p
∥θ∥pp where θ represents the parameters of the network and ∥θ∥p is the Lp norm. Using

the Lp norm penalty forces the parameters to decay towards zero. In other words, using
more parameters is penalized in training, and this forces the network to only use the subset
of parameters that is sufficient to model the data. Using a low p value, for example using
the L1 norm, results in a sparser solution [55].

Regularization can also be achieved without modification of the training criterion using
techniques such as early stopping or dropout. In early stopping, a random subset of the
training set (also called validation set) is excluded from training. The validation set is
a small percentage of data that should be representative of the whole dataset. During
training, the training criterion is also computed for the validation set, and when the
validation error starts to increase, this is an indicator of overfitting, therefore the training
stops. Alternatively, using the dropout technique [57], some units and their connections
are randomly dropped during training (this is also called thinning the network). As a result
of dropout, an exponential number of thinned networks are trained during the training
phase. Then, the prediction of thinned networks can be averaged by using the unthinned
network during the testing phase.
Normalization techniques

Normalization is a set of techniques that aim to decrease the training time for a model.
The most common method of normalization is batch normalization where outputs (fea-
tures) of a layer are normalized based on their mean and variance. It has been shown
that, by reparametrization of the optimization problem, batch normalization makes the
optimization stable and smooth [58]. Alternatively, the normalization can be performed
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separately for every feature in the output (instance normalization), or for features across
multiple layers (group normalization).

3.6 Spiking neural networks

Previously discussed neural network architectures are based on highly simplified biological
neurons. Biological neurons communicate via timing of a sequence of spikes they generate.
These spikes are not modeled in conventional ANNs. Spiking neural networks (SNNs) are
a family of neural networks that model the function of biological neurons to a higher degree
by processing information using spikes between units rather than using a real value as in
ANNs. The information transmitted in SNNs is usually encoded in the frequency of the
spikes or in spike timing (also called pulse coding and rate coding, respectively). It has
been shown that pulse coding is a more powerful method than rate coding [59] and that,
in fact, rate coding is a special case of pulse coding.

Spiking neurons models vary from biologically accurate but computationally complex mod-
els such as Hodgkin–Huxley to simple single variable integrate-and-Fire units. Commu-
nication between neurons is carried out via synapses. Any neuron that receives spikes
(the postsynaptic neuron) from various neurons that emit spikes (presynaptic neurons)
experience a postsynaptic potential (PSP) which in turn can cause generation of a spike
by the postsynaptic neuron. The strength of the PSP is affected by factors such as the
strength of the synaptic connection and the relative arrival time of spikes [60].

3.6.1 Training SNNs

Strategies for training SNNs are more diverse than for ANNs and they can be categorized
into bio-plausible unsupervised techniques, the most notable of which being spike-timing-
dependent-plasticity, and gradient-based learning techniques that can be used regardless
of learning paradigms.
Spike-timing-dependent-plasticity (STDP)

STDP [61] is a widely used technique for unsupervised learning in SNNs. In STDP, synap-
tic weights are manipulated instantaneously based on the presynaptic and postsynaptic
spike timings. Learning with STDP accounts for the history of presynaptic and postsy-
naptic spikes locally, and it is a bio-plausible, fast and simple method.
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Gradient-based learning
In the context of SNNs, one approach for gradient-based learning is to train different types
of ANNs using the BP algorithm and then substitute the conventional artificial neurons
by spiking neurons [62, 63, 64, 65]. While these approaches generally aim to use the
more energy-efficient SNNs for inference, a loss of accuracy is expected as a result of the
conversion from ANNs to SNNs. Alternatively, several techniques have been developed
to directly train SNNs using the BP algorithm. In [66], a spike-based BP algorithm is
introduced that treats the membrane potential as a differentiable activation of the neuron
to update the weights for unsupervised layerwise training. In [67], another spike-based
BP algorithm is introduced for end-to-end gradient descent optimization. Spike-based BP
algorithms are in their early development phase and face some challenges. The current
methods are computationally intensive. Moreover, complementary training techniques
such as proper methods of initialization of synapse weights and regularization have yet to
be developed [68].

3.6.2 Liquid state machine (LSM)
Training SNNs using techniques such as STDP alone is a difficult task and it is likely that
state-of-the-art accuracy would not be achieved. In the liquid state machine (LSM) [69],
besides a reservoir of SNNs, a simple supervised layer (read out) is also included in the
model, which can improve classification results. Generally, neurons in the reservoir are
randomly connected and they process the input with a variety of non-linear functions.
Following the non-linear process, the read out layer can learn possible linear combinations
to infer any desired output. In [70], using Stone-Weierstrass theorem, it’s been shown that
under a set of simple conditions, LSMs have universal computational power (universal
approximation property in neural networks). LSM is the main processing block of the
classification task presented in Chapter 5.

3.7 Generative models
Generative modeling is one of the guiding principles of machine learning. In a general def-
inition, generative models capture the joint probability of input x and output y as p(x, y).
As a result, they are able to produce samples of data x, in contrast to discriminative
models which capture p(y|x) and only produce y when samples of data x are given. This
property of generative models is particularly interesting for speech coding, which deals
with speech synthesis in the decoder. Boltzman machines and deep belief networks are
some of the most known examples of generative networks, but there are many other kinds
of generative models. This section focuses on the approaches which have been shown to
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be very successful in the field of speech processing and specially speech coding. These in-
cludes autoencoders [43], flow-based deep generative models [71] and generative adversarial
networks [14].

3.7.1 Autoencoders
Autoencoders are a family of neural networks that are trained to generate a copy of the
input in their output. The diagram of an autoencoder is illustrated in Fig. 3.6. A
prominent property of autoencoders is that they contain an information bottleneck. This
bottleneck captures a low-dimensional data representation that can be useful for data
compression. Because of the information bottleneck, the fist part of the network is called
encoder and the second part is called decoder. Autoencoders are trained in an unsupervised
manner since no label information is needed to train the network, and the network simply
learns g(f(x)) = x in which f and g are the encoder and decoder functions, respectively.

Figure 3.6 Illustration of the autoencoder architecture. The network is trained
to generate a copy of the input in its output. There is an information bottleneck
in the design of the architecture to capture a representation of signal in lower
dimensions.

Variational autoencoders

In modern formulations of autoencoders, the function f and g are generalized to capture
a stochastic mapping p(z|x) and p(x|z), respectively. Variational autoencoder (VAE) [72]
is one of these formulations in which the input is mapped to a distribution instead of a
fixed vector and the loss function is formulated as the variational lower bound:

LV AE(ϕ, θ) = −log(pθ(x)) +DKL(qϕ(z|x) ∥ pθ(z|x)))

= E
z∼qϕ(x|z)

log(pθ(x|z)) +DKL(qϕ(z|x) ∥ pθ(z))
(3.9)

where DKL is the Kullback-Leibler divergence, and functions qϕ and pθ are the encoder and
decoder modeled by ϕ and θ parameters, respectively. One difficulty in this formulation
is the fact that calculating the loss function requires sampling z ∼ qϕ(x|z), which can be
solved by a reparameterization trick [72].

While the Gaussian distribution is a popular choice as a continuous prior in VAEs, learning
k-dimensional discrete representations with models such as vector-quantized VAE (VQ-
VAE) [17] is more convenient for a data compression application because the network
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already learns quantized representations. Representations extracted by VQ-VAE are used
in the architecture of machine learning-based speech codecs [73, 74]. In these models,
VQ-VAE is proven to be very efficient for low bit-rate speech compression.

3.7.2 Generative adversarial networks
Inspired by game theory, the generative adversarial network (GAN) is designed to include
two neural networks, a generator and a discriminator that compete in a minimax game.
Fig. 3.7 illustrates the diagram of GAN. The training criterion of GAN is described by:

Min
G

Max
D

L(D,G) = E
x∼pdata(x)

[log(D(x))] + E
z∼pz(z)

[log(1−D(G(z)))] (3.10)

Figure 3.7 Illustration of the GAN architecture. The discriminator produces
binary class labels corresponding to real/synthetic data. These labels are used
for generating gradient for training the generator.

where the accuracy of discriminator D is maximized to recognize real data by the term

Ex∼pdata(x) [log(D(x))] and is also maximized for discriminating synthethic data from real
data by the term Ez∼pz(z) [log(1−D(G(z)))]. On the other hand, generator G is trained
to compete with the discriminator by minimizing the term Ez∼pz(z) [log(1−D(G(z)))]

simultaneously to produce realistic samples. In other words, this loss function quantifies
the similarity between the generated data distribution and the real data distribution. The
trained generator network has been shown to produce realistic samples for many real world
applications with rich contents such as audio and image. GAN is one of the most studied
generative networks, and over the years, many variant of GAN have been introduced such
as WGAN [75], CycleGAN [76], StyleGAN [77], all showing improvements over the original
GAN architecture.

GAN-base architectures, despite having a great potential to produce realistic data samples,
face some challenges in training. For example, reaching equilibrium between generator
and discriminator can be difficult: the generator can collapse to produce only a subset
of outputs (mode collapse), or if the discriminator becomes perfect during training, the
loss function becomes zero and does not produce any gradient for training. To mitigate
these training problems, several solutions have been proposed. One strategy is to use
feature matching by designing a discriminator to compare the statistics of the output of
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the generator to those of real samples. Also, adding noise to the inputs of the discriminator
can prevent the problem of vanishing gradients. Depending on the nature of the problem,
there are a variety of alternative solutions to improve the training of GANs and solutions
are not limited to these examples [78, 79].

GANs are exceptionally good for synthesizing realistic speech signals. They generally can
produce higher speech quality than standard codecs currently in use. Compared to early
deep learning-based approaches such as Wavenet [15], GANS are computationally less
complex and much faster at synthesizing speech signals [52, 53, 54]. In Chapter 8, the
architecture of the decoder in the proposed speech codec has a GAN structure.

3.7.3 Flow-based models
Learning the probability density function of data p(x) with a generative model is a chal-
lenging task since exploring all of the possible values of the latent variable in p(x) =∫︁
p(x|z)p(z)dz can be difficult. However, unlike the two previous generative models dis-

cussed in this section, flow-based models use a normalizing flow to model the exact data
distribution [71]. A normalizing flow is a series of invertible functions fi which are used to
map a latent variable z with a typically simple tractable density function such as the multi-
variate Gaussian distribution to the density function of the data as x = fk ◦ fk−1 ◦ ...f1(z).
Since functions fi are invertible, the relationship between density functions can be ex-
pressed as z = f−1

1 ◦ f−1
2 ◦ ...f−1

k (x) to train the network. The training criterion of
flow-based model is simply the negative log-likelihood over the training dataset D:

L(D) = − E
x∼pdata(x)

[log (pθ(x))] (3.11)

Figure 3.8 Illustration of flow-based models. These models are composed of a
series of invertible transformations that maps a latent variable z to the density
function of the data.

Different invertible transformations have been proposed for flow-based models to model
the data probability density function [80, 81, 82]. In Glow [82], invertible 1x1 convolutions
are introduced for generative flow, and in Waveglow [83], it is applied for speech synthesis
by conditioning the distribution of audio samples on mel-spectrogram.
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3.8 Summary
In this chapter, the knowledge about machine learning techniques that is relevant to
understanding the models proposed later in this thesis has been presented. An introduction
to machine learning tasks and learning paradigms helps understand the reasoning behind
the tasks performed in this thesis. Since Chapters 5-8 are written in a scientific paper
format, they do not contain all the necessary basic knowledge about the architecture and
training of neural networks. In Sections 3.4-3.6, this knowledge is provided to facilitate
understanding of the machine learning techniques used in the experiments. Generative
models discussed in Section 3.7 introduce common techniques from the field of machine-
learning that are currently used for developing similar approaches to this project. In all
of the sections, contents are presented with a special focus on speech processing and the
relevant references are given. In the following chapter, the content that has been presented
in this chapter will be used to provide a coherent overview of the experiments performed
in this thesis.
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CHAPTER 4

Overview of the experiments

4.1 Introduction
In this chapter, a coherent view of the experiments performed in this thesis is provided.
An overview of these experiments is provided in table 4.1. Each section in this chapter
corresponds to one of the tasks performed in this thesis. A summary of the experimental
results from published papers is presented with further insights and links between the
development steps.

Table 4.1 Overview of experiments in this thesis.

Classification
Steps Training criterion Components
• Learn unsupervised

features x′

• A supervised model of
p(C|x′) to predict C
emotion classes

• STDP • ERB filters
• SNN reservoir
• PCA
• LDA

Regression
Steps Training criterion Components
• A supervised model of
p(y|x) to predict speech
sample y

• MSE • LSTM layers

Representation learning (encoder)
Steps Training criterion Components
• An unsupervised model

of p(C1, C2|x) to learn
representations C1 and
C2

• Linear classification of
multiple attributes

• Feature quantization

• Contrastive loss • CNNs
• GRUs

Speech synthesis (decoder)
Steps Training criterion Components
• An unsupervised model

of p(x|C1̂, C2̂) to
synthesize speech signal
from quantized
representations C1̂ and
C2̂

• Adversarial loss
• Feature loss
• Mel-spectrum loss
• CC loss

• CNNs
• ResBlocks
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4.2 Classification
Fig. 4.1 illustrates a representation of the proposed classification model. The primary
objective when designing a classifier in this project is to extract features of speech that
preserve long-term speech attributes and that can eventually be used for coding. As a
result, the bulk of the design focuses on extracting a set of unsupervised features x′ from
an input signal x. An intentionally simple classifier is used to test if long-term attributes
C are preserved and if they can be identified easily. For simplicity, we focus on classifying
emotions, one of the most complex long-term attributes of speech.

Figure 4.1 A graphical representation of the proposed classification model. A
simple classifier recognizes the emotions from unsupervised biologically-inspired
features x′.

To extract unsupervised features, we use the structure of the human auditory system as our
inspiration. The biologically inspired design includes a model of the human auditory pe-
riphery, a processing stage based on SNNs, and the motor theory of speech perception [84].
We extract unsupervised features in two stages. The preprocessing stage, which should be
able to preserve all of necessary information in a simpler form than the raw signal itself,
and the processing stage, which should be able to handle the variety of information that
is present in speech signals. The preprocessing stage is influenced by the human auditory
periphery, where spectral information is extracted using the equivalent rectangular band-
width (ERB) scale. The processing stage is based on SNNs and extracts features from
speech signals with the STDP learning rule, a biologically plausible unsupervised learning
method. The motor theory of speech perception influences both stages. Using linear pre-
diction (LP), we decouple the source and vocal tract components of the speech signal, and
we provide them separately to two SNN reservoirs for better access to vocal tract gestures
in the model. Subsequently, the extracted features are classified with a simple classifier
constructed with two stages, the first consisting in a principal component analysis (PCA)
to reduce the dimensionality and the second being a linear discriminant analysis (LDA) to
find a linear combination of features that characterize emotions. The results achieved by
the proposed classifier were comparable with the state-of-the-art classifiers. The emotion
classification task introduces a method for extracting biologically-inspired features, and
demonstrates the possibility of using such features for classification of long-term speech
attributes as a part of a speech codec.
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While certain elements of this design were highly influential in the design of the follow-
ing tasks, some other elements that were not compatible with the following tasks were
abandoned. Unsupervised learning of representations with a biologically inspired design
is the guiding principle of designing a fully machine learning-based encoder in the third
task (Section 4.4). In that third task, we expand the notion of biologically-inspired design
by including theories of cognition. Linear prediction and linear classification also play an
important role in the design of the encoder. However, at the time of conception of the
proposed classifier, SNNs had several important limitations. Modeling a large number of
spiking neurons for construction of an entire codec was computationally expensive and
did not seem to be feasible. Moreover, SNN training algorithms did not seem to be able
to produce accurate speech signals. As a result, the following tasks are all performed
using conventional ANNs. Besides, in all of the following tasks, preprocessing stages are
abandoned, and building end-to-end designs with less manual engineering of features is
prefered.

4.3 Regression
Unlike classification, prediction deals with a more complicated objective of producing a
waveform. In its simplest form, the goal is to produce a speech signal with maximum
prediction gain, and in its most complex form the goal is to synthesize speech signals with
higher subjective quality.

Figure 4.2 A graphical representation of the proposed predictor model. The
network produces speech waveform in an autoregressive manner. The connec-
tions represent the relationship between samples that is modeled by the network.

Fig. 4.2 illustrates a representation of the proposed predictor model for the regression task.
The objective is to train a small RNN for a few number of passes on the recent samples
of speech (a 10-25 ms window depending on the configuration), in an online manner, to
keep the network updated for predicting the following samples. Although the network
has a very short receptive field of L samples (5 ms), to limit the size of the network and
its complexity, online training extends the memory of the network to a longer window
(hundreds of milliseconds). The extension of the network’s memory varies depending
on the network configuration. Fig. 4.3 demonstrates the extension of the memory of
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the network as a result of our training approach. Longer memory helps to exploit long-
term correlations in the signal and to make a better prediction of future samples. We
apply the proposed predictor to the packet loss concealment (PLC) problem. If one or
multiple consecutive speech frames are lost, the network produces a speech waveform in an
autoregressive manner to replace the lost frames. We showed that the proposed method
outperforms the standard ITU G.711 Appendix I PLC technique in terms of PESQ scores.

-100ms 0

Figure 4.3 The proposed predictor has a memory of the input signal. This
memory extends to hundreds of milliseconds with online training to capture
long-term correlations.

While using a small RNN, trained in an online manner, can predict speech samples to pro-
duce high-quality speech up to several frames, the design needs modifications to produce
features that can encode speech signals. In the next task, we use RNNs for prediction
in a latent space, instead of prediction in sample space, as a method for representation
learning.

4.4 Representations learning (encoder)
For the representation learning task, we design a network based on several theories of
cognition, as an encoder. First, we extract hierarchical representations in two levels of
abstraction. The lower and upper stages process information from short and long frames
of speech, respectively. Secondly, a top-down pathway between the abstraction levels is
introduced to improve the quality of the representations. Finally, we use predictive coding
as the learning strategy.

Fig. 4.4 illustrates a representation of the encoder. The network is composed of multiple
subnetworks. We extract latent variables zs and zl with two subnetworks based on CNNs.
The successive subnetworks in the neural network represent increasing levels of abstraction.
Irrelevant variations are reduced with CNNS, starting from smaller building blocks of
speech signals to the bigger building blocks, to produce the latent variables. We use
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Figure 4.4 A graphical representation of the proposed encoder. Speech rep-
resentations (Cs and Cl) are extracted by prediction in latent space (zs and
zl).

autoregressive recurrent layers based on GRUs to derive contextual representations Cs

and Cl. The extracted representations predict the future latent variables zs and zl with
a linear function. The linear prediction of latent variables plays an important role in
regularizing the model as well as producing representations that are interpretable with
a linear classifier. A top-down pathway also decorrelates long-term attributes of speech
from short-term representations. The combination of these elements shapes a network to
carry out predictive coding in latent space.

We measure the performance of the proposed approach in terms of classification accuracy
for several short-term and long-term speech attributes including speaker identity, emotions
and phonemes. The results outperform the state-of-the-art approaches. The extracted
representations are also extremely robust to quantization. With this task, we conclude
the design of the encoder. In the following task, we propose a decoder to resynthesize
high-quality speech from the quantized speech representations.

4.5 Speech synthesis (decoder)
Fig. 4.5 illustrates a representation of the proposed decoder. A two stage GAN-based
structure is used to resynthesize natural-sounding speech signals x from the quantized
representations Cŝ and Cl

ˆ extracted by the encoder. Since training a GAN structure is a
difficult task, multiple objectives are used to construct a proper criterion for training the
network. First, an adversarial loss is used to minimize the difference between real samples
and resynthesized samples in general. This measure is a good approximation of subjective
measures, since the discriminator network minimizes any detectable difference between the
resynthesized speech sample and the real speech sample. Secondly, two cognitive coding
(CC) distances are used to minimize the difference between the signals, by minimizing
the difference between long-term and short-term representations extracted from signals.
Thirdly, the mel-spectrum distance is used to minimize the spectral difference between the
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two signals. Finally, a feature-matching distance is used to further enhance the ability of
the discriminator network in distinguishing real samples from resynthesized ones.

Figure 4.5 A graphical representation of the proposed decoder. Speech signal
is resynthesized from the quantized representations with adversarial training.

We evaluate the subjective quality of the proposed approach to resynthesize speech signals
with an AB test. The proposed method outperforms the standard AMR-WB codec in
terms of subjective quality, delay and bitrate. With the proposed models in the third and
fourth tasks, this conclude the design of a fully machine learning-based codec.

4.6 Summary
In this chapter, an overview of all of the tasks performed in this thesis, the links between
the development steps, and further insights are provided. With the performed tasks,
we provided new solutions for adressing classical challenges (classification, prediction) in
conventional codecs as well as developing a fully machine learning-based speech codec. Our
results show that machine learning tools are efficient for unfolding complicated patterns
of speech signal, which current coding systems normally are struggling to exploit. In
the following Chapters 5-8, published papers for the tasks performed in this thesis are
reproduced.
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séparément par deux réservoirs de neurones. La sortie de chaque réservoir est réduite en
dimensionnalité et envoyée à un classificateur final. Il a été démontré que cette méthode
offre de très bonnes performances de classification sur la base de données de Berlin sur
le discours émotionnel (Emo-DB). Cela semble un cadre très prometteur pour résoudre
efficacement de nombreux autres problèmes de traitement de la parole.



5.1. ABSTRACT 59

Biologically inspired speech
emotion recognition

Reza Lotfidereshgi, Philippe Gournay

5.1 Abstract
Conventional feature-based classification methods do not apply well to automatic recog-
nition of speech emotions, mostly because the precise set of spectral and prosodic features
that is required to identify the emotional state of a speaker has not been determined yet.
This paper presents a method that operates directly on the speech signal, thus avoid-
ing the problematic step of feature extraction. Furthermore, this method combines the
strengths of the classical source-filter model of human speech production with those of
the recently introduced liquid state machine (LSM), a biologically-inspired spiking neu-
ral network (SNN). The source and vocal tract components of the speech signal are first
separated and converted into perceptually relevant spectral representations. These rep-
resentations are then processed separately by two reservoirs of neurons. The output of
each reservoir is reduced in dimensionality and fed to a final classifier. This method is
shown to provide very good classification performance on the Berlin Database of Emo-
tional Speech (Emo-DB). This seems a very promising framework for solving efficiently
many other problems in speech processing.

5.2 Introduction
Speech is a fundamental means of communicating not only words, but also a vast range of
human emotions. Consequently, speech processing applications, such as human-machine
interfacing and speech recognition, could benefit from the introduction of a reliable method
for automatic recognition of human emotions through speech.

Conventional speech emotion recognition methods consist of a feature extraction step
followed by a classifier. Various spectral and prosodic features can be used [85]. Finding
the “best” set of features, namely, one that is both complete and compact, is a critical
step which has a considerable impact on the performance of the system. State of the art
conventional methods mostly differ in their choice of features and of classifier type [86, 87].
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In recent years, there has been an increasing trend toward developing speech processing
methods that operate directly on the speech signal in order to avoid the problematic
feature extraction step. For example, Convolutional Neural Networks (CNNs) [88] and
Deep Neural Networks (DNNs) [89], have been successfully used for recognizing emotions
directly from raw temporal or spectral data.

The Liquid State Machine (LSM) is another recently proposed method that operates
directly on raw data. The LSM relies on a network of spiking neurons that are much
closer to biological neurons than the rate-based model used in CNNs and DNNs. Despite
its theoretical appeal, the LSM is slow in finding practical applications. The main problem
when implementing an LSM is to create a specific reservoir design that is best adapted to
the task at hand [90]. In this paper, this problem is solved by introducing prior knowledge
about the human speech production system into the LSM. Without any loss in terms of
information, the speech signal is divided into two components: the source and the vocal
tract. Individually, each component is easier to process by a reservoir of spiking neurons.
Furthermore, the inclusion of a production model in the recognition system is justified
by the motor theory of speech perception, that states that people perceive speech by
identifying the vocal tract gestures that produced it [84].

The outline of the paper is as follows. The source-filter model for human speech production
and the principles underlying the liquid state machine are reviewed in section 5.3. The
proposed biologically inspired method is presented in section 5.4. Some experimental
results are given and discussed in section 5.5, and conclusions are drawn in section 5.6.

5.3 Relation to prior work
5.3.1 The source-filter speech production model
According to the source-filter model of human speech production, a speech signal is pro-
duced by passing a source of air pressure through an acoustic filter [91]. The source is a
combination of a noise-like turbulent excitation produced by constrictions along the vocal
tract (for unvoiced speech) and a quasi-periodic excitation produced by vibrating vocal
folds (for voiced speech). The filter represents the variable response of the vocal tract. In
practice, the most commonly used method to separate the contributions of the source and
the filter is the Linear Predictive (LP) analysis. The LP analysis is a frame-based process
which results in: (1) a set of LP coefficients which represent the filter for the frame; and
(2) a residual error signal which represents the source. Equation 5.1 shows the calculation
of a predicted speech sample ˜︁x(n) from past speech samples x(n− i) and the calculation
of a residual sample e(n). The Levinson-Durbin algorithm is usually used to find the ai
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coefficients that minimize the quadratic error E as shown in equation 5.2.

˜︁x(n) = M∑︂
i=1

aix(n− i), e(n) = x(n)− ˜︁x(n) (5.1)

E =
∑︂
n

e(n)2 (5.2)

The LPC analysis has long proven to be a very efficient tool in speech processing and is
now used for example in every speech coder.

5.3.2 The liquid state machine

A reservoir computing system consists of a Recurrent Neural Network (RNN) followed
by an output layer of neurons that performs the final recognition/classification task [90].
In a reservoir computing system, the RNN is randomly created and does not need to
be trained using supervised methods such as the gradient descent. The output layer,
in contrast, is trained using a supervised method. Reservoir computing is successful for
complex nonlinear classification tasks for two reasons. First, because training an RNN
using a gradient-descent algorithm would be time consuming and prone to convergence
issues. Secondly, because reservoir computing has been shown to outperform most other
nonlinear identification, prediction and classification methods on various problems.

The Liquid State Machine (LSM) is a special type of reservoir computing method where
the reservoir is a Spiking Neural Network (SNN) [69]. SNNs use temporal coding and
therefore process information in very much the same way as a biological neural structure
does. Fig.5.1 shows a typical LSM structure. First, the LSM uses a function LM to map
the input u(t) to the “liquid state” x(t), where x(t) is an arbitrary nonlinear function of
the input u(t) and of the past input values. Secondly, a memoryless function fM maps
x(t) to the output y(t). This “readout function” is trained for the task to accomplish.
The SNN performs a nonlinear mapping from the input space to the high dimensional
“liquid state” space. As a result of this projection, the separation of different classes by
the readout function is much easier. Several methods including Support Vector Machine
(SVM), Multi Layer Perceptron (MLP) and ridge regression have been tried as reservoir
readouts [90].
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Figure 5.1 A typical LSM structure. Only the output layer is trained using a
supervised methods.

5.4 Proposed method
Fig.5.2 shows the flowchart of the proposed speech emotion recognition method. The
recognition process is divided into two steps: the preprocessing and the liquid state ma-
chine.

In the preprocessing step, the input speech signal is divided into two orthogonal and
complementary components that are transformed and perceptually shaped according to
the properties of the human cochlea. Specifically, an LP analysis is performed on a frame
base. The prediction residual is calculated according to equation 5.1 and decomposed
using a 77-channel gammatone filterbank with ERB scaling. This constitutes the input of
the first reservoir. In parallel, the frequency response of each all-pole LP filter is computed
to reveal the formant structure of the speech signal. This frequency response is also shaped
using the exact same ERB scaling and constitutes the input of the second reservoir.

As in the lower auditory nuclei, even auditory cortex has the tonotopic structure [11].
Such structure suggests that closer frequency channels are processed by closer groups
of neurons. In the design of the reservoirs, the neurons are therefore arranged in 3D
structures, each reservoir containing 77 layers of 3*3 neurons. Each layer of neurons is
excited by only one of the 77 input channels, in order of increasing frequency. Connections
between closer neurons are favored, with a probability of connection between neuron n1

and n2 that depends on the distance D(n1, n2) according to equation 5.3. Parameters C

and λ are responsible for controlling the reach and density of the connections, and are set
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Figure 5.2 Flowchart of proposed emotion recognition method.

respectively to 1 and 3.4. These values were determined after some experiments and could
probably be further optimized.

P (n1, n2) = Ce−
D2(n1,n2))

λ2 (5.3)

A standard implementation of the integrate-and-fire neuron by Troyer is used [92]. The
Asymmetric Spike Time-Dependent Plasticity (STDP) is then used as the learning rule to
adapt the conductance of the synapses throughout the speech sample. This learning rule
is known to result in stable networks that are very effective at extracting the correlations
present in the input [93]. The exact learning rule is given in equation 5.4.

f (∆) =

{︄
A+e

∆
τ+ ,∆ < 0

−A−e
− ∆

τ−
,∆ > 0

(5.4)
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More details about this learning rule can be found in [93]. ∆ is the time difference between
pre- and post-synaptic spikes. A+ and A− are maximum amount of synaptic modifications.
Two key parameters to be set are the time constants τ+ and τ− because they condition
the memory of the reservoir. Following [93], τ+ was set to 20ms and τ− was tuned to
maximize performance (see section 4). The simulation of neural activity is done using the
Brian2 simulator [94] 1.

To reduce dimensionality, Principal Component Analysis (PCA) is applied to the average
activity of the neurons from each reservoir. Compared to the widely used ridge regression,
PCA presents the advantage of being able to shrink the output of the two reservoirs
separately. The outputs of the two PCAs are simply combined. For final recognition,
Linear Discriminant Analysis (LDA) is used.

5.5 Experiments

5.5.1 Berlin database of emotional speech
The proposed method was tested on the Berlin database of emotional speech (Emo-DB,
[96]). This is a well recorded and now widely used emotional speech database. It is easily
accessible and well documented. It contains 535 utterances produced by ten professional
actors pronouncing ten different texts and covers seven different emotions.

5.5.2 Preprocessing
The preprocessing step first consists in an LP analysis of the input speech signal. The
autocorrelation method is used to estimate LP filters of order 16. A 30ms Hamming
window is used so that the formant structure is adequately captured. The LP coefficients
are updated every 5ms in order to closely track the changes in the vocal tract. The
source and vocal tract components of the speech signal are then separated. First, the LP
residual is computed and fed to a 77-channel gammatone filterbank. For each channel
of the filterbank, the energy of 5ms segments is computed and a logarithm is applied to
reduce the dynamic range of this representation of the source component. Secondly, the
frequency response of each LP filters is computed and shaped using an ERB frequency
scaling. A logarithm is also applied to reduce the dynamic range of this representation.

An example of emotional speech signal is represented in Fig.5.3(a). The corresponding
source and vocal tract representations are presented in Fig.5.3(b) and Fig.5.3(c), respec-

1. Regarding computational complexity, the proposed method can process speech signals faster than
real time. The main source of computational complexity is simulating SNNs reservoirs. An estimation of
complexity of simulating SNNs by Brian 2 can be found in [95].
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Figure 5.3 Preprocessing of speech signal. The scales of the spectro-temporal
representations are in dB.

tively. These two spectro-temporal representations of the speech signal are used as inputs
for two reservoirs of spiking neurons.

5.5.3 LSM tuning
Fig.5.4 shows the recognition rate of the proposed method for different numbers of principal
components for each of the two reservoirs. The reservoir for the vocal tract component
was tuned for τ−

τ+
= 5 and the reservoir for the source component was tuned for τ−

τ+
= 3.

The results are obtained using 50-fold cross validation where 90% of the database is used
for training and 10% for testing. Results below 60% of recognition rate are not shown.
The vertical and horizontal axes are the number of principal component selected from
the vocal tract and source reservoirs, respectively. The borders of the figure shows the
performance when only one reservoir is used (no component from the other reservoir is
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Figure 5.4 Performance (in percent) of the proposed method for different num-
bers of principal components for each reservoir.

selected). It is quite clear that both reservoirs contribute highly to the final recognition
rate. The performance of the proposed method is not very sensitive to the choice of
numbers of principal components, since the recognition rate stays above 80% for a wide
range of numbers of components.

The highest recognition rate of 82.35% is achieved for 29 and 44 principal components for
the vocal tract and the source reservoirs, respectively, and the 95% confidence interval is
±1.36%. Table 5.1 shows the corresponding confusion matrix.

Table 5.2 compares the recognition rate obtained with the proposed method to those
obtained with other methods that have been tested on the same emotional speech database.
Using feature selection and fusion, the method presented by Jin in [97] achieved 83.10% of
correct recognition. It should be noted however that this method was tested on a subset
of only 494 speech samples out of 535, which artificially increases the performance. Using
an enhanced kernel isomap, the method presented by Zhang in [98] achieved a recognition
rate of 80.85%. Finally, using rhyme and temporal features, the one presented by Bhargava
in [99] achieved 80.60%. With a recognition rate of 82.35%, the method proposed in this
paper compares favorably to these state of the art methods.
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Table 5.1 Confusion matrix.
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15 1 1 10 73 0 0

0 1 0 1 0 97 1

0 15 0 3 0 0 82

In another experiment, we used an LSM with one single reservoir to recognize emotion
directly from the speech signal, without separating the source from the vocal tract. The
same preprocessing as for the source component was used. The design of the rest of
the system was not changed. After tuning the reservoir, a recognition rate of 75.73%
was obtained. The 6.62% difference in recognition rate clearly indicates that including a
source-filter model in the recognition system significantly improves performance.

5.6 Conclusions
This paper proposed a new method for automatic recognition of speech emotions based
on the Liquide State Machine (LSM), an emerging and very promising tool. This method
operates directly on the speech signal and thus requires no feature extraction. It is based
on several biological elements. First, the LSM includes a reservoir of spiking neurons
which are very close to biological cortical neurons. Then, its original LSM design with two
separate reservoirs (one for the source signal and the other for the vocal tract) builds upon
the motor theory of human speech perception. This design is more flexible and tunable, as
for example the size and memory of the two reservoirs can be tuned separately. One could
imagine decomposing the signal even further, using for example rapidly evolving and slowly
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Table 5.2 Recognition rate compared with other methods.
Our method Jin Zhang Bhargava

82.35% *83.10% 80.85% 80.60%
* For a subset of Berlin Database

evolving waveform decomposition of the source signal [100] Finally, the source and vocal
tract components of the speech signal are both analyzed on an Equivalent Rectangular
Bandwidth (ERB) scale which is a good model for the human peripheral auditory system.

The experimental results showed that this method provides a very good classification
performance for an emotion recognition task. It is, however, a very general framework
that should also perform well for many other speech processing tasks.
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existants, qui fonctionnent sur des caractéristiques paramétriques et sont entrainés hors
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de paquets (PLC) et montrons qu’il surpasse la technique standard ITU G.711 Appendice
I PLC.
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Speech prediction using an adaptive
recurrent neural network with

application to packet loss concealment
Reza Lotfidereshgi, Philippe Gournay

6.1 Abstract
This paper proposes a novel approach for speech signal prediction based on a recurrent
neural network (RNN). Unlike existing RNN-based predictors, which operate on para-
metric features and are trained offline on a large collection of such features, the proposed
predictor operates directly on speech samples and is trained online on the recent past of the
speech signal. Optionally, the network can be pre-trained offline to speed-up convergence
at start-up. The proposed predictor is a single end-to-end network that captures all sorts
of dependencies between samples, and therefore has the potential to outperform classical
linear/non-linear and short-term/long-term speech predictor structures. We apply it to
the packet loss concealment (PLC) problem and show that it outperforms the standard
ITU G.711 Appendix I PLC technique.

6.2 Introduction
Consecutive samples or blocks of natural signals are usually correlated with one another.
In the case of speech signals [101], most of this correlation comes from the human speech
production mechanism, which is by no means memoryless (due to the inertia of the vocal
cords and articulators, and to resonances in the vocal tract). In addition to the particular
anatomy of the speaker, the limited set of phonemes and words that compose the language
he or she speaks (linguistics) and the specific message he or she wants to share (semantics)
both introduce further correlation. Successful speech processing applications, including
speech compression, recognition and synthesis, make extensive use of these correlations.

In classical speech signal processing, specific structures called predictors are normally
used to capture and make use of these correlations. Linear Predictive Coding (LPC) for
example relies on various types of linear predictors [102]. Short-term predictors, which
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operate at the sample scale (one millisecond or less), handle correlations between nearby
samples. Pitch predictors, which operate at a larger time scale (one pitch period, typically
2.5 ms to 20 ms), deal with longer-term correlations. To increase performance, nonlinear
predictors (for example based on Volterra or Wiener series) are sometimes used to capture
more subtle correlations [103]. These different predictors are generally combined in a
cascade, each one taking care of its own type of correlation.

Recently, new machine learning and artificial intelligence tools have been developed to
capture correlations in sequential data such as text and speech signals [104]. Hidden
Markov Models (HMMs) and Deep Neural Networks (DNNs) [105], which are very efficient
at unveiling statistical dependencies for the former and nonlinear dependencies for the
latter, are two examples of such tools. Several speech processing applications, in particular
speech and speaker recognition and speech synthesis, have made sudden and considerable
progress since they were introduced [104].

These modern tools are often treated as black boxes in the sense that the painstaking
manual tuning that characterised most classical tools has been replaced by an automatic,
thus effortless (yet computationally intensive), training on the largest possible dataset.
This approach makes it possible to design very complex systems that provide greater
performance. Most of them, however, still rely on a combination of manually and cleverly
designed features.

In this paper, we propose a new approach for speech signal prediction based on an adaptive
recurrent neural network. Compared to existing approaches, the network operates directly
on speech signal samples and is actively trained on the recent past of the speech signal.
To demonstrate the merits of this predictor, we apply it to the Packet Loss Concealment
(PLC) problem and compare it to the ITU G.711 Appendix I standard [106].

The outline of the paper is as follows. First, the Long Short-Term Memory (LSTM) archi-
tecture of Recurrent Neural Networks (RNN), along with classical and modern techniques
for Packet Loss Concealment (PLC), are briefly reviewed in section 6.3. The proposed
speech predictor structure and its application to PLC are then described in detail in sec-
tion 6.4. The experimental setup and results obtained are presented in section 6.5. Finally,
some conclusions are drawn and perspectives for future research are discussed in section
6.6.
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6.3 Relation to prior work
This section presents a brief overview of the long short-term memory architecture used
in the proposed approach for speech prediction, and some background information about
packet loss concealment.

6.3.1 Long Short-Term Memory
Long Short-Term Memory (LSTM) is a variation of Recurrent Neural Network (RNN)
that is very efficient at solving problems related to sequential data. The concept was first
proposed in 1997 [47] then refined over the years [107, 108, 109]. An LSTM network is
composed of blocks, each block containing different gates that control the flow of infor-
mation. The « input » gate controls the flow of information from the input of the block
to its memory. The « forget » gate controls the duration for which the information is
kept in memory. Finally, the « output » gate controls the contribution of the memorized
information to the output activation of the block. Training of LSTM networks is normally
done using backpropagation through time [109].

Over the past years, LSTM and other structures with gated units have proven to be very
successful in solving various speech-related problems. This goes from processing of text
information including automatic translation [110], to processing of acoustic signals such
as speech recognition [111, 112]. Most applications to acoustic speech signals consist in
classification or recognition tasks. For these applications, training the network first then
operating (or testing) it makes much sense. Also, for these applications, the network usu-
ally operates on parametric features such as MFCCs or spectrograms rather than directly
on input samples, because these features provides some degree of abstraction and the
information lost does not really matter.

6.3.2 Packet loss concealment
The purpose of Packet Loss Concealment (PLC) in a Voice over Packet Network (VoPN)
speech communication system is to provide a replacement for unavailable (either lost or
overly delayed) speech packets [113]. Most, and possibly all, conventional (i.e. signal
processing-based) PLC techniques rely exclusively on the most recent past and sometimes
on the most immediate future of the speech signal. Conventional PLC techniques that
operate directly in the signal domain simply extrapolate or interpolate from one or two
pitch periods before and after the packet loss. Model-based or decoder-based conventional
PLC techniques rely on parametric features or speech coding parameters that represent
one or two frames of speech signal (one frame being typically 10 to 30 ms long). All these
techniques have been engineered, or manually designed, based on the general properties of
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the speech signal. In particular, the short time-horizon that is used stems from the short
decorrelation time that characterizes speech signals.

In the last decade, some more modern (i.e. machine learning or artificial intelligence-
based) PLC techniques have been proposed. In reference [114], a statistical Hidden Markov
Model (HMM) is used to drive a sinusoidal analysis/synthesis model of the speech signal.
In reference [115], a Deep Neural Network (DNN) is used to regenerate the log-power
spectrum and phases of the missing frame. The DNN is first trained on a large set of
spectral features. Then, in the reconstruction stage, it is fed with the spectral features of
the previous frames. To our best knowledge, a modern PLC technique that that is not
pre-trained and that operates directly in the signal domain has yet to be proposed.

6.4 Proposed method
This section presents the general structure of the proposed predictor then gives details
about offline pretraining, online training and prediction.

6.4.1 General structure
The proposed method for speech prediction and packet loss concealment is illustrated in
Fig.6.1. First, as indicated in the dotted-line box, the prediction network can be either
randomly initialized or pretrained offline on a set of speech signals. This pretraining is
optional but has the advantage of speeding-up convergence of the network at start-up.
Then, depending on whether the input speech frame is available or not, the decision is
made to simply copy it to the output and train (i.e. adapt or update) the prediction
network, or to generate a replacement for the lost frame using the prediction network.

The prediction network operates directly on raw speech samples, without any feature
extraction. This is the current trend in speech processing using neural networks [88],
mostly because no set of parametric feature has been found so far that is complete enough
to capture all dimensions of the speech signal (including speaker identity, emotional state
and acoustic background ambiance).

During our first experiments, we considered two options to feed the network: either one
single sample at every time step, or with a sliding window of consecutive samples at every
time step (with a window shift of one sample). We used the latter approach for two
reasons. First, because it allows the network to learn both an internal representation of
the speech signal and its evolution through time. Then, because the former approach has
proven to produce less stable results especially when reconstructing lost frames (the error
in a predicted sample seems to propagate much easier in the single input network).
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Figure 6.1 Flowchart of the proposed PLC algorithm.

The prediction network itself is composed of several layers of LSTM blocks. In the exper-
iments described in section 6.5, one of the most commonly used LSTM architecture called
Vanilla LTSM [116] is used. LSTM states are reset to zero between batches (stateless
mode). Peephole connections were not implemented because, according to [116], they do
not bring much benefit for prediction. The Mean Squared Error (MSE) between input
samples and predicted samples is used as objective training criterion.

6.4.2 Offline pretraining
Optional offline pretraining on a set of speech signals can be used to initialize weights and
biases in the network. In the experiments described in section 6.5, this is done using the
Adam optimizer [56] and minibatches of 80 samples (10 ms at the 8 kHz sampling rate).

This pretraining alone is not enough to provide good prediction performance. Speech is
both an exceptionally diverse and extremely dynamic signal. It is therefore difficult for a
single network to follow continuously and accurately its slightest local variations. Training
and executing a single giant network to do so does not seem practical either. Keeping track
of the evolution of the signal while maintaining a reasonable complexity requires using a
smaller network and training it on a more representative set of signals. This is why we
use online training on the recent past of the speech signal.

6.4.3 Online training or prediction
There are two possibilities during the operation phase of the network. If the input speech
frame is available, it is simply copied to the output of the system as illustrated in Fig.6.1.
It is also considered as a small but extremely relevant training set for the network. Multiple
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Figure 6.2 Signal samples used to train the prediction network for the first
sample of frame number k. N is the frame duration in samples, L is the size of
the sliding window, and T is the number of time steps

training passes are made over that small training set in a process that is often referred
to as stochastic optimization [56]. The samples used to train the prediction network are
illustrated in Fig.6.2.

If no input frame is available, then the prediction network performs regression to predict
the first sample of the output frame. This sample is then used as input to predict the
next sample of the lost frame. This process goes on until the entire lost frame has been
reconstructed.

6.5 Experiments
The experiments presented in this section are intended to explore a variety of configura-
tions for the proposed speech predictor. Performance on a PLC task is studied because this
is a straightforward and typical application for speech prediction. Also, the ITU-T G.711
Appendix I standard is used as a reference, not only because of its good performance but
also because it is a representative example of conventional signal processing-based PLC.

6.5.1 Speech material
The experiments are done on a subset of the TIMIT database [117]. The sampling fre-
quency is 8000 Hz and the frame (or packet) duration is set to 10 ms. The number of
neurons per layer is intentionally small to limit the complexity of online training. To
reduce the extent of the experiments, the length of the sliding window is chosen to always
be the same as the number of neurons per layer.

Two hundred speech files from the training subset of the TIMIT database are used for
pretraining. They represent more than 50,000 frames of speech signal, for a total of 4
million of training speech samples. Since the number of neurons per layer is small, a single
epoch of pretraining is performed.
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Figure 6.3 MOS score as a function of number of passes for different configu-
rations of the network, for 80 time steps (left) and 160 time steps (right).

Ten speech files from the testing subset of the TIMIT database are used for testing. A 10%
packet loss rate is simulated, with lost packets being evenly spaced. The test files therefore
represent more than 400 lost packets, for a total of 32,000 lost, hence predicted, samples.
The performance of the proposed method is evaluated in terms of Mean Opinion Score
(MOS) and compared to that of the G.711 PLC algorithm. The MOS score is obtained
using the Perceptual Evaluation of Speech Quality (PESQ) software tool [118] 1.

6.5.2 Results
Fig.6.3 present the MOS as a function of the number of training passes for different
numbers of LTSM layers (from 1 to 4). The left panel corresponds to 80 time steps and
the right one to 160 times steps. In all cases, both the number of neurons per layer and
the size of the sliding window are set to 80. The lower and upper dotted lines correspond
to the MOS of a baseline condition (lost packets simply set to zero) and to the MOS of
the G.711 PLC algorithm, respectively. From these results, we conclude that the network
cannot predict speech efficiently after pretraining only (zero training passes). Specifically,
in the case of 80 time steps, the performance of the proposed PLC system is generally below
the baseline condition. Another conclusion is that better performance is obtained with

1. PESQ is an objective method for end-to-end speech quality assessment and it was standardized as
recommendation ITU-T P.862 [119]
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Figure 6.4 MOS score as a function of the number of neurons per layer (left)
of the number of time steps (right).

160 time steps than with 80. Also, 20 training passes generally gives good performance.
Lower performance for more that 20 passes probably results from overfitting because each
pass is performed on a small number of data.

Fig.6.4 presents the results obtained when varying the number of neurons per layers (left
panel) and the number of time steps (right panel). In both cases, the number of passes
is equal to 20. The first conclusion is that even a single layer of only 40 LSTM neurons
performs reasonably well when online training is used. The second conclusion is that
increasing the number of time steps beyond 160 does not seem to increase performance
significantly.

6.6 Conclusions
In this paper, a new approach for speech signal prediction based on a recurrent neural
network was proposed. The main characteristic of this approach is that the network is
actively trained on the recent past of the signal. Since this recent past represents the best
possible training set almost at all times, the network is able to follow closely the evolutions
of the signal. Furthermore, since the local variability of the signal is limited compared to
the variability of speech in general, a small network structure is effective. This, in turn,
allows the network to operate directly on speech samples. And since there is no more need
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for a manually-design feature representation, no information is lost compared to systems
that include a feature extraction step.

The proposed speech signal predictor was tested on a packet loss concealment task. With
proper setting, it was shown to outperform the standard ITU-T G.711 Appendix I PLC
algorithm. It is interesting to note that these good results were obtained using a completely
speech-agnostic system, in the sense that no speech model nor prior information about
subjective speech quality evaluation was introduced in its design. Good performance was
achieved even when using a very small LSTM networks (one layer of forty neurons). This
is interesting because complexity can rapidly be an issue when performing online training
or output regression.

Only a limited number of LSTM configurations were tested. Different neural network
configurations, different pretraining and training procedures, or even different types of
neural networks may further improve performances.

Finally, the proposed predictor is a very general tool that could benefit to other applica-
tions in speech processing, and that could apply to other correlated yet highly dynamic
types of data.
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vocaux tels que l’identité du phonème qui durent cent millisecondes ou moins sont capturés
dans le niveau d’abstraction inférieur, tandis que les attributs vocaux tels que l’identité
du locuteur et l’émotion qui persistent jusqu’à une seconde sont capturés dans le niveau
d’abstraction supérieur. Cette décomposition est réalisée par un réseau de neurones à
deux étages, avec un étage inférieur et un étage supérieur fonctionnant à des échelles de
temps différentes. Les deux étages sont entraînées pour prédire le contenu du signal dans
leurs espaces latents respectifs. Une voie descendante entre les étages améliore encore la
capacité prédictive du réseau. Avec une application dans la compression de la parole à
l’esprit, nous étudions l’effet de la réduction de la dimensionnalité et de la quantification
à faible débit sur les représentations extraites. Les performances mesurées sur les bases de
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données LibriSpeech et EmoV-DB atteignent, et même dépassent pour certains attributs
vocaux, celles des approches qui constituent l’état de l’art actuel.
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Cognitive coding of speech
Reza Lotfidereshgi, Philippe Gournay

7.1 Abstract
We propose an approach for cognitive coding of speech by unsupervised extraction of
contextual representations in two hierarchical levels of abstraction. Speech attributes
such as phoneme identity that last one hundred milliseconds or less are captured in the
lower level of abstraction, while speech attributes such as speaker identity and emotion that
persist up to one second are captured in the higher level of abstraction. This decomposition
is achieved by a two-stage neural network, with a lower and an upper stage operating at
different time scales. Both stages are trained to predict the content of the signal in
their respective latent spaces. A top-down pathway between stages further improves the
predictive capability of the network. With an application in speech compression in mind,
we investigate the effect of dimensionality reduction and low bitrate quantization on the
extracted representations. The performance measured on the LibriSpeech and EmoV-DB
datasets reaches, and for some speech attributes even exceeds, that of state-of-the-art
approaches.

7.2 Introduction
The human cognitive system is known to have a hierarchical organization, the most cogni-
tively complex operations being performed at the top of the hierarchy. While information
mostly flows from the bottom to the top of the hierarchy, this bottom-up flow is often
influenced by what is already known at the top of the hierarchy. Furthermore, there is
substantial evidence for the predictive nature of this top-down influence [120, 121]. A
parallel can be drawn between these defining elements of the cognitive system and the
models used in machine learning. One of the first successful applications of deep learning
was precisely in the field of automatic learning of hierarchical representations [122, 44]. It
was also found that introducing top-down processes in hierarchical models improves the
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quality of learned representations, thereby increasing the accuracy of recognition systems
based on these representations [123, 124]. Predictive coding has also been shown to be a
successful strategy in machine learning when processing various data modalities [124, 125].

Unsupervised learning not only reduces the need for labeled datasets, it also makes it possi-
ble to build comprehensive hierarchical representations that provide a deep insight into the
nature of the input data. This is particularly important in speech compression, where effi-
ciency depends on the completeness and compactness of the representation, which should
capture all sorts of speech attributes. Yet despite the great potential of unsupervised
learning, domain-specific representation learning, which can only capture a subset of the
attributes from labeled data, is still prevalent in the literature. Currently, one of the very
few approaches to extract comprehensive speech representations is the Vector Quantized
Variational Autoencoder (VQ-VAE) [17]. Its use in recent deep learning-based speech
coders and synthesizers [73, 74, 126] substantiates the need for compact and complete
speech representations.

In this paper, we propose and evaluate a new approach for unsupervised learning and ex-
traction of speech representations that heavily relies on the principles of cognition. First, a
two-stage neural network model is used to extract representations in two levels of abstrac-
tion, with a lower stage and an upper stage processing information from short and long
frames of data, respectively. Secondly, a top-down pathway between stages is introduced,
which has the effect of improving the quality of the representations. Finally, predictive
coding is used as the learning strategy. The performance of the proposed approach is
measured in terms of classification accuracy for speaker identity, emotions and phonemes.
To position the results of the proposed approach with respect to the current state of the
art, Contrastive Predictive Coding (CPC) [125] is used as a baseline. We observe that
the second stage of the proposed model delivers a compact and remarkably high-quality
long-term representation of the speech signal. The quality of the short-term representation
extracted by the first stage is improved compared to that of the CPC baseline, especially
when the dimension of the representation is reduced. Finally, we demonstrate that the
extracted representations are extremely robust to quantization.

7.3 Relation to prior work
The proposed Cognitive Coding model utilizes predictive coding in two stages and in-
cludes a top-down process between stages. These two stages produce two representations
that evolve at a different pace and thus correspond to different levels of abstraction. The
representations are extracted by maximizing the mutual information between the latent
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variables and the speech signal. Finally, the mutual information is maximized by mini-
mizing a contrastive loss.

Mutual information is a fundamental quantity measuring the relationship between random
variables. In previous work, it has been used in the formulations of Generative Adver-
sarial Networks (GANs) [14] and Variational Autoencoders (VAEs) to make them learn
interpretable representation of data [127, 128, 129]. Noise Contrastive Estimation (NCE)
is a method for parameter estimation of probabilistic models by discriminating data from
noise [130, 131]. In the model called Contrastive Predictive Coding (CPC) [125], NCE is
also formulated as a probabilistic contrastive loss that maximizes the mutual information
between the encoded representations and the input data.

In the CPC model, an encoder maps the input data to a sequence of latent variables,
and an autoregressive model produces another sequence of latent variables. The InfoNCE
loss introduced in [125] optimizes the discrimination of a positive sample from multiple
negative samples. In this paper, we optimize a similar objective with consideration of two
levels of abstraction and the presence of a top-down process. We also implemented the
CPC algorithm as a baseline against which to compare our results.

7.4 Cognitive coding of speech
The architecture and learning algorithm of the Cognitive Coding model are illustrated in
Fig. 7.1 1. The architecture can be described as follows. First, an encoder maps short
frames of speech signal xs(t) to a sequence of latent variables zs(t) while decreasing the
temporal resolution. Then, another encoder maps the first sequence of latent variables zs(t)
to another set of latent variables zl(t) while further decreasing the temporal resolution and
increasing the receptive field to match long frames of speech signal. In this study, we use
layers of Convolutional Neural Networks (CNNs) as encoders. Finally, two autoregressive
models map zs(t) and zl(t) to two sequences of contextual representations cs(t) and cl(t).
In this study we use Gated Recurrent Units (GRUs) for the autoregressive models.

We begin by describing the learning algorithm for the lower stage of the model. In this
lower stage, the mutual information between both contextual representations and short
frames of speech signal can be expressed as:

I(xs; cs, cl) =
∑︂

xs,cs,cl

p(xs, cs, cl)log
p(xs|cs, cl)

p(xs)
(7.1)

1. In Fig. 7.1 solid lines represent forward path in the network and dotted lines represent prediction
paths used for formulation of the loss function.
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Figure 7.1 The architecture and learning algorithm of the cognitive coding
model. The ratio between long and short frames in the diagram is chosen to be
three for illustration purposes. In this study the actual frame ratio is eight.

The following unnormalized density ratio captures the mutual information between a fu-
ture short frame of speech signal at step t+ k and both contextual representations:

fk(xs(t+ k), cs(t), cl(t)) ∝
p(xs(t+ k)|cs(t), cl(t))

p(xs(t+ k))
(7.2)

As in the CPC model, we do not use a generative model to produce future frames of speech
signal. Rather, we use the following quantity to approximate fk:

exp(zTs (t+ k)Ws(k)g(cs(t), cl(t))) (7.3)

In equation (7.3), Ws(k) is a linear transformation used for the prediction of zs(t+ k) (k
steps in the future) and g(cs(t), cl(t)) is a function of both contextual representations that
constitutes the input of the linear transformation. While a neural network could be used
for g to perform a nonlinear transformation, we simply repeat the long-term representation
to match the temporal resolution of the short-term representation and concatenate it with
the short-term representation to be used as input for the linear prediction of zs(t + k)

by Ws(k) . This is perfectly justified because the upper stage of our model produces a
long-term representation that is easily interpretable by linear classifiers (see section 7.5.1).

Finally, the loss function is derived according to noise contrastive estimation which is the
categorical cross entropy of classifying one positive sample of short frames of speech signal
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from N − 1 negative ones 2:

LN = E
Xs

[︄
log

fk(xs(t+ k), cs(t), cl(t))∑︁
xs(j)∈Xs

fk(xs(j), cs(t), cl(t))

]︄
(7.4)

For the upper stage of the model, an equivalent of equations (7.1-7.4) can be derived based
on long frames of speech signal xl(t). cs is omitted from equations (7.1-7.2). Furthermore,
since there is no top-down pathway in the upper stage, the prediction of zl(t+ k) is based
only on the long-term contextual representation cl(t) and the approximation for the density
ratio becomes:

exp(zTl (t+ k)Wl(k), cl(t)) (7.5)

The loss function is derived by substituting equation (7.5) in equation (7.4), and samples
are drawn from long frames of speech signal.

7.5 Experiments
This section presents experimental results regarding various speech attributes and in-
vestigates the effects of dimensionality reduction and quantization on the quality of the
representations. Two different datasets were used. First, a 100-hour subset of the Lib-
riSpeech dataset [132] was used to evaluate the performance of the proposed approach on
phonemes (a short-term attribute) and on speaker identity (a long-term attribute). We
used forced-aligned phoneme labels as well as the test and train split from [125] so that
we could obtain comparable results. Secondly, we used the Emov-DB dataset [133] to
evaluate the performance of the proposed approach on speaker emotions which is another
long-term attribute.

The encoder used in the lower stage consists of five layers of CNNs with filter sizes [10, 8,
4, 4, 4] and with strides [5, 4, 2, 2, 2]. The encoder in the upper stage consists of three
layers of CNNs with filter sizes [4, 4, 4] and with strides [2, 2, 2]. Each layer has 512 hidden
dimensions with ReLu activations. As a result, the lower and upper encoders downsample
their input by a factor of 160 and 8, respectively. We trained on 20480-sample windows
of speech signal sampled at 16kHz. As a result, the lower and upper encoders produce zc

and zl vectors of features once every 10 ms and 80 ms, respectively. We decided that the
dimension of the hidden state of GRUs would be either 8, 16, 32 or 256 so that the network

2. Positive samples for short and long frames are from distributions p(xs(t+k)|cs(t), cl(t)) and p(xl(t+
k)|cs(t), cl(t)) respectively. Negative samples for short and long frames are from distributions p(xs(t+k))
and p(xl(t+ k)) respectively.
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Figure 7.2 Linear classification of attributes and prediction accuracy of positive
samples in the loss function. (s: short-term, l: long-term, CC: Cognitive Coding.
CPC: Contrastive Predictive Coding.)

can produce representations of various dimensions. Prediction is done twelve steps in the
future, which extends the window of prediction up to 120 ms in the future for the lower
stage and 960 ms for the upper stage. We trained with a learning rate of 2e-4, using mini
batches of 8 samples, and performed approximately 300k updates.

7.5.1 Linear classification
The performance of our model is measured by training linear classifiers for various speech
attributes to show to what extent the extracted features are linearly interpretable. Fig.
7.2 (a-c) presents the performance of linear classification for speaker identity, emotion
and phonemes. Fig. 7.2 (d) shows the ability of the lower stage of the proposed model
to predict positive samples in the loss function up to twelve steps in the future. The
results are reported for classifying contextual representations extracted from long frames
of signal (l), short frames of signal (s), combined contextual representations (s&l) as well
as contextual representations of the CPC model. The following observations can be made
based on the results.

Regarding the baseline, the results reported in [125] for the 256-dimension representation
which produces 256 features every 10 ms are 97.4% and 64.6% of accuracy for speaker
identity classification and phoneme classification, respectively. With our implementation
of CPC, we were able to achieve a higher accuracy of 98.4% for speaker identity but a
lower accuracy of 51.9% for phonemes.

Since the upper stage of our model produces a set of features for each 80 ms of speech
signal, the number of features per 10 ms is 8 times less relative to the lower stage of our
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model and to the CPC model. For long-term attributes (speaker identity and emotion)
the proposed network outperforms CPC in terms of linear classification for combined
256-dimension representations by achieving an accuracy of 99.3% and 94.4% for speaker
identity and emotion, respectively. The corresponding accuracy achieved by the CPC
model was 98.4% and 91.9%. By reducing the dimensionality of the representations, we
observe that a high degree of linear separation between speaker identities and emotions
is maintained when considering the features extracted by the upper stage of our model.
Features extracted by the lower stage provide lower performance for long-term attributes.
Overall this is a desirable effect that we attribute to the top-down pathway which helps
decorrelate long-term attributes from short-term representations.

Regarding linear classification of phonemes based on contextual representations, we achieved
52% accuray, a lower performance than the state of the art with forced aligned features
provided by [125]. Strangely enough, this is true even with our implementation of CPC
baseline model. However, phoneme information is encoded in latent variable zs which
has a smaller receptive field compared to both contextual representations. Besides, not
all information is linearly interpretable. In an experiment we used a classifier with one
hidden layer on contextual representations and latent variables zs and zl and accuracy
increased to 64.1%. Features of zs are also a candidate for dimensionality reduction to
encode information in a smaller time scale.

We also investigated the effect of the top-down pathway on the prediction of positive
samples in the lower stage and compared the performance of our model with that of the
CPC baseline in the same setup. Fig. 7.2 (d) shows that the proposed approach is able
to predict positive samples of short frames more efficiently beyond 3 latent steps.
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Figure 7.3 Linear classification of quantized features.
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7.5.2 Quantization
In this study, we also investigated the compressibility of the features. Since each stage
predicts twelve time steps in the future, the contextual representations have a slow-evolving
nature and we observe that the features exhibit a high degree of temporal dependency.
For this reason, we decided we would quantize the features using 1-bit ∆-modulation. The
initial values of the features are encoded on 5 bits. Fig. 7.3 shows the results obtained
when the features are quantized for the most interesting configurations from Fig. 7.2.
We only consider representations with 32 dimensions and less because they are the most
likely to be used in speech compression applications. For the majority of the cases, the
performance of the linear classification is within 5% of the corresponding performance
from Fig. 7.2. Most notably, we observe that our model can encode long-term speech
attributes such as speaker identity and emotion with more that 50% accuracy at bitrates
as low as 100 bit/s.

7.6 Conclusion
In this paper, we presented a new model for cognitive coding of speech that combines
several principles of cognition. Specifically: (1) it produces a hierarchy of representa-
tions that correspond to different levels of abstraction; (2) it uses the predictive coding
principle; and (3) it includes a top-down pathway between levels of abstractions. The hier-
archy of representations captures a wide variety of speech attributes over a broad range of
time scales. Experiments show that this hierarchy is also easily interpretable, well suited
for compression, and remarkably robust to quantization. This cognitive coding model
should therefore find applications in high-quality speech synthesis, voice transformation
and speech compression.
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très robuste à la quantification des caractéristiques de représentation. Un test AB a été
effectué sur un sous-ensemble des phrases de Harvard qui sont couramment utilisées pour
évaluer les codecs de téléphonie mobile standard. Les résultats montrent que la méthode
proposée surpasse le codec standard AMR-WB en termes de délai, de débit et de qualité
subjective.
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Practical cognitive speech
compression

Reza Lotfidereshgi, Philippe Gournay

8.1 Abstract
This paper presents a new neural speech compression method that is practical in the sense
that it operates at low bitrate, introduces a low latency, is compatible in computational
complexity with current mobile devices, and provides a subjective quality that is compara-
ble to that of standard mobile-telephony codecs. Other recently proposed neural vocoders
also have the ability to operate at low bitrate. However, they do not produce the same
level of subjective quality as standard codecs. On the other hand, standard codecs rely
on objective and short-term metrics such as the segmental signal-to-noise ratio that cor-
relate only weakly with perception. Furthermore, standard codecs are less efficient than
unsupervised neural networks at capturing speech attributes, especially long-term ones.
The proposed method combines a cognitive-coding encoder that extracts an interpretable
unsupervised hierarchical representation with a multi stage decoder that has a GAN-based
architecture. We observe that this method is very robust to the quantization of represen-
tation features. An AB test was conducted on a subset of the Harvard sentences that are
commonly used to evaluate standard mobile-telephony codecs. The results show that the
proposed method outperforms the standard AMR-WB codec in terms of delay, bitrate and
subjective quality.

8.2 Introduction
Voice quality, bitrate and latency are important attributes in real-time speech compression.
Voice quality and latency both play a major role in customer experience, while bitrate is
a requirement dictated by network operators. High voice quality requires, first, encoding
the most relevant features with a high compression ratio, second, quantization with a
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minimum amount of information loss, and finally, reconstruction of a natural-sounding
speech signal while avoiding perceivable imperfections and artefacts. Designing a low
latency codec that delivers high voice quality is a challenging task since latency limits
both encoder and decoder algorithms on their access to information. Consequently, it also
limits to some extent the quality of synthesized speech in conversational codecs.

Currently deployed conversational speech codecs use classical signal processing methods
[134, 135, 5]. In the range of medium bitrates such as the one used in mobile telephony
(around 13 kbits/s), the main strategy is to synthesize a speech signal that is as close
as possible to the original one (waveform matching) using objective metrics such as the
signal-to-noise ratio (SNR) measured on short segments of speech signal. The second
strategy used in this range of bitrates is to weight the SNR so that the coding noise is
shaped according to the properties of human perception.

In recent years, machine-learning based compression methods have successfully improved
some attributes of speech codecs. Deep learning-based speech synthesizers have been used
as decoders to produce speech from classical speech-coding parameters and it has been
shown that they can produce higher quality speech than standard decoders currently in
use. However, early approaches such as Wavenet [15] were much more computationally
complex and slow to synthesize speech signals. More recent approaches synthesize speech
with comparable quality, with much higher synthesis speed [83, 136] and less complexity
[52, 53, 54]. In some other models, learned speech features such as the ones extracted
by Vector-Quantized Variational Auto-Encoders (VQ-VAE) [17] replace classical features.
This leads to fully machine-learning based speech codecs. These models have been proven
to achieve higher compression ratio compared to other approaches [73, 74].

It is a known fact that the objective measures used in current standard speech codecs
do not correlate well with perceived speech quality. The short-term waveform-matching
strategy does not correspond to what is known about the biological mechanism of hearing,
and speech is processed in a much different way in the human auditory system compared
to what happens in current coding algorithms. Recent speech codecs based entirely on
machine-learning (neural vocoders) also produce features that preserve a subset of speech
attributes, but while they produce intelligible speech at very low bitrates, they don’t
achieve the same subjective quality as the codecs used in mobile telephony.

In this paper, we propose a fully-learned speech codec based on hierarchical and inter-
pretable features. Using a model of Cognitive Coding (CC) of speech [137], we extract
unsupervised hierarchical representations that preserve short-term and long-term contex-
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tual speech attributes in two levels of abstraction. With the extracted features, attributes
such as phonemes and speaker identity and emotions are well preserved and highly sep-
arable with linear classifiers. We also observe that these features have a large dynamic
range and that they are very robust to quantization. We introduce a two stage decoder
to reconstruct a speech signal from the representations in both levels of abstraction with
a GAN-based approach. We also introduce CC loss for training decoder as a measure
to improve the accuracy of both short-term and long-term attributes in the synthesized
speech signal.

To prove the concept, we trained a cognitive speech codec that operates at 8 kbps and we
show the speech quality surpasses that of AMR-WB at both 8.85 kbps and 12.65 kbps.
The algorithmic delay of the proposed method is 20ms compared to a minimum of 25ms
for AMR-WB. In summary, we achieved higher speech quality relative to AMR-WB with
less latency while keeping the bitrate at the lower end of standard conversational speech
codecs.

8.3 Relation to prior work
Cognitive compression aims to extract fundamental and interpretable representations of
speech signals in the encoder and synthesize natural-sounding speech in the decoder. By
maximizing mutual information in the encoder, using cognitive coding of speech [137], two
compact representations that evolve at different paces and correspond to different levels
of abstraction are extracted while redundant information is discarded. An adversarial
loss combined with multiple feature-based losses is used to infer the redundancy that
was eliminated at the encoder in a two stage decoder with a minimum amount of sound
compression artefacts.

In previous works, unsupervised features extracted by models such as VQ-VAE have been
used as a basis for low-bitrate compression [73, 74] and they have been shown to produce
interpretable representations of phonemes [17, 129]. Contrastive Predictive Coding (CPC)
[125], a method based on Noise Contrastive Estimation (NCE) [130], has been used to ex-
tract unsupervised representations and it has been demonstrated that some classes such
as speaker identity and phonemes are separable with a linear classifier under these rep-
resentations. Using theories of cognition, representations in multiple levels of abstraction
are also extracted by the CC model. Some aspects of the CPC model are improved in the
CC model which also serves as a basis for the encoder in the proposed method.

To synthesize speech, the majority of neural vocoders model the probability distribution of
speech samples. Autoregressive models form a major class of synthesizers. They factorize
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Figure 8.1 Components of the cognitive speech compression model including
the encoder, the decoder and the discriminators that are used for training the
decoder.

the probability distribution as a product of conditional distributions. The ability of au-
toregressive models to produce high quality speech has been demonstrated in models such
as WaveNet [15], SampleRNN [138] and WaveRNN [16]. Although autoregressive models
are able to produce high-quality speech, they are generally computationally complex and
their serial-processing nature makes them less suitable for parallel processing and real-time
applications.

Non-autoregressive models applied to speech synthesis can be divided into flow-based
generative models and GAN-based models. Parallel WaveNet [136] and WaveGlow [83]
are examples of flow-based models which can take full advantage of parallel processing and
are also able to produce speech signals with high perceptual quality. GAN-based models
such as MelGAN [52], HiFiGAN [54] and StyleGAN [53] are commonly used for synthesis
of a speech signal from a Mel-spectrogram. Until recently, despite better computational
efficiency and memory usage, GAN-based approaches lagged behind autoregressive models
and flow-based models in terms of quality of generated speech. However, recent advances
such as Feature Matching Loss [139], Multi-Scale Discriminator [52] and Multi-Period
Discriminator [54] have greatly improved the quality delivered by GAN-based methods.

8.4 Proposed approach
The architecture of the proposed cognitive speech compression model is illustrated in
Fig.8.1. The goal of cognitive compression is to encode the input speech signal x into two
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sets of representation (Cs, Cl) and quantize these as (Ĉs, Ĉ l). An output signal x̂ is then
reconstructed from the quantized representations. The different components and training
objectives of the proposed model are explained in the rest of this section.

8.4.1 Encoder
The design of the encoder network is illustrated in Fig.8.1(a). We use a variation of
the CC model. As described in [137], the encoder architecture is composed of two levels
of abstraction. At each level, an encoder is composed of convolutional layers followed
by Gated Recurrent Units (GRUs). The output of the GRUs, Cs and Cl (contextual
representations), are trained to predict an intermediate latent representation within each
level of abstraction using NCE loss. Further details about the CC model can be found
in [137]. In this paper, first, convolution layers are made causal to avoid any look ahead
window and additional latency. Second, GRUs have linear activation instead of tanh to
facilitate learning and produce features with more dynamic range that are more suitable
for the following quantization stages. GRUs in each layer are followed by a ∆ modulation
block that quantizes the difference between the current and the previous value of each
feature.

8.4.2 Decoder
The design of the decoder network is illustrated in Fig.8.1(b). We utilize a two-stage
decoder to generate a synthesized speech signal x̂ from two sets of representations. First,
the quantized long-term representations Cl are upsampled through transposed convolu-
tions 1 until the length of the output sequence matches the short-term representation Cs.
Then the output sequence is combined with Cs and upsampled until the length of the
final sequence matches the resolution of the speech signal waveform. In both stages of the
decoder, transposed convolutions are used without padding to avoid algorithmic delay by
filters. Transposed convolutions are followed by stacked blocks of multiple residual convo-
lutions, the output of which being summed. This layer of residual blocks was introduced
in [54] as Multi-Receptive Field Fusion.

8.4.3 Discriminators
Coupling a generator (the decoder in our model) with an ensemble of multiple discrim-
inators for training said generator is a common practice in recent GAN-based speech
synthesizers [52, 53, 54, 141]. The design of the network is illustrated in Fig.8.1(c) and

1. Transposed convolution is also known as a deconvolution or a fractionally-strided convolution. More
information about deconvolution can be found in [140] and an implementation of transposed convolution
can be found in: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose1d.html
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is composed of MSD 1 and MPD 2 blocks. MSD, which was introduced in the MelGAN
[52] model and reused in [54], is a mixture of three discriminator blocks operating on a
raw signal and downsampled signals with factors of 2 and 4 using strided average pooling.
Each block in MSD is a stack of 4 strided convolutions. MPD, which was introduced in
[54], is also a mixture of discriminator blocks. Each block consists of a stack of 5 convo-
lutional layers which operate on a 2D array of speech samples. The 2D array is composed
of selected samples of raw speech with length T. Samples are selected periodically with
periods of p ∈ [2, 3, 5, 7, 11] for each block and rearranged into a 2D array with dimensions
[p, T/P]. Further description of these two types of discriminators can be found in [52, 54].

8.4.4 Decoder’s training objective
Loss terms and intuitions for training the decoder as generator G using discriminator D
(which represents both MSD and MPD discriminators) are described as follows.

GAN objective

In the proposed model, we use the LSGAN formulation of adversarial losses [142], which
has shown better performances compared to some other formulations in speech synthesiz-
ers. Expressions (8.1-8.2) demonstrate adversarial loss for training discriminator D and
generator G (decoder), respectively.

Ex,(Ĉs,Ĉl)

[︂
(D(x)− 1)2 +D(G(Ĉs, Ĉ l))

2
]︂

(8.1)

E(Ĉs,Ĉl)

[︂
D(G(Ĉs, Ĉ l)− 1)2

]︂
(8.2)

CC representation distances

Let’s consider the encoder in Fig.8.1(a) without quantization stages as two separate func-
tions: Cs = ξs(x) and Cl = ξl(x) which extract short-term and long-term representations
from the raw waveform, respectively. We introduce two objectives in addition to the
adversarial objectives:

Ex,(Ĉs,Ĉl)

[︂
||ξi(x)− ξi(G(Ĉs, Ĉ l))||1

]︂
(8.3)

in which i ∈ {s, l} for short-term and long-term representations. CC representations
capture all sorts of short-term and long-term speech attributes. By minimizing the distance
in the latent space of representations, we first enforce the fidelity of the synthesized signal

1. Multi-scale discriminator
2. Multi-period discriminator
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to the original in terms of phoneme accuracy, speaker identity, emotion, etc. Second, since
unquantized representations are used in the expressions above, the decoder recovers some
of the information that has been lost in the quantization stage.

Mel-spectrum distance

Based on the Mel-spectrum distance, the decoder is able to infer more precise spectral
details about the original signal from CC features extracted by the encoder and thus
increase the fidelity of the synthesized speech to the original. The Mel-spectrum objective
is described in the following expression:

Ex,(Cs,Cl) [||ϕ(x)− ϕ(G(Cs, Cl))||1] (8.4)

where ϕ(x) is the mel-spectrogram of the waveform x.

Feature matching distance

Introduced in [139], feature matching is a similarity metric between the discriminator’s
intermediate features while the discriminator operates on real speech and synthesized
speech. This loss term can be described as the following expression:

Ex,(Ĉs,Ĉl)

[︄
L∑︂
i=1

||Di(x)−Di(G(Ĉs, Ĉ l))||1

]︄
, (8.5)

where Ni denotes the number of features Di in the ith layer of discriminator blocks.

Total objective

While the loss value for training the discriminator can be described as expression 8.1, the
loss term for training the generator is a weighted sum of expressions 8.2-8.5 by the values
λ = [1, 10, 10, 50, 2] respectively.

8.5 Experiments
This section presents experimental conditions and subjective test results for the proposed
speech compression method.

8.5.1 Configurations and training
A 100-hour subset of the LibriSpeech dataset [132] was used for training the networks. The
hyperparameters of the encoder and decoder networks are shown in the Table.8.1. The
parameters for the discriminator networks can be found in [52, 54]. Encoder layers have 512
hidden dimensions with ReLu activation. Both encoder stages produce a 64 dimensional
representation, the lower stage once every 10ms and the upper stage once every 80ms.
Each stage of the encoder is followed by a single-bit quantizer based on ∆ modulation.
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Table 8.1 Hyper-parameters of encoder and decoder networks. Lower and top
level refer to blocks as they appear in Fig.8.1(a,b)

Encoder

filter size [10, 8, 4, 4, 4]
lower level downsample [5, 4, 2, 2, 2]

GRU hidden size 64

filter size [4, 4, 4]
top level downsample [2, 2, 2]

GRU hidden size 64

Decoder

filter size [4, 4, 4]
top level upsample [2, 2, 2]

residual filter size [3, 7, 11]× 3

filter size [10, 8, 8, 4]
lower level upsample [5, 4, 4, 2]

residual filter size [3, 7, 11]× 3

The quantization step size is different for the two stages of the encoder but it is the same
for all 64 features of a representation. The total number of bits after quantization of
features adds up to 8 kbps. Fig.8.2 illustrates an example of raw and quantized features
extracted by the encoder from 800ms of a speech signal sample. Transposed convolutions
in the decoder start with 128 hidden dimensions for the lower stage and 256 for the upper
stage and the number of dimensions drops by a factor of 2 progressively. Only short-term
representations from 20ms of signal are buffered for speech synthesis which results in an
overall algorithmic delay of exactly 20ms.

The total number of parameters is 9.8M for the encoder and 6.3M for the decoder. Without
any further optimization and using a GTX 1080 GPU, the speed of speech synthesis is
more than 100x faster than real-time which places the proposed method well within the
range of computational ability of current mobile devices.

8.5.2 Subjective tests
AMR-WB is a widely-used standard codec for mobile communications which can operate
at different bitrates. We compared our proposed method with AMR-WB operating at 8.85
kbps which is the closest bitrate to the 8 kbps of the proposed method. We also compared
it to AMR-WB operating at 12.65 kbps, which offers a higher level of subjective quality
and it is the most common configuration currently in use. It should be noted that both
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Figure 8.2 Raw and quantized (dashed lines) features extracted with encoder
form 800ms of a speech signal. Only two features from each level of representa-
tion are illustrated.

codecs operate at 16kHz and that the proposed method does not extend the bandwidth
to increase the perceptual quality of speech.

To validate our results, we performed two AB tests without reference with a five-point
scale from -2 to +2 1. The test equipment consists in a Focusrite Scarlett 2i2 USB audio
interface + Beyerdynamic DT 770 headphones. The test material was composed of 32 pairs
of Harvard sentences that were recorded by Dynastat and are regularly used to evaluate
speech coding standards. Test sentences and speakers were not part of the training set.
There were 20 test subjects, all considered as naive listeners.

1. In the performed AB test, the subject’s preference when comparing two variations A and B of the
same audio sample is recorded. Score 0 indicates no preference, 1 small preference and 2 strong preference.
A positive score indicates preference towards B and a negative towards A.
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Figure 8.3 AB test results. Comparison of the proposed method operating at
8 kbps with AMR-WB operating at 8.85 kbps and 12.65 kbps. Positive scores
denote preference for the proposed method.

The results of the experiment are shown in Fig.8.3. The average scores are summarized
in Table 8.2 for male speakers, female speakers and all speakers combined. Results show
that, on average, the proposed codec at 8 kbps clearly outperforms AMR-WB at 8.85 kbps
and appears to be even slightly better than AMR-WB at 12.65 kbps.

An audio demonstration of the proposed approach is available 1.

8.5.3 Discussion
While the proposed method is shown to have superior quality relative to both AMR-
WB references, some minor artifacts such as occasional reverberation effects and some
temporal discontinuities can be perceived and still need to be eliminated. One source of
potential improvement is simply more training. The decoder used in the subjective test
was trained for only 900k iterations. While this amount of training is perfectly adequate
for some types of neural networks, millions of iterations are more common when training
GAN-based speech synthesizers. Experiments done after the listening test show that the
majority of the observed artifacts disappear beyond 2M iterations and the speech quality
can be improved further.

1. https://rezalo.github.io/CognitiveCoding
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Table 8.2 Average difference of scores based on the performed AB tests between
proposed method and reference codec. Positive scores denotes preference for the
proposed method.

Reference Total Male Female
AMR−WB(8.85kbps) +0.56 +0.49 +0.64
AMR−WB(12.65kbps) +0.14 +0.11 +0.18

We strongly believe that the proposed approach can be further improved in terms of
compression ratio, complexity and latency. Previous studies have shown that CC features
preserve essential speech attributes even when representations are extracted with much
lower dimensions [137]. Other studies have shown that GAN-based speech synthesis can
be performed with much less complexity [54]. Testing different network configurations and
coding attributes is extremely time consuming but we will explore such possibilities for
further improvements.

8.6 Conclusion
In this paper, we presented a new method for real-time compression of speech that is
based on a cognitive coding model. Low latency, low bitrate, acceptable complexity and
superior quality are the key attributes that make the proposed method a practical real-
time speech compression tool. Because it relies on easily interpretable representations that
are also robust to quantization, the proposed approach has potential for a wide range of
applications in speech communication, and there is a clear path for further developments
to meet various needs from service providers.
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CHAPTER 9

English conclusion

9.1 Summary
In this thesis, to deal with the complexity of designing a codec, a gradual approach with
multiple tasks is chosen to design a fully machine learning-based speech codec. While
in each task, a tool for speech compression is introduced with a potential to be used
independently, each development step also provides insights and the basis for the next
step towards a self-contained codec.

In the first two tasks, classification and regression techniques are applied to the solution of
classical problems in speech processing but could also be used as building blocks in existing
speech codecs. The results of these tasks are published in two papers: Biologically Inspired
Speech Emotion Recognition [143], reproduced in Chapter 5, and Speech Prediction Using
an Adaptive Recurrent Neural Network with Application to Packet Loss Concealment [144],
reproduced in Chapter 6. In the first paper, we extracted features from raw speech signals
with unsupervised learning using a biologically inspired process, and showed that a simple
classifier can learn emotions, a sophisticated long-term attribute, from these features. In
the second paper, a speech sample predictor, which is an essential part of many speech
codecs, is developed and it is shown that it is capable of producing high quality speech
when applied to PLC.

Next, elements used for partial development of codecs are combined and extended towards
a fully machine learning-based speech codec. Two tasks are carried out to design first an
encoder, then a decoder. The results of these tasks are published in two papers: Cognitive
Coding of Speech [137], reproduced in Chapter 7, and Practical Cognitive Speech Compres-
sion [145], reproduced in Chapter 8. In the first paper, we extracted speech representations
with unsupervised learning based on theories of cognition to function as a speech encoder.
The principles of cognition that influenced the design are: hierarchically-organized levels
of abstraction, predictive coding, and a top-down pathway between the representations.
The extracted representations are compact, easily interpretable and robust to quantiza-
tion. In the second paper, a decoder with a multi stage GAN-based architecture is trained
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to produce speech signals from the cognitive coding (CC) representations. Both the design
and its training focus on achieving high perceptual quality. The codec resulting from these
two tasks operates at a low bitrate and low latency, and it delivers high quality speech.

9.2 Comparison with existing approaches
Techniques developed for each task in this thesis can be compared with alternative ap-
proaches from the fields of machine learning or signal processing. In this section, we
compare each technique with its alternatives.

9.2.1 Classification
Classification is the most common task in machine learning, and there are a multitude
of approaches for classification of all sorts of speech attributes. However, the proposed
approach differs from alternatives due to a combination of several factors: modeling bio-
logical components of the human auditory system, using SNNs to extract features, and also
the unsupervised learning method employed for feature extraction. Compared to the ma-
jority of alternative classifiers, the proposed method focused on extracting general-purpose
features and using a simple classifier to recognize emotions; nevertheless, it achieves the
performance of state-of-the-art classifiers that use manually engineered features [97, 99]
on the same emotion classification task.

9.2.2 Regression
The regression task performed in this thesis can be best compared with signal processing-
based methods. A predictor is a specific structure that is used to capture and make use of
correlations in speech for sample prediction. The most widely used method of prediction
is linear prediction, which typically relies on two types of linear predictors [102]: one for
short-term correlations operating at the sample scale (∼ one millisecond), and the other
for a larger time scale (∼ 2.5-20ms) called pitch predictor. A few alternative approaches
have also been proposed to capture limited and subtle non-linear correlations, such as the
ones based on Volterra series [146, 103]. Compared with such approaches, the LSTM used
in the proposed approach has a more general ability in capturing non-linearities. Secondly,
using online training, the network is able to capture correlations on a larger time scale
(hundreds of milliseconds, instead of tens of milliseconds when nonlinear series are used).
However, in terms of computational complexity, the proposed approach is more complex
than the conventional signal processing tools.

9.2.3 Representation learning
Despite the great potential of unsupervised representation learning for capturing speech
representations, currently, only few approaches are used to extract comprehensive speech
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representations. Among these approaches, the CPC and VQ-VAE models are the most rel-
evant to the representation learning task presented in this thesis. The proposed approach
in Chapter 7 is comprehensively compared with the CPC model. As a summary, compared
to CPC, CC provides hierarchical representations from two time scales. Specially, when a
compact long-term representation is extracted, CC is much more predictive of long-term
attributes of speech (such as speaker ID and emotions) than CPC. VQ-VAE is another
method to extract compact representation, and is commonly used in recent deep learning-
based speech coders and synthesizers [73, 74, 126]. Contrary to VQ-VAE, CC extracts
hierarchical representations that are also highly interpretable with linear classifiers. This
property can help extend the functionality of a codec beyond compression, for example to
perform voice transformation.

9.2.4 Speech compression
The proposed fully-learned speech codec that operates based on hierarchical and inter-
pretable features (Chapter 8) can be compared with two classes of speech codecs: stan-
dardized conversational speech codecs that are based on classical signal processing methods
and machine-learning based codecs.

Currently standardized conversational speech codecs [134, 135, 5] mainly attempt to syn-
thesize a speech signal that is as close as possible to the original waveform. Metrics such
as the SNR is a common objective for such waveform matching strategies. Sometimes, the
SNR is weighted to take into account how the coding noise is perceived by humans. Unlike
waveform matching, instead of preserving the waveform, the proposed method preserves
short-term and long-term speech attributes based on the metrics derived from mutual in-
formation in the encoder and an adversarial loss in the decoder. Multiple other metrics
are also included in the decoder’s trainig to approximate subjective quality of speech in
a more comprehensive way than objective measures used in signal processing-based codec
designs. However, computational complexity of the proposed model is higher than signal
processing-based codecs, although real-time implementation on cellphones with the cur-
rent technology is feasible. Moreover, the development of the proposed codec is in its early
stage. The proposed model is trained on clean speech and its resilience to environmental
factors such as noise has not been considered yet. Also, measures to increase its reliability
in the presence of network errors such as frame loss and jitter have not been considered.

Alternative machine learning-based methods, which can be used in the structure of an
encoder, have already been discussed in Section 9.2.3. In recent years, some machine-
learning based methods have also been developed that can be used for speech synthesis
and as a decoder. Initially, it has been shown that the quality of signal processing meth-
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ods can be surpassed with machine learning-based methods such as WaveNet [15], even
if classical speech parameters are used for speech synthesis. However, these methods are
computationally complex and the speed of synthesis is slow. The more recent approaches
synthesize speech with comparable quality and much higher speed [83, 136]. The compu-
tational complexity is also further reduced with GAN-based structures [52, 53, 54]. While
the computational complexity of the proposed model is similar to such GAN-based struc-
tures, it introduces two novel techniques in the design. First, the two stage GAN-based
structure to combine the CC representations, and secondly, a metric based on CC repre-
sentation (CC representation distance) to match the quality of representation between the
resynthesized samples and the original ones.

9.3 Future work
In this thesis, we established a framework for gradual development of a fully machine
learning-based speech compression method. We performed multiple tasks, many points
are discussed, and some are worth further investigation. In this section, we discuss a
number of suggestions for future research to further develop machine learning-based speech
compression.

Classification At the time of conception of the proposed classifier, SNNs had several
important limitations, including computational complexity of simulating a large num-
ber of spiking neurons, and inefficiency of learning methods for reconstruction of accu-
rate speech signals. As a result, all the tasks that followed classification are performed
with ANNs. However, the learning algorithms and the computational efficiency of SNNs
have improved significantly in recent years for both supervised and unsupervised learning
[62, 63, 64, 65, 66, 67]. SNN-based processors are also very efficient in terms of power
consumption. As a result, the development of a SNN-based speech codec could be recon-
sidered. Especially, with the advent of techniques to translate ANN-based models to run
on SNN-based processors, implementing a SNN-based variation of a fully learned codec
such as the one developed in this thesis seems feasible.

Regression After having developed a predictor for the regression task, we extended
the prediction task from sample space to latent space in order to achieve representation
learning. However, there are alternative paths for the development of codecs based on
predictors. For example, a predictor such as the one proposed in this thesis can be opti-
mized in terms of prediction gain, instead of focusing on subjective quality with PESQ as
we did. A predictor with a superior prediction gain can find alternative applications in
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speech compression. For example, such a predictor can improve the compression ratio in
lossless coding.

Speech coding based on representation learning The proposed approach is de-
veloped with only a subset of potential applications and codec attributes in mind. The
proposed method can be further improved to extend its application scope, and it can be
improved to meet the necessary criteria considering all of the codec attributes. The fol-
lowings are potential tasks that can be performed to further develop the proposed speech
codec:

– To increase the robustness of the codec, a jitter management and a packet loss con-
cealment can be implemented for the proposed method. Both the network’s design
and its training can be modified to accommodate for errors in the communication
network.

– Environmental effects such as acoustic background can affect the quality of speech
coding. The proposed approach can be trained with noisy speech to improve the
proposed method for practical applications.

– We only trained the network on speech datasets, and the network was trained to only
learn speech attributes. Learning music attributes, or general audio attributes, are
interesting tasks to be considered, to extend the application scope of the proposed
method.

– Encoding multichannel audio is another interesting task, and the proposed approach
seems to be able to capture representation of multichannel audio very efficiently
without too much overhead compared to single channel coding. There clearly is a
potential to extend the current approach for multichannel coding.
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CHAPTER 10

Conclusion française

10.1 Résumé
Dans cette thèse, pour faire face à la complexité de la conception d’un codec, une approche
progressive avec plusieurs tâches est choisie pour concevoir un codec vocal entièrement basé
sur l’apprentissage automatique. Alors que dans chaque tâche, un outil de compression
de la parole est introduit avec un potentiel d’utilisation indépendante, chaque étape de
développement fournit également des informations et la base de l’étape suivante vers un
codec complet.

Dans les deux premières tâches, les techniques de classification et de régression sont ap-
pliquées à la résolution de problèmes classiques de traitement de la parole, mais pour-
raient également être utilisées comme blocs de construction dans les codecs vocaux exis-
tants. Les résultats de ces tâches sont publiés dans deux articles : Biologically Inspired
Speech Emotion Recognition [143], reproduit au chapitre 5, et Speech Prediction Using an
Adaptive Recurrent Neural Network with Application to Packet Loss Concealment [144],
reproduit au chapitre 6. Dans le premier article, nous avons extrait des caractéristiques
de signaux de parole bruts avec un apprentissage non supervisé à l’aide d’un processus
d’inspiration biologique, et avons montré qu’un simple classificateur peut apprendre à re-
connaitre l’émotion, un attribut à long terme particulièrement complexe, à partir de ces
caractéristiques. Dans le deuxième article, un prédicteur d’échantillon de parole, qui est
une partie essentielle de nombreux codecs vocaux, est développé et il est démontré qu’il
est capable de produire une parole de haute qualité lorsqu’il est appliqué à la dissimulation
des paquets perdus.

Ensuite, les éléments utilisés pour le développement partiel des codecs sont combinés et
étendus vers un codec vocal entièrement basé sur l’apprentissage automatique. Deux
tâches sont réalisées pour concevoir d’abord un codeur, puis un décodeur. Les résultats de
ces tâches sont publiés dans deux articles : Cognitive Cognitive of Speech [137], reproduit
au chapitre 7, et Practical Cognitive Speech Compression [145], reproduit au chapitre
8. Dans le premier article, nous avons extrait des représentations de la parole avec un
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apprentissage non supervisé basé sur des théories de la cognition pour fonctionner comme
un encodeur de la parole. Les principes de cognition qui ont influencé la conception sont:
des niveaux d’abstraction organisés de manière hiérarchique, un codage prédictif, et une
voie descendante entre les représentations. Les représentations extraites sont compactes,
facilement interprétables et robustes à la quantification. Dans le deuxième article, un
décodeur avec une architecture basée sur GAN à plusieurs étages est formé pour produire
des signaux vocaux à partir des représentations de codage cognitif (CC). La conception
du réseau et son entrainement se concentrent tous deux sur l’obtention d’une qualité de
perception élevée. Le codec résultant de ces deux tâches fonctionne à un faible débit
binaire et une faible latence, et il délivre une voix de haute qualité.

10.2 Comparaison avec les approches existantes
Les techniques développées pour chaque tâche dans cette thèse peuvent être comparées
à des approches alternatives issues des domaines de l’apprentissage automatique ou du
traitement du signal. Dans cette section, nous comparons chaque technique avec ses
alternatives.

10.2.1 Classification
La classification est la tâche la plus courante en apprentissage automatique, et il ex-
iste une multitude d’approches pour la classification de toutes sortes d’attributs vocaux.
Cependant, l’approche proposée diffère des alternatives en raison d’une combinaison de
plusieurs facteurs : la modélisation des composants biologiques du système auditif humain,
l’utilisation de SNN pour extraire les caractéristiques, ainsi que la méthode d’apprentissage
non supervisée utilisée pour l’extraction des caractéristiques. Par rapport à la majorité des
classificateurs alternatifs, la méthode proposée s’est concentrée sur l’extraction de carac-
téristiques à usage général et sur l’utilisation d’un classificateur simple pour reconnaître les
émotions ; néanmoins, il atteint les performances des classificateurs de pointe qui utilisent
des caractéristiques conçues manuellement [97, 99] sur la même tâche de classification des
émotions.

10.2.2 Régression
La tâche de régression effectuée dans cette thèse peut être mieux comparée aux méthodes
basées sur le traitement du signal. Un prédicteur est une structure spécifique qui est
utilisée pour capturer et utiliser des corrélations dans la parole pour la prédiction d’un
échantillon. La méthode de prédiction la plus largement utilisée est la prédiction linéaire,
qui repose généralement sur deux types de prédicteurs linéaires [102]: l’un pour les corréla-
tions à court terme opérant à l’échelle de l’échantillon (∼ une milliseconde), et l’autre pour
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une échelle de temps plus grande (∼ 2,5-20 ms) appelée prédicteur de pitch. Quelques
approches alternatives ont également été proposées pour capturer des corrélations non
linéaires limitées et subtiles, telles que celles basées sur les séries de Volterra [146, 103].
Par rapport à de telles approches, le LSTM utilisé dans l’approche proposée a une capacité
plus générale à capturer les non-linéarités. Deuxièmement, grâce à l’entrainement en ligne,
le réseau est capable de capturer des corrélations sur une plus grande échelle de temps
(des centaines de millisecondes, au lieu de dizaines de millisecondes lorsque des séries
non linéaires sont utilisées). Cependant, en termes de complexité de calcul, l’approche
proposée est plus complexe que les outils conventionnels de traitement du signal.

10.2.3 Apprentissage des représentations
Malgré le grand potentiel de l’apprentissage non supervisé des représentations pour cap-
turer des représentations vocales, actuellement, seules quelques approches sont utilisées
pour extraire des représentations vocales complètes. Parmi ces approches, les modèles
CPC et VQ-VAE sont les plus pertinents pour la tâche d’apprentissage de représentation
présentée dans cette thèse. L’approche proposée au chapitre 7 est globalement comparée
au modèle CPC. En résumé, par rapport à CPC, CC fournit des représentations hiérar-
chiques à partir de deux échelles de temps. En particulier, lorsqu’une représentation
compacte à long terme est extraite, CC est beaucoup plus prédictif des attributs à long
terme de la parole (tels que l’identification du locuteur et les émotions) que CPC. VQ-
VAE est une autre méthode pour extraire une représentation compacte et est couramment
utilisée dans les récents codeurs et synthétiseurs vocaux basés sur l’apprentissage profond
[73, 74, 126]. Contrairement à VQ-VAE, CC extrait des représentations hiérarchiques qui
sont également hautement interprétables avec des classificateurs linéaires. Cette propriété
peut aider à étendre la fonctionnalité d’un codec au-delà de la compression, par exemple
pour effectuer une transformation vocale.

10.2.4 Compression de la parole
Le codec vocal entièrement appris proposé qui fonctionne sur la base de caractéristiques
hiérarchiques et interprétables (chapitre 8) peut être comparé à deux classes de codecs
vocaux : les codecs vocaux conversationnels standardisés basés sur des méthodes classiques
de traitement du signal, et les codecs basés sur l’apprentissage automatique.

Les codecs vocaux conversationnels actuellement standardisés [134, 135, 5] tentent prin-
cipalement de synthétiser un signal vocal aussi proche que possible de la forme d’onde
d’origine. Des métriques telles que le SNR sont un objectif commun pour de telles straté-
gies de suivi de forme d’onde. Parfois, le SNR est pondéré pour tenir compte de la façon
dont le bruit de codage est perçu par les humains. Contrairement au suivi de forme d’onde,
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au lieu de préserver la forme d’onde, la méthode proposée préserve les attributs vocaux
à court et à long terme basés sur les métriques dérivées des informations mutuelles dans
l’encodeur et d’une perte contradictoire dans le décodeur. De multiples autres métriques
sont également incluses dans l’entrainement du décodeur pour se rapprocher de la qualité
subjective de la parole d’une manière plus complète que les mesures objectives utilisées
dans les conceptions de codecs basés sur le traitement du signal. Cependant, la complexité
de calcul du modèle proposé est supérieure à celle des codecs basés sur le traitement du
signal, bien que leur mise en œuvre en temps réel sur les téléphones portables avec la
technologie actuelle soit réalisable. De plus, le développement du codec proposé en est à
ses débuts. Le modèle proposé est entraîné sur de la parole propre et sa robustesse aux
facteurs environnementaux tels que le bruit n’a pas encore été prise en compte. De plus,
les mesures visant à augmenter sa fiabilité en présence d’erreurs de réseau telles que la
perte de trames et la gigue n’ont pas été envisagées.

Des méthodes alternatives basées sur l’apprentissage automatique, qui peuvent être util-
isées dans la structure d’un encodeur, ont déjà été discutées dans la section 10.2.3. Ces
dernières années, certaines méthodes basées sur l’apprentissage automatique ont également
été développées et peuvent être utilisées pour la synthèse vocale et comme décodeur. Ini-
tialement, il a été démontré que la qualité des méthodes de traitement du signal peut être
surpassée avec des méthodes basées sur l’apprentissage automatique telles que WaveNet
[15], même si des paramètres vocaux classiques sont utilisés pour la synthèse vocale.
Cependant, ces méthodes sont complexes en termes de calcul et la vitesse de synthèse
est lente. Les approches les plus récentes synthétisent la parole avec une qualité compa-
rable et une vitesse beaucoup plus élevée [83, 136]. La complexité de calcul est également
encore réduite avec les structures basées sur GAN [52, 53, 54]. Bien que la complexité de
calcul du modèle proposé soit similaire à de telles structures basées sur GAN, il introduit
deux nouvelles techniques dans la conception. Premièrement, la structure basée sur GAN
en deux étapes pour combiner les représentations CC, et deuxièmement, une métrique
basée sur la représentation CC (distance de représentation CC) pour faire correspondre la
qualité de représentation entre les échantillons resynthétisés et ceux d’origine.

10.3 Travaux futurs

Dans cette thèse, nous avons établi un cadre pour le développement progressif d’une
méthode de compression de la parole entièrement basée sur l’apprentissage automatique.
Nous avons effectué plusieurs tâches, de nombreux points sont discutés, et certains méritent
d’être approfondis. Dans cette section, nous discutons d’un certain nombre de suggestions
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de recherches futures pour développer davantage la compression de la parole basée sur
l’apprentissage automatique.

Classification Au moment de la conception du classificateur proposé, les SNN présen-
taient plusieurs limitations importantes, notamment la complexité de calcul de la simula-
tion d’un grand nombre de neurones à décharges et l’inefficacité des méthodes d’apprentissage
pour la reconstruction de signaux vocaux précis. En conséquence, toutes les tâches
qui ont suivi la classification sont effectuées avec des ANN. Cependant, les algorithmes
d’apprentissage et l’efficacité de calcul des SNN se sont considérablement améliorés ces
dernières années pour l’apprentissage supervisé et non supervisé. Les processeurs basés
sur SNN sont également très efficaces en termes de consommation d’énergie. En con-
séquence, le développement d’un codec vocal basé sur SNN pourrait être reconsidéré. En
particulier, avec l’avènement de techniques permettant de traduire des modèles basés sur
ANN pour les exécuter sur des processeurs basés sur SNN, la mise en œuvre d’une vari-
ante basée sur SNN d’un codec entièrement appris tel que celui développé dans cette thèse
semble faisable.

Régression Après avoir développé un prédicteur pour la tâche de régression, nous avons
étendu la tâche de prédiction de l’espace échantillon à l’espace latent afin de réaliser
l’apprentissage de la représentation. Cependant, il existe des voies alternatives pour le
développement de codecs basés sur des prédicteurs. Par exemple, un prédicteur tel que
celui proposé dans cette thèse peut être optimisé en termes de gain de prédiction, au
lieu de se concentrer sur la qualité subjective avec PESQ comme nous l’avons fait. Un
prédicteur avec un gain de prédiction supérieur peut trouver des applications alternatives
dans la compression de la parole. Par exemple, un tel prédicteur peut améliorer le taux
de compression dans le codage sans perte.

Codage de la parole basé sur l’apprentissage des représentations Le codec
basé sur l’apprentissage automatique proposé peut être développé davantage en termes
d’applications et d’attributs. L’approche proposée est développée avec seulement un sous-
ensemble d’applications potentielles et d’attributs de codec à l’esprit. Le procédé proposé
peut être encore amélioré pour étendre sa portée d’application, et il peut être amélioré
pour répondre aux critères nécessaires compte tenu de tous les attributs de codec. Les
tâches suivantes peuvent être effectuées pour développer davantage le codec vocal proposé:

– Pour augmenter la robustesse du codec, une gestion de la gigue et une dissimulation
de perte de paquets peuvent être implémentées pour la méthode proposée. La con-
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ception du réseau et son entraînement peuvent être modifiés pour tenir compte des
erreurs dans le réseau de communication.

– Les effets environnementaux tels que le bruit de fond acoustique peuvent affecter la
qualité du codage de la parole. L’approche proposée peut être entraînée avec de la
parole bruitée pour améliorer la méthode proposée pour des applications pratiques.

– Nous n’avons entraîné le réseau que sur des ensembles de données de parole, et le
réseau a été entraîné pour n’apprendre que les attributs de la parole. L’apprentissage
des attributs musicaux, ou des attributs audio généraux, sont des tâches intéressantes
à considérer, pour étendre le champ d’application de la méthode proposée.

– L’encodage de l’audio multicanal est une autre tâche intéressante, et l’approche pro-
posée semble être capable de capturer très efficacement la représentation de l’audio
multicanal sans trop de surcharge par rapport au codage monocanal. Il existe claire-
ment un potentiel d’extension de l’approche actuelle pour le codage multicanal.



APPENDIX A

Details for implementation of experiments in
Chapter 6

A.1 Details for implementation
To help the reproducibility of results presented in Chapter 6, we describe the proposed
method in further detail in this section. First of all, the implementation of ‘Vanilla’
LSTM mentioned in Charter 6 is the same structure as the LSTM presented in Section
3.4.3 where σ is the sigmoid function. Second, to further clarify the terminology, the
number of neurons in Charter 6 is synonymous to hidden size or number of units in an
LSTM cell. Furthermore, the term block or layer is used to describe an LSTM cell when
it is a part of a larger structure in a network. Finally, when LSTM layers are stacked, the
output ht of the previous layer becomes the input xt of the following layer.

A.2 Hyper parameters
The ability of the network presented in Chapter 6 to capture correlations between speech
samples depends on the configuration of the network. A list of the hyperparameters used
for experiments performed in Section 6.5 is presented in the following tables.

Table A.1 A list of hyperparameters of experiments performed in Chapter 6
Hyperparameters in Fig. 6.3 (left) Hyperparameters in Fig. 6.3 (right)
window size 80
neurons 80
layers ∈ [1, 2, 3, 4]

time steps 80
training passes ∈ [0, 10, 20, 30, 40]

window size 80
neurons 80
layers ∈ [1, 2, 3, 4]

time steps 160
training passes ∈ [0, 10, 20, 30, 40]

Hyperparameters in Fig. 6.4 (left) Hyperparameters in Fig. 6.4 (right)
window size 80
neurons ∈ [20, 40, 60, 80, 120]
layers ∈ [1, 2]

time steps 160
training passes 20

window size 80
neurons 80
layers ∈ [1, 2]

time steps ∈ [80, 160, 240, 320]
training passes 20
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APPENDIX B

Details for implementation of Cognitive Codec
(Chapters 7 and 8)

B.1 Hardware and software requirements
Hardware and software used for training the proposed model is presented in Table B.1.
These requirements are not strict and it is expected that the model can be trained suc-
cessfully in a similar hardware or with more recent softwares.

Table B.1 Hardware and software used for training the proposed model.

Hardware requirements

hardware Specification

GPU (GTX 1080 Ti)× 2
RAM 32GB

Software requirements

software version

PyTorch 1.9.0
CUDA 10.2
NumPy 1.17.0

B.2 Datasets and the training input
Two different datasets were used for experimental results presented in Chapters 7 and
8. First, a 100-hour subset of the LibriSpeech dataset [132] was used to train and to
evaluate the performance of the proposed approach on phoneme classification and on
speaker identity classification. The 100-hour subset can be accessed in Open Speech and
Language Resources 1. The forced-aligned phoneme labels for phoneme classification are
the same as labels used in CPC model [125] for both train and test sets 2. For emotional
speech, the Emov-DB dataset [133] was used 3.

For minibatch optimization, in every training epoch, minibatches of random segments of
speech files were selected. We used 20480-sample windows for training the encoder and
30720-sample windows for training the decoder.

1. https://www.openslr.org/resources/12/train-clean-100.tar.gz
2. https://drive.google.com/drive/folders/1BhJ2umKH3whguxMwifaKtSra0TgAbtfb
3. https://openslr.org/115/
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B.3 Configuration of layers
Configuaration of the proposed network in Chapters 7 is summarized in Table B.2. A range
of hidden sizes are used in the experiments of Fig. 7.2 and Fig. 7.3. The configuration of
the encoder in Chapter 8 is the same as Table B.2 where the hidden size of GRUs are 64.
The configuration of the decoder is presented in Table 8.1.

Table B.2 Hyperparameters of encoder network. Lower and top level refer to
blocks as they appear in Fig.7.1.

Encoder layers

filter size [10, 8, 4, 4, 4]
lower level downsample [5, 4, 2, 2, 2]

GRU hidden size ∈ [8, 16, 32, 64, 128, 256]

filter size [4, 4, 4]
top level downsample [2, 2, 2]

GRU hidden size ∈ [8, 16, 32, 64, 128, 256]

B.4 Initialization of weights
Usually, small random values are used to define the starting point for the optimization for
training a neural network model. For initialization of weights in the encoder structure,
we used the method described in [147], using a normal distribution with fan out mode 4.
The weights in the decoder architecture are initialized with a normal distribution where
the mean value and the standard deviation are 0 and 0.01 respectively.

Table B.3 Training hyperparameters

learning rate 2.0e− 4
prediction steps 12
negative samples 10

batch size 8
number of iterations(encoder) 300
number of iterations(decoder) 900

B.5 Training
B.5.1 Training hyperparameters
The hyperparameters for training the proposed networks in Chapters 7 and 8 are summa-
rized in Table B.3. For training the encoder, prediction steps indicates that we predict con-
tents of frames in speech signal for 1-12 steps for both short-term and long-term attributes.
The parameter negative samples shows that for every positive samples of short and long
frames (which are from distributions p(xs(t + k)|cs(t), cl(t)) and p(xl(t + k)|cs(t), cl(t))
respectively), 10 negative samples for short and long frames (which are from distributions
p(xs(t + k)) and p(xl(t + k)) respectively) are used. Finally, when training the decoder,

4. https://pytorch.org/docs/stable/nn.init.html
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although 900k value for number of epochs is used for the experiment in Section 8.5.2,
extended experiments show that the quality of speech can be further improved until 2M
training epochs.

B.5.2 Training algorithms
Algorithms for training the encoder and the decoder are described in Algorithm 1 and
Algorithm 2, respectively.

Algorithm 1: Encoder training algorithm.

Require: training hyperparameters;

Require: w0; initial weights;

foreach number of iterations do

Sample a minibatch of m samples {x1, ..., xm} from speech dataset D ;

Compute the outputs of the encoder: {C1
s , ..., C

m
s }, {C1

l , ..., C
m
l } ;

Select positive and negative samples from {C1
s , ..., C

m
s } ;

Compute LNs = EXs

[︂∑︁
k

[︂
log fsk(xs(t+k),cs(t),cl(t))∑︁

xs(j)∈Xs
fsk(xs(j),cs(t),cl(t))

]︂]︂
;

Select positive and negative samples from {C1
l , ..., C

m
l } ;

Compute LNl = EXl

[︂∑︁
k

[︂
log flk(xl(t+k),cs(t),cl(t))∑︁

xl(j)∈Xl
flk(xl(j),cs(t),cl(t))

]︂]︂
;

Update the encoder by descending its stochastic gradient:

▽w(LNs + LNl);

end foreach

The various functions used in this algorithms are explained in Chapter 7.

Expectations are computed from positive and negative samples taken from each minibatch.
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Algorithm 2: Decoder training algorithm.

Require: training hyperparameters;

Require: w0, θ0; initial weights of decoder (generator) and discriminators;

foreach number of iterations do

Sample a minibatch of m samples {x1, ..., xm} from speech dataset D ;

Compute {C1
s , ..., C

m
s }, {C1

l , ..., C
m
l }; outputs of the encoder;

Quantize the outputs to compute {Ĉ
1

s, ..., Ĉ
m

s }, {Ĉ
1

l , ..., Ĉ
m

l };

Compute loss functions:

L1 =
1
m

∑︁m
i=1

[︂
(D(xi)− 1)2 +D(G(Ĉ

i

s, Ĉ
i

l))
2
]︂

L2 =
1
m

∑︁m
i=1

[︂
||ξs(xi)− ξs(G(Ĉ

i

s, Ĉ
i

l))||1
]︂

L3 =
1
m

∑︁m
i=1

[︂
||ξl(xi)− ξl(G(Ĉ

i

s, Ĉ
i

l))||1
]︂

L4 =
1
m

∑︁m
i=1 [||ϕ(xi)− ϕ(G(Ci

s, C
i
l ))||1]

L5 =
1
m

∑︁m
i=1

[︂∑︁L
j=1 ||Dj(x

i)−Dj(G(Ĉ
i

s, Ĉ
i

l))||1
]︂
;

Update the discriminators by ascending its stochastic gradient:

▽θ(
∑︁5

i=1[λi ∗ Li]);

Update the decoder by ascending its stochastic gradient:

▽w
1
m

∑︁m
i=1

[︂
D(G(Ĉ

m

s , Ĉ
m

l )− 1)2
]︂
;

end foreach

The various functions used in this algorithms are explained in Chapter 8.
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Computational Complexity of Cognitive Codec
(Chapters 7 and 8)

C.1 Computational complexity of standardized codecs
The computational complexity of standardized codecs is normally expressed in weighted
millions of operations per second (WMOPS). The different operations (addition, multipli-
cation, inverse, logical test, etc.) are weighted according to their relative complexities 1.
The computational complexity of conventional speech and audio codecs typically ranges
from a couple of WMOPS for older, simpler codecs up to several tens of WMOPS for more
recent and elaborate codecs. For example, for the EVS codec (see Section 2.4), the worst
case complexity is approximately 88 WMOPS (56 for the encoder + 32 for the decoder) 2.
For recent multi-mode codecs, computational complexity also depends on the coding mode
used, thus on the audio content. Memory occupation (RAM, ROM) is also often taken
into consideration when discussing complexity. However, this aspect is currently given
less importance because the memory requirements are not considerable compared to the
amount of available memory.

C.2 Computational complexity of Cognitive Codec
The computational complexity of neural networks is normally expressed in floating point
operations (FLOPS). The methods to estimate computational complexity of the networks
used in Cognitive Codec (which includes CNNs and GRUs) can be found in [148, 149].
For Cognitive Codec, estimated computational complexity is approximately 8.1 GFLOPS
and 2.4 GFLOPS for the encoder and the decoder, respectively.

The speed of a neural network also depends on other factors such as the extent that
operations can be performed in parallel, the memory speed, etc. To take such limits into
account, it is common to measure the speed of a neural network on specific devices. Our
experiments show that the Cognitive Codec can operate more than 100x faster than real-
time using a GTX 1080 Ti GPU. Also, at the time of conception of this thesis, the encoder
of Cognitive codec had been tested on an Apple A13 processor. At its peak performance,
A13 processor is able to encode one second of speech signal in 7 milliseconds. Similar to
standardized codecs, the memory occupation of Cognitive Coded also is not considerable
compared to the amount of available memory. The total number of parameters is 9.8M
for the encoder and 6.3M for the decoder.

1. ITU-T Recommendation G.191: https://www.itu.int/rec/T-REC-G.191-201901-S
2. https://www.etsi.org/deliver/etsi_tr/126900_126999/126952/12.04.00_60/tr_126952v120400p.pdf
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C.3 Discussion
While there is a large difference between the number of computational operations required
for the Cognitive Codec and the recent standardized codecs, it should be noted that the
Cognitive Codec is designed to run on a different hardware. Conventional codecs have an
essentially sequential architecture, where the operations must be executed one after the
other. They are typically executed on a CPU. Neural networks, in contrast, are highly
parallelizable and can be executed on GPUs. Similar to standardized codecs, Cognitive
Codec can also run on current portable devices while only using a fraction of resources
available.
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