
ar
X

iv
:c

s.
P

L/
06

09
10

4
v1

18

 S
ep

 2
00

6

On Verifying Complex
Properties using Symbolic

Shape Analysis

Thomas Wies Viktor Kuncak
Karen Zee Andreas Podelski

Martin Rinard

MPI–I–2006–2–001 April 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147929817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Authors’ Addresses

Thomas Wies
Max-Planck-Institut für Informatik
Saarbrücken, Germany

Viktor Kuncak
MIT Computer Science and Artificial Intelligence Lab
Cambridge, USA

Karen Zee
MIT Computer Science and Artificial Intelligence Lab
Cambridge, USA

Andreas Podelski
Max-Planck-Institut für Informatik
Saarbrücken, Germany

Martin Rinard
MIT Computer Science and Artificial Intelligence Lab
Cambridge, USA

Abstract

One of the main challenges in the verification of software systems is the analy-
sis of unbounded data structures with dynamic memory allocation, such as linked
data structures and arrays. We describe Bohne, a new analysis for verifying data
structures. Bohne verifies data structure operations and shows that 1) the opera-
tions preserve data structure invariants and 2) the operations satisfy their specifi-
cations expressed in terms of changes to the set of objects stored in the data struc-
ture. During the analysis, Bohne infers loop invariants in the form of disjunctions
of universally quantified Boolean combinations of formulas, represented as sets of
binary decision diagrams. To synthesize loop invariants ofthis form, Bohne uses a
combination of decision procedures for Monadic Second-Order Logic over trees,
SMT-LIB decision procedures (currently CVC Lite), and an automated reasoner
within the Isabelle interactive theorem prover. This architecture shows that syn-
thesized loop invariants can serve as a useful communication mechanism between
different decision procedures. In addition, Bohne uses field constraint analysis,
a combination mechanism that enables the use of uninterpreted function symbols
within formulas of Monadic Second-Order Logic over trees. Using Bohne, we
have verified operations on data structures such as linked lists with iterators and
back pointers, trees with and without parent pointers, two-level skip lists, array
data structures, and sorted lists. We have deployed Bohne inthe Hob and Jahob
data structure analysis systems, enabling us to combine Bohne with analyses of
data structure clients and apply it in the context of larger programs. This report
describes the Bohne algorithm as well as techniques that Bohne uses to reduce the
ammount of annotations and the running time of the analysis.

Contents

1 Introduction 2
1.1 Contributions . 4

2 Motivating Example 7

3 The Bohne Algorithm 10
3.1 Reachability Analysis . 10
3.2 Symbolic Shape Analysis . 12
3.3 Quantifier Instantiation . 16
3.4 Semantic Caching . 17
3.5 Propagation of Precondition Conjuncts 18

4 Experiments 20

5 Conclusions 22

1

1 Introduction
Complex data structure invariants are one of the main challenges in verifying soft-
ware systems. Unbounded data structures such as linked datastructures and dy-
namically allocated arrays make the state space of softwareartifacts infinite and
require new reasoning techniques (such as reasoning about reachability) that have
traditionally not been part of theorem provers specializedfor program verifica-
tion. The ability of linked structures to change their shapemakes them a powerful
programming construct, but at the same time makes them difficult to analyze, be-
cause the appropriate analysis representation is dependent on the invariants that
the program maintains. It is therefore not surprising that the most successful ver-
ification approaches for analysis of data structures use parameterized abstract do-
mains; these analyses include parametric shape analysis [39] as well as predicate
abstraction [2,17] and its generalizations [9,24].

This paper presentsBohne, an algorithm for inferring loop invariants of pro-
grams that manipulate heap-allocated data structures. Like predicate abstraction,
Bohne is parameterized by the properties to be verified. Whatmakes the Bohne
algorithm unique is the use of a precise abstraction domain that can express de-
tailed properties of different regions of programs infinitememory, and a range of
techniques for exploring this analysis domain using decision procedures. The al-
gorithm was initially developed as a symbolic shape analysis [35, 42] for linked
data structures and uses the key idea of shape analysis: the partitioning of objects
according to certain unary predicates. One of the observations of our paper is that
the synthesis of heap partitions is not only useful for analyzing shape properties
(which involve transitive closure), but also for combiningsuch shape properties
with sorting properties of data structures and properties expressible using linear
arithmetic and first-order logic.

We next put the core Bohne algorithm in the context of predicate abstraction
and parametric shape analysis approaches.

Predicate abstraction. Bohne builds on predicate abstraction but introduces
important new techniques that make it applicable to the domain of shape analysis.

2

There are two main sources of complexity of loop invariants in shape analysis.
The first source of complexity is the fact that the invariantscontain reachabil-
ity predicates. To address this problem, Bohne uses a decision procedure for
monadic second-order logic over trees [19], and combines itwith uninterpreted
function symbols in a way that preserves completeness in important cases [43].
The second source of complexity is that the invariants contain universal quanti-
fiers in an essential way. Among the main approaches for dealing with quantified
invariants in predicate abstraction is the use of Skolem constants [9], indexed
predicates [24] and the use of abstraction predicates that contain quantifiers. The
key difficulty in using Skolem constants for shape analysis is that the properties of
individual objects depend on the “context”, given by the properties of surround-
ing objects, which means that it is not enough to use a fixed Skolem constant
throughout the analysis, it is instead necessary to instantiate universal quantifiers
from previous loop iterations, in some cases multiple times. Compared to indexed
predicates [24] the domain used by Bohne is more general because it contains
disjunctions of universally quantified statements. The presence of disjunctions is
not only more expressive in principle, but allows Bohne to keep formulas under
the universal quantifiers more specific. This enables the useof less precise, but
more efficient algorithms for computing changes to properties of objects without
losing too much precision in the overall analysis. Finally,the advantage of using
abstraction tailored to shape analysis compared to using quantified global predi-
cates is that the parameters to shape-analysis-oriented abstraction are properties
of objects in a state, as opposed to global properties of a state, and the number of
global predicates needed to emulate state predicates is exponential in the number
of properties [31,42].

Shape analysis. Shape analyses are precise analyses for linked data structures.
They were originally used for compiler optimizations [13,14,18] and lacked preci-
sion needed to establish invariants that Bohne is analyzing. Precise data structure
analysis for the purpose of verification include [11,20,23,28,32,39] and have re-
cently also been applied to verify set implementations [37]. Unlike Bohne, most
shape analyses that synthesize loop invariants are based onprecomputed trans-
fer functions and a fixed (though parameterized) set of properties to be tracked;
recent approaches enable automation of such computation using decision proce-
dures [35, 43, 45–47] or finite differencing [38]. We are currently working on
an effort to compare such different analysis on a joint set ofbenchmarks [22].
Our approach differs from [25] in using complete reasoning about reachability
in both lists and trees, and using a different architecture of the reasoning proce-
dure. Our reasoning procedure uses a coarse-grain combination of reachability
reasoning with decision procedures and theorem provers fornumerical and first-
order properties, as opposed to using a Nelson-Oppen style theorem prover. This

3

allowed us to easily combine several tools that were developed completely inde-
pendently [3, 19, 34]. Shape analysis approaches have also been used to verify
sortedness properties [30] relying on manually abstracting sortedness relation.

Recently there has been a resurgence of decision proceduresand analyses for
linked list data structures [1, 4, 8, 31, 36], where the emphasis is on predictability
(decision procedures for well-defined classes of properties of linked lists), effi-
ciency (membership in NP), the ability to interoperate withother reasoning pro-
cedures, and modularity. Although the Bohne approach is notlimited to lists, it
can take advantage of decision procedures for lists by applying such specialized
decision procedures when they are applicable and using moregeneral reasoning
otherwise.

Bohne could also take advantage of logics for reasoning about reachability,
such as the logic of reachable shapes [44]. Existing logics,such as guarded fix-
point logic [15] and description logics with reachability [6, 12] are attractive be-
cause of their expressive power, but so far no decision procedures for these logics
have been implemented. Automated theorem provers such as Vampire [40] and
SPASS [41] can be used to reason about properties of linked data structures, but
axiomatizing reachability in first-order logic is non-trivial in practice [29,33] and
not possible in general.

1.1 Contributions

We have previously described the general idea of symbolic shape analysis [35] as
well as the field constraint analysis decision procedure forcombining reachability
reasoning with uninterpreted function symbols [43]. In [48] we have described
splitting of proof obligations in the context of verifying proof obligations using
the Isabelle interactive theorem prover. One of the insights in this paper is that
such splitting can be an effective way of combining different reasoning procedures
during fixpoint computation in abstract interpretation. These previous techniques
are therefore the starting point of this paper. The main contributions of this paper
are the following:

1. We present a technique for combining different decision procedures through
1) a static analysis that synthesizes Boolean algebra expressions over sets
defined by arbitrary abstraction predicates, 2) a proof obligation splitting
approach that discharges different conjuncts using different decision pro-
cedures, and 3) a verification-condition generator that preserves abstract
variables. This approach addresses a key question in extending a Nelson-
Oppen style combination to theories that sharesets of elements. In general,
such combination would require guessing and propagating anexponential

4

number of Boolean algebra expressions. In our approach, symbolic shape
analysis [35] synthesizes Boolean algebra expressions that are used as as-
sumptions in decision procedures calls and are therefore shared by all par-
ticipating decision procedures.

2. We describe a method for synthesis of Boolean heap programs that improves
the efficiency of fixpoint evaluation by precomputing abstract transition re-
lations and can control the precision/efficiency trade-offby recomputing
transition relations on-demand during fixpoint computation.

3. We introduce semantic caching of decision procedure queries across differ-
ent fixpoint iterations and even different analyzed procedures. The caching
yields substantial improvements for procedures that exhibit some similar-
ity, which opens up the possibility of using our analysis in an interactive
context.

4. We describe a static analysis that propagates precondition conjuncts and
quickly finds many true facts, reducing the running time and the number of
needed abstraction predicates for the subsequent symbolicshape analysis.

5. We present a domain-specific quantifier instantiation technique that often
eliminates the need for the underlying decision proceduresto deal with
quantifiers.

Together, these new techniques allowed us to verify a range of data structures
without specifying loop invariants and without specifyinga large number of ab-
straction predicates. Our examples include implementations of lists (with itera-
tors and with back pointers), trees with parent pointers, and sorted lists. What
makes these results particularly interesting is a higher level of automation than in
previous approaches: Bohne synthesizes loop invariants that involve reachability
expressions and numerical quantities, yet it does not have precomputed transfer
functions for a particular set of abstraction predicates. Bohne instead uses decision
procedures to reason about arbitrary predicates definable in a given logic. More-
over, in our system the developer is not required to manuallyspecify the changes
of membership of elements in sets because such changes are computed by Bohne
and used to communicate information between different decision procedures.

Bohne as component of Hob and Jahob. Bohne is part of the data structure
verification frameworks Hob [26, 27] and Jahob [21]. The goalof these systems
is to verify data structure consistency properties in the context of non-trivial pro-
grams. To achieve this goal, these tools combine multiple static analyses, theorem
proving, and decision procedures. In this paper we present our experience in de-
ploying Bohne in the Jahob framework. The input language forJahob is a subset

5

Figure 1.1: Architecture of the Hob and Jahob Data StructureAnalysis Systems

of Java extended with annotations written as special comments. Therefore, Jahob
programs can be compiled and executed using existing Java compilers and virtual
machines.

Figure 1.1 illustrates the integration of Bohne into the Jahob framework. Bohne
uses Jahob’s facilities for symbolic execution of program statements and the va-
lidity checker to compute the abstraction of the source program. The output of
Bohne is the source program annotated with the inferred loopinvariants. The
annotated program serves as an input to a verification condition generator. The
generated verification conditions are verified using a validity checker that com-
bines special purpose decision procedures, a general purpose theorem prover, and
reasoning techniques such as field constraint analysis [43].

6

2 Motivating Example
We illustrate our technique on the procedureSortedList.insert shown in
Figure 2.1. This procedure inserts aNode object into a global sorted list. The
annotation given by special comments/*: ... */ consists of data structure
invariants, pre- and postconditions, as well as hints for the analysis. Formulas
are expressed in a subset of the language used in the Isabelleinteractive theorem
prover [34]. The specification uses an abstract set variablecontent which is
defined as the set of non-null objects reachable from the global variablefirst
by following field Node.next . The constructrtrancl_pt is a higher-order
function that maps a binary predicate to its reflexive transitive closure. The data
structure invariants are specified by the annotationinvariant "..." . For
instance, the first invariant expresses the fact that the field Node.next forms
trees in the heap, i.e. thatNode.next is acyclic and injective; the third invari-
ant expresses the fact that the elements stored in the list are sorted in increas-
ing order according to fieldNode.data . The precondition of the procedure,
requires "..." , states that the object to be inserted is non-null and not yet
contained in the list. The postcondition,ensures "..." , expresses that the
content of the list is unchanged except for the argument being added.

The loop in the procedure body traverses the list until it finds the proper posi-
tion for insertion. It then inserts the argument such that the resulting data structure
is again a sorted list. Our analysis, Bohne, is capable of verifying that the post-
condition holds at the end of the procedureinsert , that data structure invariants
are preserved, and that there are no run-time errors such as null pointer deref-
erences. In order to establish these properties, Bohne derives a complex loop
invariant shown in Fig. 2.2. The main difficulties for inferring this invariant are:
(1) it contains universal quantifiers over an unbounded domain and (2) it requires
reasoning over multiple theories, here reasoning over reachability, reasoning over
numerical domains, and reasoning over uninterpreted function symbols.

Figure 2.1: Insertion into a sorted list

7

tree [Node.next] &
(first = null | (ALL n. n..Node.next ˜= first)) &
(ALL v. v : content & v..Node.next ˜= null -->

v..Node.data <= v..Node.next..Node.data) &
(ALL v w. v ˜= null & w ˜= null & v..Node.next = w -->

w : content) &
n ˜= null & n ˜: content &
reach_curr = {v. rtrancl_pt (% x y. x..Node.next = y) curr v} &
content = old content &
(curr ˜= null --> curr : content) &
(prev = null --> first = curr) &
(prev ˜= null -->

prev : content & prev ˜: reach_curr & prev..Node.next = curr) &
(ALL v. v ˜: reach_curr & v : content --> v : lt_n)

Figure 2.2: Loop invariant for procedureSortedList.insert

Bohne infers universally quantified invariants using symbolic shape analysis
based on Boolean heaps [35,42]. This approach can be viewed as a generalization
of predicate abstraction or a symbolic approach to parameteric shape analysis.
Abstraction predicates can be Boolean-valued state predicates (which are either
true or false in a given state, such ascurr_prev) or predicates denoting sets of
heap objects in a given state (which are true of agiven objectin agiven state, such
aslt_n). The latter serve as building blocks of the inferred universally quantified
invariants. Thetrack(...) annotation is used as a hint on which predicates
the analysis should use for the abstraction of which code fragments.

To reduce the annotation burden we use a syntactic analysis to infer abstrac-
tion predicates automatically (e.g. predicatereach_curr in the loop invariant).
Furthermore, parts of the invariant often literally come from the procedure’s pre-
condition. In particular, data structure invariants are often preserved as long as the
heap is not mutated. We therefore precede the symbolic shapeanalysis phase with
an analysis that propagates precondition conjuncts accross the control-flow graph
of the procedure’s body. Using this propagation technique we are able to infer the
first six conjuncts of the invariant. The symbolic shape analysis phase makes use
of this partial invariant to infer the full invariant shown in Fig. 2.2.

Bohne’s symbolic shape analysis enables the combination ofdecision pro-
cedures by connecting the analysis with a proof obligation splitting approach that
discharges different conjuncts using different decision procedures, and a verification-
condition generator that preserves abstract variables. Thereby the inferred invari-
ants communicate information between different decision procedures. This com-
bination is best illustrated with an example. Figure 2.3 shows one of the generated
verification conditions for the procedureSortedList.insert . It expresses

8

I & ˜(curr..Node.data < n..Node.data) & prev ˜= null &
Node.next’ = Node.next[n := curr][prev := n] &
content’ =

{v. v ˜= null & rtrancl_pt (% x y. x..Node.next’ = y) first v} &
v : content’ & n..Node.next’ ˜= null -->

v..Node.data <= v..Node.next’..Node.data

Figure 2.3: Verification condition for preservation of sortedness

the fact that the sortedness property is reestablished after executing the path from
the exit point of the loop through the if-branch of the conditional to the proce-
dure’s return point. The symbol “I ” denotes the loop invariant given in Fig. 2.2.
This verification condition is valid. Its proof requires thefact

content’ = content Un {n}

Denote this factP . P follows from the given assumptions. The MONA decision
procedure is able to concludeP by expanding the definitions of the abstract sets
content andcontent’ . However, MONA is not able to prove the verification
condition, because proving its conclusion requires reasoning over integers. On the
other hand, the CVC Lite decision procedure is able to prove the conclusion given
the factP by reasoning over the abstract sets without expanding theirdefinitions,
but is not able to concludeP from the assumptions, because this deduction step
requires reasoning over reachability. In order to communicate P between the
two decision procedures, symbolic shape analysis infers, in addition to the loop
invariantI , an invariant for the procedure’s return point that includes the missing
factP . This invariant enables CVC Lite to prove the verification condition.

9

3 The Bohne Algorithm
We next describe the symbolic shape analysis algorithm implemented in Bohne.
What makes this algorithm unique is the fact that abstract transition relations are
computed on-demand in each fixpoint iteration taking into account thecontext
in form of already explored abstract states. This approach allows the algorithm to
take advantage of precomputed abstract transition relations from previous fixpoint
iterations, while maintaining sufficient precision for theanalysis of linked data
structures by recomputing the transitions when the contextchanges in a significant
way.

3.1 Reachability Analysis

The input of Bohne is the procedure to be analyzed, preconditions specifying the
initial states of the procedure, and a set of abstraction predicates. Bohne converts
the procedure into a set of guarded commands that correspondto the loop-free
paths in the control-flow graph.

Figure 3.1 gives the pseudo code of Bohne’s top-level fixpoint computation
loop. The analysis first abstracts the conjunction of the procedure’s preconditions
obtaining an initial set of abstract states. It then computes an abstract reachability
tree in the spirit of lazy abstraction [17]. Each node in thistree is labeled by a
program location and a set of abstract states, the root beinglabeled by the initial
location and the abstraction of the preconditions. The edges in the tree are labeled
by guarded commands. The reachability tree keeps track of abstract traces which
are used for the analysis of abstract counterexamples.

For each unprocessed node in the tree, the analysis computesthe abstract post-
condition for the associated abstract states and all outgoing transitions of the cor-
responding program location. Transitions are abstracted on-demand taking into
account the already discovered reachable abstract states for the associated pro-
gram location. Whenever the difference between the alreadydiscovered abstract
states of the post location and the abstract post states of the processed transition

10

proc Reach(init : precondition formula,
ℓinit : initial program location,
T : set of guarded commands) =

let init# = abstract(init)
let root = 〈location = ℓinit; states = init#; sons = ∅〉
let unprocessed = {root}
while unprocessed 6= ∅ do

choosen ∈ unprocessed

for all (n.location, c, ℓ′) ∈ T do
let context = {m.states | m.location = ℓ }
let old = {m.states | m.location = ℓ′ }
let new = AbstractPost(c, context, n.states) − old

if new 6= ∅ then
let n′ = 〈location = ℓ′; states = new; sons = ∅〉
n.sons := n.sons ∪ {(c, n′)}
unprocessed := unprocessed ∪ {n′}

unprocessed := unprocessed − {n}
return root

Figure 3.1: Reachability analysis in Bohne

is non-empty, a new unprocessed node is added to the tree. Theanalysis stops
after the list of unprocessed nodes becomes empty, indicating that the fixpoint
is reached. After termination of the reachability analysis, Bohne annotates the
original procedure with the computed loop invariants and passes the result to the
verification condition generator, which verifies that the inferred loop invariants
are sufficient to prove the target properties.

The algorithm in Figure 3.1 is parameterized by the abstractdomain and its
associated operators. An abstract state of the analysis is given by a set of bitvec-
tors over abstraction predicates which we call a Boolean heap. It corresponds
to a universally quantified Boolean combination of abstraction predicates. A
Boolean heap describes all concrete states whose heap is partitioned according
to the bitvectors in the Boolean heap. Focusing on algorithmic details, we now
give a detailed description of the abstract domain, abstraction function, and the
abstract post operator.

11

3.2 Symbolic Shape Analysis

Following the framework of abstract interpretation [7], a static analysis is defined
by lattice-theoretic domains and by fixpoint iteration overthe domains. Symbolic
shape analysis can be seen as a generalization of predicate abstraction [16]. For
predicate abstractionthe analysis computes an invariant; the fixpoint operator is
an abstraction of thepostoperator; the concrete domain consists of sets of states
(represented by closed formulas), and the abstract domain of a finite lattice of
closed formulas.

Abstract Domain. Let Pred be a finite set of abstraction predicatesp(v) with an
implicit free variablev ranging over heap objects. AcubeC is a partial mapping
from Pred to {0, 1}. We call a total cubecomplete. We say that predicatep occurs
positively (occurs negatively, does not occur) inC if C(p) = 1 (C(p) = 0, C(p) is
undefined). We denote byCubes the set of all cubes. An abstract state is a subset
of cubes, which we call aBoolean heap. The abstract domain is given by sets of
Boolean heaps, i.e. sets of sets of cubes:

AbsDom = 22Cubes

.

Meaning Function. The meaning functionγ is defined on cubes, Boolean heaps,

and sets of Boolean heaps as follows:

γ(C) =
∧

p∈Pred∩dom(C)

pC(p), γ(H) = ∀v.
∨

C∈H

γ(C), γ(H) =
∨

H∈H

γ(H) .

The meaning of a cubeC is the conjunction of the predicates inPred and their
negations. A concrete state is represented by a Boolean heapH if all objects in
the heap are represented by some cube inH. The meaning of a setH of Boolean
heaps is the disjunction of the meaning of all its elements.

Lattice Structure. Define a partial order⊑ on cubes by:

C ⊑ C ′ def
⇐⇒ ∀p ∈ Pred. C ′(p) = C(p) ∨ (C ′(p) is undefined) .

For a cubeC and Boolean heapH we writeC ∈c H as a short notation for the
fact thatC is complete and there existsC ′ ∈ H such thatC ⊑ C ′. The partial
order⊑ is extended from cubes to a preorder on Boolean heaps:

H ⊑ H ′ def
⇐⇒ ∀C ∈ H. ∃C ′ ∈ H ′. C ⊑ C ′ .

For notational convenience we identify Boolean heaps up to subsumption of cubes,
i.e. up to equivalence under the relation (⊑ ∩ ⊑−1). We then identify⊑ with the

12

partial order on the corresponding quotient of Boolean heaps. In the same way we
extend⊑ from Boolean heaps to a partial order on the abstract domain.These par-
tial orders induce Boolean algebra structures. We denote by⊓, ⊔ and · the meet,
join and complement operations of these Boolean algebras. Boolean heaps, the
abstract domain, and operations of the Boolean algebras areimplemented using
BDDs [5].

Context-sensitive Cartesian post. The abstract post operator implemented in
Bohne is a refinement of the abstract post operator on Booleanheaps that is pre-
sented in [35]. Its core is given by thecontext-sensitive Cartesian post operator.
This operator maps a guarded commandc, a formulaΓ, and a set of Boolean heaps
H to a set of Boolean heaps as follows:

CartesianPost(c, Γ,H) =

{ {
d
{C ′ | ∀p ∈ Pred. C ⊑ wlp#(c, Γ, pC′(p)) } | C ∈c H } | H ∈ H}.

The actual abstraction is hidden in the computation of the functionwlp# which is
defined by:

wlp#(c, Γ, F) = {C | Γ ∧ γ(C) |= wlp(c, F) } .

The Cartesian post maps each Boolean heapH in H to a new Boolean heapH ′.
For a given states satisfyingγ(H), a cubeC in H represents a set of heap objects
in s. The Cartesian post computes the local effect of commandc on each set of
objects which is represented by some complete cube inH: each complete cube
C in H is mapped to the smallest cubeC ′ that represents at least the same set of
objects in the post states under commandc. Consequently each object in a given
post state is represented by some cube in the resulting Boolean heapH ′, i.e. all
post states satisfyγ(H ′). The effect ofc on the objects represented by some cube
is expressed in terms of weakest preconditions of abstraction predicates. These
are abstracted by the functionwlp#.

Computing the effect ofc for each cube inH locally implies that we do
not take into account the full information provided byH. In principle one can
strengthen the abstraction of weakest preconditions by taking into account the
Boolean heap for which the post is computed:wlp#(c, γ(H), p). The abstract
post would be more precise, but as a consequence abstract weakest preconditions
would have to be recomputed for each Boolean heap. This wouldmake the anal-
ysis infeasible. Nevertheless, such global context information is valuable when
updated predicates describe global properties such as reachability. Therefore, we
would like to strengthen the abstraction using some global information, accept-
ing that abstract weakest preconditions have to be recomputed occasionally. The
formula Γ allows this kind of strengthening. It is the key tuning parameter of
the analysis. We impose a restriction onΓ to ensure soundness: we say thatΓ

13

proc CartesianPost(c : guarded command,
Γ : context formula,
H : AbsDom) : AbsDom =

let c# = Cubes

if c# is precomputed for(c, Γ) then c# := lookup(c, Γ)
else foreachp ∈ Pred do

c# := c# ⊓

(

[p′ 7→ 1] ⊓ wlp#(c, Γ,¬p) ⊔

[p′ 7→ 0] ⊓ wlp#(c, Γ, p)

)

let H′ = ∅
foreachH ∈ H do

let H ′ = RelationalProduct(H, c#)
H′ := H′ ⊔ {H ′}

return H′

Figure 3.2: Context-sensitive Cartesian post

is acontext formulafor a set of Boolean heapsH if γ(H) impliesΓ. Restricting
the Cartesian post to context formulas ensures soundness with respect to the best
abstract post operator on sets of Boolean heaps.

Figure 3.2 gives an implementation of the Cartesian post operator that exploits
the representation of Boolean heaps as BDDs. First it precomputes an abstract
transition relationc# which is expressed in terms of cubes over primed and un-
primed abstraction predicates. After that it computes the relational product ofc#

and each Boolean heap. The relational product conjoins a Boolean heap with the
abstract transition relation, projects the unprimed predicates, and renames primed
to unprimed predicates in the resulting Boolean heap. Note that that the abstract
transition relation only depends on the abstracted commandc and the context
formula Γ. This allows us to cache abstract transition relations and avoid their
recomputation in later fixpoint iterations whereΓ is unchanged.

Splitting. The Cartesian post operator maps each Boolean heap in a set ofBoolean
heaps to one Boolean heap. This means that in terms of precision the Cartesian
post does not exploit the fact that the abstract domain is given bysetsof Boolean
heaps. In the following we describe an operation that splitsa Boolean heap into
a set of Boolean heaps. The splitting maintains important invariants of Boolean
heaps that result from best abstractions of concrete states. We split Boolean heaps
before applying the Cartesian post. This increases the precision of the analysis by
carefully exploiting the disjunctive completeness of the abstract domain.

Traditional shape analysis uses the idea of summary nodes todistinguish ab-
stract objects that represent multiple concrete objects from abstract objects that

14

represent single objects. This information is useful for increasing the precision of
the abstract post operator. We can mimic this idea by adding abstraction predi-
cates that denote singleton sets, e.g. by adding predicatesexpressing properties
such as that an object is pointed to by some local variable. Ifa Boolean heapH
is the best abstraction of some concrete state then for everysingleton predicatep
it contains exactly one complete cube with a positive occurrence ofp. Boolean
heaps resulting from the Cartesian post typically do not have this property which
makes the analysis imprecise. Therefore we split each Boolean heap before ap-
plication of the Cartesian post into a set of Boolean heaps such that the above
property is reestablished. LetP be the subset of abstraction predicates denoting
singletons then thesplitting operatoris defined as follows:

Split(H) = split(P,H)
split(∅,H) = H

split({p} ∪ P ′,H) = let Cp = [p 7→ 1] and C¬p = [p 7→ 0] in
⋃

H∈H
split(P ′, {H ⊓ {C¬p} ⊔ {C} | C ∈c (H ⊓ {Cp}) }) .

The splitting operator takes a set of Boolean heapsH as arguments. For each
singleton predicatep and Boolean heapH it splitsH into a set of Boolean heaps.
Each of the resulting Boolean heaps corresponds toH, but contains only one of the
complete cubes inH that have a positive occurrence ofp. The splitting operator
is sound, i.e. satisfies:

γ(Split(P,H)) ≡ γ(H) .

Cleaning. Splitting might introduce unsatisfiable Boolean heaps, because it
is done propositionally without taking into account the semantics of predicates.
Unsatisfiable Boolean heaps potentially lead to spurious counterexamples in the
analysis and hence should be eliminated. The same applies tocubes that are un-
satisfiable with respect to other cubes within one Boolean heap. We use acleaning
operatorto eliminate unsatisfiable Boolean heaps and unsatisfiable cubes within
satisfiable Boolean heaps. At the same time we strengthen theBoolean heaps with
the guard of the commands before the actual computation of the Cartesian post.
The cleaning operator is defined as follows:

Clean(F,H) = let H1 = {H ∈ H | F ∧ γ(H) 6|= false } in

{ {C ∈c H | F ∧ γ(H) ∧ γ(C) 6|= false } | H ∈ H1 } .

The operatorClean takes as arguments a formulaF (e.g. the guard of a command)
and a set of Boolean heaps. It first removes all Boolean heaps that are unsatisfiable
with respect toF . After that it removes from each remaining Boolean heapH all
complete cubes which are unsatisfiable with respect toF andH. The cleaning
operator is sound, i.e. strengthensH with respect toF :

F ∧ γ(H) |= γ(Clean(F,H)) |= γ(H) .

15

abstract(F) = let H = {C | C |= ¬F } in
Clean(F, Split(H))

proc AbstractPost(c : guarded command,
context : AbsDom,

H0 : AbsDom) : AbsDom =
let H = Clean(guard(c), Split(H0))
let Γ = κ(context ⊔H)
return CartesianPost(c, Γ,H)

Figure 3.3: Bohne’s abstract post operator

Abstract post operator. Figure 3.3 defines the abstract post operator used in
Bohne. It is defined as the composition of the splitting, cleaning, and the Carte-
sian post operator. The functionκ is a context operator. A context operator is
a monotone mapping from sets of Boolean heaps to a context formula. It con-
trols the trade-off between precision and efficiency of the abstract post operator.
Our choice ofκ is described in the next section. Figure 3.3 also defines the ab-
straction function that is used to compute the initial set ofBoolean heaps. For
abstracting a formulaF the functionabstract first computes a Boolean heapH
which is the complement of an under-approximation of¬F . It then splitsH with
respect to singleton predicates and strengthens the resultby the original formula
F . We compute the abstraction indirectly because it allows usto reuse all the
functionality that we need for computing the abstract post operator. We also avoid
computing the best abstraction function for the abstract domain, because the com-
putational overhead is not justified in terms of the gained precision.

Assuming thatκ is in fact a context operator, soundness ofAbstractPost fol-
lows from the soundness of all its component operators. Notethat soundness is
still guaranteed if the underlying validity checker is incomplete.

3.3 Quantifier Instantiation

The context information used to strengthen the abstractionis given by the set of
Boolean heaps that are already discovered at the respectiveprogram location. If
we take into account all available context for the abstraction of a transition then
we need to recompute the abstract transition relation in every iteration of the fixed
point computation. Otherwise the analysis would be unsound. In order to avoid
unnecessary recomputations we use the operatorκ to abstract the context by a
context formula that less likely changes from one iterationto the next. For this

16

Var − object-valued program variables

instantiate(H : Boolean heap) : formula=

let cube(x) =
⊔

(H ⊓ {[(x = v) 7→ 1]}) in
∧

x∈Var

γ(cube(x))[v := x]

κ(H) = let H =
⊔

H in instantiate(H)

Figure 3.4: Quantifier instantiation and the context operator κ

purpose we introduce a domain-specific quantifier instantiation technique. We
use this technique not only in connection with the context operator, but more
generally to eliminate any universal quantifier in a decision procedure query that
originates from the concretization of a Boolean heap. This eliminates the need for
the underlying decision procedures to deal with quantifiers.

We observed that the most valuable part of the context is the information avail-
able over objects pointed to by program variables. This is due to the fact that
transitions always change the heap with respect to these objects. We therefore in-
stantiate Boolean heaps to objects pointed to by stack variables. Bohne automat-
ically adds an abstraction predicate of the form(x = v) for every object-valued
program variablex. A syntactic backwards analysis of the procedure’s postcondi-
tions is used to determine which of these predicates are relevant at each program
point.

Figure 3.4 defines the functioninstantiate that uses the above mentioned pred-
icates to instantiate a Boolean heapH to a quantifier free formula (assuming ab-
straction predicates itself are quantifier free). For everyprogram variablex it com-
putes the least upper bound of all cubes inH which have a positive occurrence
of predicate(x = v). The resulting cube is concretized and the free variablev is
substituted by program variablex. The functionκ maps a set of Boolean heapsH
to a formula by taking the join ofH and instantiating the resulting Boolean heap
as described above. One can shown thatκ is indeed a context operator, i.e.κ is
monotone and the resulting formula is a context formula forH.

3.4 Semantic Caching

Abstracting context does not avoid that abstract transition relations have to be
recomputed occasionally in later fixpoint iterations. Whenever we recompute ab-

17

stract transition relations we would like to reuse the results from previous abstrac-
tions. We do this on the level of decision procedure calls by caching the queries
and the results of the calls. The problem is that the context formulae are passed
to the decision procedure as part of the queries, so a simple syntactic caching of
formulas is ineffective. However, the context consists of all discovered abstract
states at the current iteration. Therefore it changes monotonically from one it-
eration to the next. The monotonicity of the context operator κ guarantees that
context formulae, too, increase monotonically with respect to the entailment or-
der. We therefore cache formulas by keeping track of the partial order on the con-
text. Since context formulae occur in the antecedents of thequeries, this allows
us to reuse negative results of entailment checks from previous fixpoint iterations.
This method is effective because in practice the number of entailments which are
invalid exceeds the number of valid ones.

Furthermore, formulas are cached up to alpha equivalence. Since the cache
is self-contained, this enables caching results of decision procedure calls not only
across different fixpoint iterations in the analysis of one procedure, but even across
the analysis of different procedures. This yields substantial improvements for
procedures that exhibit some similarity, which opens up thepossibility of using
our analysis in an interactive context.

3.5 Propagation of Precondition Conjuncts

It often happens that parts of loop invariants literally come from the procedure’s
preconditions. A common situation where this occurs is thata procedure executes
a loop to traverse a data structure performing only updates on stack variables and
after termination of the loop the data structure is manipulated. In such a case the
data structure invariants are trivially preserved while executing the loop. Using an
expansive symbolic shape analysis to infer such invariantsis inappropriate. We
therefore developed a fast but effective analysis that propagates conjuncts from
the precondition across the procedure’s control-flow graph. This propagation pre-
cedes the symbolic shape analysis, such that the latter is able to assume the previ-
ously inferred invariants.

The propagation analysis works as follows: it first splits the procedure’s pre-
condition into a conjunction of formulas and assumes all conjuncts at all program
locations. It then recursively removes a conjunctF at program locations that have
an incoming control flow edge from some location where either(1) F has been
previously removed or (2) whereF is not preserved under post of the associ-
ated command. After termination of the analysis (none of therules for removal
applies anymore) the remaining conjuncts are guaranteed tobe invariants at the
corresponding program points.

18

The preservation of conjuncts is checked by discharging a verification con-
dition (via decision procedure calls). The use of decision procedures makes this
analysis more general than the syntactic approach for computing frame conditions
for loops used in ESC/Java-like desugaring of loops [10]. Inparticular, the prop-
agation is still applicable in the presence of heap manipulations that preserve the
invariants in each loop-free code fragment.

19

4 Experiments
We applied Bohne to verify operations on various data structures. Our experi-
ments cover data structures such as singly-linked lists, doubly-linked lists, two-
level skip lists, trees, trees with parent pointers, sortedlists, and arrays. The
verified properties include: (1) simple safety properties,such as absence of null
pointer dereferences and array bounds checks; (2) complex data structure con-
sistency properties, such as preservation of the tree structure, array invariants, as
well as sortedness; and (3) procedure contracts, stating e.g. how the set of ele-
ments stored in a data structure is affected by the procedure.

Figure 4.1 shows the results for a collection of benchmarks running on a 2
GHz Pentium M with 1 GB memory. The Jahob system is implemented in Ob-
jective Caml and compiled to native code. Running times include inference of
loop invariants. This time dominates the time for a final check (using verification-
condition generator) that the resulting loop invariants are sufficient to prove the
postcondition. The benchmarks can be found on the Jahob project web page [21].

We also examined the impact of our quantifier instantiation and caching on
the running time of the analysis. We have found that disabling caching slows
down the analysis by 1.3 to 1.5 times, while disabling instantiation slows down
the analysis by 1.2 to 3.6 times.

benchmark used DP # predicates # DP calls running time
total (user provided) total (cache hits) total (DP)

List.reverse MONA 7 (2) 371 (22%) 4s (72%)
DLL.addLast MONA 7 (1) 156 (13%) 3s (65%)
Skiplist.add MONA 16 (3) 770 (20%) 35s (74%)
Tree.add MONA 11 (3) 983 (27%) 81s (91%)
ParentTree.add MONA 11 (3) 979 (27%) 83s (89%)
SortedList.add MONA, CVC lite 11 (3) 541 (17%) 18s (66%)
Linear.arrayInv CVC lite 7 (5) 882 (52%) 57s (97%)

Figure 4.1: Results of Experiments

20

Note that our implementation of the algorithm is not highly tuned in terms of
aspects orthogonal to Bohne’s algorithm, such as type inference of internally ma-
nipulated Isabelle formulas. We expect that the running times would be notably
improved using more efficient implementation of Hindley-Milner type reconstruc-
tion. In previous benchmarks without type reconstruction in average 97% of the
time was spent in the decision procedures. The most promising directions for
improving the analysis performance are therefore 1) deploying more efficient de-
cision procedures, and 2) further reducing the number of decision procedure calls.

In addition to the presented examples, we have used the verification condition
generator to verify examples such as array-based implementations of containers.
The Bohne algorithm could also infer loop invariants in suchexamples given the
appropriate abstraction predicates.

21

5 Conclusions
We have presented Bohne, a data structure analysis algorithm based on symbolic
shape analysis that generalizes predicate abstraction andinfers Boolean algebra
expressions over sets given by predicates on objects. We have shown that this ab-
straction can be fruitfully combined with a collection of decision procedures that
operate on independent subgoals of the same proof obligation. The effect of such
an approach is that the analysis synthesizes facts that are used to communicate
information between different decision procedures. As a result, we were able to
combine precise reasoning about reachability in tree-likestructures with reasoning
about first-order properties in general graphs and integer arithmetic properties. As
an example that illustrates this combination, we have verified a sorted linked data
structure without specializing the analysis to sorting or reachability properties.

In addition, we have deployed a range of techniques that significantly improve
the running time of the analysis and the level of automation compared to direct
application of the algorithm. These techniques include context-dependent finite-
state abstraction, semantic caching of formulas, propagation of conjuncts, and
domain-specific quantifier instantiation. Our current experience with the Bohne
analysis in the context of the Hob and Jahob data structure verification systems
suggests that it is effective for verifying a wide range of data structures and that
its running time makes it usable for verification of such complex properties.

22

Bibliography
[1] I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction.

In VMCAI’05, 2005.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate
abstraction of C programs. InProc. ACM PLDI, 2001.

[3] C. Barrett and S. Berezin. CVC Lite: A new implementationof the coop-
erating validity checker. In R. Alur and D. A. Peled, editors, Proceedings
of the16th International Conference on Computer Aided Verification (CAV
’04), volume 3114 ofLecture Notes in Computer Science, pages 515–518.
Springer-Verlag, July 2004. Boston, Massachusetts.

[4] J. Bingham and Z. Rakamarić. A logic and decision procedure for predicate
abstraction of heap-manipulating programs. Technical Report TR-2005-19,
UBC Department of Computer Science, September 2005.

[5] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[6] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoningin expressive
description logics with fixpoints based on automata on infinite trees. InProc.
of the 16th Int. Joint Conf. on Artificial Intelligence (IJCAI’99), pages 84–
89, 1999.

[7] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proc. 4th POPL, 1977.

[8] D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. InTACAS’06, 2006.

[9] C. Flanagan and S. Qadeer. Predicate abstraction for software verification.
In Proc. 29th ACM POPL, 2002.

23

[10] C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Generating
compact verification conditions. InProc. 28th ACM POPL, 2001.

[11] P. Fradet and D. L. Métayer. Shape types. InProc. 24th ACM POPL, 1997.

[12] L. Georgieva and P. Maier. Description logics for shapeanalysis. InProc.
3rd SEFM, pages 321–330, 2005.

[13] R. Ghiya and L. Hendren. Is it a tree, a DAG, or a cyclic graph? InProc.
23rd ACM POPL, 1996.

[14] R. Ghiya and L. J. Hendren. Connection analysis: A practical interprocedu-
ral heap analysis for C. InProc. 8th Workshop on Languages and Compilers
for Parallel Computing, 1995.

[15] E. Grädel. Decision procedures for guarded logics. InAutomated Deduc-
tion - CADE16. Proceedings of 16th International Conference on Automated
Deduction, Trento, 1999, volume 1632 ofLNCS. Springer-Verlag, 1999.

[16] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. InProc.
9th CAV, pages 72–83, 1997.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
POPL, 2002.

[18] N. D. Jones and S. S. Muchnik.Program Flow Analysis: Theory and Ap-
plications, chapter Chapter 4: Flow Analysis and Optimization of LISP-like
Structures. Prentice Hall, 1981.

[19] N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation
secrets. InProc. 5th International Conference on Implementation and Ap-
plication of Automata. LNCS, 2000.

[20] N. Klarlund and M. I. Schwartzbach. Graph types. InProc. 20th ACM
POPL, Charleston, SC, 1993.

[21] V. Kuncak. The Jahob project web page.
http://www.mit.edu/∼vkuncak/projects/jahob/, 2006.

[22] V. Kuncak, S. Lahiri, R. Rugina, E. Yahav, and T. Wies. A proposal to estab-
lish shape analysis benchmarks. POPL 2006, Charleston, South Carolina,
January 2006.

[23] V. Kuncak, P. Lam, and M. Rinard. Role analysis. InAnnual ACM Symp. on
Principles of Programming Languages (POPL), 2002.

24

[24] S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for unbounded
system verification. InCAV’04, 2004.

[25] S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists.
In POPL’06, 2006.

[26] P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifying data structure
consistency. In14th International Conference on Compiler Construction
(tool demo), April 2005.

[27] P. Lam, V. Kuncak, K. Zee, and M. Rinard. The Hob project web page.
http://hob.csail.mit.edu, 2004.

[28] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs
using grammar-based shape analysis. InESOP, 2005.

[29] T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh.
Simulating reachability using first-order logic with applications to verifica-
tion of linked data structures. InCADE-20, 2005.

[30] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to
work for verification: A case study. InInternational Symposium on Software
Testing and Analysis, 2000.

[31] R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction
and canonical abstraction for singly-linked lists. In6th VMCAI, pages 181–
198, 2005.

[32] A. Møller and M. I. Schwartzbach. The Pointer AssertionLogic Engine. In
Programming Language Design and Implementation, 2001.

[33] G. Nelson. Verifying reachability invariants of linked structures. InPOPL,
1983.

[34] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 ofLNCS. Springer-Verlag, 2002.

[35] A. Podelski and T. Wies. Boolean heaps. InProc. Int. Static Analysis Sym-
posium, 2005.

[36] S. Ranise and C. G. Zarba. A decidable logic for pointer programs manipu-
lating linked lists, 2005.

[37] J. Reineke. Shape analysis of sets. Master’s thesis, Universität des Saarlan-
des, Germany, June 2005.

25

[38] T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas
for static analysis. InProc. 12th ESOP, 2003.

[39] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM TOPLAS, 24(3):217–298, 2002.

[40] A. Voronkov. The anatomy of Vampire (implementing bottom-up procedures
with code trees).Journal of Automated Reasoning, 15(2):237–265, 1995.

[41] C. Weidenbach. Combining superposition, sorts and splitting. In A. Robin-
son and A. Voronkov, editors,Handbook of Automated Reasoning, vol-
ume II, chapter 27, pages 1965–2013. Elsevier Science, 2001.

[42] T. Wies. Symbolic shape analysis. Master’s thesis, Universität des Saarlan-
des, Saarbrücken, Germany, September 2004.

[43] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. Field constraint
analysis. InProc. Int. Conf. Verification, Model Checking, and Abstract
Interpratation, 2006.

[44] G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic
of reachable patterns in linked data-structures. InProc. Foundations of Soft-
ware Science and Computation Structures (FOSSACS 2006), 2006.

[45] G. Yorsh, T. Reps, and M. Sagiv. Symbolically computingmost-precise
abstract operations for shape analysis. In10th TACAS, 2004.

[46] G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical characterizations of
heap abstractions.TOCL, 2005. (to appear).

[47] G. Yorsh, A. Skidanov, T. Reps, and M. Sagiv. Automatic assume/guarantee
reasoning for heap-manupilating programs. In1st AIOOL Workshop, 2005.

[48] K. Zee, P. Lam, V. Kuncak, and M. Rinard. Combining theorem proving with
static analysis for data structure consistency. InInternational Workshop on
Software Verification and Validation (SVV 2004), Seattle, November 2004.

26

	Introduction
	Contributions

	Motivating Example
	The Bohne Algorithm
	Reachability Analysis
	Symbolic Shape Analysis
	Quantifier Instantiation
	Semantic Caching
	Propagation of Precondition Conjuncts

	Experiments
	Conclusions

