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Recognizing Voice Over IP: A Robust Front-End for
Speech Recognition on the World Wide Web
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Abstract—The Internet Protocol (IP) environment poses tworel-  for the integration of voice and data. There are several reasons

evant sources of distortion to the speech recognition problem: lossy for this, but we will highlight the following two:

speech coding and packet loss. In this paper, we propose a new . . . .
front-end for speech recognition over IP networks. Specifically, we 1) IPis already available in every machine; and

suggest extracting the recognition feature vectors directly fromthe ~ 2) this kind of integration can be extended to many other
encoded speech (i.e., the bit stream) instead of decoding it and applications (fax, video, shared whiteboards, etc.).
subsequently extracting the feature vectors. This approach offers  \Web-based call centers are one of the most promising VoIP
two significant benefits. First, the recognition system is only af- applications [7]. In this context, the ability to provide the

fected by the quantization distortion of the spectral envelope. Thus, lient with i t-effecti friendl ken interf
we are avoiding the influence of other sources of distortion due client With On=line, " CoStENective, ariendly SPOKEn INEnaces

the encoding-decoding process. Second, when packet loss occurdVill acutely inﬂUGnC? the success of an e-business \{Veb.Site-
our front-end becomes more effective since it is not constrained Futhermore, these interfaces will also enable applications

to the error handling mechanism of the codec. We have consid- ranging from over-the-net dictation to personal assistants,
ered the ITU G.723.1 standard codec, which is one of the most g i1 attendants, voice dialers, and other computer telephony

preponderant coding algorithms in voice over IP (VolP) and com- L
pared the proposed front-end with the conventional approach in applications. Nevertheless, the lack of robust speech recog-

two automatic speech recognition (ASR) tasks, namely, speaker-in- Nition technologies capable of operating under the adverse
dependent isolated digit recognition and speaker-independent con- conditions imposed by IP networks is currently preventing a

tinuous speech recognition. In general, our approach outperforms wide deployment of spoken language interfaces in Web hosts.
the conventional procedure, for a variety of simulated packet loss In fact, very limited work has been published on the pro-
rates. Furthermore, the improvement is higher as network condi- . ' fthe i . f . h -
tions worsen. cessing aspects of the integration 0 automatic speech recogni-
_ _ _ tion (ASR) systems on the World Wide Web ([4], [11], and [18]
Index Terms—Coding distortion, G.723.1, IP networks, IP tele- 50 interesting examples). As far as we know, there has not been
phony, packet loss, speech recognition, voice over IP (VoIP). . o .
any attempt to design specific solutions for the new problems
posed by voice transmission over IP networks (from the ASR
|. INTRODUCTION point of view). In our opinion, the following two obstacles need

HE RAPID growth of the Internet along with the possi—to be faced:

bility of endowing Web pages with rich multimedia capa- 1) Voice must be encoded for transmission and subsequently
bilities are opening a wide variety of e-business opportunities. ~ decoded at the far end, where it will be recognized. Fur-
In other words, the Internet is becoming an ubiquitous vehicleto  thermore, the compression rate is usually high and con-
access a countless number of showcases (the World Wide Web) Sequently, the encoding—decoding process causes an im-
from every PC, workstation, or cellular phone (the firstones pro-  Poverishment of the recognition figures.
viding Internet access are already available). Such success and) Packet loss severely affects the performance of a speech
popularity are clear proof of the many advantages and potential ~ récognizer, since complete segments of the signal are lost.
of the Internet Protocol (IP) as a support for the integration of In this paper, we begin with a detailed discussion of both
different kinds of applications and services. problems. Afterwards, in light of this discussion, we propose
One of the most outstanding examples of the integratiGhnew ASR front-end to deal with them. In particular, we sug-
support provided by IP is the Internet telephony or voice ovEest performing the recognition from the encoded speech (i.e.,
IP (VoIP). Contrary to the switched telephone network, pom the bit stream) instead of decoding it and subsequently
networks are not intended for transmitting voice. This unsuigxtracting the parameters. We extract and decode only those
ability constitutes a very challenging problem; specificallyparameters relevant to the recognition process. In this way, as
packet (datagram) loss, delay, and network jitter are the m&xplained in detail further on, we are preventing part of the
obstacles for the deployment of VoIP. Nevertheless, despfding distortion from influencing the recognizer performance,

these drawbacks, IP begins to consolidate as a natural vehfitce the used parameters are directly extracted from the orig-
inal speech. On the other hand, we cannot avoid the quantiza-

tion distortion of these parameters, but, as seen ahead, this fact
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In order to assess the proposed front-end, we have compare@herefore, the waveform, short-time spectrum, and other rel-
it with the conventional one (i.e., an ASR system operating @vant characteristics of the (encoded and) decoded speech signal
the decoded speech signal) using the speech coding standaedsomewhat different from those of the original one.
ITU-G.723.1 [9], under several simulated packet loss rates. InVery limited work has been reported on the influence of the
particular, we have tested our procedure in two different AS€dding distortion in speech recognition. As far as we know, three
tasks, achieving, in general, clear improvements. Furthermopapers address this problem directly; the first by Euler and Zinke
its benefits increase as the network conditions worsen. [5], the second by Dufouet al. [3], and the third by Lilly and

The rest of this paper is organized as follows. Section Raliwal [14]. None of them deals with G.723.1 or G.729, but all
presents the specific problems of ASR in the IP environmemtf,them agree on one general conclusion also applicable to these
discussing the influence of coding distortion and packet lossodecs: even working with matched conditions (i.e., training the
Section Il reviews the main characteristics of the speedystem using decoded speech), the speech recognition perfor-
coding algorithm chosen for this work, ITU recommendatiomances are damaged by codecs working at bit rates under 16
G.723.1, as one of the most preponderant codecs for VokB/s.

Section IV tidily describes our proposal in comparison with the
conventional approach. Section V presents the experiments &dPacket Loss
discusses the results, highlighting the key issues in ASR overrhe inadequacy of IP networks for real-time traffic such as
IP networks. Finally, some conclusions are drawn and the mgifice appears in the form of packet loss, either because the
lines for future work are outlined in Section VI. packets are actually lost or because they arrive too late. De-
pending on the implementation one packet can contain one or
more speech frames. For our experiments, one frame per packet
ll. SPEECHRECOGNITION AND IP NETWORKS is considered.
Obviously, packet loss deteriorates the quality of the decoded

As stated in Section |, speech recognition technologies ageech and several techniques have been proposed to alleviate
likely going to play an important role in the development othat problem. According to the taxonomy of error concealment
friendly, cost-effective, IP-supported, Web-based servicemd reparation techniques in [17], one can distinguish between
However, this aim currently poses very challenging techneender-based repair and error concealment techniques by the re-
logical problems. At this moment, a huge effort is being doneeiver. The first ones include the traditiorfatward error cor-
in developing solutions at the network and protocol levelgection andinterleaving. Their major inconvenience is the in-
Nevertheless, the network upgrade is very expensive andraase in bandwidth requirements. The last ones are independent
long-term solution [7]. of the sender and can be further divided imtsertion interpo-

In the meantime, present problems should be identified atadion, andregeneratiortechniques. In any case, the objective of
practical solutions provided. From our point of view, as outlinethese solutions is the recovery of a perceptually acceptable voice
in Section I, two major difficulties are to be considered: codingaveform; nevertheless, the mismatches between the speech re-
distortion and packet loss. The rest of this paper is devotedaanstructed in this way and the original one can severely affect
these two subjects and their influence on ASR systems. the recognition performance. This is the reason why an ASR
specific concealment technique such as the one presented in this
paper improves the performance of the recognizers.

Again, to support further discussions and to gain insight in the

Before its transmission over an IP network, the voice signmhpact of packet loss on recognition performance, we will ap-
must be encoded to fit into the available bandwidth. Voigeroximately and briefly describe the general philosophy of the
codecs included in the H.323 protocol suite [10] such asacket concealment technigues implemented in VolIP codecs.
G.723.1 and G.729 are the most commonly used ones. When a frame is missing, both the filter (sometimes including

To support some posterior discussions and to gain insightarbandwidth expansion) and the excitation of the last correct
the actual influence of the coding distortion in ASR tasks, faame are used instead. The procedure progressively attenuates
brief and qualitative description of the main characteristics tfie excitation until, after a consecutive number of lost frames,
the codecs is in order. The G.723.1 and G.729 standard codesoutput is finally muted. As a result, single packet loss can be
are CELP-type (code excited linear predictive). These coddoterated; however, if packet losses happen in bursts, as usual in
achieve low bit rates by assuming a simplified speech prodube Internet, the consequences can be devastating.
tion model (known as source-filter model) with negligible in- In this paper, we deal with packet losses while bit errors
teraction between source and filter. The filter is determined @ame not considered, since in the VoIP framework bit errors are
a frame-by-frame basis while the excitation is computed withf only minor importance. Nevertheless, we find it valuable to
a higher time resolution (from two to four times per frame, désriefly discuss the essential differences between the impact on
pending of the codec) by means of an analysis-by-synthesis pi&R performance of packet loss and bit errors. From our expe-
cedure aiming at minimizing a perceptually weighted version aence, we would say that on the one hand, dealing with packet
the coding error. As a result, it can be said that these codecsloss is harder because all the information concerning one or
troduce two different types of distortion, namely, that due to thraore frames is lost; but on the other hand, you can be confi-
guantization of the parameters to be transmitted and that owitent on the received information, and therefore you can rely on
to the inadequacy of the model itself. it to conceal the missing frames.

A. Coding Distortion
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Ill. SPEECHCODECS FORVOICE OVER IP: G.723.1 decision taken over the last good frame. The decoded speech is
_ _ ~ attenuated if bad frames continue to arrive, until it is completely
Although alternative codecs are emerging, we have investiyted after three consecutive losses.

gated the G.723.1 standard codec because, tOgether with thgummlng up, a Speech frame is encoded through the fol-
G.729, itis the most widely used in the VoIP environment. Fufowing parameters:

the_rmore, 6'72.3‘1 seems to be more sensitive to packet IOSS1) a ten dimension LSP vector, representing its spectral en-
mainly due to its relatively slow frame rate (33.3 frames per velope;

second). A low frame rate implies that a considerable portion of 2) a pitch lag and a five-dimensional predictor coefficient

voice IS missing when a pagket is lost. i vector per subframe, representing the periodic fraction of
With the purpose of providing a better understanding of the the excitation

proposed ASR front-end, there follows an outline of the most 3) anumber of positions, the sign, and the gain of the pulses
relevant features of this codec. For a detailed description, we conforming the nonperiodic part of the excitation.
refer the reader to the standard recommendation [9].
The G.723.1 standard is an analysis-by-synthesis linear pre-
dictive codec and provides a dual coding rate at 5.3 and 6.3 Kb/s. IV."RECOGNITION FROMDIGITAL SPEECH

Itis pOSSible to SWitCh betWeen both rates at a fl’ame IeVeI and’rhe essentia' diﬁerence between a Conventiona| ASR System
also, an option for variable rate operation is available usiRghd our approach is the source from which the feature vectors
voice activity detection (VAD), which compresses the silent pore derived. Thus, to assess our proposal, we have tested the
tions. two ASR systems that can be observed in Fig. 1. The decoded
The voice quality offered by G.723.1 can be rated as 3.8 @fpeech based front-end starts from the decoded speech and pro-
the M.O.S. scale in 5.3 kb/s mode and 3.9 in 6.3 kb/s mod&seds as a conventional ASR system; while the encoded speech
Therefore, even though toll quality is claimed, it is obvious thafased one, does it from a guantized LP spectrum extracted by
other algorithms provide a slightly better quality: G.729 anghe G.723.1 encoder. These two different ways of computing the
G.726 give 4.0 and 4.3, respectively. feature vectors are described in more detail in the following sub-
G.723.1 uses a frame lengihy of 240 samples (30 ms) andsections.
an additional look ahead of 60 samples (7.5 ms), resulting in
a total algorithmic delay of 37.5 ms. The frame is divided int@ Recognizing Decoded Speech

four subframes of,; = 60 samples. A window of 180 sam- n thi ional h. the f .
ples is centered on every subframe and a tenth-order linear pre! this conventional approach, the feature extraction is car-

diction (LP) analysis is performed. The prediction coefficientd€d Out on the decoded speech signal, which is analyzed once
obtained this way are used to implement a short-term perc&y€rY 10 or 15 milliseconds, employing a 20- or 30-ms analysis

tual weighting filtering. However, only the coefficients extracte amming windowlusin?rthe HTK package [22] Tyvelve m6|'
from the last subframe are converted into line spectral pa fgauency cepstral coefficients (MFCCs) are obtained using a

(LSP), quantized and sent to the transmission channel. At fﬁ‘&"sca'ed filterbank with 40 channels. Then, the log-energy,

decoder, the LSP vector for every subframe of each frametlfke 12 delta-cepstral coefficients z_‘;md th_e delta-log energy are
computed by means of a linear interpolation which involves tf#PPended, making a total vector dimension of 26.
current decoded vector and the previous one. o o
The excitation signal is composed of a periodic and a nong@- Recognizing Digital Speech
riodic component. The construction of the periodic componentStandard speech codecs are completely (bit-level) defined.
involves the estimation of a pitch lag, and a fifth-order predictdrherefore, it is possible to selectively access the relevant param-
for modeling the long-term correlations among the samples. eters (from the recognition point of view). The underlying idea
The nonperiodic componentis computed using different techere is to feed the speech recognizer with a parameterization di-
niques depending on the coding rate used. For the higher ragetly derived from the digital (encoded) speech representation,
6.3 Kb/s, the encoder uses a multipulse maximum likelihoog., recognizing from digital speech.
quantization (MP-MLQ), while at 5.3 Kb/s, it employs an alge- This is feasible because, fortunately, as previously noted,
braic code excited linear prediction (ACELP) scheme. As withe two most preponderant codecs for VoIP, ITU-G.723.1 and
be explained further on, our research focuses on the lower [itU-G.729, are CELP-type codecs, and this type of codecs
rate. In this case, (ACELP) the excitation selection algorithextract and code the appropriate spectral information, from
finds at most four nonzero pulses that can only be allocatedvetich recognition can be successfully carried out.
certain fixed positions. Due to these restrictions in the allowedOne of the aims of our proposal is to reduce the influence
positions, they can be very efficiently encoded. of coding distortion on ASR systems performance. Specifically,
Another interesting feature of this codec is that it has beéme spectral envelope derived from the digital speech is the same
designed to be robust against frame erasures. The error concisat would have been obtained from the original speech, except
ment strategy, however, must be triggered by an external indiéar the quantization. But, as revealed in [20] and confirmed by
tion, which can be obtained from the RTP protocol [19]. Wheour experimental results, the quantization distortion does not es-
the decoder is in concealment mode, it uses the previous L&tially affect the recognition performance. On the other hand,
vector to produce a prediction of the actual one and generaties spectral envelope estimated from the decoded speech could
a synthetic voiced or unvoiced excitation signal based uporeghibit important differences with respect to the original one,
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Fig. 1. Parameterization procedures. The lower part of this block diagram illustrates to the steps followed in a conventional approach, bdedispesch is
received at the far end and subsequently decoded before being parameterizated for recognition. The upper part of the diagram representspsacedopesed
where no decoding is performed. Instead the parameterization is extracted from the quantized LSP coefficients transmitted by the codeysudrsegtezhtl
into LPC coefficients, LP spectrum, filtered by a mel-scaled filterbank and transformed in MFCC coefficients via discrete cosine transforideBgriesgy is
estimated from a subset of the encoded excitation parameters and the aforementioned LP spectrum.

since, as highlighted in Section II-A, the decoded speech is af-  only make use of a trustworthy set of quantized parame-
fected by both the quantization distortion of every parameter ters (those extracted from the correctly received frames).
involved in the speech synthesis and the inadequacies of thed) The computational effort required is not increased, since
source-filter model. the cost of computing the MFCCs from the digital speech
Furthermore, when dealing with packet loss, our front-end  is practically equivalent to that of the same task in the
reconstructs the missing spectral envelopes from quantized ver- conventional front-end; while, in our case, a complete de-
sions of the correctly received ones. This way, it is possible to  coding is not necessary.
design procedures that are more effective for the ASR perfor-Nevertheless, it should be admitted that our approach also
mance. For example, real time requirements on ASR systepresents a couple of drawbacks, namely, the front-end should
are not usually as demanding as on IP telephony. This enaliesadapted to the specific codec if we are not willing to accept
the use of better interpolation procedures, like the one that wstbme mismatch; and, as we will discuss further on, the spectral
be presented in Section V. Moreover, not every parameter needselope is available at the frame rate of the codec (which can
to be concealed, which prevents bad corrections on unnecesssryoo slow). This last is a minor problem which can be easily
parameters from adding distortion. On the contrary, when packetrcome as will be demonstrated later. In any case, the results
loss occurs, the conventional front-end estimates the spectralgmewn in the paper indicate that the advantages outweigh the
velope from the decoded speech, which exhibits degradatiatisadvantages.
due to the effects of the concealment procedures on both specFhe block diagram in Fig. 1 illustrates the proposed param-
tral envelope and excitation (usually rough, due to the delay timterization procedure compared to the conventional one. Our

requirements). implementation mixes our own procedures with some facilities
Summing up, these are the advantages of the proposed @ipthe HTK (HTK Toolkit) package [22]. More precisely, the
proach. trans-parameterization (from quantized LSP to MFCC) is de-

1) The performance of our system is only affected by tHcribed below step by step.
guantization distortion of the spectral envelope and a re-Step 1) For each G.723.1 frame (30 ms of speech), the ten

duced subset of the excitation parameters. Thus, we are guantized LSP parameters are converted into LP co-
avoiding the distortions due to the quantization of the efficients.
remaining parameters and possible inadequacies of thestep 2) A 256-point spectral envelope of the speech frame is
source-filter model. computed from the LP coefficients.

2) When packetloss occurs, our front-end can be more effecStep 3) A filter bank composed of 40 mel-scale symmetrical
tive since it is not constrained to the error handling mech- triangular bands is applied to weight the LP-spec-

anism of the codec. In particular, any post-processing will trum magnitude, yielding 40 coefficients, which are



PELAEZ-MORENOet al. RECOGNIZING VOICE OVER IP: A ROBUST FRONT-END 213

TABLE |
RECOGNITION RATES SHOWING THE INFLUENCE OF SPEECHCODING ON BOTH IDR AND CSR TASKS, FOR THEG.723.1 (ODEC. FIRST ROW SHOWS THE
REFERENCEEXPERIMENT USING ORIGINAL SPEECH SECOND AND THIRD ROWS SHOW THE RESULTS WHEN DECODED SPEECHIS INVOLVED, BOTH FOR
UNMATCHED (i.e., THE SPEECHMODELS ARE OBTAINED USING ORIGINAL SPEECH BUT THETEST IS DONE WITH DECODED SPEECH AND MATCHED CONDITIONS
(MODELS ARE TRAINED AND TESTEDUSING DECODED SPEECH. THE INFLUENCE OFCODING DISTORTION IS NOTICEABLE

Experiment Description | IDR Task 95% CSR Task 95%
(Training-Testing) Confidence Interval Confidence Interval
Original-Original 99.66% (99.53,99.79) 90.83% (90.27,91.39)
Original-Decoded 98.98% (98.76,99.20) 86.28% (85.61,86.94)
Decoded-Decoded 99.33% (99.15,99.51) 87.01% (86.36,87.66)

converted to 12 mel cepstrum coefficients usinDR system), we use a database consisting of 72 speakers
HTK. and 11 utterances per speaker for the ten Spanish digits. This
Step 4) The frame energy is estimated as described in the dptabase was recorded at 8 kHz and in clean conditions. In
pendix and the log-energy is appended to the featuaeldition, we have digitally encoded this database using the
vector. G.723.1 standard at 5.3 kb/s, so that we have two different
Step 5) Dynamic parameters are computed (by HTK) for allatabases at our disposal.
the 12 MFCC and the log-energy, making a total Since the databases are quite limited to achieve reliable
vector dimension of 26. speaker-independent results, we have used a ninefold cross
validation to artificially extend them. Specifically, we have
split each database into nine balanced groups; eight of them for
training and the remaining one for testing, averaging the results
As mentioned in Section Ill, G.723.1 codec can operate at tvafterwards. In this way, we can include all the 7920 utterances
different bit rates, namely, 5.3 and 6.3 kb/s. Moreover, the Bt compute the statistical confidence bands.
rate can be modified at the frame rate. Some preliminary exper-The baseline is anisolated-word, speaker-independent HMM-
iments showed that the speech recognition system performahased ASR system developed using the HTK package. Left-
is not very sensitive to the operating bit rate. In other wordtg-right HMM with continuous observation densities are used.
from the automatic speech recognition point of view the speeElach of the whole-digit models contains a different number
quality at both bit rates is quite similar. Thus, our experimen@f states (which depends on the number of allophones in the
have focused on the lowest bit rate, 5.3 kb/s, assuming thatfitionetic transcription of each digit) and three Gaussian mixtures
of the conclusions can be extended to the highest rate, 6.3 kip&y. state.
2) Speaker-Independent Continuous Speech Recogni-
A. Baseline Systems and Databases tion: The database which we used in our speaker-independent
) ) ) ) _continuous speech recognition experiments is the well-known
In' this se.ct|on, we will present and discuss the expen_mer'f\,%sOurce Management RM1 Database [15], which has a 991
carried out in order to compare the proposed front-end with 2,4 yocabulary. The speaker-independent training corpus
conventional one in different IP' network conditions. Eor thiSonsists of 3990 sentences pronounced by 109 speakers and
purpose, we have chosen two different tasks: speaker-indepgps et set contains 1200 sentences from 40 different speakers,
dentisolated digit recognition (IDR task) and speaker-indepefypich corresponds to a compilation of the first four official

dent continuous speech recognition (CSR task). _ test sets. Originally, RM1 was recorded at 16 kHz and in clean
In order to state the statistical significance of the experimental . jitions: however. our experiments were performed using a

results shown in the following subsections, we have CaICUIatE’djownsampled) version at 8 kHz. As in the previous section, we

the confidence intervals (for a confidence of 95%) using the,e gigitally encoded this database using the G.723.1 standard
following formula [21, pp. 407—-408]:

V. EXPERIMENTAL RESULTS

at 5.3 kb/s.
We have employed context-dependent acoustic models,
_ namely: three-mixture cross-word triphones. The synthesis of
band p(100 — p) ) . o
5 = 1.96 e— (1) unseen triphones in the training set was performed through a

decision tree method of state clustering. The standard word-pair

wherep is the recognition rate for the IDR task or word accugrammar was used as the language model.
racy for the CSR task and is the number of examples to be ] ) ) o
recognized (7920 and 10 288 words for the IDR and CSR tasks, Influence of Coding Distortion on Speech Recognition
respectively). Thus, any recognition rate in the tables belowf&rformance
presented as belonging to the bdmd (band/2), p+ (band/2)] We have evaluated the influence of the G.723.1 (5.3 Kb/s)
with a confidence of 95%. standard speech codec on the performance of the two ASR tasks

1) Speaker-Independent Isolated Digit Recognitidrar previously described. Results are shown in Table I, which dis-
the speaker-independent isolated digit recognition experimeptays, besides the results achieved in the reference experiment
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TABLE I
CHARACTERISTICS OF THEIP CHANNELS GENERATED FORMEASURING
THE INFLUENCE OF MISSING SPEECHPACKETS ON THEASR SYSTEM
PERFORMANCE SPECIFIC VALUES OF THE CHANNEL MODEL PARAMETERS
(Py, P,, P,, AND P;) ARE SHOWN FOREACH CHANNEL, TOGETHER WITH THE
RESULTING PACKET LOSSRATES (PLRS) AND MEAN BURSTLENGTHS(MBL S).
PLRs AND MBL s ARE NOT THEORETICAL VALUES BUT EXPERIMENTALLY
COMPUTED OVER THEDATABASES USED. LAST COLUMN SHOWS THENUMBER
OF LOST FRAMES THAT CONSTITUTE THE90% OF THE BURSTS THIS NUMBER
HAS BEEN SELECTED ACCORDING TOREAL TRAFFIC RESULTS CHANNELS A

Fig. 2. Model for packet loss simulation. This model is a Markov chain TO E EXPLORE INCREASING PLRS (FROM 0.34%T0 5.83%)
consisting of two states: the first one with a low packet loss rdte) (

and the second one in which packet loss is highly probaBle & P). Channel P, B, P P, PLR | MBL 90%
Transitions from the state one (good state) to state two (bad state) are mode -
through the transition probabilit,. A different probability,P;, governs the  conditions bursts
transitions from the bad state to the good one. Bursts are generated by choo: B o o
P, < 1 — P.. In these conditions, it is not likely to move from the good to ___** 0.001 | 0.3 | 0.001) 085 03% | 176 | < 3 frames
the bad stateR. ), but once the model is in the bad state, is difficult to leave it B 0.002 | 0.25 | 0.005 | 0.85 | 1.13% | 1.61 | < 3 frames
(1 — P,), thus generating bursts. =
C 0.005 | 0.25 | 0.01 | 0.85 | 2.54% | 1.62 | < 3 frames
_ o ) ) ) D 0.005 | 0.2 | 0.015 | 0.85 | 3.35% | 1.63 | < 3 frames
using the original speech, two experimental results involving dt . .
L . . E 0.01 [ 0.25|0.025| 09 | 583% | 1.70 | < 4 frames
coded speech, one for matched (training and testing using ¢
coded speech) and another for unmatched conditions (traini___ T 001 | 0.2 | 0.001] 09 | 4.11% | 323 | <7 frames

with original—not encoded—speech and testing with decoded
speech). ) _ . _

In both cases (IDR and CSR) the drop in the recognition ﬁégcus!ng on packet Iengths and inter-departure times designed
ures (comparing the reference experiment with any involvi§" Vo'ce traffic according to G.723.1 recommendation. Borella
encoding speech) are statistically significant, showing that thncludes thatlong-term packet loss rates (PLRs) between 0.5%

influence of coding distortion on ASR performance is no long&@nd 3-5%; with amean burstlength (MBL) of 6.9 packets, can be
negligible. considered typical. Moreover, approximately 90% of the bursts

The novel front-end proposed in this paper is aiming at al&onsist of three packets or less. This fact reveals that some very

viating this influence by circumventing some of the sources 19 bursts occur that significantly contribute to the MBL.
distortion due to the encoding—decoding process. Although realistic, simulating extremely long bursts is of no
use at illustrating the comparisons pursued in this paper, since

when a significant part of the speech signal is lost hothing can be
done, from the acoustic point of view, to improve the recognition
performance. Thus, we have adjusted the Gilbert's model so
In order to measure the influence of missing speech pack#tgt 90% of the bursts generated consist of three packets or less,
on the ASR system performance, we have artificially degradéilowing one of Borella’s conclusions. On the other hand, we
the G.723.1 encoded speech by simulating packet losses grave cut the likelihood of long bursts by reducing the MBL,
duced by the IP channel. although we have also included an example exhibiting a longer
Packet losses encountered in digital transmission over IP ggan length.
notindependent on a frame-by-frame basis, but appear in burstd.ikewise, although our experiments focus on PLRs between
Such a channel exhibits memory, i.e., statistical dependencdih% and 3.5%, we have decided to consider also a couple of
the occurrence of missing packets. In our case, we have sirg¥amples of higher PLRs (up to almost 6%). The main reason
lated this process using Gilbert's model [12], which represeris extend the scope of the experiments beyond Borella’s typ-
the behavior of channels with memory in a simple way. Gilbertisal rates is the high variability exhibited by these experimental
model is a Markov chain consisting of two states, as can be dbeasures depending on the number of hops of the particular
served in Fig. 2: a first one with low packet loss rakg)and a routing, the geographical locations of the nodes (Paxon [16]
second one in which packet loss is highly probalite & ;). claims that Europe suffers considerably higher PLRs than does
Transitions from the state one (good state) to the state two (ddarth America), etc.
state) are modeled through the transition probabitity thus, Following the above considerations, we have designed six IP
1 — P, represents the probability of remaining in the good statdhannels whose characteristics are listed in Table 1l. Channels
provided we are already there. A different probabilf®, gov- A-E explore increasing PLRs (from 0.34% to 5.83%), always
erns the transitions from the bad state to the good one; witlith the 90% of the bursts consisting of three packets or less
1— P, representing the probability of remaining in the bad statéexcept Channel E, which rises this figure to four packets or
Bursts are generated by choosiflg <. 1 — P;. In these con- less). On the contrary, Channel F generates longer bursts (90%
ditions, it is not likely to move from the good to the bad statef the bursts consist of seven packets or less).
(Ps), but once the model is in the bad state, is difficult to leave The results, using the G.723.1 codec with its error conceal-
it (1 — P,), thus generating bursts. ment mechanism, for both the IDR and CSR tasks (for the
Arecent paper by Borella [1] reports a thorough experimentehse in which training and testing is performed with decoded
study about the way in which packet loss occurs in the Internegeech) are shown in Table Ill. We start the discussion with

C. Influence of Packet Loss on Speech Recognition
Performance
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TABLE I
RECOGNITION RATES SHOWING THE INFLUENCE OFG.723.1 @DING AND
PACKET LOSS ONBOTH IDR AND CSR TASKS. THESE EXPERIMENTSWERE
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TABLE IV
RECOGNITION RATES ACHIEVED FOR THEIDR TASK AND SEVERAL
SIMULATED IP CHANNELS. CONFIDENCE BANDS ARE SHOWN IN BRACKETS.

CONDUCTED USING DECODED SPEECH FORBOTH TRAINING AND TESTING As CAN BE OBSERVED, THE DECREASE INRECOGNITION RATES DUE TO
PACKET LOSSESIS SLOWER FOR THEPROPOSEDAPPROACH(DIGITAL) THAN

IN THE CONVENTIONAL ONE (DECODED). THE CONFIDENCE BANDS

0;
Channel 95% 95% ARE OVERLAPPING DUE TO THE SMALL DATABASE USED. A FRAME
Conditions | IDR Task | Confidence | CSR Task | Confidence PERIOD OF 15 ms, WHICH WE HAVE FOUND SUITABLE FOR THIS TASK,
A . IS USED IN BOTH CASES
interval interval
- 99.33 % | (99.15,99.51) | 87.01 % | (86.36,87.66) Channel | Digital 95% 95%
A 99.20 % | (99.00,89.40) | 86.64 % | (85.98,87.30) Conditions Confidence | Decoded | Confidence
B 98.91 % | (98.68,99.14) | 85.75 % | (85.07,86.43) interval interval
C 98.70 % | (98.45,99.95) | 84.47 % | (84.18,85.56) - 99.29 % | (99.04,99.42) | 99.33 % | (99.15,99.51)
D 98.13 % | (97.83,98.43) | 83.66 % | (82.95,84.37) A 99.17 % | (98.97,99.37) | 99.20 % | (99.00,99.40)
E 97.53 % | (97.19.97.87) | 81.01% | (80.25,81.77) B 99.03 % | (98.81,99.25) | 98.91 % | (98.68,99.14)
F 97.12% | (96.75,97.49) | 81.68 % | (80.93,82.43) C 98.84 % | (98.60,99.08) | 98.70 % | (98.45,98.95)
D 98.59 % | (98.33,98.85) | 98.13 % | (97.83,98.43)
. . E 98.09 % | (97.79,98.39) | 97.53 % | (97.19,97.87
Channels A-E. As expected, the drop in recognition perfor- oL ) R : )
: . -
mance increases with the PLR, from 0.13% to 1.81% for the_ F 97.54 % | (97.20,97.88) | 97.12 % | (96.75,97.49)

IDR task, and from 0.43% to 6.9% for the CSR task. It is also

important to note that the influence is more noticeable in the ) o ) .
CSR task. problem entailed replicating the same interpolation scheme used

When the bursts are longer (Channel F) the IDR system Seetpusthe_GJZS.l decoder. We tried out this solution in the IDR
to be the most impaired. The IDR results for Channel F af@Sk without the expected success.
poorer than those achieved for Channel E, even though its PLFGIven that the standard interpolation did not work out for
is lower. However, for the CSR task, Channel F behaves betefognition purposes, we tried to decrease the frame period by
than Channel E. Very likely, the explanation can be found in tfigeans of a smarter interpolation. In fact, the interpolation car-
contribution of the language model (only used in CSR), able f&d out by the G.723.1 just involves two frames (the current
conceal some missing information. and the previous ones), mainly due to delay constraints; nev-

These results highlight the remarkable influence of packettheless, an ASR system can tolerate a delay of a couple of
loss on the speech recognition accuracy for both tasks, but sfsgmes (actually, we need such a delay to compute the delta pa-
cially for the CSR one. As will be shown further on, the prorameters). Following this idea we have tested out a band-limited
posed front-end provides a consistent improvement of the recagterpolation FIR filter on the LSP coefficients to obtain a frame
nition rates in this scenario. period of 15 ms (for the IDR task) or 10 ms (for the CSR task).
The interpolation filter uses the nearest four (two of each side)
nonzero samples.

. : . ables IV and V show the results achieved by our front-end
Along this subsection we compare the performances achle%f
I

D. Recognition from Digital Speech

. : led adDigital) in comparison with the conventional one
by th d front-end with those obtained by th foe g
y The propased tront-end wi ose obfained Dy the conv abeled a®ecodedifor the IDR and CSR tasks, respectively. In

tional one, for the two tasks considered. - . X
It is well known that the recognition figures show a CriticaPrder to address the statistical significance of the experimental

dependency on the frame period (the time interval between t\;&?ults, thg confidence intgrvals caIcuIatg_d for a confidence of
consecutive feature vectors). For the IDR task, a 15 ms frame pa-° are displayed along with the recognition rates. Finally, the
riod seems to be appropriate (some experiments were condud@ggormances of both systems have been evaluated for the six
using a frame period of 10 ms, but we did not find any improvéP cha_nr.1els. described in the previous subsection. In any case,
ment). However, for the CSR task, the frame period should B training is performed odean(not affected by packet loss)
reduced to 10 ms. In our opinion this is mainly due to the fagéPeech.
that the duration of the acoustic units is shorter in the CSR task-or the IDR task, it seems clear that the proposed front-end
(we use word models for IDR and triphones for CSR). As a coRerforms slightly better than the conventional approach. The re-
sequence of this bigger temporal resolution, the acoustic vectdg{s are just equivalent to those achieved by the conventional
should be extracted at a higher rate. Another (less relevant) ariiéthod when no packet loss is considered or the PLR is very low
ment in the same direction could be that, as some authors stétdjannel A). Nevertheless, for Channels B-E, i.e., for PLRs be-
the speaking rate is usually faster in continuous speech cdiween 1.13% and 5.83%, our front-end provides better results,
pared to the pronunciations of isolated words. with the improvement increasing with the PLR [from 0.12%
Our front-end has to deal with the problem of fitting the aptChannel B) to 0.57% (Channel E)]. The results obtained for
propriate frame period, since the G.723.1 standard encodes@@annel F are also favorable to our approach. Although the PLR
LP parameters once every 30 ms. Our first approach to treat timshis last case (4.11%) is higher than that of the Channel D
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TABLE V sary to increase the rate at which the spectral information is fed

RECOGNITION RATES ACHIEVED FOR THECSR TASK AND DIFFERENT to the speech recognizer to achieve the best performance. For
SIMULATED IP CHANNELS. THE DECREASE INRECOGNITION RATES DUE TO

PACKET LOSSES!IS SLOWER FOR THEPROPOSEDAPPROACH(DIGITAL) THAN N thiS pUrpose, we have proposed an interpolation scheme which

THE CONVENTIONAL ONE (DECODED). EVEN FOR LOW PACKET LOSS has proved to be very effective.
RATE CHANNELS (€.g., AAND B), THE DIGITAL APPROACH ISSTILL From our results, the following conclusions can be drawn.
ADVANTAGEOUS. A FRAME PERIOD OF10 ms, WHICH WE HAVE FOUND . . .
SUITABLE FOR THIS TASK, IS USED IN BOTH CASES First, for the IDR task, our approach is superior only for the
channels with PLRs of 1.13% and higher (although the data-
Channel | Digital 95% 95% base is not large enough to guarantee the statistical significance
. i 0
Conditions Confidence | Decoded | Confidence with a confidence level qf 95 A?). Sgconq, for the CSR task, the
terval - terval proposed front-end provides significant improvements for all of
e mterva the IP channels considered, even when low PLRs or no packet
- 88.33 % | (87.71,88.95) | 87.01 % | (86.36,87.66 loss are considered.

88.95 % 86.64 % | (85.98,87.30 Third, for both tasks, the decrease in the recognition rates due
746 % $5.75 % | (85.07.86.43 to packetlossesisslowerinourapproachthaninthe decoded one.
= A b In other words, the worse the conditions of the IP network are, the

( ) )
(87.63,88.87) )
( ) )
86.81 % | (86.17,87.46) | 84.47 % | (84.18,85.56) higher the benefits of our technique become. Therefore, it can be
( ) )
( ) )
( ) )

86.82,88.10

86.09 % | (85.42,86.76) | 83.66 % | (82.95,84.37 concluded that the proposed approach is much more robust than
$3.08 % | (83.27.84.69) | S1.01% | (80.25,81.77 the conventional one. In our opinion, this is due to that any kind
- : : of processing intending to conceal the missing information will
83.96 % | (83.25,84.67) | 81.68 % | ( be supported in a trustworthy set of quantized parameters (those
extracted from the correctly received frames). Furthermore, itis
. . . . hotconstrained to the error handling mechanism of the codec.
(3.35%) the performance improvement is smaller, since the Ilke-.l.hiS paper has focused on ITU-G.723.1 speech codec; how-
lihood of I_ong bursts, devas_tating for both approaches, is highg\r/er, this approach could be also easily extended either t(; other
thlljs leaving Ies_s rr?on;df(k))r |mpro(;/err]nen:l_ datab g sﬁ}andards codecs (like G.729), or even to proprietary ones, since,
nany case, it should be noted that the database used for %very case, low bit rate codecs typically used in VoIP sys-
IDR task is qot large enoughl to guargntee the statistical relgfns are CELP-type and, consequently, encode and transmit the
valr:me c::‘ thgslmerovlfmﬁnts with a gofnfldencz °f|95%' _dspectral envelope of the speech signal. Furthermore, it is ex-
or the task, the proposed front-end always provi ﬁécted that the proposed method would attain even better re-

better results than the conventional one. Moreover, the impro\é‘fﬂts working with the standard G.729, since this codec uses a
ments are statistically significant for all of the IP channels COND-ms frame rate. thus avoiding the need of interpolation. We

sidered. The improvgments in_ this case Qxhibit the same trqggve these experiments for further work.

Fhat forthe IDR tgsk, l.e., they increase V‘,”th the PL,R' Howevgr, Finally, we feel that there is room to investigate more elab-
in this case, the improvements are considerably higher, start| ted ways of reconstructing the missing information due to
from a 1.52% (for no packet losses), and reaching a 3.67% (gi:ket 0SS,

the Channel E). Finally, the same comment about the Chanhel

F for the IDR system results applies to the CSR system.

HiEH | 9| Q| W |

80.93,82.43

APPENDIX

FRAME ENERGY ESTIMATION

VI. CONCLUSIONS AND FURTHER WORK ) )
Almost every speech recognizer includes the energy of the

After reviewing the new difficulties faced by speech recogspeech signal in the parameter vector. However, the G.723.1
nition technologies in the VoIP environment, namely, speegfandard does not encode the energy as a separate parameter and
coding distortion and packet loss, we have proposed a Ngyirefore, it should be computed from some of the encoded pa-
front-end for speech recognition on IP networks. In particulgiameters.
we suggest performing the recognition from the encoded speeckye have calculated the mean power of every subframe as fol-
(i-e., the bit stream) instead of decoding it and subsequenyys. Modeling the excitation[n] in every subframe as a zero-
proceed to the recognition. In this way, we are circumventingean white Gaussian noise, the mean power of the synthesized

the influence on the recognizer of some sources of distortion dy&sech in the corresponding subframe can be computed as fol-
to the encoding—decoding process. Furthermore, when paqkgjs:

loss occurs, our front-end becomes more effective, since it is not 1
constrained to the error-handling mechanism of the codec. o2 =02 — |H(Q)? d )
We have evaluated our front-end and compared it to the con- 2m

ventional approach in two ASR tasks, namely, speaker-indepgliere,2 is the variance of the excitation ad#(£2) is the fre-
dent IDR, and speaker-independent CSR. The comparison Eggncy fesponse of the synthesis filter.

been conducted in several simulated packet loss conditions dep gt 52 [, i] denote the estimated mean power of the subframe

rived from real voice traffic measurements over the Internet. ; (, < i< 3) of the framek. Following (1),52[k, 7] can be
We have identified the frame rate of the speech codec as a key.jated as “

issue to be considered. In particular, the G.723.1 codec encodes

and transmits the spectral envelope every 30 ms and it is neces- 621k, i) = 62[k, ] - EA,L[k, 7 3)

x

—7
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where&?[k, i andE;, [k, i] represent the estimations of the exFinally, for the optimal performance of our system, the pre-pro-

citation variance and the contribution of the synthesis filter, reessing depicted in Fig. 1 must be identically applied to both the
spectively. In the following exposition, the frame and subframePSs and the excitation energy. Consequently, we only need to
indexes/ and:, will be dropped for simplicity and recalled ap-estimate the variance of the excitation once per frame. In partic-

propriately when necessary.

ular, we have used?[k, 3] as the energy estimation since the

Starting with the filter contributioni;, can be easily obtained subframe 3 is aligned with the decoded LSP vector.
approximating the integral of (1) by the following sum involving This alignment is evident if we look at the LSP interpolation
the 256-point spectral envelope calculated from the LSP coéfrmula

ficients (Step 2 of the trans-parametrization described in Sec-

tion IV-B): 0.75p[k — 1, 3] +0.25p[k, 3], =0
- 0.50p[k — 1, 3] +0.50p[k, 3], i =
e NSz Bl i = § oop kT AR AR AL g
En = H{ (4) 0.25p[k — 1, 3] +0.75p[k, 3], 4=
= Blk. 3], i=3

where N = 256 in our case.

Before exposing how? has been estimated, a description ovherep|k, ] is the decoded LSP vector for th# subframe of
the excitation encoding procedure performed by the G.723.1the Lth.

necessary: the excitation sigreh| is computed as the sum of

Note, however, that the excitation is never re-synthesized and

two vectors: the adaptive codebook excitation veefat and a that, for the energy estimation, we simply decode the gain
contribution from a fixed codeboaKn|. The adaptive codebook the pitch lagL;, and the pitch predictor coefficients;.

contribution comes from a fifth-order pitch prediction defined as
follows:

4
uln] = Z[}ije’[n + 4] 0<n< Ly

=0

(®)

where L, is the subframe lengthj;;is the jth coefficient of
the pitch predictor for théth subframe@ < ¢ < 3); andé’[n]

is a signal constructed as follows: 1
0] =e[-L; — 2] .
1] =e[-L; — 1] (3]
¢'[n] =e[(nmodL;) — L, — 2], 2<n<Ls;+3 (6)

with L; being the pitch lag obtained for the same subframe. (4]

For the estimation of the variance of the excitation, we will
assume that the adaptive and fixed codebook contributions are
uncorrelated and thus (5]

~2
Oe

=52462 7)

(6]

wheres2 ands? are the estimations of the adaptive and fixed
codebook contributions, respectively. [7]

Recalling the generation procedure of the adaptive codebook
[from (4)], an estimate of the adaptive contribution can be easily (8l
obtained as

2 [9]
Ley—1 4 4
sul =1 > | Do fudln+il| ~ D gl ol
3f n=0 \4j=0 j=0
[11]
(8)

[12]
wheres?, is the variance o#’[n] defined in (5), and the cross
products of the quadratic sum have been neglected. [13]

Now, we can obtairs2 from the number of pulsed,, that
conform the nonperiodical excitatiodV{, = 4) and the gairG ~ [14]
applied to the fixed codebook

[15]

&2 = Np els (9) [l

" L.s
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