3,353 research outputs found

    Efficient Large-scale Trace Checking Using MapReduce

    Full text link
    The problem of checking a logged event trace against a temporal logic specification arises in many practical cases. Unfortunately, known algorithms for an expressive logic like MTL (Metric Temporal Logic) do not scale with respect to two crucial dimensions: the length of the trace and the size of the time interval for which logged events must be buffered to check satisfaction of the specification. The former issue can be addressed by distributed and parallel trace checking algorithms that can take advantage of modern cloud computing and programming frameworks like MapReduce. Still, the latter issue remains open with current state-of-the-art approaches. In this paper we address this memory scalability issue by proposing a new semantics for MTL, called lazy semantics. This semantics can evaluate temporal formulae and boolean combinations of temporal-only formulae at any arbitrary time instant. We prove that lazy semantics is more expressive than standard point-based semantics and that it can be used as a basis for a correct parametric decomposition of any MTL formula into an equivalent one with smaller, bounded time intervals. We use lazy semantics to extend our previous distributed trace checking algorithm for MTL. We evaluate the proposed algorithm in terms of memory scalability and time/memory tradeoffs.Comment: 13 pages, 8 figure

    Trees over Infinite Structures and Path Logics with Synchronization

    Full text link
    We provide decidability and undecidability results on the model-checking problem for infinite tree structures. These tree structures are built from sequences of elements of infinite relational structures. More precisely, we deal with the tree iteration of a relational structure M in the sense of Shelah-Stupp. In contrast to classical results where model-checking is shown decidable for MSO-logic, we show decidability of the tree model-checking problem for logics that allow only path quantifiers and chain quantifiers (where chains are subsets of paths), as they appear in branching time logics; however, at the same time the tree is enriched by the equal-level relation (which holds between vertices u, v if they are on the same tree level). We separate cleanly the tree logic from the logic used for expressing properties of the underlying structure M. We illustrate the scope of the decidability results by showing that two slight extensions of the framework lead to undecidability. In particular, this applies to the (stronger) tree iteration in the sense of Muchnik-Walukiewicz.Comment: In Proceedings INFINITY 2011, arXiv:1111.267

    Bounded Situation Calculus Action Theories

    Full text link
    In this paper, we investigate bounded action theories in the situation calculus. A bounded action theory is one which entails that, in every situation, the number of object tuples in the extension of fluents is bounded by a given constant, although such extensions are in general different across the infinitely many situations. We argue that such theories are common in applications, either because facts do not persist indefinitely or because the agent eventually forgets some facts, as new ones are learnt. We discuss various classes of bounded action theories. Then we show that verification of a powerful first-order variant of the mu-calculus is decidable for such theories. Notably, this variant supports a controlled form of quantification across situations. We also show that through verification, we can actually check whether an arbitrary action theory maintains boundedness.Comment: 51 page

    On abstraction refinement for program analyses in Datalog

    Get PDF
    A central task for a program analysis concerns how to efficiently find a program abstraction that keeps only information relevant for proving properties of interest. We present a new approach for finding such abstractions for program analyses written in Datalog. Our approach is based on counterexample-guided abstraction refinement: when a Datalog analysis run fails using an abstraction, it seeks to generalize the cause of the failure to other abstractions, and pick a new abstraction that avoids a similar failure. Our solution uses a boolean satisfiability formulation that is general, complete, and optimal: it is independent of the Datalog solver, it generalizes the failure of an abstraction to as many other abstractions as possible, and it identifies the cheapest refined abstraction to try next. We show the performance of our approach on a pointer analysis and a typestate analysis, on eight real-world Java benchmark programs

    Optimised determinisation and completion of finite tree automata

    Get PDF
    Determinisation and completion of finite tree automata are important operations with applications in program analysis and verification. However, the complexity of the classical procedures for determinisation and completion is high. They are not practical procedures for manipulating tree automata beyond very small ones. In this paper we develop an algorithm for determinisation and completion of finite tree automata, whose worst-case complexity remains unchanged, but which performs far better than existing algorithms in practice. The critical aspect of the algorithm is that the transitions of the determinised (and possibly completed) automaton are generated in a potentially very compact form called product form, which can reduce the size of the representation dramatically. Furthermore, the representation can often be used directly when manipulating the determinised automaton. The paper contains an experimental evaluation of the algorithm on a large set of tree automata examples

    Datalog as a parallel general purpose programming language

    Get PDF
    The increasing available parallelism of computers demands new programming languages that make parallel programming dramatically easier and less error prone. It is proposed that datalog with negation and timestamps is a suitable basis for a general purpose programming language for sequential, parallel and distributed computers. This paper develops a fully incremental bottom-up interpreter for datalog that supports a wide range of execution strategies, with trade-offs affecting efficiency, parallelism and control of resource usage. Examples show how the language can accept real-time external inputs and outputs, and mimic assignment, all without departing from its pure logical semantics

    Model-Checking the Higher-Dimensional Modal mu-Calculus

    Full text link
    The higher-dimensional modal mu-calculus is an extension of the mu-calculus in which formulas are interpreted in tuples of states of a labeled transition system. Every property that can be expressed in this logic can be checked in polynomial time, and conversely every polynomial-time decidable problem that has a bisimulation-invariant encoding into labeled transition systems can also be defined in the higher-dimensional modal mu-calculus. We exemplify the latter connection by giving several examples of decision problems which reduce to model checking of the higher-dimensional modal mu-calculus for some fixed formulas. This way generic model checking algorithms for the logic can then be used via partial evaluation in order to obtain algorithms for theses problems which may benefit from improvements that are well-established in the field of program verification, namely on-the-fly and symbolic techniques. The aim of this work is to extend such techniques to other fields as well, here exemplarily done for process equivalences, automata theory, parsing, string problems, and games.Comment: In Proceedings FICS 2012, arXiv:1202.317

    A semantics and implementation of a causal logic programming language

    Get PDF
    The increasingly widespread availability of multicore and manycore computers demands new programming languages that make parallel programming dramatically easier and less error prone. This paper describes a semantics for a new class of declarative programming languages that support massive amounts of implicit parallelism

    A Static Analyzer for Large Safety-Critical Software

    Get PDF
    We show that abstract interpretation-based static program analysis can be made efficient and precise enough to formally verify a class of properties for a family of large programs with few or no false alarms. This is achieved by refinement of a general purpose static analyzer and later adaptation to particular programs of the family by the end-user through parametrization. This is applied to the proof of soundness of data manipulation operations at the machine level for periodic synchronous safety critical embedded software. The main novelties are the design principle of static analyzers by refinement and adaptation through parametrization, the symbolic manipulation of expressions to improve the precision of abstract transfer functions, the octagon, ellipsoid, and decision tree abstract domains, all with sound handling of rounding errors in floating point computations, widening strategies (with thresholds, delayed) and the automatic determination of the parameters (parametrized packing)

    A Falsification View of Success Typing

    Full text link
    Dynamic languages are praised for their flexibility and expressiveness, but static analysis often yields many false positives and verification is cumbersome for lack of structure. Hence, unit testing is the prevalent incomplete method for validating programs in such languages. Falsification is an alternative approach that uncovers definite errors in programs. A falsifier computes a set of inputs that definitely crash a program. Success typing is a type-based approach to document programs in dynamic languages. We demonstrate that success typing is, in fact, an instance of falsification by mapping success (input) types into suitable logic formulae. Output types are represented by recursive types. We prove the correctness of our mapping (which establishes that success typing is falsification) and we report some experiences with a prototype implementation.Comment: extended versio
    corecore