9 research outputs found

    A patch that imparts unconditional stability to certain explicit integrators for SDEs

    Full text link
    This paper proposes a simple strategy to simulate stochastic differential equations (SDE) arising in constant temperature molecular dynamics. The main idea is to patch an explicit integrator with Metropolis accept or reject steps. The resulting `Metropolized integrator' preserves the SDE's equilibrium distribution and is pathwise accurate on finite time intervals. As a corollary the integrator can be used to estimate finite-time dynamical properties along an infinitely long solution. The paper explains how to implement the patch (even in the presence of multiple-time-stepsizes and holonomic constraints), how it scales with system size, and how much overhead it requires. We test the integrator on a Lennard-Jones cluster of particles and `dumbbells' at constant temperature.Comment: 29 pages, 5 figure

    Rings, Hexagons, Petals, and Dipolar Moment Sink-Sources: The Fanciful Behavior of Water around Cyclodextrin Complexes

    Get PDF
    The basket-like geometry of cyclodextrins (CDs), with a cavity able to host hydrophobic groups, makes these molecules well suited for a large number of fundamental and industrial applications. Most of the established CD-based applications rely on trial and error studies, often ignoring key information at the atomic level that could be employed to design new products and to optimize their use. Computational simulations are well suited to fill this gap, especially in the case of CD systems due to their low number of degrees of freedom compared with typical macromolecular systems. Thus, the design and validation of solid and efficient methods to simulate and analyze CD-based systems is key to contribute to this field. The behavior of supramolecular complexes critically depends on the media where they are embedded, so the detailed characterization of the solvent is required to fully understand these systems. In the present work, we use the inclusion complex formed by two α-CDs and one sodium dodecyl sulfate molecule to test eight different parameterizations of the GROMOS and AMBER force fields, including several methods aimed to increase the conformational sampling in computational molecular dynamics simulation trajectories. The system proved to be extremely sensitive to the employed force field, as well as to the presence of a water/air interface. In agreement with previous experiments and in contrast to the results obtained with AMBER, the analysis of the simulations using GROMOS showed a quick adsorption of the complex to the interface as well as an extremely exotic behavior of the water molecules surrounding the structure both in the bulk aqueous solution and at the water surface. The chirality of the CD molecule seems to play an important role in this behavior. All together, these results are expected to be useful to better understand the behavior of CD-based supramolecular complexes such as adsorption or aggregation driving forces, as well as to introduce new methods able to speed up general MD simulationsThis work was supported by the Spanish Agencia Estatal de Investigación (AEI) and the ERDF (RTI2018-098795-A-I00), and by the Xunta de Galicia and the ERDF (ED431C 2017/25 and Centro singular de investigación de Galicia accreditation 2016-2019, ED431G/09). P.F.G. is funded by a predoctoral research grant (BES-2016-076761) from the Spanish Ministry of Economy and Competitiveness and the European Social Fund. M.C. is funded by a predoctoral fellowship from Xunta de Galicia. R.G.-F. is a “Ramón y Cajal” fellowship (RYC-2016-20335) from the Ministerio de Ciencia, Innovación y UniversidadesS

    Polarizable Force Field Development, and Applications to Conformational Sampling and Free Energy Calculation

    Get PDF
    The parameters of monovalent ions for the AMOEBA force field were revised. High level quantum mechanics results, relative solvation free energies of monovalent ions, lattice energies and lattice constants of salt crystals were used to calibrate the parameters. The revised parameters were validated against the quantum optimized structures and energies of ion-water dimers and ion-water clusters, and against thermodynamic properties of salt solutions at different concentrations measured in experiments, e.g. mean ionic activity coefficients, self-diffusion coefficients of water. In the simulations the sodium ion is found to qualitatively differ from larger cations in aqueous solution. Direct ionic interactions are predominant for potassium and larger cations, while sodium salt solutions at similar concentrations are dominated by ion-water interactions. A novel stochastic isokinetic integrator proposed by Tuckerman, et al. was extended and generalized in three respects. First, the Nos-Hoover chain algorithm was implemented in the original integrator. Next, the functional form of the isokinetic constraint was generalized so that it was no longer restricted to multiples of kBT. Finally, the isokinetic constraint was extended to be able to constrain the kinetic energies of multi-dimensional velocities, instead of only one degree of freedom as in its original form. An application of conformational sampling with molecular dynamics method, predictions of the binding free energies of cucurbit[8]uril and ligands in the SAMPL6 challenge, is presented. A great improvement in the prediction accuracy was made by more accurate torsional parameters of cucurbit[8]uril and by revised protocols annihilating the intra-molecular van der Waals and key torsions in the ligands. Corresponding methods for all portions of this work have been implemented in the Tinker software package, some of which are also available in the Tinker-OpenMM library

    On Multiscale Algorithms for Selected Applications in Molecular Mechanics

    Get PDF
    corecore