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1. Introduction

1.1 Scope of this thesis

Encodingis a process of changing the representation of a signal for transmission or stor-
age so that it meets the requirements of the media. The objective indecodingis to re-
construct the original signal from this representation so that the quality of the signal, in
respect to some measure, is not deteriorated.Codec1 is a common noun for an encoder-
decoder system.

The techniques presented in this thesis have been developed forlossycoding of speech
and audio signals where the deterioration of a reproduced signal is ultimately judged by
the human ear. Due to the limitations of the hearing mechanism, see, e.g., (Moore 1997),
a technicallydeteriorated signal can be perceived as faultless2. A perceptual codecis a
lossy encoder-decoder system which is designed so that it utilizes the properties of hu-
man perception (Jayant, Johnston & Sefranek 1993).Losslesscoding, see, e.g., (Gerzon,
Graven, Stuart, Law & Wilson 1999), where a decoder can reproduce the original signal
exactly, is not in the scope of this thesis. The main requirement of the media is that the
bitrate of an encoded bit-stream should be lower than that of the original signal. Error con-
cealment and channel coding methods (Lin & Costello Jr. 1983) for noisy transmission or
storage media are not studied in this thesis.

Technically, this thesis concentrates to the class offrequency-warpeddigital signal pro-
cessing, DSP, techniques (Oppenheim, Johnson & Steiglitz 1971, Strube 1980). This is a
relatively generic framework which can be applied to many conventional DSP techniques
to produce new tools where some aspects of human hearing can be automatically incorpo-
rated into the system. Even if this thesis principally addresses perceptual coding of audio
and speech signals, an introduction to other potential applications of this methodology is
also given [P9].

1Or coder.
2Some authors call thisperceptually losslesscoding (Scheirer 1999)



1.2 Coding of audio and speech signals

Classically, the fields of audio and speech coding have been somewhat different. This is
because speech codecs utilize speech-specific features while audio codecs cannot gener-
ally rely on the characteristics of the input signal. In this thesis, the diversity of the field
is not so pronounced because the presented methods are mainly based on conventional
techniques in speech coding, but they are applied largely to wideband audio signals. On
the other hand, most of the presented techniques are also directly applicable to speech
coding systems. Although no speech-specific techniques, such as pitch prediction (Atal
1982), or voiced-unvoiced coding3 (Atal & Hanauer 1971) are studied, the concept of au-
dio coding is assumed to cover also many speech coding algorithms and applications. In
fact, the diversity of the field of audio and speech coding techniques is not decreasing, in
particular, modern low bit-rate audio and speech codecs are increasingly based on highly
signal-dependent features, see, e.g., (Nishiguchi 1999, Scheirer 1999).

1.2.1 Attributes and applications

There is a large number of different applications for audio and speech coding. Transmis-
sion and storage of audio data are the two principal application types. The main attributes
for an audio or speech codec are: bitrate, quality, delay, computational complexity and
memory requirements, and processability. These are briefly discussed in the following
subsections.

Bitrate

Reduction of bitrate is the primary motivation for the use of codecs4. In traditional com-
munications applications it is usually necessary to maintain a constant bitrate while in
storage and other non-real-time applications bitrate could be time-varying and depend on
properties of the input signal, or requirements of the media.

In wideband 16-bit stereophonic audio at the sampling rate of 48 kHz, the bitrate is
almost 1.6 Mbit/s. Current state-of-the-art wideband audio codecs can reduce this to 128
kbits/s so that the subjective quality is practically unaltered (Soulodre, Grusec, Lavoie &
Thibault 1998). The MPEG-4 General Audio codec (Grill 1999), which is actually a large
collection of different codecs, is capable to produce bitrates ranging from 2 to 64 kbits/s.
Johnston (1988) estimated that sufficient bitrate for wideband audio would be around
2 bits per sample. In highly signal-dependent codecs the bitrate can be extremely low.
For example, an ultimate speech codec would consist of a speech recognition system as
encoder and a speech synthesizer as a decoder. Similar approach has also been proposed
for compression of music signals, e.g., in (Scheirer 1999).

3or vocoding.
4In the AES 17th Conference (High-Quality Audio Coding) in Florence, a common way to start a conversation among ’the devel-

opers of audio coding techniques from the periphery of Europe’ was:Nice to meet you. What’s your bitrate?’.
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1. Introduction

Quality

When human listeners in good listening conditions cannot find a distinction between orig-
inal test signals and outputs of a codec, the codec is calledtransparent(Johnston & Bran-
denburg 1992). Transparency is an important concept in the sense that it is a subjectively
fixed attribute and makes comparison of different codecs straightforward5. It is signif-
icantly more challenging to evaluate different impairments in reproduced audio signals
(Soulodre & Lavoie 1999). In practice, transparency is required only in very specific ap-
plications – those who need truly transparent coding can usually afford to transmit and
store uncoded audio bitstreams6 or use lossless coding techniques (Gerzon et al. 1999).

The human ear can perceive frequencies up to 20 kHz (Fletcher 1953). Muraoka, Iwa-
hara & Yamada (1981) studied perception of reduction in bandwidth of musical signals.
They found that most people hear the difference between full audio band and 14 kHz
band but only few can hear the difference if the bandwidth is restricted to 18 kHz. In
modern audio systems, typical audio bandwidths are above 20 kHz. It is usually assumed
that sufficient bandwidth for speech is 10 kHz7. Naturally, the speech production system
is capable of producing audible frequency components above this limit, e.g., in plosive
sounds. The relation between subjective quality and bandwidth is highly nonlinear. For
example, it has been demonstrated that perceived sound quality in a wideband codec may
be higher than in a corresponding narrowband codec even if the latter would produce less
audible distortion (Roy & Kabal 1991).

Delay

In most codecs it is necessary to usebufferingwhich delays the processing of an input
signal. This yieldsalgorithmic coding delaywhich is an important attribute in many
real-time applications. This topic was discussed in [P4], where it was estimated that a
sufficiently low coding delay for most of applications would be around 2-10 milliseconds.
Typically, the coding delay in wideband audio codecs ranges from 20 to 200 milliseconds.
In low bit rate codecs the main source of algorithmic delay is related tobit reservoir
techniques, where more bits are allocated todifficult parts of the input signal, while, e.g.,
pauses in music, can be coded with fewer bits.

Computational complexity and memory requirements

Although processors are becoming increasingly powerful and memory is getting cheaper
and faster these are still fundamental requirements in most of practical applications for
coding techniques.Nathan’s First Law8, which states that“Software is a gas – it expands
to fit the container it is in”, applies to coding algorithms, too.

5Also in psychoacoustic experiments the goal is usually to findjust noticeable difference(Zwicker & Fastl 1990, Moore 1997).
6For example, the Finnish Broadcasting Company, YLE, is currently converting their huge archive of recordings to an uncoded

digital form. In addition, they don’t use codecs in their production chain.
7Kleijn & Paliwal (1995a) cited to Denes & Pinson (1963), as a source of this information.
8By Nathan Myhrvold, Microsoft’s former chief technology officer.
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Processability

It is often necessary to apply various types of post-processing techniques to coded signals.
In some applications it may be necessary to edit and combine coded bitstreams. This can
be done with decoded signals but it would be desirable to do this directly with encoded
material. Otherwise, the produced new material suffers fromtandemcoding artifacts.
Recently, it have been demonstrated that it is possible to add new powerful functionalities,
such aspitch shiftingand time-scale modifications, to decoders where the parametrization
of the signal is at high conceptual level, see, e.g., (Levine & Smith 1999).

1.2.2 Techniques for coding

There are many alternative taxonomies for different audio and speech coding techniques.
In most of the available techniques, the emphasis in the coding process is to transmit spec-
tral information9. Techniques for spectral analysis, see e.g., (Stoica & Moses 1997), are
conventionally divided to two broad approaches:non-parametricandparametrictech-
niques. Although many current codecs use partially techniques from both main branches,
this is an illustrative way to classify different coding algorithms.

Non-parametric codecs

A typical example of a non-parametric codec is a subband or transform codec of Fig.
1.1. Here, a signal is first decomposed to spectral components using a filterbank or a
transform. Each spectral component is quantized under the control of apsychoacous-
tic modelwhich determines thefrequency maskingcharacteristics within each subband.
This model allocates a different number of bits to each of the frequency bands. This
scheme was introduced for speech coding by (Zelinski & Noll 1977), where they used
Fast Fourier Transform, FFT, (Cooley & Tukey 1965) for spectral decomposition. Sub-
band coding of speech signals had already been studied in (Crochiere, Webber & Flanagan
1976). Brandenburg, Langenbucher, Schramm & Seitzer (1982) applied this to wideband
audio signals. A large number of different techniques have been proposed for subband
decomposition, see, e.g., (Johnston & Brandenburg 1992, Brandenburg 1998), for review.
Subband techniques based onwavelettransform have been used, e.g. in (Purat & Noll
1996, Hamdy, Ali & Tewfik 1996). Many wideband audio coding algorithms are also
commercially available, e.g., AC-310 (Fielder, Bosi, Davidson, Davis, Todd & Vernon
1996), PAC (Johnston, Sinha, Dorward & Quackenbush 1996), ATRAC (Tsutsui, Suzuki,
Shimoyoshi, Sonohara, Akagiri & Heddle 1996), and international ISO/IEC standards
MPEG-1 (Brandenburg 1994, ISO/IEC 1993), MPEG-2 (Stoll 1996), and MPEG-4 (Grill
1999).

9However, there are deviants from this general line such aswaveform interpolationcodecs for speech (Kleijn & Paliwal 1995b)
and scalar waveform quantization techniques (Moorer 1979).

10Currently, a part of Dolby Digital (Vernon 1999).
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1. Introduction

Coding
and

Psychoacoustic
model

QuantizationFilterbank
or

Transform

signal bit-stream

Figure 1.1: A typical subband or transform encoder based on subband decomposition and quantization
controlled by a psychoacoustic model.

Parametric
Signal
Model

Signal

Parameters

Modeling 

error

Figure 1.2: A parametric encoder.

Parametric codecs

Parametric coding is based on signal models. This approach is illustrated in Fig. 1.2.
Here, the coding process involves estimation and coding of the parameters of the model.
Often, it is also necessary to transmit the part of the signal which cannot be modeled,
that is, the modeling error, as side information. There are many different variants for this
scheme.

In classicallinear predictive coding, LPC, the signal model is usually an allpole filter
and an excitation signal, which may be interpreted as a modeling error signal. In some
formulations of low-delay coding, the parameters need not to be transmitted but they
can be estimated from the decoded signal. Most of the work in this thesis is related to
LPC techniques. Linear prediction is a standard technique in speech codecs (Kleijn &
Paliwal 1995a). In recent two decades especially Code Excited Linear Prediction, CELP
(Schroeder & Atal 1985), and its many alternative formulations such as MELP (McCree
& Barnwell III 1995), have been widely used in speech coding. In few cases, LPC has
been used also for wideband audio coding, e.g., in (Singhal 1990, Boland & Deriche
1995).

There are manyhybrid techniques which use both subband and LPC techniques. In
TwinVQ 11 (Iwakami & Moriya 1996, Moriya, Iwakami, Ikeda & Miki 1996) and Trans-
form Coded Excitation, TCX (Lefebvre, Salami, Laflamme & Adoul 1993, Bessette,
Salami, Laflamme & Lefebvre 1999), linear predictive techniques are applied to spectral

11which has also been adopted to MPEG-4 general audio codec (Grill 1999).
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parametrization but quantization is performed for a spectral representation of the remain-
ing residual signal12. Multi-band excitation methods (Hardwick & Lim 1988)ăcan also be
seen as a version of TCX. On the other hand, techniques where subband decomposition
is followed by LPC applied separately to each subband have become a popular extension
for audio coding algorithms (Lin & Steele 1993, Dimino & Morpurgo 1996).

Hedelin (1981) proposed a speech codec based on sinusoidal modeling where only
dominant spectral peaks are coded as sets of parameters representing amplitude, fre-
quency, and phase. This work was extended in (McAulay & Quatieri 1986) and applied
to wideband audio signals by Smith & Serra (1987). In recent years, coding techniques
where signal is decomposed into sinusoids, noise, and transients have been studied ex-
tensively, see, e.g., in (Hamdy et al. 1996, Purnhagen, Edler & Ferekidis 1998, Verma
1999). These techniques are particularly attractive for very low bit rate coding and they
usually provide direct means for various additional functionalities, such as pitch shifting
and time-scale modifications. However, this type of parametrization often requires long
signal buffers, that is, the coding delay is high.

Comparison or parametric and non-parametric approaches

According to the information theory, see, e.g., (Berger & Gibson 1998), a parametric rep-
resentation for a signal is more efficient than ablind non-parametric representation if the
parameters are those of an appropriate source model for a signal. For example, a linear
predictive model assumes that the signal is an autoregressive process, i.e., a white noise
signal filtered by a finite-order allpole filter13. In speech coding, the success of LPC have
been explained by the fact that an allpole model is a reasonable approximation for the
transfer function of the vocal tract (Atal & Hanauer 1971). Allpole model is also appro-
priate in terms of human hearing because the ear is more sensitive to spectral peaks than
spectral valleys (Schroeder 1982). This has also been demonstrated in psychoacoustic
listening tests, see, e.g., (Moore, Oldfield & Dooley 1989) for a review. Hence, an allpole
model is useful not only because it may be aphysicalmodel for a signal, but because it
is aperceptuallymeaningful parametric representation for a signal. Infrequency-warped
LPC, WLPC, an allpole model has a modified frequency representation approximating
the frequency representation of human hearing. The main proposition of this thesis is
that a warped linear predictive model leads to a perceptually meaningful and efficient
parametric representation of audio and speech signals.

Modern audio and speech coding algorithms are based on utilization of frequency
masking properties of human hearing (Schroeder, Atal & Hall 1979). Computational
models for frequency masking are based on a spectral representation of a signal, for ex-
ample, in (Karjalainen 1985, Beerends & Stemerdink 1996, Brandenburg & Sporer 1992).
Therefore, the design of a perceptual subband codec is relatively straightforward in the
sense that perceptual modeling can be incorporated to the algorithm in a natural and intu-
itive way.

12This approach is also called Transform Predictive Coding, TPC (Chen & Wang 1996, Ramprashad 1999).
13More complexsource modelsfor music signals have been recently studied, e.g., in (Tolonen 2000)
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1. Introduction

1.3 Contents of this thesis

This doctoral thesis consists of a summary and nine articles. The articles are related
to frequency-warped signal processing and warped linear predictive coding techniques
for audio signals. In Chapter 2, an introduction to classical linear predictive techniques is
given. Chapter 3 focuses to the contribution of this thesis. In Chapter 4, the contribution of
the current author in the development of the presented techniques is clarified and the main
results of each article are summarized. This is followed by an errata for the publications,
and copies of the included articles.
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2. Theoretical background

2.1 Linear stationary signal models

A discrete signal is a sequence of samples

x(n), wheren = · · · ,−2,−1, 0, 1, 2, · · · (2.1)

Signalx(n) can always be expressed as a linear combination of a set of some other
sequences

x(n) =
L∑
k=1

cksk(n). (2.2)

For example, in

x(n) =
L∑
k=1

cke
i2πkn/L, (2.3)

the signal is expressed as a linear combination of complex exponentials. Ifn = 1, 2, · · · , L,
this is called theinverse discrete Fourier transform. The basis functions of this decompo-
sition are defined by the following formula:

sk(n) = ei2πkn/L. (2.4)

These are a set of orthogonal functions and they form acompletebasis. This means
that a set ofL basis functions can represent any signal of durationL exactly. In audio
coding applications, subband coding algorithms are based on this principle, that is, critical
downsampling with perfect reconstruction.

In theory, signals which can be represented exactly by, e.g., a set of elementary func-
tions, are calledsingular (Wold 1954) ordeterministic(Doob 1944) signals. A formal
definition for a singular signal is that it has a non-continuous power spectrum, see, e.g.,
(Kailath 1974, Papoulis 1985). Naturally, this definition is not well suited to discrete sig-
nals of finite length. Therefore, we call a signal deterministic when it is associated with a
deterministic signal model given by 2.2.

The autocorrelation function of a discrete ergodic signals(n) is defined by

Rk = E[s(n)s(n− k)] = lim
N→∞

1

2N + 1

N∑
n=−N

s(n)s(n− k), for all k. (2.5)



2. Theoretical background

White noiseis a discrete stationary random signalr(n) defined as a sequence with

Rk = E[r(n)r(n− k)] = 0, for all n 6= k. (2.6)

In classical literature (Kolmogorov 1941),r(n) is sometimes called afundamentalse-
quence. In practical applications, signals are of finite length, and therefore a signal may
be called random only in respect to some signal model.

2.1.1 Wold decomposition theorem

Signalx(n) can always be written as a sum of a deterministic signalsd(n) and another
signal sr(n) = x(n) − sd(n). If x(n) is a stationary signal andsd(n) and sr(n) are
uncorrelated, it can be shown (Wold 1954) that

x(n) = sd(n) + sr(n) = sd(n) +
∞∑
k=0

ckr(n− k), (2.7)

wherer(n) is an uncorrelated white noise signal and
∑∞
k=0 |ck|2 < ∞. This is called

theWold decomposition theoremfor a stationary signal1. In classical terms (Kolmogorov
1941),sr(n), which is obtained from a fundamental sequence bysliding summation, is
called aregular sequence. The Wold decomposition is of fundamental importance be-
cause it clearly divides the universe of linear spectral estimation methods into two main
branches:deterministic, andstochastictechniques. Deterministic techniques can be as-
sociated withnon-parametriccoding techniques such as transform coding. Similarly,
parametrictechniques are usually related to a stochastic signal modeling principle2.

2.1.2 Prediction problem

If the coefficientsck in (2.7) are fixed andsd(n) = 0∀n, x(n) is amoving average(Slutsky
1927), MA, model for thestochasticprocesssr(n) given by

sr(n) =
∞∑
k=0

ckr(n− k). (2.8)

Clearly, the regular sequencesr(n) is obtained from white noiser(n) by a convolution
with a one-sided infinitely long coefficient sequenceck, i.e., filtering with an IIR,Infinite
Impulse Responsefilter. The Z transform of (2.8) is given by

Sr(z) = C(z)R(z) =

[ ∞∑
k=0

ckz
−k
]
R(z). (2.9)

From (2.9), it is easy to see that

R(z) =
Sr(z)

C(z)
(2.10)

1Wold decomposition theorem was introduced in the first edition of Wold’s book, his doctoral thesis, in 1938. The proof of the
theorem can be found in different forms, e.g., in (Wold 1954, Kolmogorov 1941, Priestley 1981, Papoulis 1985).

2Nonlinear parametric techniques such as sinusoidal modeling do not fit nicely into this division.
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which shows that the white noiseexcitationr(n) is uniquely determined by the filter, its
outputsr(n), and the initial conditions at the filters’ states.

One may write (2.8) into the following form

c0r(n) = sr(n)−
∞∑
k=1

ckr(n− k) = sr(n)− s̃r(n). (2.11)

In the following, we simplify notation by denotingr(n) = c0r(n), that is, we assume that
c0 = 1.

This expression (2.11) has two important aspects. Firstly,r(n) obeys (2.6). Therefore,
it also holds thatr(n) is uncorrelated with any linear combination of its past valuesr(n−
k), k ≥ 1. That is,

E[r(n)
∞∑
k=1

ckr(n− k)] = E[r(n)s̃r(n)] = 0. (2.12)

This is called theorthogonality principle. Secondly, as it was pointed out by Kolmogorov
(1941), s̃r(n), which is uniquely determined by the history ofsr(n), can be seen as a
linear predictionfor sr(n). The prediction error is, by definition, a white noise signal
r(n). Therefore, (2.12) is an optimal solution to theprediction problemgiven by (2.11).

Independently, and in parallel with Kolmogorov’s work, Wiener (1949) studied the
prediction problem forcontinuous signalsfrom a slightly different perspective3. Levin-
son (1947) extended Wiener’s theory for discrete-time signals. They started with mini-
mization of the expectation of (2.11) by

∂E[|r(n)|2]
∂ck

= 0, wherek = 1, 2, · · · ,∞ (2.13)

which leads to the same orthogonality condition given by (2.12) for anoptimal set of
coefficientsck. It can be shown that this always gives the minimum of the expression, see,
e.g., (Levinson 1947). Basically, this is the classicalleast squaresregression technique
which was already used by Gauss and first published by Legendre in early 19th century,
see, e.g., (Kailath 1974, Sorenson 1980, Robinson 1982) for a historical survey. For time
series, this technique was first applied by Yule (1927) and Walker (1931).

2.2 Linear prediction

To bring this scheme closer to practical digital signal processing techniques it is next
assumed that the Z-transform of an infinite impulse response filterC(z) can be approxi-
mated by a finite order rational polynomial, i.e., a finite order IIR filter given by

A(z) =

∑K
m=0 bmz

−m∑L
p=0 akz

−k (2.14)

3Wiener (1949) recognizes Kolmogorov’s work with the same problem in his book and points out that:... the parallelism between
them may be attributed to the simple fact that the theory of the stochastic processes had advanced to the point where the study of the
prediction problem was the next thing on the agenda.

10



2. Theoretical background

In the time domain, (2.8) is now given by

sr(n) =
K∑
m=0

bmr(n−m)−
L∑
k=1

aksr(n− k). (2.15)

The first term on the right hand side of (2.15) is a finite order moving average MA, process
(Slutsky 1927). In DSP terms, this is an output of a finite impulse response, FIR, filter.
The second term, where the value is composed as a weighted combination of past values
of sr(n) is called an autoregressive, AR, process4 (Yule 1927, Walker 1931), which can
be seen as an output of an infinite impulse response, IIR, filter.

In this thesis, the focus is in autoregressive modeling orlinear prediction5 and related
filtering techniques. Readjusting the notation, a signalx(n), wheren = 0, 1, 2, · · ·N − 1
can be modeled by

x(n) =
L∑
k=1

akx(n− k) + e(n) = x̃(n) + e(n), (2.16)

whereak are the coefficients of anLth order IIR filter. Theprediction errorsignal, or
residuale(n) may be associated with the random signalr(n) of equations (2.7), (2.12),
and (2.13)6. In the information theorye(n) is often called theinnovation sequence
(Kailath 1974).

Signal model of Eq. (2.16) is different from that given by (2.2) because the signal is not
modeled as a deterministic sequence but as a regular one. In terms of Wold’s decompo-
sition, a regular sequencex(n) is obtained from a fundamental sequencee(n) by sliding
summation with an impulse response of an IIR filter characterized by the coefficientsak.
As shown above, a signalx(n) and the coefficientsak can be related to each other by the
orthogonality principle of (2.12). In terms of the Wiener’s theory, for a signalx(n), the
set of optimal coefficientsak in MMSE sense obeys

E[e(n)
L∑
k=1

ake(n− k)] = E[e(n)x̃(n)] = 0, (2.17)

which is a finite-order version of Eq. (2.12).

Using the signal autocorrelation (2.5) and (2.16), one may write (2.17) to the following
form, see, e.g., (Levinson 1947, Makhoul 1975, Markel & Gray 1976):

L∑
k=1

akR(p− k) = R(p), wherep = 1, 2, · · · , L, (2.18)

which is usually called theYule-Walkerequations7.
4A famous classical example (Yule & Kendall 1958) of an AR process is the swinging of a pendelum which is pelted by small boys

at random with peas.
5This name was first used by Wiener (1949). Wold (1954) called this technique as linear autoregression with application to

forecasting.
6In terms of Wold decomposition theorem, if1/A(z) is only an approximation ofC(z), the residuale(n) is also aregularsequence

produced from white noise by filtering withA(z)C(z).
7So calledWiener-Hopfequations, which are used in solving coefficients for aWiener filter, see, e.g., (Haykin 1996), reduce to

Yule-Walkerequations if thedesiredinput signal is the same as the input signal. Some authors call this also Wiener-Hopf equations.
This can be motivated ifL→∞. Due to the relation to the orthogonality condition (2.12) these are also callednormal equations.
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This set of linear equations is convenient to express in a matrix form given by

R0 R1 R2 · · · RL−1

R1 R0 R1 · · · RL−2

R2 R1 R0 · · · RL−3
...

...
...

...
RL−1 RL−2 RL−3 · · · R0





a1

a2

a3
...
aL

 =



R1

R2

R3
...
RL

 . (2.19)

The matrix on the left hand side of (2.19) is aToeplitzmatrix. There are several tech-
niques to solve the coefficientsak from this matrix expression, see (Makhoul 1975) for
review. Levinson (1947) worked out a computationally efficient technique to solve the co-
efficientsak. Durbin (1960) introduced a more compact version of this algorithm which
is today known as theLevinson-Durbinalgorithm. This is anorder-recursivealgorithm
which utilizes the symmetry of the Toeplitz matrix. The results of computation at previous
stages are utilised in following stages. In the standard version of the algorithm, the inter-
mediate results are the same as thereflection coefficientsof a corresponding lattice filter,
see Section 2.2.3. Even more efficient variations of this algorithm have been introduced
such as thesplit-Levinson algorithm (Delsarte & Genin 1986).

In (2.18), the autocorrelation function for a signal of infinite duration given by (2.5)
was adopted even if the length of the signal in any practical case is finite. This mismatch
between theoretical concepts and practical digital signal processing methods exists in
the light of theWiener-Kolmogorovtheory (Åström 1970, Priestley 1981). Most of the
problems could be avoided using more elaborate theory. In particular, so calledKalman-
Bucy theory (Kalman 1960) extends the theory of optimal prediction and filtering for
signals of finite length, see, e.g., (Kailath 1974, Haykin 1996), for review. However, this
extension is omitted in this thesis.

The autocorrelation function in (2.18) can be interpreted as that of an infinitely long
signal which is windowed so that it is non-zero only in the range of interest. Several
different window functions can be used with this including classical choices such as a
rectangular window or the Hamming window (Blackman & Tukey 1959). This approach
is usually called theautocorrelation methodof linear prediction (Makhoul 1975). In the
case of a rectangular window function, correlation terms are computed with

Rk =
1

N

N−1∑
n=0

x(n)x(n− k), wherex(n) = 0 for all n < 0 andn > N − 1. (2.20)

Another approach is to change the expectation operator in (2.13) to a finite sum. This
gives

∂ 1
N

∑N−1
n=0 |e(n)|2

∂ak
= 0, wherek = 1, 2, · · · , L (2.21)
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2. Theoretical background

and leads to the following matrix form

C0,0 C0,1 C0,2 · · · C0,L−1

C1,0 C1,1 C1,2 · · · C1,L−1

C2,0 C2,1 C2,2 · · · C2,L−1
...

...
...

...
CL−1,0 CL−1,1 CL−1,2 · · · CL−1,L−1





a1

a2

a3
...
aL

 =



C0,1

C0,2

C0,3
...

C0,L

 , (2.22)

where the correlation terms are given by

Ck,p =
1

N

N−1∑
n=0

x(n− k)x(n− p). (2.23)

This way of formulating the equations in solving coefficients for a linear predictor is
called thecovariance methodof linear prediction (Makhoul 1975).

2.2.1 Linear predictive coding

Linear predictive coding, LPC, is an application of linear prediction modeling to signal
encoding8. For speech coding applications this was proposed in (Atal & Schroeder 1967,
Atal & Hanauer 1971, Itakura & Saito 1970).Prediction error form of LPC encoder9

follows directly writing (2.16) to the following form:

e(n) = x(n)−
L∑
k=1

akx(n− k) (2.24)

The Z transform of (2.24) is given by

E(z) = X(z)

(
1−

L∑
k=1

akz
−k
)

= X(z)A(z), (2.25)

whereA(z) is called theprediction error filter, or inverse filter. In using the autocorre-
lation method of linear prediction this is a minimum-phase finite impulse response, FIR,
filter, see, e.g., (Haykin 1989) for the derivation of this property.

The encoding process involves computation of filter coefficientsak and the prediction
error signal, or the residuale(n). In the decoder, the original signal is reproduced using

X(z) =
E(z)

1−∑L
k=1 akz

−k =
E(z)

A(z)
, (2.26)

where1/A(z) is now called thesynthesis filter, which is a minimum-phase infinite im-
pulse response, IIR, filter.

The residuale(n) and filter coefficientsak must be transmitted to the decoder, that is,
they should be quantized10. Several papers have been published about different strategies

8Predictive codingis usually associated with early articles by Cutler (1952) and Elias (1955).
9Prediction error coder, PEC (Gibson 1980), is also calledpredictive-subtractive coder(Oliver 1952) and D*PCM (Noll 1975).

10See, e.g., (Gray & Neuhoff 1998) for an extensive literature survey on quantization
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for quantization of LPC coefficients, see (Viswanathan & Makhoul 1975, Paliwal & Kleijn
1995), for details. The quantization of the residual, or excitation for the synthesis filter,
can be based either on scalar quantization (Jayant 1973, Noll 1975, Noll 1978), see (Jayant
& Noll 1984), for review, or vector quantization, e.g., in (Schroeder & Atal 1985, Gersho
1994, Kroon & Kleijn 1995)11. In the following, quantization is denoted by a quantizer
operatorQ[·].

The quantization erroreq(n) = e(n)−Q[e(n)], or in the Z-domainEq(z), is typically a
nearly white noise process (Jayant & Noll 1984). Since1/A(z) is a linear filter, its output
for E(z) +Eq(z) can be expressed as a sum of a clean signalX(z) and an additive noise
signalXq(z). In terms of Eq. (2.26) we have

X(z) +Xq(z) =
E(z)

1−∑L
k=1 akz

−k +
Eq(z)

1−∑L
k=1 akz

−k , (2.27)

Equation (2.27) states that thecoding errorsignal in prediction error coding has the Z-
transform,Xq(z), characterized by the estimated allpole model1/A(z). Reformulating
(2.25) to

E(z) = X(z)

(
1−

L∑
k=1

akz
−k
)
− Eq(z)P (z), (2.28)

we have aclosed-loopencoder. Typically,P (z) = 1 −∑L
k=1 γ

kakz
−k, wherebandwidth

expansion parameter0 < γ < 1. If γ = 1, Xq(z) = Eq(z), that is, coding error is
approximately white noise12. Other choices forP (z) can be used to shape the spectrum
of the coding error signal (Makhoul & Berouti 1979).

Levinson’s work (Levinson 1947) with discrete linear predictivedeconvolution, that
is, inverse filtering, was first applied to an engineering application, analysis of seismic
data for oil industry, by Tukey in 1951, see (Robinson 1982). The technique soon estab-
lished its position especially in exploration of oil and natural gas. This success boosted
the development of the theory and the techniques of LPC at that field. In particular, Burg’s
maximum entropyspectral analysis technique (Burg 1967, Burg 1975) has gained atten-
tion also in speech coding applications (Schroeder 1982). Here, instead of minimizing
the energy of the prediction error, the goal is to maximize the entropy. In terms of clas-
sical measures for the performance of a LPC model, see, e.g., (Jayant & Noll 1984), the
former is based on maximization ofprediction gain, while the latter tries to maximize the
spectral flatness. Makhoul (1977) showed that Burg’s method is equivalent with a certain
formulation of alattice methodof linear prediction, which is discussed below.

2.2.2 Spectral representation

Itakura & Saito (1970) developed13 a mathematical model for speech power spectrum
based on amaximum-likelihoodmatching of speech power spectrumP (ω) with a para-

11In this context LPC is usually calledCode Excited Linear Prediction, CELP.
12As was the case in (Atal & Schroeder 1967)
13Markel & Gray (1976) cited to a Japanese internal report by Saito and Itakura published in 1966.
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2. Theoretical background

metric allpole spectrum model given by

P̃ (z) =
σ2
e

2π

1

|1−∑L
k=1 akz

−k|2
, (2.29)

whereσ2
e is a scale factor for the magnitude. AssumingGaussiandistribution for the

input signal, their approach also leads to the autocorrelation method of linear prediction
introduced above. The autocorrelation function and the power spectrum of a stationary
signal form a Fourier transform pair (Wiener 1930, Khintchine 1934, Wold 1954)14. The
spectral theory of autoregressive modeling, or linear prediction, was already established
in (Whittle 1954). In the spectral domain the minimization of the square of the prediction
error in (2.13) is equivalent to minimizing

ELP =
σ2
e

2π

∫ π

−π

P (ω)

P̃ (ω)
dω. (2.30)

Taking the logarithm of the integrand15 we have

ELPlog =
σ2
e

2π

∫ π

−π
log

(
P (ω)

P̃ (ω)

)
dω =

σ2
e

2π

∫ π

−π
log(P (ω))− log

(
1

|1−∑L
k=1 ake

−iω|2

)
dω.

(2.31)
The role of LP on a log-magnitude power spectral domain is to minimize the mean square
difference between the logarithmic power spectrum of a signal and a corresponding log-
magnitude allpole spectrum16.

The inverse Fourier transform of the power spectrum is the autocorrelation function
which can be used to compute the coefficients of an allpole filter using (2.19). Using
this path in estimating coefficientsak, it is also possible to incorporate various types of
frequency domain criteria into the process. A classical example isselective linear predic-
tion (Makhoul & Cosell 1976). Here, two regions of spectrum are considered separately
and a model of different order is applied to them (Makhoul 1975, Markel & Gray 1976).
Another example is thePerceptual Linear Predictionby Hermansky (1990) where the
all-pole model is fitted to aloudnessspectrum on the psychoacoustic Bark scale (Scharf
1970). In these two examples the linear predictive machinery is typically used only for
signal analysis, because the implementation of filters in (2.25) and (2.26), for analysis
and synthesis, is difficult or impossible. In addition, these techniques are based on com-
putation of the power spectrum, which is typically done using non-parametric spectral
estimation techniques such as the Fast Fourier Transform, FFT, (Cooley & Tukey 1965).
This indirect way of getting thecorrelation coefficientsfor (2.19) may make the technique
computationally expensive and sensitive to errors. This thesis studies certain versions of
selective linear prediction where there is a direct implementation for the prediction error
and synthesis filters, and the correlation terms can be computed directly from the input
signal.

14This is sometimes called theEinstein-Wiener-Khintchinetheorem.
15Power spectra of regular sequences are positive and non-zero everywhere, see, e.g., (Papoulis 1985).
16Imai & Furuichi (1988) have introduced an interesting technique where an unbiasedcepstralcoefficients are estimated from log-

magnitude, or log-generalized (Kobayashi & Imai 1984), spectrum. The obtained generalized cepstral coefficients can be used directly
with log-magnitude approximation filters (Imai 1980).
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2.2.3 Lattice methods

It is possible to convert any digital filter to a corresponding lattice filter (Itakura & Saito
1972). The coefficients of lattice filters are calledreflection coefficients17 (Makhoul &
Cosell 1976).

Reflection coefficients have many interesting properties. In (Atal & Hanauer 1971),
these coefficients were derived directly from a non-uniform acoustic tube model, where
the coefficients, as the name indicates, are reflection coefficients of individual tube ele-
ments. Therefore, the reflection coefficients and the lattice structure have firm physical
interpretations. Their goal was to find a representation for LPC coefficients which is more
robust to quantization18. Reflection coefficients also act in a reasonable way in temporal
interpolation of coefficients between frames. In addition, if all the reflection coefficients
obey |Kp| < 1, p = 1, 2, · · · , L, the synthesis filter is stable. Therefore, lattice meth-
ods of linear prediction also give direct means to check and guarantee the stability of the
estimated model.

Itakura & Saito (1972) introduced a technique to estimate the reflection coefficients di-
rectly fromforwardandbackwardprediction error signals in the lattice structure. Makhoul
(1977) proposed a class of lattice methods for linear predictive modeling which com-
prises also Itakura’s and Burg’s methods (Burg 1975) as special cases. Friedlander (1982)
further extended this work by introducing a large set of alternative techniques for time-
invariant and also time-varying spectral modeling using lattice filter structures. Lattice
methods of linear prediction areorder-recursive. That is, the optimal coefficients are first
solved for the first stage of the filter, then the prediction error signals are computed for
the next stage and so on.

2.3 Linear nonstationary signal models

The techniques and concepts discussed above are all based on an assumption aboutsta-
tionarity of the input signal. In practical LPC algorithms, the filter coefficients are time-
varying, i.e, parameters of anonstationarysignal model. The basic technique to obtain
this is to perform linear predictive analysis in frames such that the signal is assumed to
be stationary within each analysis frame. In a long time scale, this means that the signal
model for linear predictive coding, from (2.16), is actually given by

x(n) =
L∑
k=1

ak(n)x(n− k) + e(n) = x̃(n) + e(n), (2.32)

where filter coefficientsak(n) are now also functions of timen. This is called a nonsta-
tionary signal model for linear prediction.

Booton (1952) extended Wiener’s (Wiener 1949) theory to nonstationary signals and
Cremer (1961) showed that Wold decomposition principle applies also to nonstationary

17On the field of statistics, these are calledpartial correlationcoefficients (Box & Jenkins 1970, Priestley 1981).
18However, there are more favorable representations available today (Paliwal & Kleijn 1995).
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2. Theoretical background

signal models. It is possible to formulate an orthogonality condition of Eq. (2.12) for
this signal model. However, there is no unique solution for the optimal time-varying
coefficientsak(n). Thecoefficient evolutionsmust be restricted somehow in order to find
one of the least-square optimal solutions to the coefficients.

It is usually assumed that the signal islocally stationary(Makhoul 1975), or the coef-
ficients aresmoothly time-varying, see, e.g., (Priestley 1981). These are conceptually two
different approaches. The local stationarity assumption is used in conventional frame-
based and continuously adaptive techniques. Smooth coefficient evolution is assumed
in smoothness priorstechniques (Kaipio & Juntunen 1999, Juntunen 1999), and in tech-
niques where the coefficient evolutions are restricted to a class of functions which can
be expressed as linear combinations of predefined basis functions(Subba Rao 1970). The
latter approach is sometimes calleddeterministic regressionapproach of time-varying au-
toregressive modeling.

2.3.1 Frame-based processing

Audio and speech coding algorithms usually process the input signal in frames. For ex-
ample, in LP-based speech coders, the frame-length is typically 10-20 milliseconds. The
frames are usually overlapping and, in the case of the autocorrelation method, some win-
dow function is applied to each signal frame before analysis. The filter coefficients cor-
responding to each frame are coded and transmitted along with excitation data. A direct
application of this procedure would produce discontinuities to the coefficient trajectories
in frame borders, which may produce unwanted artifacts. It is a common practice toin-
terpolatefilter coefficients smoothly from one frame to another. Therefore, the signal
model which is considered in these algorithms is essentially given by Eq. (2.32) even if
the spectral model is estimated in locally stationary frames.

The direct-form coefficients of a synthesis filter are not a convenient representation
for coefficient interpolation. Therefore, interpolation is usually done for reflection co-
efficients, Log-Area-Ratios, LARs (Viswanathan & Makhoul 1975), or Line Spectrum
Frequency, LSF (Itakura 1975), terms19. However, this is a somewhat arbitrary approach
and not related to the actual fluctuation in the input signal.

It is possible to increase the amount of overlapping in the analysis so that the coef-
ficients are estimated more frequently. An extreme example is asliding windowformu-
lation of linear predictive modeling where coefficients are solved at each time instant.
However, this is computationally expensive and leads to an increased number of filter co-
efficients to be transmitted. Barnwell (1977) has introduced a computationally efficient
method for computation ofadaptive autocorrelation. In this method, the correlation terms
in (2.19) are computed recursively using a leaky integrator. This is a version of the auto-
correlation method of linear prediction where the window function is actually defined as
an impulse response of a low-order IIR filter.

19This is usually done already for efficient quantization of coefficients.
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2.3.2 Adaptive filtering

Stochastic gradient methods20 for adaptive filtering also follow from alocal formulation
of the prediction problem. Here, the coefficients are not solved directly for a long sig-
nal frame but adjusted iteratively such that the filter coefficients converge, in the case
of a stationary signal, towards optimal values. In this sense, these techniques aretime-
recursive. A classical example is Least-mean-square, LMS, algorithm which was pre-
sented by Widrow & Hoff Jr. (1960). In the LMS algorithm, and its many variants
(Haykin 1996), the coefficients of a direct form filter are adjusted using a simple gra-
dient rule. Gradient adaptive lattice method, GAL, by Griffiths (1977) is an application
of the same principle to a lattice filter. Due to the cascaded structure of a lattice filter, the
GAL algorithm is both time-recursive and order-recursive. In practice, GAL algorithm is
significantly faster in convergence than the conventional LMS algorithm (Haykin 1996).

In adaptive filtering techniques, the gradient update rule can also be interpreted as a
method to produce a recursive window function for linear predictive analysis.

Adaptive filtering techniques are not directly suitable for coding applications because
they produce a set of filter coefficients at each sample which should be coded and trans-
mitted to the receiver. Gibson, Jones & Melsa (1974) introduced abackward adaptive
formulation of linear predictive coding. This is a close relative to backward adaptive
quantization methods presented, e.g., in (Jayant 1973). Here, the spectral model is not
formed from the original input signal but from the already coded and transmitted sig-
nal. Since the same model can be computed at the decoder, there is no need to code and
transmit filter coefficients. However, the spectral model is completely estimated from the
signal already transmitted. Therefore, the coefficients should be updated very frequently.
Several different adaptive filtering techniques were compared in (Gibson, Cheong, Chang
& Woo 1990).

Backward adaptive linear predictive techniques are especially suitable forlow-delay
coding of speech and audio signals. Several formulations of this scheme have been pro-
posed, see, e.g., (Chen 1995), for review. Iyengar & Kabal (1988) introduced a low-delay
speech codec which is based on a backward adaptive formulation of the GAL algorithm,
see also (Yatrou & Mermelstein 1988). Alow-delay CELPalgorithm for low-delay speech
coding proposed by Chen, Cox, Lin & Jayant (1992) was standardized by ITU-T as the
Recommendation G.72821. This algorithm is based on a backward adaptive formula-
tion linear prediction where the spectral model is estimated using a modified version of
Barnwell’s (Barnwell 1977) adaptive autocorrelation method, so calledhybrid windowing
technique (Chen, Lin & Cox 1991).

20Or, steepest decentmethods.
21See (Chen & Cox 1993) for an interesting inside story of the work.
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2. Theoretical background

2.3.3 Deterministic regression time-varying LPC

It was proposed by Subba Rao (1970) that the time-varying coefficient evolutionsak(n)
could be expressed by

ak(n) =
M∑
`=0

ck`φ`(n), (2.33)

whereφ`(n) are a set ofM predefinedbasis functions. For this system it is possible to
formulate normal equations where the least squares optimal coefficientsck` can be solved
directly. For speech applications this has been studied, e.g., by Liporace (1975), Hall,
Oppenheim & Willsky (1983). Grenier (1983) introduced a similar technique based on
a lattice formulation. Typically, basis functions are some elementary mathematical func-
tions such as the Fourier basis, Gaussian pulses, or prolate spheroidal sequences (Slepian
1978).
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3. Contributions of this thesis

3.1 Generalized predictor structures

In the conventional form, linear prediction of a current sample is given as a linear com-
bination of each previous value. The Z-transform of the predictor appears in (2.25). This
scheme may be generalized by replacing the unit delay elementsz−k, for k = 1, 2, · · · , L
with another set of filtersDk(z) [P7]. This gives the following prediction error filter:

E(z) = X(z)

(
1−

L∑
k=1

akDk(z)

)
= X(z)A(z). (3.1)

Correspondingly, the synthesis filter is given by

X(z) =
E(z)

1−∑L
k=1 akDk(z)

=
E(z)

A(z)
. (3.2)

In terms of the Wold decomposition (2.7) this changes nothing, that is, aregular se-
quencex(n) is obtained from residuale(n) using a linear filter1/A(z). However, in terms
of the orthogonality principle, it is reasonable to require that the outputs ofDk(z) should
be linearly independent. Thegain termc0 in (2.11) is usually not unity as in the case of
conventional linear prediction. In [P7] this gain term is denoted byg.

Linear predictive coding with modified predictor structures1 was studied in [P7] in
detail. It was shown how correlation terms can be computed and the corresponding normal
equations can be formulated and solved. The article shows this general form, but focuses
on the case where thesubfiltersDk(z) form, or approximate, a cascade structure, that is

Dk(z) = Dk
1(z), (3.3)

whereD1(z) is someprototypeblock whose Fourier transform is given, or approximated
by

D1(ω) = A(ω)e−iψ(ω). (3.4)

For this predictor structure, it can be shown [P7] that the spectrum representation for
prediction error in (2.30) takes the following form:

ELP =
∫ π

−π
|X(ω)|2

∣∣∣∣∣1−
L∑
k=1

akA
k(ω)e−ikψ(ω)

∣∣∣∣∣
2 (

∂ψ(ω)

∂ω

)
dω. (3.5)

1which was partly inspired by an article by Laine (1995).



3. Contributions of this thesis

This equation shows that the power spectrum is modeled on awarpedfrequency scale
determined by the functionψ(ω). The magnitude termA(ω) can be used for spectrum
shaping. However, mainly due to stability problems associated with the generalized syn-
thesis filter (3.2), only the cases where the subfilters are allpass filters, i.e.,A(ω) = 1, are
exemplified in the article. The last differential term in (3.5) produces a spectral tilt to the
spectrum.

The first example of the article is a linear predictive codec whereDk(z) arefractional
delayfilters (Laakso, Välimäki, Karjalainen & Laine 1996). This type of an LPC algo-
rithm can be designed so that the LP modeling focuses to a low frequency band of the
input signal and completely neglects the spectral information above a certain frequency
limit. This is related to the works of Makhoul (1975) with selective linear prediction,
where the same effect was achieved using a frequency domain approach. The main ad-
vantage of the technique in [P7] is that the filter coefficients can be estimated directly
from the waveform and the corresponding prediction error and synthesis filters can be
implemented. Moreover, with a suitable selection ofDk(z), one can implement a lin-
ear predictive codec where the frequency resolution approximates closely a logarithmic
frequency scale.

The article [P7] also reviews earlier work whereDk(z) are a set of orthogonal polyno-
mial functions, see, e.g., (Ninness & Gustafsson 1997) given by

Dk(z) =

√
1− |λk|2

1− λkz−1

k∏
p=1

z−1 − λp
1− λpz−1

. (3.6)

If λk = λp = 0,∀k, p this reduces to a conventional LP predictor. Ifλk = λp,∀k, p
this is so calledLaguerre model(Lee 1960, King & Paraskevopoulos 1977, Oliveira e
Silva 1995a). With a suitable selection of parameters in Equation (3.6), this also leads to
Kautz models (Kautz 1954, Wahlberg 1994). An extensive literature review on the use of
orthogonal subfilters were recently given in (Paatero 2000).

This type of modifications to the prediction scheme have a long tradition. The use of
Laguerre functions was already proposed by Lee (1933) and Wiener (1949) in the case of
continuous-valued systems. Their work with various types of orthogonal functions was
reviewed and extended in (Lee 1960). King & Paraskevopoulos (1977) introduced a dis-
crete version ofLaguerre filter2 based on discretized Laguerre functions (Gottlieb 1938).
Autoregressive modeling based on discrete Laguerre functions has been studied, e.g., in
(Wahlberg 1991, Oliveira e Silva 1995b), especially in the field ofsystem identification3

in control theory.

Recently, Varho & Alku (1999) and Chang, Cheong, Ting & Tam (2000) have proposed
modified linear predictive structures where a prediction is formed by grouping or selecting
past signal samples in different ways. These techniques are obviously related, but they
are largely omitted in this thesis. See, e.g., (Varho 2001) for a review.

2Their application examples were a low-order filter with a triangular impulse response and a Hilbert transformer.
3That is, parametric modeling.
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Most of the articles in this thesis deal with systems where

Dk =

(
z−1 − λ

1− λz−1

)k
. (3.7)

In this case, the filtersA(z) and1/A(z) are calledwarpedFIR and IIR filters, respec-
tively4 The difference between a warped filter and a Laguerre filter is that the latter has an
additional pre-filter, see (3.6) given by

W (z) =

√
1− λ2

1− λz−1
. (3.8)

The role ofW (z) is to orthogonalize the set of filters. In many practical applications this
is just an additional lowpass filter for a warped filter and therefore the difference between
a warped filter and a Laguerre filter is insignificant.

The implementation of the generalized synthesis filter given by (3.2) is not necessarily
a straightforward task. Let us study a simple first-order system withD1(z) = 1 − z−1.
This yields

X(z) =
E(z)

1− a1(1− z−1)
, (3.9)

which has the following difference equation

x(n) = e(n) + a1x(n) + a1x(n− 1), (3.10)

The outputx(n) of the filter appears on the both sides of the equation. That is, the filter
has adelay-freeloop structure which can not be implemented directly5. The solution in
this case is trivial:

x(n) =
e(n)

1− a1

+
a1x(n− 1)

1− a1

(3.11)

Equation (3.11) shows an equivalent filter where the delay-free loops have been elimi-
nated. This can be implemented directly ifa1 6= 16. In the case of more complex filter
structures it is a significantly more challenging task to make this modification (Szczupak
& Mitra 1975, Toy & Chirlian 1984, Karjalainen, Härmä & Laine 1996). In any case, the
modified filter is a new filter with another set of filter coefficients. If the original coeffi-
cientsak are obtained, for example, using modified linear prediction, the coefficients of
the realizablefilter must be computed each time the coefficients are changed. For exam-
ple, in continuously adaptive filtering (Haykin 1996) or continuous interpolation of filter
coefficients this mapping from the coefficients of the original filter to those of the realiz-
able structure must be done at each sample. Typically this is a computationally expensive
task.

In (Härmä 1998b) and [P6], the author developed a new approach for the implemen-
tation of recursive generalized filters7. Two different techniques are introduced in [P6].

4The terminology is inaccurate. SinceD1(z) in (3.7) is an IIR filter,A(z) is also an IIR filter. The name warped FIR, WFIR,
is used to illustrate the structural similarity to the conventional FIR filter. In some of the articles, e.g., [P6], these are called warped
all-zero andall-pole filters, respectively. This is also misuse of terminology because both filters are actually pole-zero- filters, see,
[P7].

5One should knowx(n) in order to compute its value.
6If a1 = 1 is substituted into (3.9), the constant term vanishes, and the filter becomesnon-causal
7In fact, (Härmä 1998b) studies this from a generalized view and gives examples of warped IIR filters, while [P6] focuses to the

implementation of warped IIR filters. The derivation of the technique is more accurate in [P6].
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3. Contributions of this thesis

Firstly, there is an algorithm which can be used to implement directly any recursive filter
having the transfer function given by1/A(z). This is based on splitting the implementa-
tion into two steps where the output of the filter is first computed, after which, its inner
states are updated. The algorithm makes it possible to implement a filter without chang-
ing the structure or the coefficients of the filter. Secondly, the derivation of this technique
also gives a generic procedure for modifying a filter structure so that the delay-free loops
are eliminated. In the case of a warped IIR filter, this approach leads to exactly the same
modified structure as was presented earlier in (Imai 1983, Karjalainen et al. 1996). The
availability of these two techniques made it possible to implement various types of warped
direct-form and lattice synthesis filters in [P2], [P3], [P4], [P7], and [P8].

3.2 Frequency-warped signal processing

Oppenheim et al. (1971) introduced a technique to compute FFT with a non-uniform
spectral resolution using the outputs of a chain of first-order allpass filters, see [P8], for
examples. Most of the fundamental properties of frequency-warped signal processing
were already introduced in (Oppenheim & Johnson 1972) and (Braccini & Oppenheim
1974). The phase function of a first-order allpass filter, given byD1(z) in (3.7), is

ψ(ω) = ω + 2 arctan

(
λ sin(ω)

1− λ cos(ω)

)
, (3.12)

whereλ is called here awarping parameter8. As discussed above, the phase function
of a subfilter in (3.5) produces a non-uniform frequency resolution for the LP system.
The same frequency-warping effect also occurs in computing the FFT over the outputs
of an allpass filter chain. The frequency-warping effect is studied in [P9]. A real-valued
λ produces the best frequency resolution at low or at high frequencies, depending on the
sign of the parameter,λ > 0 or λ < 0, respectively9. It is shown how different classes
of digital signal processing algorithms can bewarpedby replacing the unit delays of a
conventional filter by first order allpass filters and how this yields systems with a warped
frequency representation.

Constantinides (1970) introduced techniques for spectral transformations for digital
filters by means of replacing the unit delays of a conventional structure by first or sec-
ond order allpass subfilters. This type of filter transformations for a lattice filter has been
studied by Messerschmitt (1980). Based on filter transformations, Schüssler (1970) intro-
duced avariable digital filterwhere the cutoff frequency of a transformed filter could be
adjusted by varying a single parameter, that is, the warping parameterλ. This approach
has been used by many authors, e.g., in (Johnson 1976, Li 1998).

It was pointed out by Strube (1980) that the frequency mapping in a warped system is
relatively close to that of human hearing if the warping parameterλ is chosen appropri-

8This is calleddiscount factor(King & Paraskevopoulos 1977) orLaguerre parameterin the case of a Laguerre filter.
9It is also possible to use a complex-valuedλ parameter as was proposed in (Oppenheim & Johnson 1972) and [P1] to place the

range of best resolution more freely.
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ately. Smith & Abel (1999) derived an analytic expression10 for optimal value ofλ such
that the frequency resolution of a warped system approximates that of human hearing,
e.g., the Bark scale (Scharf 1970, Zwicker & Fastl 1990) or the ERB rate-scale (Moore,
Peters & Glasberg 1990). Recently, den Brinker (1998) has given an interpretation for the
critical bands of hearing in terms of a local Kautz transformation.

The frequency scales of human hearing are reviewed and compared with frequency-
warped frequency representation in [P9]. In addition, [P9] introduces a number of audio
applications where the use of warped filters have shown advantages over conventional
systems mainly due to better match with the frequency resolution of hearing. Typical
applications are design of Bark-scale filterbanks (Laine & Härmä 1996, Evangelista &
Cavaliere 1998, Sarroukh & den Brinker 1998), filters for loudspeaker equalization (Kar-
jalainen, Piirilä, Järvinen & Huopaniemi 1999, Asavathiratham, Beckmann & Oppenheim
1999, Pedersen, Rubak & Tyril 1999), HRTF filtering (Huopaniemi, Zacharov & Kar-
jalainen 1999), and modeling of musical instruments (Karjalainen & Smith 1996). The
warped FIR and IIR filters can be designed using basically any conventional time-domain
or frequency-domain method for filter design. In using time-domain methods the impulse
response of the filter must be first warped. For Laguerre FIR filters this technique was
introduced by Maione & Turchiano (1985) and for warped filters by several authors cited
in [P9]. In using frequency-domain techniques the frequency response of the filter must
be specified on a warped frequency scale, see, e.g., (Karjalainen, Härmä & Laine 1997).

3.3 Warped linear prediction

Warped linear prediction, WLP, was first introduced by Strube (1980)11 The technique
was applied to speech coding in (Krüger & Strube 1988). For wideband audio applica-
tions this technique was used in (Laine, Karjalainen & Altosaar 1994)12. This article also
introduced an efficient technique for the computation of warped autocorrelation function,
i.e., the warped autocorrelation network. A slightly different approach for WLP was re-
cently introduced in (Edler & Schuller 2000), where a related technique was applied for
adaptive pre- and post-filtering in a wideband audio codec.

A group of researchers, e.g., in (Tokuda, Kobayashi & Imai 1995, Koishida, Tokuda,
Kobayashi & Imai 1996, Koishida, Hirabayashi, Tokuda & Kobayashi 1998), has system-
atically employed theirmel-generalized cepstraltechniques (Tokuda, Kobayashi, Imai &
Chiba 1993) for speech analysis, coding, and synthesis. WLP technique (Strube 1980)
can be seen as a special case of their generalized scheme which also incorporates clas-
sical homomorphic (Oppenheim & Schafer 1968) cepstral and mel-cepstral techniques
(Imai 1983).

10This is slightly different and more correct version of the derivation presented in their earlier paper (Smith & Abel 1995). However,
there are some typing errors in (Smith & Abel 1999). The correct version of this formula is given, e.g., in [P8].

11Strube (1980) refers to earlier works with selective LP (Makhoul & Cosell 1976) already introduced in previous sections.
12Laine’s publications on warped signal processing are related to his theory of classes of orthonormal FAM and FAMlet functions

(Laine 1992). This is also the theoretical frame of reference in the Master’s Thesis (Härmä 1997), Licentiate’s Thesis (Härmä 1998a),
and several earlier publications of the current author (Härmä, Laine & Karjalainen 1997).
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3. Contributions of this thesis

The author of this thesis published his first article on warped linear prediction in audio
coding in 1996 (Härmä, Laine & Karjalainen 1996). It presented an implementation of
a warped prediction error coder with adaptive scalar quantization of the residual signal.
This compared the performance of warped LPC and the classical LPC in terms of con-
ventional technical measures such asprediction gainandspectral flatness(Jayant & Noll
1984). In [P8], this analysis was repeated and it turned out that the difference between the
two cases in terms of classical measures is relatively small13. A new technical measure
which is based on the ability of an estimated model to separate two spectrum peaks is
also introduced [P8]. This measure clearly shows the advantages of WLP in respect to
frequency resolution of human hearing.

In another conference article, (Härmä et al. 1997), the goal was to study how well a
warped LPC could work automatically as a perceptual audio coder. Recall from previous
discussion that in a prediction error coder, the spectral shape of acoding error signalis
close to that of estimated allpole spectral model. When the model is estimated directly
on a Bark-warped frequency scale the allpole model can be seen as an approximation of
the psychoacousticfrequency masking patternfor a complex wideband signal. There-
fore, a simple WLPC performs in a somewhat similar way with more complex perceptual
audio codecs based on subband decomposition and spectral quantization controlled by a
separate auditory model. This was illustrated in (Härmä et al. 1997) by comparing the
spectrum of a coding error signal in WLPC and in a MPEG I layer 3 codec14.

The principle of simplifying the structure of a codec such that the perceptual model
is integrated into the coding process was taken even further in [P1]. Here, the two chan-
nels of astereophonicaudio signal are converted to a single complex-valued signal. The
paper presents three alternative techniques for this. The most successful one appeared
to be a technique where the signals are converted to analytic signals using the Hilbert
transform, the left channel is complex-conjugated and the signals are added. As a re-
sult, the signal in the right channel is completely mapped to the right hand side ([0, π])
of the complex-valued nonsymmetrical spectrum of the obtained complex-valued signal.
Correspondingly, the left channel appears on the left hand side of the spectrum that is, at
negativefrequencies ([−π, 0]).

Linear predictive coding process can be directly derived for complex-valued input sig-
nals and filters, see, e.g., (Haykin 1989). This also works with warped LPC, and hence it
was possible to formulate a complex-valued warped prediction error coder in [P1] which
is driven by a complex-valued stereo signal. There are a number of advantages and disad-
vantages in this scheme.

A model of fixed order is optimized simultaneously for both channels of the stereo
signal. For example, if there is a signal frame where the left channel is almost silent or
noisy, most of the poles run to the positive frequencies, e.g., upper half of the unit disc in
the Z domain, to model the right channel. This is obviously a favorable way to share the
resources in stereo coding. The inverse filter, when working properly,whitensthe two-

13In (Härmä et al. 1996), the authors were unaware of thegain andspectral tilt factors associated with WLP. Therefore the results
indicated a significant difference between the two cases. This was corrected and explained in [P8].

14One of the figures from (Härmä et al. 1997) is replotted in [P9] as Figure 19.
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sided nonsymmetrical spectrum of the stereo signal. Consequently, the complex-valued
residual has almost a symmetrical spectrum and therefore it can be replaced by a single
real-valued sequence, e.g., the sum of the real and imaginary parts of the original residual.

The main disadvantage in complex valued processing of a stereo signal is the map-
ping from two signals to a single complex-valued by means of the Hilbert transform. In
(Härmä 1998a), the author developed a number of alternative techniques for this map-
ping. However, no single technique which would be acceptable in terms of processing
delay, computational complexity, and accuracy in terms of magnitude and phase15 was
found. This scheme for stereo coding was used in (Härmä, Vaalgamaa & Laine 1998)
but it was omitted in further developments of this coding scheme (Vaalgamaa, Härmä &
Laine 1999).

The topic of [P8] is comparison of warped LPC to the conventional LPC. This com-
parison is done using a kind of generalized and simplified prediction error codec. It is
assumed in the article that the results obtained with this type of a simulated codec could
be extended to cover also more complex modern CELP type speech and audio coding
algorithms based on linear prediction. The article reviews the theory of warped linear
predictive coding and introduces most of the essential aspects of the technique16. The
most important part of the article is a report on extensive listening tests which were per-
formed at Helsinki University of Technology in the turn of the millenium. The mean data
over all listeners and test sequences are shown in Fig. 15 of [P8]. The results indicate that
WLPC is superior to LPC especially at high sampling rates and for low orders of filters.
An early version of this article was published in (Härmä 2000).

3.4 Low-delay audio coding

As was discussed in Section 2.3.2, parametric coding techniques can be modified in such
a way that spectral modeling is completely or partially based on already transmitted sig-
nal. With LPC, this is calledbackward adaptive predictive coding(Gibson et al. 1974). In
[P2], an extremely low delay audio codec was proposed. This codec, which is actually a
warped implementation of an algorithm proposed in (Iyengar & Kabal 1988), has the cod-
ing delay of 1-2 samples. The spectral modeling is based onGradient Adaptive Lattice,
GAL, method (Yatrou & Mermelstein 1988, Iyengar & Kabal 1988)17 which is driven by
the decodedsignal. The codec is a stereo codec with a common vector quantizer18 At
220 kb/s for stereo the codec performed surprisingly well with smoothly varying audio
test material. However, in the case of sudden transients, the output was a disaster. This
can be expected because the codec has no means to adapt to a sudden onset of a signal.

15Especially in the case of IIR Hilbert transformers.
16Quantization of filter coefficients was largely omitted in this paper. An article about this topic was published in (Vaalgamaa,

Härmä & Laine 2000). Warped filters are generally known to be relatively robust for quantization of filter coefficients, see, e.g.,
(Asavathiratham et al. 1999).

17GAL was also used by Fejzo & Lev-Ari (1997) for adaptive Laguerre filtering.
18An early version of this algorithm was actually implemented as a single complex-valued process as in [P1]. This works, but the

final coding delay is increased by tens of milliseconds due to the mappings from stereo signal pair to a complex-valued signal and
back.
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3. Contributions of this thesis

The work with low-delay coding continued in two conference articles: [P3] and [P4].
Both of these papers mainly concentrate on the theory of perceptual low-delay wideband
audio coding. It turned out that relatively little has been done to answer basic questions
such as what is a sufficiently low coding delay and what type of techniques are available
for the development of such coders.

It cannot be avoided that in low-delay coding the estimated spectral model is inaccurate
for sudden onsets and transients. There is simply no time or signal data available for a
detailed analysis. In [P3], it was assumed that the same problem could also be found
in human perception, that is, the ear cannot accurately detect spectral details during and
immediately after an onset or a transient. It was proposed that this could be related to
a well-known psychoacoustic phenomenon, namelyovershoot masking, which reduced
the sensitivity of the ear immediately after the onset of a wideband sound. The article
reviews some results from psychoacoustics and introduces a simulated low-delay codec
which was used in listening tests to test this idea. It turned out that a significant amount
of quantization noise can be tolerated immediately after the onset of a wideband sound or
a transient.

The main result of [P3] is that low-delay high-quality audio coding is possible even
if performance is necessarily degraded near sudden onsets and transients. However, the
author was not able to find a computational auditory model for the overshoot effect which
could accurately predict the results. One such model was developed in (Härmä 1999).
However, it is computationally too complex to be applied to any practical audio or speech
coding algorithm.

The simulated codec introduced in [P3] was based on awarped sliding-window lattice
method. The method was studied earlier in (Härmä 1998a) and it is close to some of the
techniques presented, e.g., in (Zhao, Ling, Lev-Ari & Proakis 1994, Demeure & Scharf
1990).

Another low-delay wideband audio codec was introduced in [P4]. This can be seen as a
modified version of G.728 speech coder (Chen et al. 1992). The conventional Low-Delay
CELP algorithm was warped and applied to wideband audio. In addition, several addi-
tional techniques were presented in the article. However, the algorithm was never fully
implemented and tested. The main reason is that the presented algorithm is clearly subop-
timal. It is based on backward adaptive warped LP with a 5 ms look-ahead buffer, which is
used very inefficiently in the codec. The use of backward adaptive LPC is well justified in
low-delay coding, but it is difficult to build an efficient coding algorithm which uses both
backward andforward adaptive spectral modeling. This calls for new techniques. The
sliding-window lattice method which was used in simulated low-delay coding in [P3],
would be an attractive technique if an efficient method for parametrization was found.

The main contribution of this article [P4] is an extensive discussion on the require-
ments for algorithmic coding delay in various applications based on bidirectional audio
transmission, such as conventional teleconferencing and teleimmersive virtual reality ap-
plications (Zyda 1992, Huopaniemi 1999, Savioja 1999). It was estimated that the coding
delay in the range of 2 to 10 milliseconds should be sufficient for most of audio applica-
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tions.

3.5 Time-varying spectral modeling

Natural audio and speech signals are nonstationary processes. The assumption of local
stationarity works relatively well in many applications. However, in many audio and
speech coding techniques, including those presented in this thesis, difficulties are en-
countered in encoding transients, onsets, and rapid chirp-like signals efficiently. This is a
significant problem especially in low-delay coding because it is not possible to use long
buffering and associatedbit-resevoirtechniques.

In [P2], [P3], and [P4] is was shown that warped signal processing techniques can be
applied to certain adaptive, and sliding-window, formulations of linear predictive spec-
tral modeling. Adaptive LMS formulations for Laguerre filters had been already in-
troduced in (den Brinker 1993, den Brinker 1994), Laguerre GAL algorithm in (Fejzo
& Lev-Ari 1997), and RLS Laguerre lattice algorithm in (Merced & Sayed 2000). In
[P5], it is demonstrated how deterministic regression time-varying LPC techniques, see
Sect. 2.3.3, can be warped. This technique yields an efficient, and perceptually moti-
vated parametrization for time-varying sounds. However, the direct-form time-varying
autoregressive method (Subba Rao 1970, Liporace 1975) has some problems. Therefore,
the recent work by the current author involves the utilization of a modified19 version of a
time-varying lattice method introduced by Grenier (1983).

3.6 Future work

Articles in this thesis introduce and study a large number of techniques for which frequency-
warping techniques can be applied to. Potential applications are also discussed. However,
no fully tested and tuned applications have been presented so far. This is something that
can be expected to take place in the future. One of the main thesis of this work is that
warping techniques can be applied to basically any DSP algorithm. Therefore, warped
linear prediction can be used in audio and speech codecs as a replacement for the clas-
sical LP. It is also stated and demonstrated that it is reasonable to assume that the use of
WLP may lead to subjectively better performance of a codec due to a better match with
the properties of human hearing.

The results in [P8] show that significant saving in quantization of residual signal can be
obtained by using warping techniques in LPC. In another article (Vaalgamaa et al. 2000),
it was shown that the quantization properties of warped or conventional filter parameters
are nearly equal. However, it turned out that slightly more bits were typically needed to
quantize WLP coefficients than conventional LPC parameters. The benefits of using WLP
in audio and speech coding can be evaluated only by designing a fully optimized codec.

19That is, a warped version.
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3. Contributions of this thesis

Subband coders and different classes of sinusoidal+harmonics+noise coders are pow-
erful tools for audio bitrate reduction. However, they typically suffer from a relative high
algorithmic coding delay. In [P4] it was proposed that the use of parametric techniques,
and WLP, in particular, would be beneficial in low-delay codecs. At the moment, the
main application field of the author is wideband telecommunications. This involves de-
velopment of high-quality, multi-channel, and low-delay audio coding techniques, and
integration of those with other elements of such systems, i.e., acoustic echo cancellation
and channel coding.

Many parts of this thesis open perspectives which may be subjects to the future work of
the author. Generalized predictor structures studied in [P7] is clearly a field where more
work both in theoretical aspects and practical applications could be done. The work with
time-varying autoregressive techniques started with [P5] is also continuing. The main
problem with both these themes is in finding the best applications. Generalized models,
time-varying models, and generalized time-varying models might be used in many types
of applications based on analysis or synthesis of audio or speech signals.
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4. Conclusions

4.1 Main results of this thesis

• Implementation techniques for frequency-warped and generalized recursive filters
have been introduced in [P6]. Two techniques have been presented. First, a generic
algorithm to implement recursive filters which are traditionally considered to benon-
realizabledue to delay-free loops. Secondly, technique to derive a corresponding
modified filter structure, where the delay-free loops are eliminated.

• A generalization and a set of new modifications to the predictive coding have been
introduced in [P7].

• Most of conventional signal processing techniques can be warped. This topic has
been reviewed and extended in [P9]. This article also introduced a new design of a
warped IIR filterbank and some new approaches for filter design.

• In [P8], the performance of warped linear prediction in audio coding have been
studied in terms of technical measures and listening tests at different sampling rates
and as a function of model order.

• A new formulation for stereo audio coding has been presented in [P1].

• Several new wideband audio coding algorithms have been introduced in [P1], [P2],
and [P4]. In the context of this thesis, these can be considered as design examples.

• Psychoacoustical, acoustical, and technical aspects of low-delay wideband audio
coding have been studied in [P3] and [P4]. It is proposed that warped linear predic-
tion may be a potential technique for low-delay wideband audio coding.

• A warped formulation of time-varying autoregressive modeling has been presented
in [P5] and its applicability to the modeling of audio and speech signals has been
studied.

4.2 Contribution of the author

The author of this thesis produced approximately 68 % of the pages of the manuscript
[P9]. It was accepted by the other authors of the article that the current author is responsi-



4. Conclusions

ble for approximately 80 % of the technical work which includes mathematics, computer
simulations, and programs made for this particular article. It was also desided that the
total contribution of the current author for this article is 75 %. Naturally, if the contribu-
tion of the author in both writing and techical part would be 100 %, the total contribution
would also be 100 %. Therefore, we have here a system of two equations where one can
easily solve weights for written and technical parts. This gives weights 5/12 and 7/12 for
writing and technical contribution, respectively. This formula was used in calculating the
total contribution of the author of this thesis for all the articles (marked in parenthesis).
The percentage values for writing and technical contribution was evaluated together with
other authors and acknowledged contributors.

P1 The principle of complex-valued warped LPC was developed together with Laine.
The author wrote the article and did all computational simulations. (83 %)

P2 The author wrote the article, developed the coding algorithm, and designed and con-
ducted listening test. Co-authors Laine and Karjalainen helped to enhance the qual-
ity of the final article. (95 %)

P3 The author wrote the article, developed the presented technique and designed and
conducted listening tests. Co-authors Laine and Karjalainen helped to enhance the
quality of the final article. (94 %)

P4 The author wrote the article, developed the presented coding algorithm. Co-authors
Laine and Karjalainen helped to enhance the quality of the final article. (95 %)

P5 The topic of this article was developed together with Juntunen. He also introduced
the basic methodology to the author and wrote the original version of Section 2.
The current authorwarpedthe methodology and did all computational simulations.
Juntunen helped in enhancing the quality and language of the final article. (82 %)

P6 The implementation techniques were developed by the current author and he also
wrote the article. Several people are acknowledged for help in formulating the final
article. (97 %)

P7 This work was partly inspired by earlier work by Laine. The author wrote the article
and did all computational simulations. Several people helped the author by providing
useful Matlab code fragments for filter design, and in critical reading of an early
version of the manuscript. (96 %)

P8 The author wrote the article and developed the methodology for the tests. He also
designed the listening test system and conducted the listening tests. Laine and Alku
read an early version of the manuscript and helped in developing the quality of the
presentation. (95 %)

P9 The idea for the article came from Karjalainen, who also wrote the original version
of Introductionand Section 2.5. The co-authors provided specific application exam-
ples, i.e., Sections 3.4 – 3.7. All other material was written and computed by the
current author. The role of Karjalainen and Välimäki in enhancing the quality and
language of the final manuscript was vital. (75 %)
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Errata

Publication [P1]:

• The left part of Fig. 4 (WLP ENCODER) is wrong. A closed-loop encoder is shown
in the Figure while an open loop structure was used. The correct structure is shown
below:
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