985 research outputs found

    On Verifying Complex Properties using Symbolic Shape Analysis

    Get PDF
    One of the main challenges in the verification of software systems is the analysis of unbounded data structures with dynamic memory allocation, such as linked data structures and arrays. We describe Bohne, a new analysis for verifying data structures. Bohne verifies data structure operations and shows that 1) the operations preserve data structure invariants and 2) the operations satisfy their specifications expressed in terms of changes to the set of objects stored in the data structure. During the analysis, Bohne infers loop invariants in the form of disjunctions of universally quantified Boolean combinations of formulas. To synthesize loop invariants of this form, Bohne uses a combination of decision procedures for Monadic Second-Order Logic over trees, SMT-LIB decision procedures (currently CVC Lite), and an automated reasoner within the Isabelle interactive theorem prover. This architecture shows that synthesized loop invariants can serve as a useful communication mechanism between different decision procedures. Using Bohne, we have verified operations on data structures such as linked lists with iterators and back pointers, trees with and without parent pointers, two-level skip lists, array data structures, and sorted lists. We have deployed Bohne in the Hob and Jahob data structure analysis systems, enabling us to combine Bohne with analyses of data structure clients and apply it in the context of larger programs. This report describes the Bohne algorithm as well as techniques that Bohne uses to reduce the ammount of annotations and the running time of the analysis

    A Logic of Reachable Patterns in Linked Data-Structures

    Get PDF
    We define a new decidable logic for expressing and checking invariants of programs that manipulate dynamically-allocated objects via pointers and destructive pointer updates. The main feature of this logic is the ability to limit the neighborhood of a node that is reachable via a regular expression from a designated node. The logic is closed under boolean operations (entailment, negation) and has a finite model property. The key technical result is the proof of decidability. We show how to express precondition, postconditions, and loop invariants for some interesting programs. It is also possible to express properties such as disjointness of data-structures, and low-level heap mutations. Moreover, our logic can express properties of arbitrary data-structures and of an arbitrary number of pointer fields. The latter provides a way to naturally specify postconditions that relate the fields on entry to a procedure to the fields on exit. Therefore, it is possible to use the logic to automatically prove partial correctness of programs performing low-level heap mutations

    Automated verification of shape, size and bag properties.

    Get PDF
    In recent years, separation logic has emerged as a contender for formal reasoning of heap-manipulating imperative programs. Recent works have focused on specialised provers that are mostly based on fixed sets of predicates. To improve expressivity, we have proposed a prover that can automatically handle user-defined predicates. These shape predicates allow programmers to describe a wide range of data structures with their associated size properties. In the current work, we shall enhance this prover by providing support for a new type of constraints, namely bag (multi-set) constraints. With this extension, we can capture the reachable nodes (or values) inside a heap predicate as a bag constraint. Consequently, we are able to prove properties about the actual values stored inside a data structure

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    Automatic extraction of heap reference properties in object-oriented programs

    Get PDF
    We present a new technique for helping developers understand heap referencing properties of object-oriented programs and how the actions of the program affect these properties. Our dynamic analysis uses the aliasing properties of objects to synthesize a set of roles; each role represents an abstract object state intended to be of interest to the developer. We allow the developer to customize the analysis to explore the object states and behavior of the program at multiple different and potentially complementary levels of abstraction. The analysis uses roles as the basis for three abstractions: role transition diagrams, which present the observed transitions between roles and the methods responsible for the transitions; role relationship diagrams, which present the observed referencing relationships between objects playing different roles; and enhanced method interfaces, which present the observed roles of method parameters. Together, these abstractions provide useful information about important object and data structure properties and how the actions of the program affect these properties. We have implemented the role analysis and have used this implementation to explore the behavior of several Java programs. Our experience indicates that, when combined with a powerful graphical user interface, roles are a useful abstraction for helping developers explore and understand the behavior of object-oriented programs

    Predicate Abstraction for Linked Data Structures

    Full text link
    We present Alias Refinement Types (ART), a new approach to the verification of correctness properties of linked data structures. While there are many techniques for checking that a heap-manipulating program adheres to its specification, they often require that the programmer annotate the behavior of each procedure, for example, in the form of loop invariants and pre- and post-conditions. Predicate abstraction would be an attractive abstract domain for performing invariant inference, existing techniques are not able to reason about the heap with enough precision to verify functional properties of data structure manipulating programs. In this paper, we propose a technique that lifts predicate abstraction to the heap by factoring the analysis of data structures into two orthogonal components: (1) Alias Types, which reason about the physical shape of heap structures, and (2) Refinement Types, which use simple predicates from an SMT decidable theory to capture the logical or semantic properties of the structures. We prove ART sound by translating types into separation logic assertions, thus translating typing derivations in ART into separation logic proofs. We evaluate ART by implementing a tool that performs type inference for an imperative language, and empirically show, using a suite of data-structure benchmarks, that ART requires only 21% of the annotations needed by other state-of-the-art verification techniques
    corecore