
Working Paper Series
ISSN 1177-777X

A SEMANTICS
AND IMPLEMENTATION

OF A CAUSAL LOGIC
PROGRAMMING LANGUAGE

John G. Cleary, Mark Utting and Roger Clayton

Working Paper: 01/2009
February 11, 2009

c©John G. Cleary, Mark Utting and Roger Clayton
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29196036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Semantics and Implementation of a Causal
Logic Programming Language

John G. Cleary, Mark Utting and Roger Clayton

Department of Computer Science
University of Waikato

Hamilton, New Zealand
{jcleary, marku}@cs.waikato.ac.nz

Abstract. The increasingly widespread availability of multicore and
manycore computers demands new programming languages that make
parallel programming dramatically easier and less error prone. This pa-
per describes a semantics for a new class of declarative programming
languages that support massive amounts of implicit parallelism.

The key idea is that rather than writing low-level imperative programs
that define a sequence of state updates, we write a set of high-level rules
that are all executed in parallel, acting on a global database of facts.
A simple declarative semantics is possible, because rules can add new
tuples to the database but cannot modify existing tuples, and because
abstract timestamps are used to record causality relationships between
tuples.

It turns out that negation and garbage collection are the two crucial
features that enable us to recover the efficient mutable updates that are
possible in imperative languages. This paper develops the semantics of
negation, using a direct least-fix-point (LFP) construction, and shows
that this semantics agrees with the well-founded, perfect and stable se-
mantics. The paper develops an efficient bottom-up execution algorithm
based directly on the LFP construction. It also gives a declarative for-
mulation of the problem of garbage collection and describes an algorithm
for doing garbage collection. Finally it is claimed that the programming
language described can form the basis of a practical general purpose
programming language.

1 Introduction

Combining logic and programming has a long history. Kowalski [19, 20] and
Colmeraur [8] introduced Prolog in the early 1970s. Codd [7] introduced re-
lational databases at a similar time. Since then there has been much work in
extending and refining these approaches in the form of more advanced and ef-
ficient Prolog-like languages and dataflow languages [17]. Relational database
theory has also been extended to include deductive databases [22].

The overall agenda of these efforts has been to maintain the best of the
logical and procedural worlds. The logical world seeks a declarative reading of

2 Cleary, Utting and Clayton

programs, which as a result of simple semantics can be reasoned about easily. If
this agenda is successful then it should be easy to prove programs correct [5, 11],
debug programs [31, 32], and transform and modify them while maintaining cor-
rectness [26]. The procedural world seeks programs that are efficient, where the
programmer can reason about and control resource usage, and where programs
can interface with the existing computing milieux.

We perceive the current attempts to merge logic and programming to be
incomplete. Most logic languages need to move outside their pure logical foun-
dations in order to include facilities such as I/O and to enable efficient execu-
tion [6]. Kowalski [18] argues that this is a major reason for the limited adoption
of logic programming. He points out that in a multi-agent reactive world, pure
logic programming is best suited for just the think phase of the observation-
thought-action cycle shown in Fig. 1. It is not good at observing changes to its
input environment, or at performing update actions that change the real world.

observe any inputs at time T,

L
og

ic
 P

ro
g.

D
ed

uc
tiv

e
D

at
ab

as
es

St
ar

lo
g

to cycle at time T,

cycle at time T+n.

act,

select and commit to an action to perform,

think,

Fig. 1. The observation-thought-action cycle of multi-agent systems (Adapted
from [18]).

While very successful and widely deployed, relational databases overlap with
logic only for queries. Deductive databases and abductive logic programming
extend this to include the observation and commit-to-an-action phases of Fig. 1,
but it is still difficult to express the effects of the updates [18].

Over the last decade, we have designed a language, called Starlog, that has
a simple logical semantics, and which is able to encompass traditionally difficult
areas including input and output and mutation of the underlying database. The
intention is that this be a general purpose language with (ultimately) good run
time performance. We have developed several compilers for different subsets of
the language, including one compiler that chooses data structures automatically
and generates reasonably efficient sequential Java code whose execution speed is
comparable to hand-coded Java programs [3].

Recently, we have observed that this style of programming exposes a large
amount of potential parallelism, and we have started developing a new language
called JStar for parallel programming. JStar has the same semantics as Starlog,
but will use a more Java-like syntax. It will have a compiler that can transform
programs to run efficiently on various parallel architectures (manycore CPUs,

A Causal Logic Programming Language 3

cluster computers, GPUs etc.) with good scalability. Our motivation is that the
JStar language will be easy to formally reason about and will also be a compact,
efficient and powerful programming language which can be easily retargeted to
parallel computing platforms.

This paper describes the common semantics of Starlog and JStar – that is,
a logic programming language that has the following key features:

relational data: all data is stored in flat relations, as in the relational database
model, rather than using lists or more complex data structures as is com-
mon in Prolog programs. This makes it easier to distribute data for parallel
computation, and makes it possible to defer the choice of underlying data
structures to the compiler [3].

timestamps: each tuple in a relation has an abstract timestamp associated
with it. This gives a temporal view of the data, which enables programs
to observe time-varying inputs, react to those inputs by generating actions
that update the external world, and to see the effects of those actions as new
inputs arrive.

causality: a causality relation is defined between timestamps, to indicate which
tuples depend on other tuples, and which are independent. We use causality
to ensure that negation is sound, to control the evaluation order of the pro-
gram, to determine which computations can be performed in parallel, and
(together with garbage collection) to enable destructive updating of data
within the program, which is important for efficiency.

Section 2 defines syntax and terminology, then Section 3 discusses some small
example programs. Section 4 defines a number of terms that are used in Section 5,
which contains one of the major contributions of the paper – a direct (and hence
potentially efficient) least fix point construction for Horn clause logic including
negation. Section 6 presents a series of refinements of the fix point construc-
tion, giving more efficient interpreters for the language. Section 7 specifies the
garbage collection challenge and Section 7.4 gives an algorithm for garbage col-
lection that satisfies that specification. Finally, Section 8 gives conclusions and
further work. The JStar website, http://www.cs.waikato.ac.nz/research/jstar,
gives further information about the JStar and Starlog languages.

2 Notation and Definitions

By a logic program we mean a finite set of clauses, written as:

A← B̄

where A is referred to as the head of the clause and B̄ as its body. The head A
is an atom, which is a predicate symbol applied to zero or more terms. Terms
are constructed from constant and function symbols, plus variables, as usual.
The body B̄ is a set of literals B1,B2...,Bm. A literal is either a positive literal,
which is just an atom, or a negative literal, which is a negated atom [23, 28].

4 Cleary, Utting and Clayton

A subset of the predicate symbols are identified as built-in predicates and may
not appear in the head or in any negative literals of any program clause. Also,
any variable which appears in a clause must appear in at least one positive literal
(including built-in literals) in the body. Each clause is universally quantified over
all the variables in the clause.

The language L of P consists of all the well-formed formulae of the first
order theory obtained in this way. The Herbrand base BP of P is the set of all
ground atoms of the theory [23]. P∗ denotes the ground instantiation [23] of
the program P. The convention is used that terms which may contain unbound
variables will be written in boldface (for example A ← B̄ ∈ P), whereas terms
which are ground are written as Roman capitals (for example A ← B̄ ∈ P∗).
By an interpretation I of P we mean a subset of the Herbrand base BP. The
semantics of built-in predicates is represented by the interpretation I◦.

Definition 1. [Reduction [28]] The reduction of P∗ modulo an interpretation
I is the set of (ground) clauses

P∗/I ≡ {A← (B̄ − I) | A← B̄ ∈ P∗ ∧ (I 6|= ¬B̄)}

We will be particularly interested in P∗/I◦, the reduction modulo the built-in
predicates.

Given the body B̄ of a clause, we distinguish the following four subsets:

• B̄+ the positive literals that are not built-in predicates.
• B̄− the negative literals.
• B̄∼ the negative literals with their negation stripped from them.
• B̄◦ the built-in predicates.

Definition 2. [.] Throughout the paper we will be using a pre-order (reflexive
transitive ordering) . on the Herbrand base. In general this will depend on the
program P. We will also use the strict partial order (irreflexive ordering) <,
defined by:

x < y ≡ x . y ∧ ¬(y . x)

and the equivalence relation ∼ which is derived from . as follows:

x ∼ y ≡ x . y ∧ y . x

These orderings are extended to negative literals by adding the following axioms
and forming the minimal transitive closure of the relations:

x . y ⇒ x < not(y)
x < y ⇒ not(x) < y

. is also extended to ground clauses by adding (A← B̄) . (C ← D̄) iff A . C
and forming the transitive closure.

A Causal Logic Programming Language 5

To understand the ordering of negative literals, note that for any pair of
positive tuples x, y such that x strictly preceeds y, we have x < not(x) < y.
This shows that not(x) becomes known immediately after the calculation of x
has been completed. If that calculation did produce the tuple x, then not(x) is
false, whereas if the calculation failed to produce x, then not(x) is true. We use
this ordering to define causality relationships between tuples and between rules
in our programs.

Definition 3. [Causal] A program P is causal if for every rule instance A←
B̄ ∈ P∗

∀B
(

B ∈ B̄+ ∧ (I◦ |= B̄◦)⇒ B . A
B ∈ B̄∼ ∧ (I◦ |= B̄◦)⇒ B < A

)
Definition 4. [Strongly Causal] A program P is strongly causal if for every
rule instance A← B̄ ∈ P∗

∀B
(
B ∈ B̄+ ∪ B̄− ∧ (I◦ |= B̄◦)⇒ B < A

)
The notion of causality is similar to local stratification and weak stratification

which are at the basis of earlier work on the semantics of logic programs [28, 15].
If P is causal and P∗/I◦ is Noetherian (contains no infinite descending chains)
then P∗/I◦ is locally stratified as defined by Przymusinski [29]. Then P∗ is
weakly-stratified [28].

3 Example Programs

This section shows several example Starlog programs, to give an overview of
how this style of language can be used for several kinds of numerical and graph
calculations. We have also used Starlog for other applications, such as controlling
LEGO robots, composing MIDI music files, developing Java Swing GUI programs
and graphical animations, but it is beyond the scope of this paper to discuss such
applications.

3.1 Finding Prime Numbers

Our first example program generates all the prime numbers upto a given number
MAX, using the Sieve of Eratosthenes. It generates all multiples of known primes,
and uses negation to find numbers that are not multiples, so must be primes.
The tuples in this program are all stratified by their first parameter (except for
println, which uses the last parameter), then by the tuple name. The tuple
names are ordered so that num and mult are before prime, and prime is before
println. Note that, although mult and num are unordered, the rule on lines
04-05 is still stratified, because M > N .

01: num(2) <-- true.
02: num(N+1) <-- num(N), N < MAX. % Generate all numbers 2..MAX

6 Cleary, Utting and Clayton

03:
04: mult(M) <-- num(N), prime(P), N >= P, % Generate multiples of P
05: M is N*P, M < MAX.
06:
07: prime(N) <-- num(N), not(mult(N)). % Deduce prime numbers
08:
09: println(prime(N), N) <-- prime(N).

If this program is executed with MAX=5000, it produces the following out-
put:

prime(2)
prime(3)
prime(5)
prime(7)
prime(11)
prime(13)
...
prime(4999)

Note that the predicate println is used to communicate results to the outside
world. This idiom where output occurs in the head of a rule rather than the body
may be startling to those used to logic programming but is an important part
of preserving purity while interfacing with the real world.

3.2 Transitive Closure of a Graph

This program computes the transitive closure t(X, Y) over a base relation r(X, Y).
The ordering is t(,) > r(,), that is, all tuples t(X, Y) are greater than all
tuples r(U, V). Also t(,) . t(,), that is, all t(,) tuples order as equal. This
version is only causal, not strongly causal.

t(X, Y) <-- t(X, Z), t(Z, Y).
t(X, Y) <-- r(X, Y).

There is no claim that this is an efficient program. It relies for its termination
on the fact that if a tuple is generated more than once then it only triggers further
computation the first time.

The second version is strongly causal. To do this a counter I is added for
each iteration of the transitive closure in the tuples tr(I,X, Y) (which means
that a new transitive link from X to Y has been computed during iteration
I) and tp(I, X, Y) (which indicates a provisional result). Also, explicit code is
added to check that tuples computed in earlier iterations are not repeated. This
includes the tuple su(I,X, Y), which indicates that a result at time I should
be suppressed because there has been an earlier result with the same pair X, Y .
It is assumed that the builtin predicates include integer comparison (>) and
addition.

A Causal Logic Programming Language 7

t(X, Y) <-- tr(_, X, Y)
tp(I+1, X, Y) <-- r(X, Y), tr(I, Z, Y).
su(I, X, Y) <-- tp(I, X, Y), tr(K, X, Y), I > K.
tr(I, X, Y) <-- tp(I, X, Y), not(su(I, X, Y)).
tr(0, X, Y) <-- r(X, Y).

This program uses the following causality ordering:

r(_,_) < tr(_,_) < t(_,_).
tp(I,_,_) < su(I,_,_) < tr(I,_,_).
tr(K,_,_) < tp(I,_,_) when K < I.

3.3 A Running-Maximum Program

The final program incrementally outputs the maximum of all input numbers
seen so far. It illustrates external input (the input(Time,Number) relation is
an input to this program), negation, assignment and how to make large jumps
in time. All the tuples are stratified firstly by an integer timestamp (the first
parameter of each tuple, except for println, where the last parameter is the
timestamp), and then by the name of the tuple - these are ordered as follows:

input < val < value_neg < value < assign < println

01: println(max(T, M), T) <-- assign(T, max, M).
02:
03: assign(T, max, N) <-- input(T, N), value(T, max, M), M < N.
04: assign(T, max, N) <-- input(T, N), not(value(T, max, _)).
05:
06: val(T, max) <-- input(T, _).
07:
08:
09: %% This records the current assignment (when each input arrives).
10: value(T, K, M) <--
11: val(T, K),
12: assign(T0, K, M),
13: T0 < T,
14: not(value_neg(T, K, T0)).
15:
16: value_neg(T, K, T0) <--
17: val(T, K),
18: assign(T0, K, _),
19: T0 < T,
20: assign(U, K, _),
21: T0 < U, U < T.

In practice, we often write negations like line 14 in a sugared form as

8 Cleary, Utting and Clayton

not(assign(U, K, _), T0 < U, U < T)

and omit the definition of auxiliary predicates such as value_neg. But to keep
the semantics simple, we shall avoid such syntactic sugar in this paper.

Here is an example execution with four input numbers arriving at various
times. For real-time reactive programming, these arrival times might correspond
to seconds or milliseconds. For non real-time programming, they might corre-
spond to the line numbers of an input file that is read sequentially, where the
missing line numbers correspond to input lines that are empty or do not contain
a valid number.

T input val value assign println
1 (1,13) (1, max) - (1,max,13) max(1,13)
4 (4,11) (4, max) (4,max,13) - -
7 (7,23) (7, max) (7,max,13) (7,max,23) max(7,23)

10 (10,42) (10, max) (10,max,23) (10,max,42) max(10,42)

4 Semantic Concepts

This section introduces several operators and relations that are needed to de-
fine the semantics of the language. Many of them are taken from the standard
literature on the semantics of logic programming languages, but some, like the
selection operators in Section 4.1 are specific to our language.

Definition 5. [Preferable [30]] For two interpretations I, J , we say that I is
preferable to J , written I v J , iff

∀x (x ∈ I − J ⇒ ∃y(y ∈ J − I ∧ y < x))

Definition 6. [Perfect [30]] A model M of the program P is perfect iff there
is no other model K of P where K vM .

We will be considering a number of different operators on the Herbrand
universe V : 2BP → 2BP . These will include the immediate consequence operator,
TP as well as other selection operators that are related to TP but are monotone.

Definition 7. [Monotonic] An operator V is monotonic iff

∀I, J(I ⊆ J ⇒ V (I) ⊆ V (J))

Definition 8. [V α] For all ordinals α and transformations V we define V α(I)
as follows:

V 0(I) = ∅
V α+1(I) = V (V α(I))

V α(I) =
⋃

β<α

V β(I) where α is a limit ordinal.

For the special case V α(∅), we write V α.

A Causal Logic Programming Language 9

Definition 9. [Immediate consequence operator [23, p37]] TP(I) is the
set of all atoms A ∈ BP such that there is a clause A ← B̄ ∈ P∗, where B̄
follows from the interpretation I and the builtins I◦:

TP(I) ≡ {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄)}

TP(I) computes all consequences that are true given an interpretation I. In
programs without negation TP is monotonic with respect to the subset ordering.
However, in the presence of negation it may not be. The technical work below is
mainly concerned with finding a variant of TP and an ordering on interpretations
to restore monotonicity.

We will only ever need to consider one program at a time so we usually omit
the subscript P from the operators in what follows. We also assume that P is at
least causal.

Definition 10. [∆]
∆(I) ≡ T (I)− I

∆ computes all the new consequences that are derivable from I.

Definition 11. [Π]

Π(I) ≡ {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄) ∧ 6∃ y, z(y ∈ ∆(I) ∧ z ∈ B̄∼ ∧ y . z)}

Π(I) approximates the largest set of consequences that can be “safely” de-
duced from I, that is, consequences that can not be later contradicted by new
consequences which invalidate the negations in rules. Π includes all the deriva-
tions in T except where the generating rule contains a negation which is fore-
shadowed by tuples which are earlier in the ordering and in the newly derived
results.

It is possible to directly specify Π only because of the existence of the .
ordering. The major contribution of this part of the paper is to show how Π can
be used both to directly specify a semantics and to effectively compute it.

Before proceeding it is necessary to put a weak constraint on the program
(P) and its ordering <.

Definition 12. [Noetherian program] A program P and an ordering < to-
gether are Noetherian iff Π(I) = I implies ∆(I) has no infinite descending chain
according to <.

This constraint is a very weak one. For example ∆(I) is always Noetherian
whenever it is finite or the Herbrand Universe itself is Noetherian. In all practical
cases where a program runs for only a finite (possibly unbounded) number of
steps, ∆(I) will be finite. In all the following work we will assume that the
program and ordering are Noetherian. Of course when computing the semantics
of a program it will be necessary to first show that it satisfies the Noetherian
condition.

10 Cleary, Utting and Clayton

To violate this condition it is necessary for a program to generate an infi-
nite descending chain as it moves forward. The following example shows such a
program.
Example:

p(s(I))← p(I)
p(0)←
q(I)← p(I), not(q(s(I))

together with the ordering
p(I) . p(s(I))
p(I) . q(I)
q(s(I)) < q(I)

Calculation from this program gives:
Πn = {p(0), p(s(0)), . . . p(sn(0))}

and Πω = {p(0), p(s(0)), . . .}
However ∆(Πω) = {q(0), q(s(0), . . .}, which contains an infinite descending
chain.

4.1 Selection Operators

During program execution we want flexibility about what newly deduced facts
trigger further computation. For example, in a sequential execution it may be
more efficient to select one tuple at a time or in distributed execution flexibility
in the choice of triggers may help avoid excessive latency. Selection operators
provide room to do this. They choose a subset of Π(I) (including I itself). Π
itself is the most inclusive selection operator.

Definition 13. [Selection Operator] An operator V is a selection operator
iff

Π(I) ∩ I ⊆ V (I) ⊆ Π(I) and
V (I) = I ⇒ Π(I) = I.

The first line of this definition ensures that V (I) contains all safe tuples that
are already in I, and that it does not choose any unsafe facts — that is, it is
bounded above by Π(I), which is the set of all safe consequences. The second line
ensures that V (I) does not stop choosing new facts too early. It will be shown
that any selection operator can be safely used to compute the least fix-point.

Fig. 2 illustrates the relationship between the selection operators and Π,∆
and the minimal model MP defined below.

5 Semantics

In this section we will demonstrate that any selection operator has a least-
fixpoint which is equal to the perfect model MP. Often such least fix-points are
constructed by showing that the operator is monotone and then applying the
Tarski-Knaster theorem. However as the following example shows this approach

A Causal Logic Programming Language 11

Key

yx

Ev(I)

T (I)

∆(I)
V (I)

x

x

xx

x

x < y ∅

I

Π(I)

MP

Fig. 2. Selection Operators

12 Cleary, Utting and Clayton

cannot be naively followed because Π is not monotone either in the ⊆ ordering
or the v ordering.
Example:

Consider the following single clause program:
p← ¬q

together with the ordering p > q.
To check the montonicity of Π consider the following cases:
∅ ⊆ {q}, ∅ v {q} and
Π(∅) = {p}, Π({q}) = ∅ but
{p} 6⊆ ∅ and {p} 6v ∅,

showing that Π is not monotone on either ordering.

The least-fixpoint will be constructed in two stages. First we establish the
following three conditions on any selection operator V :

1. For all ordinals α, if I = V α then V (I) = I iff T (I) = I

2. α ≤ β ⇒ V α ⊆ V β

3. For any model K of the program P and ordinal α then V α v K

Note that these conditions apply only to the interpretations V α, not to all in-
terpretations. As shown by the example earlier, the conditions do not hold in
general and require the construction of the least fix-point to occur in the space
only of the sets V α, not the space of all possible interpretations.

Secondly we use these results to construct a least fix-point and show that it
is equal to MP.

Theorem 14. For a selection operator V , V (I) = I iff T (I) = I.

Proof. Assume T (I) = I. From the definition of ∆, ∆(I) = ∅. From the definition
of Π,Π(I) = T (I) = I which in turn implies V (I) = I.

Assume V (I) = I. From the definition of selection operator V (I) ⊆ Π(I)
and from the definition of Π,Π(I) ⊆ T (I), thus I = V (I) ⊆ T (I). Conversely,
V (I) − I = ∅ and from the definition of selection operator ∆(I) = ∅, which
implies T (I) ⊆ I.

ut

Theorem 15. Given a selection operator V , then for all ordinals α,

V α ⊆ V (V α)

and
x ∈ ∆(V α)⇒ ∀β(β < α⇒ ∃y(y ∈ ∆(V β) ∧ y . x))

Proof. The proof will proceed by a transfinite induction on both hypotheses in
concert.

They are trivially true for α = 0.

A Causal Logic Programming Language 13

Consider the case when α is a sucessor ordinal and let α = β + 1. Note that
by the induction hypothesis V β ⊆ V α.

First establish that for x ∈ ∆(V α) there exists y ∈ ∆(V β), y . x. This
establishes the more general condition by recursion on β. From the definition of
∆, x ∈ ∆(V α) implies x /∈ V α and that there is some ground clause x ← B̄ ∈
P∗/I◦ where V α |= B̄. By the induction hypothesis x /∈ V β . We now split into
a number of subcases.

First consider the case when V β |= B̄. Because x /∈ V β then x ∈ ∆(V β) and
as x . x, x supplies a value for y.

Second consider the case when V β 6|= B̄. There are two possible reasons for
this: either y ∈ B̄+ and y /∈ V β , y ∈ V α, that is, y ∈ ∆(V β) but by causality
y ∈ B̄+ implies y . x and thus y satisfies the condition; or y ∈ B̄∼ and y ∈
V β , y /∈ V α which contradicts the induction hypothesis that V β ⊆ V α.

Continuing the successor case consider a counter example x for the subset
condition, a member of V α which satisfies the condition x ∈ V α, x /∈ V (V α).
From the definition of a selection operator this implies that there is a ground
clause x ← B̄ ∈ P∗/I◦ where V β |= B̄ and 6 ∃ y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z).
Given that x ∈ V α, x /∈ V (V α)) and the constraint Π(V α) ∩ V α ⊆ V (V α) then
x /∈ Π(V α). There are two possible reasons for this: either V α 6|= B̄ or V α |= B̄
and ∃y, z(y ∈ ∆(V α) ∧ z ∈ B̄− ∧ y . z).

Consider first V α 6|= B̄. There are two possible reasons for this: either ∃y(y ∈
B̄+ ∧ y ∈ V β ∧ y /∈ V α), but this contradicts the hypothesis that V β ⊆ V α;
or ∃y(y ∈ B̄− ∧ y /∈ V β ∧ y ∈ V α), which implies that y ∈ ∆(V β), but this
contradicts the selection of the ground clause x← B̄.

Consider second V α |= B̄ and ∃y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z). Using the
first result for the successor case this implies that z ∈ ∆(V β) which implies that
x /∈ Π(V β) and because V β ⊆ V α this contradicts the assumption that x ∈ V α.

This completes the proof of both the induction hypotheses for the successor
case.

Consider the case when α is a limit ordinal, that is, V α =
⋃

β<α V β(I). First
we will show that given x ∈ ∆(V α) then ∀β(β < α⇒ ∃y(y ∈ ∆(V β) ∧ y . x)).
From the definition of ∆, x ∈ ∆(V α) implies x /∈ V α and that there is some
ground clause x ← B̄ ∈ P∗/I◦ where V α |= B̄. Consider some β < α and note
that x /∈ V β . We now split into a number of subcases.

First, consider the case when V β |= B̄. Because x /∈ V β then x ∈ ∆(V β) and
as x . x, x supplies a value for y.

Second, consider the case when V β 6|= B̄. There are two possible reasons for
this. The first reason is that y ∈ B̄+ and y /∈ V β , y ∈ V α. These conditions
imply that there is some ordinal γ > β such that y /∈ V γ ∧ y ∈ V γ+1, which
implies y ∈ ∆(V γ). From the induction hypotheses this implies there is some
z ∈ ∆(V β) such that z . y. Thus z . x and this supplies the value of y we are
seeking. The second possible reason is that y ∈ B̄∧y ∈ V β ∧ y /∈ V α but this
contradicts the induction hypothesis that V β ⊆ V α.

Continuing the limit case consider a counter example x for the subset condi-
tion, a member of V α which satisfies the condition x ∈ V α∧x /∈ V (V α). There is

14 Cleary, Utting and Clayton

an ordinal β < α where x /∈ V β and x ∈ V β+1. This implies that there is a ground
clause x ← B̄ ∈ P∗/I◦ where V β |= B̄ and 6 ∃ y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z).
Given that x ∈ V α∧x /∈ V (V α)) and the constraint Π(V α)∩V α ⊆ V (V α), then
x /∈ Π(V α). There are two possible reasons for this: either V α 6|= B̄ or V α |= B̄
and ∃y, z(y ∈ ∆(V α) ∧ z ∈ B̄− ∧ y . z).

Consider firstly V α 6|= B̄. There are two possible reasons for this: either
∃y(y ∈ B̄+∧y ∈ V β∧y /∈ V α, but this contradicts the hypothesis that V β ⊆ V α;
or ∃y(y ∈ B̄− ∧ y /∈ V β ∧ y ∈ V α, which implies that y ∈ ∆(V β), but this
contradicts the selection of the ground clause x← B̄.

Consider secondly V α |= B̄ and ∃y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z). Using
the first result for the limit case this implies that ∃w(w ∈ ∆(V β) ∧ w . y . z),
which implies that x /∈ Π(V β) and because V β ⊆ V β+1 this contradicts the
assumption that x ∈ V β+1.

This completes the proof of both the induction hypotheses for the limit case.
ut

Theorem 16. Given a selection operator V then for all ordinals α, β, α ≤ β
implies V α ⊆ V β.

Proof. Do a trans-finite induction on all ordinals using the previous theorem and
the definition of V α. ut

Theorem 17. Given a selection operator V then for all ordinals α and a model
K of P, V α v K.

Proof. The proof proceeds by trans-finite induction on α, using the induction
hypothesis:

∀x(x ∈ V α ∧ x /∈ K ⇒ ∃y(y < x ∧ y /∈ V α ∧ y ∈ K))

The result holds trivially for α = 0.
For the case when α is a successor ordinal, let α = β + 1. There will be at

least one ground clause x← B̄ ∈ P∗/I◦ where V β |= B̄∧ 6∃ y, z(y ∈ ∆(V β)∧ z ∈
B̄− ∧ y . z and K 6|= B̄.

There are two possible conditions where this will hold. Firstly, y ∈ B̄+ ∧ y ∈
V β ∧ y /∈ K. By the previous theorem this implies y ∈ V α. So by the induction
hypothesis ∃z(z < y ∧ z /∈ V α ∧ z ∈ K, but y . x so z < x and z is a witness
for y in the induction hypothesis.

Secondly, y ∈ B̄− ∧ y /∈ V β ∧ y ∈ K. From causality y < x. If Y ∈ V α then
y ∈ ∆(V β), which contradicts the assumption about the rule x← B̄. So y /∈ V α,
and y satisfies the hypothesis.

For the case when α is a limit ordinal then V α =
⋃

β<α V β . There will be at
least one ground clause x ← B̄ ∈ P∗/I◦ and ordinal β < α where V β |= B̄ ∧
6∃ y, z(y ∈ ∆(V β) ∧ z ∈ B̄− ∧ y . z and K 6|= B̄.

There are two possible conditions where this will hold. Firstly, y ∈ B̄+ ∧ y ∈
V β ∧ y /∈ K. By the previous theorem this implies y ∈ V α. So by the induction
hypothesis ∃z(z < y ∧ z /∈ V α ∧ z ∈ K, but y . x so z < x and z satisfies the
hypothesis.

A Causal Logic Programming Language 15

Secondly, y ∈ B̄− ∧ y /∈ V β ∧ y ∈ K. From causality y < x. If y ∈ V α then
∃γ(γ < α ∧ β < γ where y /∈ V γ ∧ y ∈ γ thus y ∈ ∆(V γ). From the previous
theorem this implies ∃z(z . y ∧ z ∈ ∆(V β) which contradicts the assumption
about the rule x← B̄, so y /∈ V α and y satisfies the hypothesis. ut

Definition 18. [Chain] An ordered set C is a chain iff ∀x ∈ C, y ∈ C either
x ≤ y or y ≤ x.

Definition 19. [CPO] A set C is a chain complete partial order over the
ordering ≤ if:

1. C is partially ordered by ≤;
2. there is a bottom element, ⊥, such that ⊥ ≤ x for all x ∈ C;
3. for all chains (Si)i∈I there is a least upper bound lubi∈I(Si) ∈ C.

Theorem 20. For a selection operator V there is a least ordinal δ where V δ is
a fix-point.

Proof. Construct a CPO using ⊆ as the ordering. Consider the interpretations
V α for all ordinals α. These form a chain complete partial order (CPO) using
the ordering ⊆ [10]. Directly from Theorem 17 V is monotonic on this restricted
set. By the Tarski-Knaster theorem [33], V has a least fix-point on this CPO
computed by an ordinal δ. ut

Theorem 21. From [28]: If the program P is weakly stratified then there is
a unique minimal (under v) perfect model, MP. MP is also well-founded and
unique stable.

Theorem 22. For a selection operator V with a least fix-point V δ

V δ = MP

Proof. From theorem 14 V δ is a model. Also from theorem 17 V δ v MP but
MP is a minimal model (wrt v) so V δ = MP. ut

5.1 Strong Causality

The work above has been carried out using only the weak notion of causality.
This permits new literals to be added ”at the same time” as other literals which
cause them. Strongly causal programs, however, only permit the conclusions to
be added at a strictly later time. Assuming strong causality has two advantages:
firstly it gives a simpler semantics (shown below) where MP is the unique model
of the programs completion; and secondly it permits a small simplification of
the interpreters described below. This is achieved at some cost when writing
programs as it may be necessary to add both parameters and rules in order
to achieve strong causality. For example, the strong causality version of the
transitive closure program in Section 3 is significantly more complex and difficult
to understand than the simple causal version (5 rules versus 2 rules).

16 Cleary, Utting and Clayton

We now show that strongly causal programs have only a single model. This
provides an exact semantics similar to that for logic programs without negation.
It uses the notion of the completion of a program, comp(P), which is defined in
[1, 23].

Theorem 23. If the program P is strongly causal and BP is Noetherian then
the perfect model MP is a model of comp(P) and is the only model of comp(P).

Proof. MP is a model of comp(P) [1, 23].
Let M,N be models of comp(P). Assume M 6= N and choose a minimal

A whose membership of M is different from its membership of N . That is,
A ∈ M ∧ A /∈ N or A /∈ M ∧ A ∈ N . But from the definition of comp(P) there
will be a ground clause A← B̄ ∈ P∗/I◦ where either M, I◦ |= B̄, and N, I◦ 6|= B̄
or M, I◦ 6|= B̄, and N, I◦ |= B̄. But this imples that there is some member B of B̄
where either B ∈M−N or B ∈ N−M . However B < A (from strong causality)
which contradicts the assumption that A is minimal. That is, the assumption
that M and N are different leads to a contradiction. Thus given that MP is a
model of comp(P) it is the only model. ut

Note that this theorem requires a stronger Noetherian condition on the entire
Herbrand base not just V δ.

6 Interpreters

Having established a semantics we will now define a sequence of algorithms for
generating the least fix-point. The algorithms are given both a program, P and a
selection operator V (see Defn. 13). The aim is to produce an efficient algorithm
that avoids re-computing earlier results. The selection operator that is used will
determine the resource usage of the algorithm and how much potential paral-
lelism is available. We give versions of the algorithm that become successively
more explicit and efficient, and we prove their correctness with respect to the
semantics.

6.1 Simple Least Fixpoint

The first interpreter (see Fig. 3) is a straightforward implementation of the least-
fixpoint procedure which introduces the notation used in the later versions. It
uses the following variables (we use the convention that variables that are held
over between iterations of the main loop are capitalised (Gamma) and those
that are local to one iteration of the loop are lower case (delta)):

1. Gamma - the set of all computed literals. This becomes the fixpoint model
of the program P when the algorithm terminates.

2. α - the number of iterations (used only to provide a link to the correctness
results).

3. new - a complete recalculation of the current set of results.

A Causal Logic Programming Language 17

1. α := 0;
2. Gamma := ∅ ;
3. do
4. assert Gamma = V α;
5. new := V (Gamma);
6. delta := new −Gamma;
7. assert delta = ∆(V α);
8. Gamma := new;
9. α := α+ 1;
10. until delta = ∅;
11. assert Gamma = MP;

Fig. 3. Simple Interpreter

4. delta - the computed results that have not been seen before, used to detect
termination.

Theorem 24. The assertions in the program are true.

Proof. See definitions 13(V α), 10(∆) and the theorems in Section 5. ut

6.2 Incremental Gamma

The aim of the following interpreters is to avoid as much re-computation of
results as possible. In the final version we will recompute both the set Gamma
and (a variant of) delta fully incrementally. To do this it is necessary to generalize
some of our earlier definitions to fit in with the new algorithms.

From Defn. 11 the definition of Π is:

Π(I) = {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄) ∧ 6∃ y, z(z ∈ B̄∼ ∧ y ∈ ∆(I) ∧ y . z)}

This definition references both the set ∆ and the negations B̄∼ that occur
in the rules. We want to make Π computable directly from ∆ but it does not
contain quite enough information as it lacks the information about the negations.
To provide this information we define variants of the operators T and ∆ that
contain both the head of rules and the (ground) negations in the rules and
incremental variants of Π and the selection operator V .

Definition 25. [T ′]

T ′(I) ≡ {A← B̄− | A← B̄ ∈ P∗∧(I, I◦ |= B̄)∧6∃ y, z(z ∈ B̄∼∧y ∈ ∆(I)∧y . z}

Theorem 26.

T (I) = {A | A← B̄ ∈ T ′(I)}

18 Cleary, Utting and Clayton

Proof. Directly from the definitions of T ′ and T .

Definition 27. [∆′]

∆′(I) ≡ {A← B̄− | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄) ∧A /∈ I}

Theorem 28.

∆(I) = {A : A← B̄ ∈ ∆′(I)}

Proof. Directly from the definitions of ∆′ and ∆.

Π ′ is defined as an incremental version of Π.

Definition 29. [Π ′]

Π ′(I) ≡ {A | A← B̄ ∈ P∗∧(I, I◦ |= B̄)∧6∃ y, z(z ∈ B̄∼∧y ∈ ∆(I)∧y . z∧A /∈ I)}

Theorem 30.

Π ′(I) = Π(I)− I

and if T (I) ⊇ I then Π(I) = Π ′(I) ∪ I.

Proof. Directly from the definitions of Π ′ and Π.

Note that T (V α) ⊇ V α so the theorem above applies to the calculations in
the interpreter.

In an important result, which enables incremental calculation, Π ′ can be
computed using only ∆′.

Theorem 31.

Π ′(I) = {A | A← B̄ ∈ ∆′(I) ∧ 6∃x, y, z(z ∈ B̄∼ ∧ y ← x ∈ ∆′(I) ∧ y . z)}

Proof. Directly from the definitions of Π ′ (Defn. 29), Π (Defn. 11), ∆ (Defn.
10) and ∆′ (Defn. 27).

Because the theorem above uses only ∆′ in the calculation of Π ′ we can
reformulate the calculation in terms of the operator Π ′′.

Definition 32. [Π ′′]
Π ′′(∆′(I)) ≡ Π ′(I)

The final redefinition is an incremental form for the selection operators V .

Definition 33. [V ′]
V ′(I) ≡ V (I)− I

Theorem 34. If V (I) ⊇ I then V (I) = V ′(I) ∪ I.

Proof. Directly from the definitions of V and V ′.

A Causal Logic Programming Language 19

As V (V α) ⊇ V α this theorem applies to the calculations in the interpreters.
Now we further recast the calculation of V ′ so that it uses ∆′ directly. The

is the efficient incremental form that will eventually be used in the interpreter.

Definition 35. [V ′(I,∆′)]

V ′(I,∆′) :
if ∆′ = ∅ then

return ∅;
else

return a non-empty subset of Π ′′(∆′);
fi;

Theorem 36. The two forms of V ′ are related as follows:

V ′(I) = V ′(I,∆′(I))

In general the calculation of the non-empty subset can depend on I, although
in practice this seems not to be an interesting or useful thing to do. Usually the
calculation need involve only consideration of ∆′. For example, when the most
general selection operator is used V (I) = Π(I) and then V ′(I,∆′) = Π ′′(∆′).

There is one selection operator that is of significant interest in practice. It
selects all the minimal elements in ∆. This is similar to what is done in discrete
event simulation where the lowest event(s) on the current event list are selected
next for execution. It is formulated here in its incremental form Ev′.

Definition 37. [Ev′]

Ev′(I,∆′) ≡ {A | A← B ∈ ∆′ ∧ 6∃C,D(C ← D ∈ ∆′ ∧ C < A)}

It is easily verified that for any interpretation I

∅ ⊆ Ev′(I, ∆′(I)) ⊆ Π ′′(∆′(I)) = Π ′(I)

and hence that the operator Ev(I) ≡ Ev′(I, ∆′(I)) ∪ I is a selection operator.
Ev′ is interesting for both its simplicity and computational efficiency and its

ability to deliver multiple tuples for execution, thus making it suitable for parallel
and distributed execution. It also provides a tight coupling between the ordering
. and the execution order, which can be useful when resource consumption is
important and it is necessary to restrict the amount of parallel execution.

Combining these definitions and adapting the previous interpreter we arrive
at the interpreter in Fig. 4, which calculates Gamma incrementally.

Line 5 of this interpreter uses the definition of ∆′ and expands it to an
explicit calculation on the set Gamma. Note that the expression I, I◦ |= B̄ in
the definition of T (I) is expanded into explicit conditions on the variable binding
θ applied to the rule selected from P. The process of generating the binding θ
has not yet been made explicit.

delta is then used in line 9 for the incremental calculation of Gamma using
V ′ (Defn. 33).

20 Cleary, Utting and Clayton

1. Gamma := ∅ ;
2. α := 0;
3. do
4. assert Gamma = V α;
5a. delta :=
5b. {(E← F̄−)θ |
5c. E← F̄ ∈ P ∧
5d. F̄+θ ⊆ Gamma ∧
5e. F̄◦θ ⊆ I◦ ∧
5f. Gamma ∩ F̄∼θ = ∅∧
5g. Eθ 6∈ Gamma
5h. };
6. assert delta = ∆′(V α);
9. Gamma := V ′(Gamma, delta) ∪Gamma;
10. α := α+ 1;
11. until delta = ∅;
12. assert Gamma = MP;

Fig. 4. Interpreter which Computes Gamma Incrementally

6.3 Incremental Delta

Although Gamma is now being incrementally calculated, delta is still being
recomputed from the full set Gamma on each iteration. The next version of the
interpreter in Fig. 5 is modified so that delta is recomputed incrementally from
the previous value of delta.

The first modification to the previous interpreter maintains Delta (now cap-
italized) between the iterations and computes its initial value on line 2. This
computation is a specialization of line 5 of Fig.4 and explicitly finds all rules
that have no positive goals (although they may contain builtin calculations and
negations which always succeed because there are no earlier results). This mod-
ification also requires a slight re-adjustment of the loop with the check at the
top of the loop and a resulting re-arrangement of the calculations.

The core of the incremental calculation is the calculation of Delta on lines
10 through 14. Showing the correctness of these lines requires a non-trivial proof
(Theorem 39).

The variable new is broken out of the incremental calculation of Gamma.
It holds the items which have been selected from Delta as being safe (members
of Π) and whch trigger the next round of computation. In the assertions we
label the values of the variables by the iteration that they occur in (eg newα is
the value assigned to new in iteration α). From V (V α) ⊇ V α and the assertion
new = V (V α)− V α the sequence newα is a disjoint partition of the model MP.
So nothing is ever included in new more than once. From this it can be seen that

A Causal Logic Programming Language 21

1. α := 0;
2. Delta := {(E← F̄−)θ : E← F̄ ∈ P, F̄+ = ∅, F̄◦θ ⊆ I◦};
3. Gamma := ∅ ;
4. while Delta 6= ∅ do
5. assert Gamma =

S
β<α newβ = V α;

6. assert Delta = ∆′(V α);
7. new := V ′(Gamma,Delta);
8. assert new = V (V α)− V α = V ′(V α);
9. Gamma := Gamma ∪ new;
10. d0 := {A← B̄ ∈ Delta | A ∈ new};
11. d1 := {A← B̄ ∈ Delta | new ∩ B̄∼ 6= ∅};
12a. d2 := {(E← F̄−)θ |
12b. E← F̄ ∈ P ∧
12c. ∃F (F ∈ F̄+θ ∩ new ∧ (F̄+θ − {F}) ⊆ Gamma) ∧
12d. F̄◦θ ⊆ I◦ ∧
12e Gamma ∩ F̄∼θ = ∅ ∧
12f. Eθ /∈ Gamma
12g. };
13. α := α+ 1;
14. Delta := (Delta− d0 − d1) ∪ d2;
15. end while;
16. assert Gamma =

S
α newα = MP;

Fig. 5. Interpreter which Computes Delta Incrementally

22 Cleary, Utting and Clayton

a rule E ← F̄ ∈ P will generate a result (E ← F̄−)θ at most once (this follows
from the condition F ∈ F̄+θ ∩ new).

Of course there can be multiple rules that all give the same answer, this is
a problem for the programmer not the interpreter. Also there can be partial
results placed in Delta which contain a negation which are later eliminated on
line 11. Again we view this as an issue for the programmer who may be able to
manipulate the rules and the ordering so that the negation is computed early
enough to eliminate the result at the point where it is generated.

Examination of this interpreter can tell us a lot about its potential efficiency
when implemented. Significant experience in implementing versions of this in-
terpreter has been reported [4, 3].

The execution time of line 7 depends on the actual selection operator used.
In practice it requires an ordered event list over the set Delta. At one extreme,
the selection operator can be Ev (or a subset), which requires being able to find
one or more minimal elements in Delta. At the other extreme, when Π is the
selection operator the negations in Delta can be included in the ordering data
structure over Delta, allowing a fast check of whether the negations can still
potentially fail.

Line 9 is the inclusion of new into Gamma. Gamma will in practice require
some form of indexing [3] and this step requires insertion into whatever indexing
has been chosen (the indexes may be highly dependent on the structure of the
program).

Line 10 (and 14) requires the removal of the selected elements in new from
Delta, which necessitates removal of the new items from the event list.

Line 11 (and 14) requires removal of items from Delta whose negations have
been selected. The best way of doing this will depend on which selection operator
is used. If Ev is the selection operator then line 11 can be omitted and replaced
by a check that the negations of elements in new are not currently in Gamma.
It is this variant of the interpreter that has been used elsewhere [3].

The calculation in line 12 requires matching atoms in rules to both new and
Gamma. The first of these is on line 12c. For each item in new it requires finding
a rule which can match it. This can be done by a static index across the rules
or in many cases generating explicit code to call the execution of the rule. The
fact that such optimization can be done is crucial for fast execution of Starlog
programs.

Lines 12e, 12f and 12g all require finding items in Gamma which are matched
against partially instantiated atoms from the current rule. This can be done
by providing suitable indexing on Gamma, which may be strongly program
dependent.

Later we will examine a framework for doing rule dependent optimizations
of line 12.

The following theorems establish the correctness of this interpreter.

Definition 38. [Wα]

Wα ≡ V (V α)− V α = V ′(V α)

A Causal Logic Programming Language 23

Theorem 39.

∆′(V α+1) = ∆′(V α) (1)
−{A← B̄ ∈ ∆′(V α) | A ∈Wα} (2)
−{A← B̄ ∈ ∆′(V α) |Wα ∩ B̄− 6= ∅} (3)
∪{(E← F̄−)θ | E← F̄ ∈ P ∧
∃F (F ∈ F̄+θ ∩Wα ∧ (F̄+θ − {F}) ⊆ V α+1 ∧
V α+1 ∩ F̄∼θ = ∅ ∧Eθ /∈ V α+1)} (4)

Proof. First consider the ground clauses A ← B̄ ∈ P∗ such that A ← B̄− ∈
∆′(V α+1) and show that they are in the RHS of the equation. From the definition
of ∆′ recall that

A /∈ V α+1

V α+1 |= B̄
that is B̄+ ⊆ V α+1

and B̄∼ ∩ V α+1 = ∅
.

Now consider two cases: (I) B̄+ ⊆ V α; and (II) B̄+ 6⊆ V α

Case (I): V α ⊆ V α+1 so B̄+ ⊆ V α and thus V α |= B̄. Also A /∈ V α ⊆ V α+1.
Combining these results shows that A ← B̄− ∈ ∆′(V α), term (1) on the RHS.
Also A /∈ Wα, excluding A ← B̄ from term (2). Finally, Wα ⊆ V α+1 and
B̄∼ ∩ V α+1 = ∅ so that Wα ∩ B̄∼ = ∅ and thus A← B̄− is not in term (3).

Case (II): show that A ← B̄ is in term (4) of the RHS. From the premise
for this case there must be some B ∈ B̄+ where B ∈ V α+1 and B /∈ V α.
This implies that B ∈ Wα. Using the notation of the term (4), there will be a
(possibly non-ground) clause E← F̄ ∈ P, F ∈ F̄, and binding θ where B̄ = F̄θ
and A← B̄ = (E← F̄)θ. That is, A← B̄ is included in term (4).

To show the converse consider all ground clauses A ← B̄ ∈ P∗ which occur
in the RHS and show that they also occur in the LHS. That is we need to show
that a ground clause A← B̄ satisfies A /∈ V α+1 and V α+1 |= B̄.

First, consider the members of the first term on the RHS: ∆′(V α). It is
sufficient to consider just those members not also in terms (2) or (3). From term
(2) A /∈ Wα = V α+1 − V α. Also A ← B̄ ∈ ∆′(V α) implies A /∈ V α. Together
these imply A /∈ V α+1 the first required condition.

A ← B̄ ∈ ∆′(V α) implies V α |= B̄ which implies V α |= B̄+ and because
V α ⊆ V α+1, V α+1 |= B̄+. Also V α |= B̄−, that is V α ∩ B̄∼ = ∅. From term (3)
Wα ∩ B̄∼ = ∅, that is, V α+1 − V α ∩ B̄∼ = ∅. Combined with V α ∩ B̄∼ = ∅ this
implies V α+1∩B̄∼ = ∅, that is V α+1 |= B̄∼. Together these all imply V α+1 |= B̄
the second required condition.

Second, consider the members of term (4) on the RHS. Using the notation
from that term B = Fθ ∈Wα, that is, B /∈ V α and B ∈ V α+1. Thus V α+1 |= B̄+

and from the definition of the term V α+1 ∩ B̄∼ = ∅. Combining these results
V α+1 |= B̄, the second of the required conditions. Also from the last condition
in the term A = Eθ /∈ V α+1 the first of the required conditions. ut

Theorem 40. The assertions in the interpreter hold.

24 Cleary, Utting and Clayton

Proof. The assertion new = V (V α) − V α = V ′(V α) follows directly from the
definition of V ′. The two assertions about Gamma and Delta follow from that
and the theorem above. The terminating assertion follows in the event that the
while loop finitely terminates when Gamma is the least fix-point of V . ut

6.4 Explicit Bindings

12a. d2 := {(E← F̄−)θ |
12b. E← F̄ ∈ P∧
12c. ∃F, ψ (
12d. F ∈ F̄+ ∧
12e. Fψ ∈ new ∧
12f. θ ∈ conseq(ψ, F̄+ − F)) ∧
12g.) ∧
12h. F̄◦θ ⊆ I◦ ∧
12i. Gamma ∩ F̄∼θ = ∅ ∧
12j. Eθ /∈ Gamma
12k. }

20. conseq(θ, F̄)
21. if F̄ = ∅ then
22. return {θ};
23. else
24. select some F ∈ F̄;
25. Ψ := ∅ ;
26. for each ψ where ∃D(D ∈ Gamma ∧D = Fθψ)
27. Ψ := Ψ ∪ conseq(θψ, F̄− {F)};
28. end for;
29. return Ψ ;
30. fi;

Fig. 6. Explicit Calculation of Bindings

The final version of the algorithm replaces the calculation of d2 on line 12 of
Fig. 5 with an explicit sequential calculation of the binding θ.

The matching of positive goals is done in two places. On line 12b a rule is
selected and then on line 12e a chosen positive goal from the rule is matched
against the newly computed tuples (we refer to this process as triggering and to
the matching tuple in new as the trigger). Later, in the conseq function which
computes all possible bindings for the selected rule, the remaining positive goals
are matched one by one against previously computed tuples in Gamma.

A Causal Logic Programming Language 25

This version of the interpreter also makes clearer how indexing can be used
to improve performance. The triggering in line 12e can be done by constructing
a static index over the positive goals in the rules. Such indexing allows tuples
to be immediately paired with an appropriate rule and positive goal as they are
placed into new.

An index over Gamma can potentially improve execution speed in the match-
ing of positive goals in line 26 and in the checks of the negations in line 12i and
of the newly generated head tuple in line 12j.

6.5 Optimization

It is possible to significantly optimize the interpreter above using static informa-
tion from particular programs [3]. These optimizations depend on the orderings
between the goals in individual rules and operate by allowing certain important
execution steps to be omitted for particular cases.

There are four points in the interpreter where these optimizations can apply:

1. where tuples in new trigger the execution of a rule (line 12e Fig. 6 and line
12c Fig. 5)

2. where a lookup is done of tuples in Gamma (line 26 Fig. 6)
3. where negated tuples in new are checked against the partial rules in Delta,

by analogy with triggering we refer to this as the negation trigger point (line
11 Fig. 5)

4. where negations are checked against Gamma when new tuples are being
generated, by analogy with the lookup point we refer to this as the negation
lookup point (line 12i Fig. 6 and line 12e Fig. 5)

The guard conditions for the optimizations are given in terms of two ideas.
That of one goal dominating another, that is, the dominating goal occurs later
than the other in all instantiations of the rule where the builtin goals are true.
Domination is extended to a maximal goal which dominates all other positive
goals.

Definition 41. [Domination]
Given a clause R = A← B̄
B ∈ B̄ is dominated by C ∈ B̄ iff I◦ |= (B̄◦ ⇒ B < C).

Definition 42. [Maximal Element]
Given a clause R = A← B̄
B ∈ B̄+ is the maximal element of R iff ∀C(C ∈ (B̄+ − {B}) ⇒ I◦ |= (B̄◦ ⇒
B > C)).

The optimizations are:

1. If a positive goal, B, is dominated by another positive goal, A, then B need
never be used as a trigger. This follows because if B was used as a trigger
then the later lookup of A in Gamma will fail because it is later than B
and thus cannot be in Gamma. The result of this is to reduce the work done
when a tuple matching B is placed in new.

26 Cleary, Utting and Clayton

2. If a negation, not(C), is dominated by a positive goal, B, then not(C) need
not be checked again at the negation trigger point. This follows because B
is later than C and so if B is in Gamma then it is already known if C will
be in Gamma and the negation lookup is a sufficient check. The result of
this is that the goal not(C) can be omitted from a partial rule when placing
it in Delta. This reduces the complexity of Delta and any indexes over it,
as well as reducing execution time at the negation trigger point.

3. If a negation, not(C), dominates all positive goals then there is no point
in checking C at the negation lookup point as a tuple matching C cannot
be in Gamma at that point. The result of this is to reduce the amount of
computation at the negation lookup point.

4. If the head of a rule, A, can only be matched with maximal goals (in other
rules) then it need never be added to Gamma. The is because it will never be
matched at the lookup point only at the trigger point. The result is that any
indexing structure over Gamma will be simplified, time need not be taken
to insert A into Gamma and the memory used by Gamma will be reduced.

5. If the head of a rule, A, can only be matched with positive goals that are
dominated by another goal then it can never be used at the trigger point.
Also if any negative goals in the rule are dominated by a positive goal then
A will never be part of any partial rule that needs a negation trigger. The
result is that A need never be inserted into Delta but only into Gamma. This
reduces the complexity of any index over Delta, time need not be taken to
insert into or retrieve from Delta and the memory used by Delta is reduced.

The importance of these optimizations is that they are significant steps on
the way to demonstrating that Starlog programs can be compiled to execute
as efficiently as any other language. In addition, there are many well-known
query optimization techniques for relational systems [34, 9] that can be applied
to Starlog.

7 Garbage Collection

The various interpreters all contain the monotonically increasing set of com-
puted results Gamma. In practice it is untenable to retain all tuples as this may
unboundedly increase the memory needed to run a program. There are three
reasons why we might want to retain a particular tuple in Gamma:

1. because it contributes to the future computation of the program. That is, it
may match a positive or negative literal in a rule that may generate more
tuples.

2. because it is an externally-visible tuple that must be printed or that causes
some other real-world action such as writing to a file or displaying a shape
on a screen.

3. because we want to record it for documentation or debugging purposes. For
example, a declarative debugger could use Gamma to display and analyze
the complete execution of the program, or of a particular rule.

A Causal Logic Programming Language 27

In practice, the first reason is the challenging one that leads us to define
garbage collection. The externally-visible tuples are typically acted upon at the
time that tuples are added to Gamma, and it is not necessary to retain them
once their external actions have been performed (unless reason 1 also applies).
The third reason for retaining tuples is easily satisfied by saving old tuples in
Gamma into an external file or database for later analysis. So the only tuples in
Gamma that we must retain during the computation are those that influence the
computation of future tuples. The rest can be garbage collected. A sufficiently
accurate garbage collection algorithm should allow programs to execute with
a memory usage that is proportional to the same program in an imperative
language.

One example where garbage collection is particularly important is where the
program uses only the most recently-timestamped value of a tuple, and all earlier
values can be discarded. Detection of this case can make it possible to update the
tuple using a destructive assignment, thus recovering the efficiency of imperative
programs.

This garbage collection issue is also encountered in other languages such as
Lisp and Java, where data that has no references (or only circular references)
is periodically removed by a garbage collection process. Such garbage collection
approximates the removal of items that will never be used in the future, as clearly
if items have no reference pointers then they will never be used. This is only an
approximation as it is possible to have items that will never be used but which
are still referenced.

A related problem is that solved by ‘fossil collection’ in optimistic simu-
lation [16, 12]. There as time advances through the parallel execution of the
simulation some items will become no longer referenceable, so can be removed.

The results of this section incorporate aspects of both of these types of col-
lection. The initial results allow for a wide range of different approximations and
we anticipate much follow-on work to establish good practical algorithms that
balance execution time, complexity and efficiency at removing garbage.

In this section we will first give a logical specification of the set of items that
must be retained in Gamma at each iteration of the interpreter(s). We will then
give an exemplary algorithm that is capable of computing this set, and prove it
correct with respect to the specification.

7.1 Definition of Garbage

The definition of the set of items that should be kept, κ, is based on two sets:
Γ the set of results which have been computed so far; and Ψ , a superset of the
values to be computed in the future. Ψ provides different approximations to the
final result MP and thus leads to different approximations of the set of items
that should be kept. The more accurate that Ψ is, the more garbage we can
remove.

Definition 43. [Future Set]
Ψ is a future set of Γ iff Ψ ⊇ {x | x ∈MP ∧ ∃z(z ∈ ∆(Γ) ∧ x & z)}.

28 Cleary, Utting and Clayton

Definition 44. [Keep Set] Given Ψ , a future set of Γ , the keep set is defined
as:

κ(Γ, Ψ) = {x | x ∈ Γ ∧
∃A, B̄(A← B̄ ∈ P∗ ∧

A ∈ Ψ ∧
B̄◦ ⊆ I◦ ∧
∃D̄, Ē(D̄ ∪ Ē = B̄+ ∧ D̄ ∩ Ē = ∅ ∧

D̄ ⊆ Γ ∧
Ē ⊆ Ψ ∧ Ē 6= ∅ ∧
((x ∈ D̄ ∪ {A} ∧ B̄∼ ∩ Γ = ∅) ∨
x ∈ B̄∼ ∩ Γ)

)
)
}

This definition checks each rule in the program looking for tuples in Γ that will
be used in future applications of the rule. Such tuples can be either positive
goals that will be used to fire future rules, heads that will prevent duplication
of results or negated goals that will prevent future rules from firing.

The positive goals in the rules are partitioned into two disjoint sets in all
possible ways: D̄, the goals which occur in the current Γ and which will need
to be kept; and Ē, the goals which will occur in the future (this last must be
nonempty or else the rule will never fire in the future). If the tuple has negated
goals which occur in the current Γ then it is sufficient to keep those and not
keep the positive goals or the head (the future rule instance must fail, this can
be ensured by keeping the negated tuples, remembering that the other positive
tuples may be kept for other reasons in other rules). As the head of the rule, A,
can be generated by multiple rules or by different firings of the current rule then
it is necessary to also retain A in Γ .

In addition correctness of the rule instance is checked by ensuring that the
head lies in the future, A ∈ Ψ , and that all the builtins are correct, B̄◦ ⊆ I◦.

Fig. 7 illustrates this definition. It shows a ground instance of a rule A ←
B1, B2, B3 where B3 occurs in the future set (note that x . B3 where x is in the
current ∆). Thus B1 and B2 must be kept because they may participate in the
future calculation of A. In this case B3 is in the approximation Ψ but not in the
model MP. So if Ψ had been a better approximation to the future computation
then keeping this instance could have been avoided and B1 and B2 could be
garbage collected (provided they did not need to be kept for another reason).

There is a sense in which the definitions above are not optimal, because
there are programs where the set of tuples that should be kept is not unique.
For example in the following program

p← q
p← r

A Causal Logic Programming Language 29

x

Γ

T

Ψ

∆

x x

x

x

A← B1, B2, B3

A

MP

κ

B3

B1 B2

Fig. 7. Garbage Collection

30 Cleary, Utting and Clayton

where q < p and r < p, if Γ = {q, r} then either {q} or {r} could be retained
and still lead to the correct model M = {p, q, r}. The definitions above only
approximate this case and both q and r are retained (κ({q, r}, {p}) = {q, r}).

Similarly in the following program
s← ¬t,¬u

where t < s and u < s, if Γ = {t, u} then either {t} or {u} could be retained
and still lead to the correct model M = {t, u}. Again the definitions above only
approximate this case and both t and u are retained (κ({t, u}, ∅) = {t, u}).

It is unclear whether in practice such extra reductions in the size of a kept
set would be useful.

One way of obtaining a better approximations for the future computation is
to do a greatest fix-point calculation starting from Γ = Ψ ∪ Gamma. Because
MP ⊆ T (Γ) then T (Γ)−Γ can potentially be used as an improved approximation
to Ψ . (This is similar to the alternating fix-point used in the calculation of the
well-founded semantics [13]). For example, it seems that the reference-following
algorithms of classical garbage collection only appear when such a greatest fix-
point strategy is pursued. We do not explore this issue further in this paper.

The following theorem shows that future sets are an adequate approximation
of future computation when applied to the monotone increasing results generated
by a selection operator.

Theorem 45. For any selection operator V and any Ψ (a future set of V α):

V α ∪ Ψ ⊇MP

Proof. Consider some x ∈ MP . If x ∈ V α then the result trivially holds. If
x /∈ V α then there will be a β > α where x ∈ V β+1 and x /∈ V β which implies
that x ∈ ∆(V β). From Theorem 3 this implies that ∃y(y ∈ ∆(V α)∧ y . x). The
definition of future set then implies x ∈ Ψ . ut

7.2 Garbage Collection Algorithm

Fig. 8 shows modifications to the interpreter of Fig. 5 to include garbage col-
lection. Line 9 is modified to include reference to a garbage collection function
and because Gamma now no longer includes all tuples computed earlier the
assertions on lines 5 and 16 are weakened.

Lines 20 through 24 specify a function which is applied on each cycle to
(optionally) do garbage collection. The selection of the sets Ψ and res are non-
deterministic and can cover a range of strategies and implementations. Later
we investigate using ∆ to compute Ψ and efficient calculation of κ. The most
likely choices for res are some approximate superset of mustkeep when garbage
collection is done or Gamma when no garbage collection is done.

7.3 Correctness

The basic issue with correctness is to show that the future computation after
garbage collection is the same as what would have happened if there was no

A Causal Logic Programming Language 31

5’. assert Gamma ⊆
S

β<α newβ = V α;

9’. Gamma := keep(Gamma,Delta) ∪ new;

16’. assert Gamma ⊆
S

α newα = MP;

20. keep(Gamma,Delta) :
21. select Ψ ⊇ {x | x ∈M ∧ ∃z(z ∈ ∆(Gamma) ∧ z . x)};
22. mustkeep := κ(Gamma, Ψ);
23. select res where mustkeep ⊆ res ⊆ Gamma;
24. return res;

Fig. 8. Garbage Collection Interpreter - modifications from Fig. 5

garbage collection. The theorem below considers two parallel executions of the
algorithm, one with the original line 9 of Fig. 5 and the second using the mod-
ified line 9’ of Fig. 8. We will use unprimed values for the variables at different
iterations for the first algorithm, Deltaα, newα, d2α, and primed versions for the
second modified algorithm Delta′α, new′

α, d′2α.
The theorem below shows that the primed and unprimed versions of all the

variables except Gammaα are the same.

Theorem 46. ∀α the variables Deltaα, newα, d0α, d1α, d2α are the same as
Delta′α, new′

α, d′0α, d′1α, d′2α respectively and Gammaα ⊇ Gamma′α.

Proof. The proof will be by induction on α.
First we observe that if the theorem holds up to β then the variables newβ+1,

d0β+1, d1β+1 will equal new′
β+1, d′0β+1, d′1β+1 respectively. This follows di-

rectly from the fact that the calculation of newβ+1 depends only on Deltaβ

and the calculations for d0β+1, d1β+1 depend only on Deltaβ and newβ+1. Also
Gammaβ+1 ⊇ Gamma′β+1 follows from the induction hypotheses and the equal-
ity of newβ+1 and new′

β+1. If the equality of d2α and d′2α can be proven then
the equality of Deltaα and Delta′α follows immediately.

We first assume that the hypothesis holds for all β < α and show that
assuming d2α 6= d′2α leads to a contradiction. Given some E← F̄ ∈ P and an F
from line 12c we split into two cases.

Case I: (E← F̄−)θ ∈ d2α and (E← F̄−)θ /∈ d′2α.
For this to happen one of the conditions for the calculation of d2 must fail

in the primed case but not the original case. There are three possible sub-
conditions that might fail: (F̄+θ − {F}) ⊆ Gamma′α, Gamma′α ∩ F̄∼θ = ∅,
or Eθ /∈ Gamma′α. But because Gammaα ⊇ Gamma′α the last two conditions
must succeed for the primed case. Thus it is the condition (F̄+θ − {F}) ⊆
Gamma′α that must fail. This implies that there is some G ∈ (F̄+θ − {F})

32 Cleary, Utting and Clayton

where G ∈ Gammaα and G /∈ Gamma′α. Thus there will be a γ < α where
G ∈ newγ and thus G ∈ Gammaγ and G ∈ Gamma′γ . Thus there will be
an earliest β where γ ≤ β < α where G ∈ Gammaβ , G ∈ Gamma′β and
G ∈ Gammaβ+1, G /∈ Gamma′β+1.

We will now show that G ∈ κ(Gamma′β , Ψ ′
β) for any future set Ψ ′

β of Gamma′β .
and thus that it will be a member of res in Fig. 8. (This contradicts the conclu-
sion G /∈ Gamma′β+1). To do this we equate A ← B̄ in the definition of a keep
set with (E← F̄)θ and G with x.

Consider each term of the definition of the keep set and show that each is
satisfied for κ(Gamma′β , Ψ ′

β).
From line 12d of the algorithm F̄◦θ = B̄◦ ⊆ I◦.
From lines 9 and 12c of the algorithm B̄+ = F̄+θ ⊆ Gammaα and thus

because β < α, B̄+ = F̄+θ ⊆ Gammaβ ∪ Ψβ . From line 12c F ∈ newα and
because β < α F /∈ Gamma′β which implies that F ∈ Ψ ′

β . Also recall that
G ∈ Gammaβ and that G ∈ (F̄+θ−{F}. Together these imply that it is possible
to partition B̄+ into subsets D̄ and Ē where G ∈ D̄, D̄ ⊆ Gammaβ , Ē ⊆ Ψ ′

β

and F ∈ Ē so that Ē 6= ∅.
From line 12g Eθ = A ∈ Gammaα+1 and thus A ∈ Ψ ′

β .
Finally from line 12e we deduce that B̄∼ = F̄∼θ∩Gammaα = ∅ and because

Gamma′β ⊆ Gammaβ ⊆ Gammaα then B̄∼ ∩ Gammaβ = ∅. This last implies
that D̄ is included in κ and thus that G ∈ κ.

This completes Case I.
Case II: (E ← F̄−)θ /∈ d2α and (E ← F̄−)θ ∈ d′2α. Following similar logic

as for Case I one of the conditions for the calculation of d2 must fail in the
original case but not the primed case. There are two possibilities: the failure of
the condition on line 12e, Gammaα ∩ F̄∼θ = ∅, or the failure of the condition
on line 12f, E /∈ Gammaα.

Consider the first possibility, it implies that there is a some G ∈ Gammaα, G /∈
Gamma′α, G ∈ F̄∼θ. From the induction hypothesis there will be a first β where
G ∈ newβ , G ∈ Gammaβ , G ∈ Gamma′β , G ∈ Gammaβ+1, G /∈ Gamma′β+1.
Following similar logic logic to case I we will deduce that G ∈ κ(Gamma′β , Ψ ′

β).
Consider each term of the definition of the keep set and show that each is

satisfied for κ(Gamma′β , Ψ ′
β).

From line 12d of the algorithm F̄◦θ = B̄◦ ⊆ I◦.
From lines 9 and 12c of the algorithm B̄+ = F̄+θ ⊆ Gammaα and thus

because β < α, B̄+ = F̄+θ ⊆ Gammaβ ∪ Ψβ . From line 12c F ∈ newα and
because β < α F /∈ Gamma′β which implies that F ∈ Ψ ′

β . Also recall that
G ∈ Gammaβ and that G ∈ (F̄+θ−{F}. Together these imply that it is possible
to partition B̄+ into subsets D̄ and Ē where G ∈ D̄, D̄ ⊆ Gammaβ , Ē ⊆ Ψ ′

β

and F ∈ Ē so that Ē 6= ∅.
From line 12g Eθ = A ∈ Gammaα+1 and thus A ∈ Ψ ′

β .
We know that G ∈ Gamma′β and thus that F̄∼θ ∩ Gamma′β 6= ∅ that is

B̄∼θ ∩ Gamma′β 6= ∅. which implies that B̄∼θ ∩ Gamma′β is included in κ and
thus that G is included in κ.

A Causal Logic Programming Language 33

This completes the first possibility for Case II.
Consider the second possibility for Case II and let G = Eθ. This implies that

G ∈ Gammaα, G /∈ Gamma′α. There will be a first β < α where G ∈ newβ and
thus G ∈ Gammaβ , G ∈ Gamma′β . There will be a first γ, β < γ ≤ α where
G ∈ Gammaγ , G ∈ Gamma′γ , G ∈ Gammaγ+1, G /∈ Gamma′γ+1.

We again applying the same logic as case I. This implies that the expression
x ∈ D̄ ∪ {A} ∧ B̄∼ ∩ Γ = ∅ is satisfied and that G = A is included in κ.

This completes the second possibility for Case II.
ut

7.4 Explicit Calculation of the Keep Set

This section develops one of many possible ways of calculating the keep set. The
algorithm given in Fig. 9 explicitly iterates over all the rules and computes the
partition of B̄+ into two subsets D̄ and Ē where the members of D̄ are ground
tuples in Γ and the members of Ē may not be ground and are intended to lie in
the future. This done using the recursive procedure partition.

Throughout Ψ is a future set for Gamma.
Lines 1 through 3 of Fig. 9 iterate over all rules and for each rule call the

method partition. This method recursively checks each member of P̄ (which was
initialized to B̄+ on line 2. For each B ∈ P̄ two possibilities are explored. First
a series of recursive calls is made to partition with each possible binding θ of B
to a member of Gamma. In these cases B is added to D̄. These bindings will
eventually be placed in the keep set if all other conditions can be meet. Second
partition will be recursively called with B placed in Ē the set of tuples which
are to occur in the future. Finally when all members of P̄ have been considered
(that is B̄+ has been partitioned into D̄ and Ē) a call is made to the check
method.

The real work of the algorithm is deferred to this procedure check which is
given an abstract definition in Fig. 10 and whose implementation is deferred to
Fig. 11. The abstract definition of check exactly reproduces the original definition
of κ(Gamma, Delta).

In order to construct code for check two issues must be dealt with; which
future set to use, and how to effectively compute the builtin calls.

The result will be an algorithm which in general returns a superset of the
definition of κ. Such an approximation is safe because the algorithm of Fig. 8
(and theorem 46) is happy with res being a superset of the keep set.

The first issue is settled by letting the future set Ψ be composed of all tuples
that lie in the future of the current Delta set. In the algorithm we need to check
if a (possibly non-ground) term E could (after instantiation) lie in this future
set. We use the expression Delta mayCause E to indicate this.

Definition 47. [mayCause]

Delta mayCause E = ∃x, θ(x ∈ Delta ∧ x . Eθ)

34 Cleary, Utting and Clayton

0. keep(Gamma,Delta) :

1. return
[

A←B̄∈P

partition(Gamma,Delta,A, B̄+, ∅, ∅, B̄∼, B̄◦);

10. partition(Gamma,Delta,A, P̄, D̄, Ē, N̄, Ī) :
11. if
12. []

B∈P̄
true→

13a. return partition(Gamma,Delta,A, P̄−B, D̄, Ē ∪B, N̄, Ī) ∪
13b.

[
θ|Bθ∈Gamma

partition(Gamma,Delta,A, (P̄−B)θ, D̄ ∪Bθ, Ēθ, N̄θ, Īθ)

14. else
15. return check(Gamma,Delta,A, D̄, Ē, N̄, Ī);
16. fi

Fig. 9. Calculation of Keep Set

check(Gamma,Delta,A, D̄, Ē, N̄, Ī) :

= {x | x ∈ Gamma ∧
∃θ(Aθ ∈ Ψ ∧

Īθ ⊆ I◦ ∧
Ē ⊆ Ψ ∧
((x ∈ D̄ ∪ {A} ∧ N̄θ ∩ Γ = ∅) ∨ x ∈ N̄θ ∩ Γ)

)

}

Fig. 10. Abstract Definition of check

A Causal Logic Programming Language 35

Naively this would require matching each member of Delta with E. However,
as in the interpreters, this can be optimized by a suitable index over Delta. Also
it is possible to be optimistic about this and return true even if it is not clear
that there is a suitable x or θ. In fact a correct (but not perhaps useful) imple-
mentation would be to always return true. A full investigation of implementation
techniques for this is not undertaken in this paper.

The second issue is that the algorithm in Fig. 9 may leave the negated goals
N̄ and the builtin goals Ī only partially bound. The precise check implied by the
definitions of κ and check requires that they be fully grounded. In the case of
N̄ this can be done by matching against Gamma. However for the builtins this
cannot necessarily be done finitely. The problem with the builtins is that it is
easy to construct a set of builtin calls (eg simple arithmetic, say X > Y) that
have an infinite set of solutions. In the actual execution of the program this is
dealt with by placing restrictions on the rules so that they have only a finite
number of solutions and by saying that it is the programmer’s responsibility to
ensure that they can be effectively computed. However, we must be more careful
here as we will not necessarily be grounding all of the positive goals (some are
in Ē which is in the future set which can be infinite). Thus a builtin calculation
that is perfectly well-behaved during normal execution might yield an infinite
number of solutions when checked by the garbage collector.

This is dealt with by using a predicate finiteGoal(B) which can be applied
to a (possibly non-ground) builtin goal B. It should return true only if there
are a finite number of possible ground solutions for B. It is free to return false
if it is ever in doubt and a correct (but probably not useful) implementation is
to always return false. One example technique for arithmetic is to return true
whenever the arguments are suitably ground. Thus finiteGoal(add(X, Y, Z))
can return true whenever two or more of X, Y, Z are ground. We do not pursue
this discussion further in this paper.

In Fig. 11 two methods check and negations are used recursively to ensure
that the members of Ē lie in the future (lines 2, 3 and 22, 23) and that the
builtin calls have been satisfied (lines 4, 5 and 28, 29).

check recursively checks the future values and whenever possible evaluates
builtin goals until no further execution or future checks are possible. Then it
checks if any of the negations, N̄, are in Gamma (recall that this implies that
they are ground). If this is so then we are guaranteed that the condition N̄θ∩Γ =
∅ in the expression ((x ∈ D̄ ∪ {A} ∧ N̄θ ∩ Γ = ∅) ∨ x ∈ N̄θ ∩ Γ) in Fig. 10
will fail and thus the terms D̄ ∪ {A} can be omitted from the result (see also
((x ∈ D̄ ∪ {A} ∧ B̄∼ ∩ Γ = ∅) ∨ x ∈ B̄∼ ∩ Γ) in Definition 44).

In either case possible values for the terms N̄θ ∩Γ may need to be included.
This possibility is explored by the recursive procedure negations. It ensures that
four conditions hold by the time it returns a result. It checks that the members
of Ē always lie in the future (lines 22 and 23). It checks that any safe builtins
are executed (line 28 and 29). It omits any ground negations that are not in
Gamma from the results (lines 24 and 25). It ensures that all the negations are

36 Cleary, Utting and Clayton

1. check(Gamma,Delta,A, D̄, Ē, N̄, Ī) :
2. if ∃E(E ∈ Ē ∧ ¬Delta mayCause E)→
3. return ∅;
4. []

I∈Ī
finiteGoal(I)→

5. return
[

θ|Iθ∈I◦

check(Gamma,Delta,A, D̄, Ēθ, N̄θ, (Ī− I)θ);

6. else
7. if ∃N(N ∈ N̄ ∧N ∈ Gamma)
8. return negations(Gamma,Delta, Ē, N̄, Ī);
9. else
10. return D̄ ∪ {A} ∪ negations(Gamma,Delta, Ē, N̄, Ī);
11. fi
12. fi

21. negations(Gamma,Delta, Ē, N̄, Ī) :
22. if ∃E(E ∈ Ē ∧ ¬Delta mayCause E)→
23. return ∅;
24. []

N∈N̄
ground(N) ∧N /∈ Gamma→

25. return negations(Gamma,Delta, Ē, N̄−N, Ī);
26. []

N∈N̄
¬ground(N)→

27. return
[

θ|Nθ∈Gamma

negations(Gamma,Delta, Ēθ, N̄θ, Īθ);

28. []
I∈Ī

finiteGoal(I)→

29. return
[

θ|Iθ∈I◦

negations(Gamma,Delta, Ēθ, N̄θ, (Ī− I)θ);

30. else
31. return N̄;
32. fi

Fig. 11. Calculation of check

A Causal Logic Programming Language 37

ground by taking any that are not and binding them in turn to all matching
terms in Gamma (lines 26 and 27).

The overall algorithm is an approximation because there may be builtins
that never become safe and so are never checked. This will result in more terms
being returned than are required by the abstract definition.

8 Conclusions

This paper is intended to be a first step on the way to a programming language
that combines the best of logic programming and imperative programming and
as well addresses the challenges laid down by the recent switch of performance
growth from faster processors to more parallel processors.

Logic programming in the broad sense, encompassing relational databases
and their query languages, has been very successful in enterprise computing but
has not significantly penetrated the practice of general purpose programming.
Its strengths are a strong ability to reason about program correctness and a
programming expressiveness that reduces the size of programs and the software
engineering burden.

Imperative programming is ubiquitous in general purpose programming. Its
perceived strengths are its execution time and memory usage efficiency, together
with an ability to reason informally about these resource requirements, inter-
faces to real time and hardware systems, and large and complex libraries which
interface to de facto and standards based external systems.

Since 2004 when the clock speeds of all major CPU families ceased to in-
crease [2, 25] the entire computing world has been forced to confront an increas-
ingly diverse and parallel hardware regime for cost effective and high performance
computing. This includes multi-core CPUs, general purpose graphic processing
units and circuit based technologies such as FPGAs and ASICs. Unfortunately,
existing programming languages and their parallel programming semantics find
this regime challenging and expensive. There is evidence, for example, that the
whole thrust of hardware development is being called into question [2] because
of the difficulty of solving these problems.

In the next section we summarize the steps that this paper has taken toward
fulfilling these aspirations and then consider the next steps necessary.

8.1 Summary

The first accomplishment of this paper has been the specification of a simple
least fix-point semantics for a pure logic programming language that explicitly
incorporates a general ordering across the tuples of the language. This semantics
has then been modified to give a fully incremental and hence efficient interpreter.
The real importance of this is that we have also demonstrated that this pure
logic programming language can directly deal with mutations and updates to
data as well as interfacing with external data streams without moving outside
its pure logical framework.

38 Cleary, Utting and Clayton

The potential efficiency of the language is made plausible by the incremen-
tal interpreter, by demonstration of the feasibility of garbage collection, by the
discussion of program specific optimizations, and by reference to other work [3]
where these have been used together with techniques to automatically select data
structures for implementing relational tables. That work showed that a variety
of Starlog benchmark programs could be compiled to code whose execution time
was comparable with fully imperative implementations. This was accomplished
by automatic estimation of the usage of each relational table within each pro-
gram, then using selection algorithms to choose efficient representations for each
table and each index.

The major technical challenge of this paper has been showing how to use
explicit time stamps on all tuples in the program. Such time stamps permit the
data in the program to be updated and garbage collected. This allows the data to
be held and manipulated in relational tables rather than in the list and functor
intensive data structures of classical logic programming. The use of tables, which
are highly abstract, permits the efficient manipulation and optimization of the
runtime environment.

The execution order is explicitly determined by the ordering between tu-
ples. Thus the base assumption is that execution is parallel unless explicitly
constrained by the programmer or by the data causality of the algorithm. This
highly parallel basis for execution, together with the ability to retarget the highly
abstract data representations of relational tables, makes the language a good
candidate to address the problems inherent in increasingly diverse and parallel
modern computational hardware.

8.2 Future Work

An implementation of Starlog for sequential execution has been reported in [3].
This implementation is preliminary and a number of aspects were incomplete
and need further work.

The major lack in the system was that no automatic garbage collection was
built into the system. At the time the system was written the theoretical under-
pinnings of garbage collection were not understood and ad hoc techniques were
used where necessary to get programs to run to completion. Thus, a major piece
of work that needs to be done is to implement a garbage collector and to demon-
strate that it can achieve sufficient memory compaction sufficiently quickly that
practical programs can run to completion. We expect this to require an investi-
gation of the tradeoffs between execution time, compaction, and the complexity
and sophistication of the techniques used. It is also plausible that the user may
need to provide guidance to the garbage collector, similar to how programmers
can specify the maximum time that tuples should be retained in the P2 dataflow
language [24].

The Starlog system includes a way of specifying the ordering. However, ex-
perience with using this indicates that it may be overly general. Also it can be
wordy for the programmer to specify the ordering, for example, some programs
have as many lines devoted to specifying the ordering as to the logic of the code.

A Causal Logic Programming Language 39

Further investigation is needed of compact ways of specifying the ordering, bal-
ancing the need to allow flexibility and parallelism, as well as ensuring that
execution time is not affected by the complexity of the ordering. One interesting
possibility is to provide ways of automatically inferring the ordering, similar to
the type inference of some programming languages [27].

The system includes ways of specifying the data structures to be used. These
can be specified by the user or derived automatically. This is a rich and complex
area and much more work can be done on extending the range of underlying data
structures that can be used and on techniques for selecting them automatically.
One thorny problem here is what to do about situations where the best data
structure is data dependent.

Implementing this language efficiently on parallel and other special purpose
architectures will require a lot of work. Particular problems will be how to parti-
tion the data across the distributed resources and the communication algorithms
between the partitioned data. We anticipate that, like the data structures, this
will require a mixture of user specification and automatic techniques, coupled
with performance feedback from actual execution. One extreme implementation
is to map programs to circuit based technologies such as FPGAs and ASICs.
This will require separating the static logic, which can be mapped directly to
circuits, from the data, which needs to be mapped to RAM or other external
memory.

Another area that still needs research and experience with real problems is
interfacing Starlog to external interfaces and APIs. Areas of particular inter-
est include: relational databases, file systems, operating systems, and libraries
provided by host languages.

Because of the lack of widespread experience with the syntax of logic pro-
grams as compared with popular imperative languages such as C or Java we
see a need to provide syntactic sugar to ease the transition. Areas of particular
promise include: looping constructs, call and return patterns, and assignment.

Given that Starlog has a pure semantics and does not need to step outside
them to deal with practical matters, there is an opportunity to use some of the
powerful logical tools that this makes possible, including: algorithmic debug-
ging [31], automated unit testing [35], integrity constraints [21], and abstract
interpretation [14].

However, the most important next step is getting more experience with using
the language in a wide range of programs. We need to find out if programs can be
run efficiently in practice and if programmers can efficiently write and maintain
the programs. We are looking forward to the experience.

Acknowledgements

Thanks to the researchers who helped develop earlier versions of Starlog and
its semantics, including Xiao Zhonge, Don Smith, Lunjin Lu and Bernhard
Pfahringer. Part of this work was supported by the New Zealand Marsden Fund,
under grant UOW-605.

40 Cleary, Utting and Clayton

References

1. Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of declar-
ative knowledge. In Foundations of Deductive Databases and Logic Programming.,
pages 89–148. Morgan Kaufmann, 1988.

2. Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from Berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Dec 2006.

3. Roger Clayton. Compilation of Bottom-Up Evaluation for a Pure Logic Program-
ming Language. PhD thesis, Department of Computer Science, The University of
Waikato, Hamilton, New Zealand, 2004.

4. Roger Clayton, John Cleary, Bernhard Pfahringer, and Mark Utting. Optimis-
ing tabling structures for bottom up logic programming. In Michael Leuschel
and Francisco Bueno, editors, LOPSTR 2002: Preproceedings of the International
Workshop on Logic Based Program Development and Transformation, Madrid 17-
20 Sep 2002, pages 57–74. Facultad de Informática de Madrid, 2002.

5. John Cleary and Mark Utting. Verification of Starlog programs. In Grigoris An-
toniou and Guido Governatori, editors, Proceedings of the 2nd Australasian Work-
shop of Computational Logic, Gold Coast, Australia, January 31 – February 1,
2001, pages 31–45. QUT Printing Services, Queensland University of Technology,
2001.

6. W.F. Clocksin and C.S. Mellish. Programming in Prolog: Using the ISO Standard.
Springer, fifth edition edition, 2003.

7. E. F. Codd. A relational model of data for large shared data banks. CACM,
13(6):377–387, 1970.

8. A. Colmerauer, H. Kanoui, and P. Roussel. Un système de communication homme-
machine en francais. Technical report, Groupe de Recherche en Intelligence Arti-
ficielle, Université d’Aix-Marseille II, 1973.

9. Tyson Condie, David Chu, Joseph M. Hellerstein, and Petros Maniatis. Evita
raced: Metacompilation for declarative networks. In Proceedings of the 34th Inter-
national Conference on Very Large Data Bases (VLDB), Auckland, New Zealand,
2008.

10. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, second edition, 2002.

11. W lodzimierz Drabent and Miros lawa Mi lkowska. Proving correctness and com-
pleteness of normal programs – a declarative approach. Theory Pract. Log. Pro-
gram., 5(6):669–711, 2005.

12. R. M. Fujimoto. Parallel discrete event simulation. In WSC ’89: Proceedings of the
21st conference on Winter simulation, pages 19–28, New York, NY, USA, 1989.
ACM.

13. Allen Van Gelder. The alternating fixpoint of logic programs with negation. In
PODS ’89: Selected papers of the eighth ACM SIGACT-SIGMOD-SIGART sym-
posium on Principles of database systems, pages 185–221, San Diego, CA, USA,
1993. Academic Press Professional, Inc.

14. Francois Gobert. Towards Putting Abstract Interpretation of Prolog into Practice.
VDM Verlag, 2008.

15. P. Hitzler and M. Wendt. A uniform approach to logic programming semantics.
Theory and Practice of Logic Programming, 5(1-2):93–121, January 2005.

A Causal Logic Programming Language 41

16. David R. Jefferson. Virtual time. ACM Transactions on Programming Languages
and Systems, pages 404–425, 1985.

17. Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in
dataflow programming languages. ACM Comput. Surv., 36(1):1–34, 2004.

18. R. A. Kowalski. Logic programming and the real world. Logic Programming
Newsletter, 14(1):9–11, February 2001.

19. Robert Kowalski. Predicate logic as programming language. In Proceedings
IFIP Congress, Stockholm, pages 569–574. North Holland Publishing Co., 1974.
Reprinted in Computers for Artificial Intelligence Applications, IEEE Computer
Society Press, Los Angeles, 1986, pp. 68-73.

20. Robert Kowalski. Algorithm = Logic + Control. Communications of the ACM,
22(7):424–436, July 1979.

21. Martin Leucker, editor. Runtime Verification, 8th International Workshop, RV
2008, Budapest, Hungary, March 30, 2008, volume 5289 of LNCS. Springer-Verlag,
Heidelberg, 2008.

22. Mengchi Liu. Deductive database languages: problems and solutions. ACM Com-
puting Surveys, 31(1):27–62, 1999.

23. J. W. Lloyd. Foundations of logic programming. Springer-Verlag, New York, Inc.,
New York, NY, USA, second edition, 1987.

24. Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timothy
Roscoe, and Ion Stoica. Implementing declarative overlays. SIGOPS Oper. Syst.
Rev., 39(5):75–90, 2005.

25. Mark Oskin. The revolution inside the box. CACM, 51(7):70–78, July 2008.

26. Alberto Pettorossi and Maurizio Proietti. Rules and strategies for transforming
functional and logic programs. ACM Computing Surveys, 28(2):360–414, 1996.

27. Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

28. H. Przymusinska and T. C. Przymusinski. Weakly stratified logic programs. Fun-
damenta Informaticae, 13:51–65, 1990.

29. T. C. Przymusinski. Every logic program has a natural stratification and an iter-
ated least fixed point model. In Proceedings of the eighth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pages 11–21. ACM Press,
1989.

30. Teodor C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Foundations of Deductive Databases and Logic Programming.,
pages 193–216. Morgan Kaufmann, 1988.

31. Ehud Y. Shapiro. Algorithmic program diagnosis. In POPL ’82: Proceedings of the
9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 299–308, New York, NY, USA, 1982. ACM.

32. Josep Silva. Debugging techniques for declarative languages: Profiling, program
slicing and algorithmic debugging. AI Commun., 21(1):91–92, 2008.

33. A. Tarski. A lattice theoretical fixed point theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

34. J. D. Ullman. Principles of Database and Knowledge-Based Systems: Volume II:
The New Technologies. W. H. Freeman, New York, NY, 1990.

35. Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Ap-
proach. Elsevier, 2007.

42 Cleary, Utting and Clayton

A Complete Interpreter

The following is a complete consolidated version of the interpreter of Fig. 5 including
the modifications of Fig. 6, the addition of garbage collection, Fig. 8, and the keep
function of Figs. 9 and 11.

α := 0;
Delta := {(E← F̄−)θ : E← F̄ ∈ P, F̄+ = ∅, F̄◦θ ⊆ I◦};
Gamma := ∅ ;
while Delta 6= ∅ do

assert Gamma ⊆
S

β<α newβ = V α;

assert Delta = ∆′(V α);
new := V ′(Gamma,Delta);
assert new = V (V α)− V α = V ′(V α);
Gamma := keep(Gamma,Delta) ∪ new;
d0 := {A← B̄ ∈ Delta | A ∈ new};
d1 := {A← B̄ ∈ Delta | new ∩ B̄∼ 6= ∅};
d2 := {(E← F̄−)θ |

E← F̄ ∈ P∧
∃F, ψ (
F ∈ F̄+ ∧
Fψ ∈ new ∧
θ ∈ conseq(ψ, F̄+ − F)) ∧

) ∧
F̄◦θ ⊆ I◦ ∧
Gamma ∩ F̄∼θ = ∅ ∧
Eθ /∈ Gamma
}

α := α+ 1;
Delta := (Delta− d0 − d1) ∪ d2;

end while;
assert Gamma ⊆

S
α newα = MP;

conseq(θ, F̄)
if F̄ = ∅ then

return {θ};
else

select some F ∈ F̄;
Ψ := ∅ ;
for all ψ where ∃D(D ∈ Gamma ∧D = Fθψ)

Ψ := Ψ ∪ conseq(θψ, F̄− {F)};
end for;
return Ψ ;

fi;

keep(Gamma,Delta) :

return
[

A←B̄∈P

partition(Gamma,Delta,A, B̄+, ∅, ∅, B̄∼, B̄◦);

A Causal Logic Programming Language 43

partition(Gamma,Delta,A, P̄, D̄, Ē, N̄, Ī) :
if

[]
B∈P̄

true→

return partition(Gamma,Delta,A, P̄−B, D̄, Ē ∪B, N̄, Ī) ∪[
θ|Bθ∈Gamma

partition(Gamma,Delta,A, (P̄−B)θ, D̄ ∪Bθ, Ēθ, N̄θ, Īθ)

else
return check(Gamma,Delta,A, D̄, Ē, N̄, Ī);

fi

check(Gamma,Delta,A, D̄, Ē, N̄, Ī) :
if ∃E(E ∈ Ē ∧ ¬Delta mayCause E)→

return ∅;
[]

I∈Ī
finiteGoal(I)→

return
[

θ|Iθ∈I◦

check(Gamma,Delta,A, D̄, Ēθ, N̄θ, (Ī− I)θ);

else
if ∃N(N ∈ N̄ ∧N ∈ Gamma)

return negations(Gamma,Delta, Ē, N̄, Ī);
else

return D̄ ∪ {A} ∪ negations(Gamma,Delta, Ē, N̄, Ī);
fi

fi

negations(Gamma,Delta, Ē, N̄, Ī) :
if ∃E(E ∈ Ē ∧ ¬Delta mayCause E)→

return ∅;
[]

N∈N̄
ground(N) ∧N /∈ Gamma→

return negations(Gamma,Delta, Ē, N̄−N, Ī);
[]

N∈N̄
¬ground(N)→

return
[

θ|Nθ∈Gamma

negations(Gamma,Delta, Ēθ, N̄θ, Īθ);

[]
I∈Ī

finiteGoal(I)→

return
[

θ|Iθ∈I◦

negations(Gamma,Delta, Ēθ, N̄θ, (Ī− I)θ);

else
return N̄;

fi

Fig. 12. Complete Incremental Interpreter Including Garbage Collection

