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Abstract. The increasing available parallelism of computers demands
new programming languages that make parallel programming dramati-
cally easier and less error prone. It is proposed that datalog with negation
and timestamps is a suitable basis for a general purpose programming
language for sequential, parallel and distributed computers.
This paper develops a fully incremental bottom-up interpreter for dat-
alog that supports a wide range of execution strategies, with trade-offs
affecting efficiency, parallelism and control of resource usage. Examples
show how the language can accept real-time external inputs and out-
puts, and mimic assignment, all without departing from its pure logical
semantics.

1 Introduction

Combining logic and programming has a long history. Kowalski [Kow74,Kow79]
and Colmeraur [CKR73] introduced Prolog in the early 1970s. Codd [Cod70]
introduced relational databases at a similar time. Since then there has been much
work in extending and refining these approaches in the form of more advanced
and efficient Prolog-like languages and dataflow languages [JHM04]. Relational
database theory has also been extended to include deductive databases [Liu99].

The overall agenda of these efforts has been to maintain the best of the logical
and procedural worlds. The logical world seeks a declarative reading of programs,
with simple semantics, so that they can be reasoned about easily. If this agenda
is successful then it should be easy to prove programs correct [CU01,DM05],
debug programs [Sha82,Sil08], and transform and modify them while maintain-
ing correctness [PP96]. The procedural world seeks programs that are efficient,
where the programmer can reason informally about and control resource usage,
and where programs can interface with the existing computing milieux (perform
I/O, call existing libraries, display graphics, etc.).

We perceive the current attempts to merge logic and programming to be
incomplete. Most logic languages need to move outside their pure logical foun-
dations in order to include facilities such as I/O and to enable efficient execu-
tion [CM03]. Kowalski [Kow01] argues that this is a major reason for the limited
adoption of logic programming. He points out that in a multi-agent reactive
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world, pure logic programming is best suited for just the think phase of the
observation-thought-action cycle shown in Fig. 1. It is not good at observing
changes to its input environment, or at performing update actions that change
the real world.

observe any inputs at time T,

L
og

ic
 P

ro
g.

D
ed

uc
tiv

e 
D

at
ab

as
es

St
ar

lo
g

to cycle at time T,

cycle at time T+n.

act,

select and commit to an action to perform,

think,

Fig. 1. The observation-thought-action cycle of multi-agent systems (Adapted from
Kowalski, 2001)

While very successful and widely deployed, relational databases overlap with
logic only for queries. Deductive databases and abductive logic programming
extend this to include the observation and commit-to-an-action phases of Fig. 1,
but it is still difficult to express the effects of the updates [Kow01].

Over the last decade, we have designed a language, called Starlog, that
has a simple logical semantics, but is able to encompass traditionally difficult
areas including input and output and mutation of the underlying database. The
intention is that this be a general purpose language with (ultimately) good run
time performance. We have developed several compilers for different subsets of
the language, including one compiler that chooses data structures automatically
and generates reasonably efficient sequential Java code whose execution speed is
comparable to hand-coded Java programs [Cla04].

Recently, we have observed that this style of programming exposes a large
amount of potential parallelism, and we have started developing a new compiler
for parallel programming. The goal is to take advantage of the clean declarative
semantics, and transform programs to run efficiently on various parallel archi-
tectures (many-core CPUs, cluster computers, GPUs, FPGAs, circuits etc.) with
good scalability.

This paper describes the semantics of Starlog – that is, a logic programming
language that has the following key features:

relational data: all data is stored in flat relations, as in the relational database
model, rather than using lists or more complex data structures as is com-
mon in Prolog programs. This makes it easier to distribute data for parallel
computation, and makes it possible to defer the choice of underlying data
structures to the compiler [Cla04].

causality: a causality ordering is defined between tuples, to indicate which tu-
ples depend on other tuples, and which are independent. We use causality
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to ensure that negation is sound, to control the evaluation order of the pro-
gram, to determine which computations can be performed in parallel, and
to enable the logical effect of assignment and mutation.

temporal view: the causality ordering gives a temporal view of the data, which
enables programs to observe time-varying inputs, react to those inputs by
generating actions that update the external world, and to see the effects of
those actions as new inputs arrive.

Section 2 defines syntax and terminology, then Section 3 makes a link to
previous work on dependency graphs and Section 4 discusses some small ex-
ample programs using dependency graphs. The results in Sections 3 and 4
are not used later in the main line of development. Section 5 defines a number
of terms that are used in Section 6, which contains one of the major contri-
butions of the paper – a direct (and hence potentially efficient) least fixpoint
construction for Horn clause logic including negation. Section 7 presents a series
of refinements of the fixpoint construction, giving more efficient interpreters for
the language. Finally, Section 8 gives conclusions and further work. The website,
http://www.cs.waikato.ac.nz/research/jstar, gives further information about the
Starlog languages, including example programs from this paper and a reference
interpreter for executing them.

2 Syntax and Notation

This section introduces the syntax of the Starlog language and the notation used
throughout the paper.

By a logic program we mean a finite set of clauses, written as:

A← B̄

where A is referred to as the head of the clause and B̄ as its body. The head A is
an atom, which is a predicate symbol applied to zero or more terms. Terms are
constructed from constant and function symbols, plus variables, as usual. The
body B̄ is a set of literals B1,B2...,Bm. A literal is either a positive literal, which
is just an atom, or a negative literal, which is a negated atom [Llo87,PP90].

A subset of the predicate symbols are identified as built-in predicates and may
not appear in the head or in any negative literals of any program clause. Also,
any variable which appears in a clause must appear in at least one positive literal
(including built-in literals) in the body. Each clause is universally quantified over
all the variables in the clause.

The language L of P consists of all the well-formed formulae of the first order
theory obtained in this way. The Herbrand base BP of P is the set of all ground
atoms of the theory [Llo87]. P∗ denotes the ground instantiation [Llo87] of the
program P. The convention is used that terms which may contain unbound
variables will be written in boldface (for example A ← B̄ ∈ P), whereas terms
which are ground are written as Roman capitals (for example A ← B̄ ∈ P∗).
By an interpretation I of P we mean a subset of the Herbrand base BP. The
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complete semantics of built-in predicates is represented by the interpretation I◦.
For example, 2 < 3 is a member of I◦, while 3 < 2 is not.

Definition 1. (Reduction [PP90]) The reduction of P∗ modulo an interpre-
tation I is the set of (ground) clauses

P∗/I ≡ {A← (B̄ − I) | A← B̄ ∈ P∗ ∧ (I 6|= ¬B̄)}

We will be particularly interested in P∗/I◦, the reduction modulo the built-in
predicates. This removes from P∗ all clauses that contain a builtin that evaluates
to false.

Given the body B̄ of a clause, we distinguish the following four subsets:

– B̄+ the positive literals that are not built-in predicates.
– B̄− the negative literals.
– B̄∼ the negative literals with their negation stripped from them.
– B̄◦ the built-in predicates.

We will require all programs to be written in a causal style, so that there
exists some causality ordering over all the tuples such that rules always add new
tuples in the future, not in the past. We base this notion of causality on the idea
of a well-founded ordering. Our goal is to prevent temporal contradictions, such
as the Grandfather Paradox of time travel [Bar43], where someone travels back in
time and kills his own biological grandfather before the latter met the traveler’s
grandmother, thus making it impossible for the traveler to exist. Informally, we
want to ensure that the output (the head) of each rule is generated after (or at
the same time) as the inputs of the rule, so that the output cannot modify the
inputs and lead to a contradiction. We shall see that this is equivalent to local
stratification from the database and logic programming literature [Prz88].

Definition 2. (Well-founded) A binary relation < over a set X is well-
founded iff it has no infinite descending chains. Equivalently, if every non-empty
subset of X has a minimal element with respect to <.

Definition 3. (Causal pair ., <) Throughout the paper we will be using a
causal pair of orderings, one a well-founded strict partial order (irreflexive or-
dering) < and the other a pre-order (reflexive transitive ordering) . on the
Herbrand base. (In general these depend on the program P.)

The two orderings are related by:

x < y ⇒ x . y

x < y ∧ y . z ⇒ x < z

x . y ∧ y < z ⇒ x < z

These orderings are extended to negative literals by adding the following ax-
ioms and forming the minimal transitive closure of the relations:

x . y ⇒ x < not(y)
x < y ⇒ not(x) < y
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. is also extended to ground clauses by adding (A← B̄) . (C ← D̄) iff A . C
and forming the transitive closure.

To understand the ordering of negative literals, note that for any pair of
positive tuples A1, A2 such that A1 < A2, we have A1 < not(A1) < A2. This
shows that not(A1) becomes known immediately after the calculation of A1 has
been completed. If that calculation did produce the tuple A1, then not(A1) is
false, whereas if the calculation failed to produce A1, then not(A1) is true.

Our definition of causal programs makes use of the completion of a program,
comp(P) [ABW88,Llo87]. This allows us to use global invariants of the program
to restrict attention to the instances that can actually occur during execution.
This makes it easier to prove that individual rules are in fact causal. Calculating
the completion of a whole program is inconvenient in practice, so in Section 3
we shall describe more practical ways of proving that a program is causal.

Definition 4. (Causal) A program P is causal iff there is a causal pair ., <
such that for every rule instance A← B̄ ∈ P∗ where comp(P), I◦ |= B̄

∀B
(

B ∈ B̄+ ⇒ B . A
B ∈ B̄∼ ⇒ B < A

)
Definition 5. (Strongly Causal) A program P is strongly causal iff there
is a causal pair ., < such that for every rule instance A ← B̄ ∈ P∗ where
comp(P), I◦ |= B̄

∀B
(
B ∈ B̄+ ∪ B̄∼ ⇒ B < A

)
Strong causality permits the later interpreters to be simplified and gives

more precise control over execution order. However, it often makes it harder to
actually write programs. The transitive closure example in section 4.4 illustrates
this point.

Next we use our notion of causal programs to show that the input program
is locally stratified [PP90], which means that it has the usual perfect model
semantics [Prz88]. Local stratification requires the Herbrand universe to be par-
titioned into strata, H0,H1, . . . Hβ , where β is a countable ordinal, and for each
instantiation of a rule A ← B, if A ∈ Hi then all the positive literals of B
must be in

⋃
{Hj |j ≤ i} and all the negative literals of B must be in strata⋃

{Hj |j < i} [Prz88, Defn. 5].

Theorem 6. A causal program P that terminates is locally stratified, so has a
unique perfect model [Prz88], which is also equal to the unique minimal model
defined by Apt et. al. [ABW88].

Proof. Since P is causal, it has a pre-order . that is well-founded. From this pre-
order, we can construct a partial order by taking the equivalence classes induced
by ., that is, two atoms a and b are in the same equivalence class iff a . b . a.
Then we can take a linear extension [DP02] of that partial order, to obtain a
total order H0,H1, . . ., which we use as the stratification order for P. Note that
this total order has a minimum element, since . is well-founded. If P terminates
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after a finite number of deductions, then there exists a countable ordinal bound
β such that the last tuple produced is in Hβ , so we have constructed a local
stratification order H0,H1, . . . Hβ .

Thus P is a locally stratified logic program, and by Theorem 4 of Przymusin-
ski [Prz88], P has a unique perfect model that coincides with the unique minimal
model defined by Apt et. al. ut

We have now established the semantics of a terminating causal program P .
However, defining the semantics in this way does not give as much flexibility
for parallel execution as we would like. It evaluates rules in stratification order,
and this is unnecessarily restrictive. In Section 5 we will define more general
evaluation operators that allow more parallelism, and we will prove that they
give the same results as this standard semantics.

3 Dependency Graphs

The definition of the causal orderings ., < given above and their relationship
to a program are abstract and it is not clear how such an ordering can be
effectively realized. For example, it will be noted later that computable versions
of the orderings are needed. This is especially so as the most precise version of
the orderings requires knowledge of comp(P) which is effectively what we are
trying to compute.

This section links the definitions above to the idea of dependency graphs
which have often been used to develop semantics for datalog with negation.
It also shows how the ., < orderings might be specified and used in practice.
However, the material here is used only in the following Section 4, which gives
a number of example programs. The main development from Section 5 onwards
relies only on the abstract notion of a causal pair ., <, so can be used with
dependency graphs, or with any other technique for finding a causal pair.

The remaining definitions in this section follow the order in which we can
use dependency graphs to analyze and execute a program P:

1. We perform static analysis on P to deduce various facts about it, such as
invariants, types and range information - we call such information a theory
of the program.

2. We use that theory to calculate a conservative superset of the instances of
the rules that may be true during the execution of the program, and we
calculate a dependency graph from those rule instances. This dependency
graph corresponds to a causality ordering between all the tuples that may
be generated by the program.

3. We then check that the derived dependency graph is well-founded (contains
no cycles through negations). This is not necessarily decidable, but if we
cannot prove that the dependency graph is well-founded, we require the
programmer to strengthen or correct the program.
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3.1 Static Analysis Theories

Definition 7. (Theory)
L is a theory of a program P iff

comp(P) ∧ I◦ ⇒ L

An example of a simple theory about a program that calculates primes is

∀N(prime(N)⇒ 2 ≤ N)

A theory L gives us partial information about the behavior of the program. In
particular, it allows us to deduce that some ground atoms L+ will be produced
by the program, while other ground atoms L− will never be produced by the
program. For atoms not in L+ ∪ L−, the theory is incomplete - it does not tell
us whether or not they will be produced.

Definition 8. (L+,L−)

L+ ≡ {A ∈ BP | L |= A}
L− ≡ {A ∈ BP | L |= not(A)}

For example, our simple theory of primes tells us that prime(1) ∈ L−, so 1
cannot be a prime, whereas the status of prime(2) is unknown according to this
theory. We may be able to deduce a stronger theory, which tells us more about
the possible behaviour of the program.

Definition 9. (stronger) A theory L2 is stronger than a theory L1 iff

L+
1 ⊆ L+

2 ∧ L−1 ⊆ L−2

An example of a stronger theory than the one above is

prime(2) ∧ prime(3) ∧ ∀N(prime(N)⇒ (N = 2 ∨N = 3 ∨ 5 ≤ N)

This tells us that prime(2) and prime(3) are in L+ so are definitely primes,
while prime(1) and prime(4) are in L−, so cannot be primes. We can also use
theories to capture information about types, functional dependencies, possible
values of variables, etc. The strongest theory is comp(P) itself.

Definition 10. (Restriction) The restriction of a program P modulo L is the
set of ground clauses:

P // L ≡ {A← B̄ | A← B̄ ∈ P∗/I◦ ∧ B̄+ ∩ L− = ∅ ∧ B̄∼ ∩ L+ = ∅}

So P // L is the set of rule instantiations that are consistent with L and
whose builtins are all true.
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3.2 Dependency Graphs and Causality

We define dependency graphs in the usual way [ABW88,PP90], except that we
define them only over the subset of the program that satisfies a given theory.

Definition 11. (Dependency Graph) The vertices of the dependency graph
GP,L of a program P with respect to L are all the ground atoms appearing in
P // L. The edges of GP,L are defined as follows. For every clause A ← B̄ ∈
P // L, there is a positive directed edge from each B ∈ B̄+ to A and there is a
negative directed edge from each B ∈ B̄∼ to A.

The dependency relations ., < between ground atoms of P are defined by:

– B . A iff there is a directed path from B to A, or if A = B.
– B < A iff there is a directed path from B to A that passes through at least

one negative edge.

Theorem 12. A pair of orderings ., < generated by a dependency graph GP,L

are a causal pair provided < is well founded.

Proof. The elementary properties of the orderings follow directly from the defi-
nition.

Theorem 13. A program P is causal if the orderings generated by GP,L for a
theory L of P are causal, that is, < is well-founded.

If we use a simple (weak) theory about the program, we may derive a depen-
dency graph whose < ordering is not well-founded, perhaps because it contains
loops. In this case we could try a stronger theory about the program, to obtain a
smaller dependency graph that is more likely to have a well-founded < ordering.
If we cannot find any theory that leads to a well-founded < ordering, then we
consider the original program to be erroneous, and require the programmer to
strengthen it so that it is possible to find a well-founded < order.

Typically, a program is non-causal because two or more rules define opposing
causality orderings between tuples. For example, the following program is not
causal, because a(2) . b(2), but b(2) < a(2) is also true (instantiating the
first rule with T=2).

a(T) <-- 0 < T, T < 4, not(b(T)).
b(2) <-- a(2).

This program could be made causal by changing the head of the first rule to
be a(T+1), which would give an order of a(2) . b(2) < a(3).

4 Example Programs

This section shows several example Starlog programs. These examples are in-
tended to illustrate the style of the language and a range of different applica-
tions. For each of these programs, we investigate possible theories, their resultant
orderings and proofs that these are well-founded.
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4.1 Builtin Predicates

We assume a number of builtin predicates covering input, output, arithmetic
and the generation of ranges of integers.

Input provided externally will appear as tuples input(T, X) where T is an
integer timestamp T ≥ 0 and X is the input itself.

Output is provided by the predicate println(T, X). The programer gener-
ates tuples of this form, which are then output to some suitable external channel.
T is a time stamp with T ≥ 0 and X is the data to be output. To programmers
used to languages such as Prolog this idiom may be somewhat startling, as the
println tuples appear in the head of rules not the bodies. However, this is an
important part of ensuring that the language has a pure semantics.

We assume that five builtin arithmetic predicates are available over the inte-
gers: < and ≤, which provide ordering; addition written as Z is X + Y to follow
standard Prolog practice; subtraction written as Z is X - Y; and multiplication
written as Z is X * Y. In each case X, Y must be ground integers for these to
be executed.

The final builtin predicate range(N, Lo, Hi) generates all the integers in
the range Lo...Hi, potentially in parallel. Like the other arithmetic predicates Lo,
Hi must be ground integers for this to be executed. The pragmatic reason for
introducing this predicate is that it enables us to ignore issues around the efficient
parallel generation of ranges of integers for these examples. It is trivial to write
an implementation that is sequential and serializes all parts of the program that
depend on it. It is less easy to write an implementation that generates integers
in a way that does not restrict the available parallelism.

4.2 Finding Prime Numbers

01: max(5000) <-- true.

02: mult(M, P) <-- mult(N, P), M is N + P, max(Max), M < Max.

03: mult(M, P) <-- prime(P), M is P * P, max(Max), M < Max.

04: mult(M) <-- mult(M, _).

05: prime(N) <-- max(M), range(N, 2, M), not(mult(N)). % Deduce prime numbers

06: println(N, prime(N)) <-- prime(N).

Fig. 2. Sieve of Eratosthenes

Our first example program in Fig 2 generates all the prime numbers upto a
given number specified by the predicate max, using the Sieve of Eratosthenes. It
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generates all multiples of known primes in mult(N), and uses negation to find
numbers that are not multiples, so must be primes.

The different multiples M are generated in the predicate mult(M, P) for each
prime P by starting at P * P and adding successive increments of P.

When this program is executed the println predicate generates the following
output:

prime(2)
prime(3)
prime(5)
prime(7)
prime(11)
...
prime(4999)

The following table shows the details of the execution up to time 12, which
is the first time that there are multiple mult(_,_) tuples at the same time.

mult/2 mult prime println

- - (2) (2,prime(2))
- - (3) (3,prime(3))
(4, 2) (4) - -
- - (5) (5,prime(5))
(6, 2) (6) - -
- - (7) (7,prime(7))
(8, 2) (8) - -
(9, 3) (9) - -
(10, 2) (10) - -
- - (11) (11,prime(11))
(12, 2) (12) - -
(12, 3)

Theory The following simple theory for the program constrains the range of
the parameters to be 2 or greater. As well it contains some simple deductions
about integers, which are useful for checking that the rules are causal under this
theory.

mult(M, P)⇒ M ≥ 2, P ≥ 2
mult(M)⇒ M ≥ 2
prime(N)⇒ N ≥ 2

println(N, T)⇒ N ≥ 2, T = prime(N)
M is N+P, N ≥ 2,P ≥ 2⇒ M > N

M is P*P, P ≥ 2⇒ M > P

The ordering from the dependency graph that results from this theory divides
all possible tuples into strata. There is one stratum for each integer N ≥ 2, which
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contains the tuples

{mult(N,_), mult(N), num(N), prime(N-1), println(N-1,_)}

Because the only negative edge in the causality graph is from mult(N) to
prime(N), prime(N) and println(N,prime(N)) are ‘pushed up’ to the next
stratum.

Execution of the program using this ordering and the Ev selection operator
(see Definition 44) will be sequential, with all processing taking place for stratum
N, followed by all processing for stratum N+1 and so on.

We now introduce a stronger theory for this program. This places constraints
on the ranges of the tuples (some start at 4 rather than 2) and adds the very
significant fact that mult(M,P) implies M ≥ P * P. As we will see, this makes a
significant difference to the potential parallelism available in the program.

mult(M, P)⇒ M ≥ 4, P ≥ 2, M ≥ P*P
mult(M)⇒ M ≥ 4
prime(N)⇒ N ≥ 2

println(N, T)⇒ N ≥ 2, T = prime(N)
M is N+P, N ≥ 2, P ≥ 2⇒ M > N

M is P*P, P ≥ 2⇒ M > P

Fig. 3 shows the the initial part of the ., < ordering that results from this
theory (println and max are omitted for clarity). It is straightforward to show
using the theory that these orderings are well founded and that they are a causal
pair, thus showing that the program itself is causal.

From the figure it can be seen that prime(3) . mult(9) < prime(9) rather
than prime(8) < prime(9) which was true in the earlier simple ordering.
Informally prime(N) > prime(

√
N) which allows all the calculations between

prime(
√
N) and prime(N) to occur in parallel (of course, there are positive de-

pendencies between the mult(N, P) tuples but as soon as they are generated all
consequent calculations can proceed without being restricted by causal consid-
erations).

One of the requirements for a practical system (see Section 7.4) is that it be
possible to compute the orderings . and <. That is, given two ground tuples it
must be possible to compute, preferably quickly, whether they are in fact ordered.
To demonstrate that this is possible, the following is an explicit calculation of a
causal pair that is slightly stronger than the ordering above. This code is written
in Prolog, not Starlog.
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mult(12,3)

mult(9,3)

mult(9) prime(9)mult(9,2)

mult(4,2) mult(4) prime(4)

mult(8,2)

mult(7,2)

mult(6,2)

mult(5,2)

prime(8)

prime(7)

prime(6)

prime(5)mult(5)

mult(6)

mult(8)

mult(7)

prime(3)

prime(2)

mult(10,3)

mult(10,2) mult(10) prime(10)

mult(11,2)

mult(11,3)

mult(11) prime(11)

prime(12)mult(12)mult(12,2)

x . yyxx < yyx

Fig. 3. Ordering for Primes Using Strong Theory
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mult(N1) < prime(N2) :- 4 ≤ N1, N1 ≤ N2.
mult(N1,_P) < prime(N2) :- 4 ≤ N1, N1 ≤ N2.
prime(N1) < prime(N2) :- 2 ≤ N1, N1*N1 ≤ N2.

mult(N1) < mult(N2) :- 4 ≤ N1, N1*N1 ≤ N2.
mult(N1,_P) < mult(N2) :- 4 ≤ N1, N1*N1 ≤ N2.
prime(N1) < mult(N2) :- 4 ≤ N1, N1*N1*N1*N1 ≤ N2.

mult(N1) < mult(N2,_P) :- 4 ≤ N1, N1*N1 ≤ N2.
mult(N1,_P) < mult(N2,_P) :- 4 ≤ N1, N1*N1 ≤ N2.
prime(N1) < mult(N2,_P) :- 4 ≤ N1, N1*N1*N1*N1 ≤ N2.

A . B :- A < B.

mult(N1) . mult(N2) :- 4 ≤ N1, N1 ≤ N2.
mult(N1,_P) . mult(N2) :- 4 ≤ N1, N1 ≤ N2.
mult(N1,P) . mult(N2,P) :- 4 ≤ N1, N1 ≤ N2, 2 ≤ P.

As noted above the tuple prime(N) is strictly dependent on prime(
√
N) —

this and similar relationships are reflected in the code above by the appearance
of the terms N1*N1 in the bodies of the rules. In the orderings prime(N1) <
mult(N2) and prime(N1) < mult(N2,P) the even more spectacular term N1*N1*N1*N1
appears. The following chain when N1 = 2 exemplifies the origins of this fourth
power of N1:

prime(2) . mult(4,2) . mult(4) < prime(4) . mult(16,4) . mult(16)

4.3 A Running-Maximum Program

The next example program outputs the maximum of all input numbers seen so
far. It illustrates external input (the input(Time,Number) relation is an input to
this program), negation, assignment and how to make large jumps in time. The
use of assignment here is particularly notable as it is often seen as being difficult
or impossible in pure functional or logic languages. However, because the time
ordering is explicit we are able to directly express the logic of assignment.

Lines 9-21 can be viewed as a library that implements assignment. Sending a
val(T,K) request to the library causes a value(T,K,M) response to be returned,
where M is the value associated with key K at time T. Sending an assign(T,K,M)
tuple to the library sets the current value of K to M.

In practice, we often write negations like lines 14 and 16-19 in a sugared
form,

not(exists U assign(U, K, _), T0 < U, U < T)

and omit the definition of auxiliary predicates such as value_neg. But to keep
the semantics clear, we shall avoid such syntactic sugar in this paper.
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01: println(T, max(T, M)) <-- assign(T, max, M).

02:

03: assign(T, max, N) <-- input(T, N), value(T, max, M), M < N.

04: assign(T, max, N) <-- input(T, N), not(value(T, max, _)).

05:

06: val(T, max) <-- input(T, _).

07:

08:

09: % This records the current assignment (when each input arrives).

10: value(T, K, M) <--

11: val(T, K),

12: assign(T0, K, M),

13: T0 < T,

14: not(value_neg(T, K, T0)).

15:

16: value_neg(T, K, T0) <--

17: val(T, K),

18: assign(T0, K, _),

19: T0 < T,

20: assign(U, K, _),

21: T0 < U, U < T.

Fig. 4. Running Maximum

Here is an example execution with four input numbers arriving externally
at various times. For real-time reactive programming, these arrival times might
correspond to seconds or milliseconds. For non real-time programming, they
might correspond to the line numbers of an input file that is read sequentially,
where the missing line numbers correspond to input lines that are empty or do
not contain a valid number. Given the following external inputs:

input(1, 13)
input(4, 11)
input(7, 23)
input(10, 17).

the program generates the following external outputs:

max(1, 13)
max(7, 23)

The tuples generated during execution are shown in the following table:

input val value value_neg assign println

(1,13) (1, max) - - (1,max,13) (1,max(1,13))
(4,11) (4, max) (4,max,13) - - -
(7,23) (7, max) (7,max,13) - (7,max,23) (7, max(7,23))
(10,17) (10, max) (10,max,17) (10,max,1) - -
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Theory and Ordering The only interesting theory for the program asserts that
for each predicate the parameter T ≥ 0 and the key K = max (this parameter
is included to make it clear that this assignment logic is easily extended to
multiple keys). The constraint T ≥ 0 flows from the original constraint in the
input predicate.

The ordering generated by the dependency graph for this theory divides the
tuples into one stratum for each integer from 0 upward. Each such stratum is then
further split into substrata in increasing order {val}, {value_neg}, {value},
and {assign, println, input}. It is straightforward to show that this ordering
is well founded and strongly causal.

4.4 Transitive Closure of a Graph

01: t(X, Y) <-- r(X, Z), t(Z, Y).

02: t(X, Y) <-- r(X, Y).

Fig. 5. Simple Transitive Closure

The third example program computes the transitive closure t(X,Y) over a
base relation r(X,Y). The first version of this program is simple (and for some
base relations, very inefficient). Termination relies on the fact that if a tuple
is generated more than once then it only triggers further computation the first
time. This program has a trivial ordering where all the tuples are equivalent
to each other, that is, all tuples are grouped into a single stratum. With this
ordering the program is causal but not strongly causal.

The second version of the program is given as an illustration of how to convert
a weakly causal program to a strongly causal one. To do this a counter I is
added for each iteration of the transitive closure in the tuples tr(I, X, Y)
(which means that a new transitive link from X to Y has been computed during
iteration I). An explicit check that tuples computed in earlier iterations are
not repeated is made on line 04 using the predicate tr_neg. The negation can
be replaced by the syntactically sugared construction not(tr(K,X,Y), K =< I)
which obviates any need to define the predicate tr_neg.

The interaction between tr and tr_neg can be seen as a simpler variant of
the assignment pattern used in the running-maximum example of the previous
section. In this case each value is assigned only once, and the tr_neg tuples
prevent later re-assignments of the values.

The following table shows the details of the execution of this second version
of the program. Fig. 7 shows a diagram of the base relation r(_,_) used in the
example.
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01: t(X, Y) <-- tr(_, X, Y).

02: tr(J, X, Y) <--

03: r(X, Y), tr(I, Z, Y), J is I+1

04: not(tr_neg(I, X, Y)).

05: tr_neg(I, X, Y) <--

06: r(X, Z), tr(I, Z, Y),

07: tr(K, X, Y), K =< I.

08: tr(0, X, Y) <-- r(X, Y).

Fig. 6. Strongly Causal Transitive Closure

d

c

b

a

Fig. 7. Base relation for Transitive Closure Example

tr tr_neg

(0, a, b) (0, b, c) (0, b, d) (0, c, a) -
(1, c, b) (1, a, c) (1, a, d) (1, b, a) -
(2, b, b) (2, c, c) (2, c, d) (2, a, a) (2, a, b) (2, b, c) (2, b, d) (2, c, a)

Theory and Ordering Like the previous example, the theory for this program
is straightforward, constraining the I of tr(I,_,_) and tr_neg(I,_,_) so that
I ≥ 0.

This leads to the program being split into three strata in the following order:
the input tuples {r(_,_)}, the internal tuples {tr(_,_,_), tr_neg(_,_,_)},
and the final result {t(_,_)}. The {tr(_,_,_), tr_neg(_,_,_)} stratum is then
split into substrata, one for each integer from 0 upward. Fig. 8 illustrates this
ordering. The program is easily shown to be strongly causal, requiring only use
of the results that I < I+1 for line 03 and the transitivity of integer ≤ on line
07.

5 Semantic Concepts

This section introduces several operators and relations that are needed to define
the semantics of the language. We will be considering a number of different
operators on the Herbrand universe V : 2BP → 2BP . Many of them are taken
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..

...

r(_,_)

tr(1,_,_) tr_neg(1,_,_)

tr(0,_,_) tr_neg(0,_,_)

t(_,_)

tr(i,_,_) tr_neg(i,_,_)

tr_neg(i+1,_,_)tr(i+1,_,_)

.

x . y

x y x < y

x y

Fig. 8. Ordering for Transitive Closure Example
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from the standard literature on the semantics of logic programming languages,
but some, like the selection operators in Section 5.1, are new.

The immediate consequence operator TP performs one bottom-up deductive
step, deducing the heads of all rules whose bodies are true. That is, TP(I) com-
putes all consequences that are true given an interpretation I.

Definition 14. (Immediate consequence operator TP [Llo87, p37]) TP(I)
is the set of all atoms A ∈ BP such that there is a clause A ← B̄ ∈ P∗, where
B̄ follows from the interpretation I and the builtins I◦:

TP(I) ≡ {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄)}

Definition 15. (Monotonic) An operator V is monotonic (with respect to an
ordering ⊆) iff

∀I, J(I ⊆ J ⇒ V (I) ⊆ V (J))

In programs without negation, the immediate consequence operator TP is
monotonic with respect to the subset ordering. However, in the presence of nega-
tion it may not be. The technical work below is mainly concerned with finding
a variant of TP and an ordering on interpretations to restore monotonicity.

We will only ever need to consider one program at a time so we usually omit
the subscript P from the operators in what follows. We also assume that P is at
least causal.

Definition 16. (∆)
∆(I) ≡ T (I)− I

∆ computes all the new consequences that are derivable from I.
We will need to apply operators repetitively to generate a fix point.

Definition 17. (V α) For all ordinals α and operators V we define V α(I) as
follows:

V 0(I) = ∅
V α+1(I) = V (V α(I))

V α(I) =
⋃

β<α

V β(I) where α is a limit ordinal.

For the special case V α(∅), we write V α.

Next, we define an aggressively parallel operator Π, that will allow us to
support a range of alternative parallel evaluation strategies.

Definition 18. (Π)

Π(I) ≡ {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄) ∧ 6∃ y, z(y ∈ ∆(I) ∧ z ∈ B̄∼ ∧ y . z)}
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Π(I) approximates the largest set of consequences that can be ‘safely’ de-
duced from I, that is, consequences that can not be later contradicted by new
consequences that invalidate the negations in rules. Π includes all the derivations
in T except where the generating rule contains a negation which is foreshadowed
by tuples which are earlier in the ordering and in the newly derived results.

It is possible to directly specify Π only because of the existence of the .
ordering. The major contribution of this part of the paper is to show how Π can
be used both to directly specify a semantics and to effectively compute it.

Π can be somewhat surprising in its effect. For example, it can permit tuples
that are in the future to be used for further computation, that is, it does not
force execution to proceed in a stratified ordering, except where this is forced
by negations. This can be a mixed blessing, on the one hand it gives maximal
parallelism, on the other it does not give precise control over the order of ex-
ecution or of the resource consumption implied by that. The following section
generalizes Π to a set of selection operators, which can give finer control over
execution order.

5.1 Selection Operators

During program execution we want flexibility about what newly deduced facts
trigger further computation. For example, in a sequential execution it may be
more efficient to select one tuple at a time, or in distributed execution the flex-
ibility may help to avoid excessive latency. Selection operators provide room to
do this. They choose a subset of Π(I) (including I itself). Π itself is the most
inclusive selection operator.

Definition 19. (Selection Operator) An operator V is a selection operator
iff

Π(I) ∩ I ⊆ V (I) ⊆ Π(I) and
V (I) = I ⇒ Π(I) = I.

The first line of this definition ensures that V (I) contains all safe tuples that
are already in I, and that it does not choose any unsafe facts—that is, it is
bounded above by Π(I), which is the set of all safe consequences. The second
line ensures that V (I) does not stop choosing new facts too early. It will be shown
that any selection operator can be safely used to compute the least fixpoint. So
the choice of selection operator gives implementors of Starlog significant freedom
to choose different parallel evaluation strategies.

Fig. 9 illustrates the relationship between the selection operators and Π, ∆
and the minimal model MP defined below.

6 Semantics

In this section we will demonstrate that any selection operator has a least-
fixpoint which is equal to the perfect model MP, as defined by Przymusin-
ski [Prz88]. We need a couple of definitions before embarking on this.
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Key

yx

Ev(I)

T (I)

∆(I)
V (I)

x

x

xx

x

x < y ∅

I

Π(I)

MP

Fig. 9. Selection Operators
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Definition 20. (Preferable [Prz88]) For two interpretations I, J , we say
that I is preferable to J , written I v J , iff

∀x (x ∈ I − J ⇒ ∃y(y ∈ J − I ∧ y < x))

Definition 21. (Perfect [Prz88]) A model M of the program P is perfect iff
there is no other model K of P where K vM .

Often least fixpoints are constructed by showing that the operator is mono-
tone and then applying the Tarski-Knaster theorem. However as the following
example shows, this approach cannot be naively followed, because Π is not
monotone, neither in the ⊆ ordering nor the v ordering.
Example:

Consider the following single clause program:
p← ¬q

together with the ordering p > q.
To check the montonicity of Π consider the following cases:
∅ ⊆ {q}, ∅ v {q} and
Π(∅) = {p}, Π({q}) = ∅ but
{p} 6⊆ ∅ and {p} 6v ∅,

showing that Π is not monotone on either ordering.

The least-fixpoint will be constructed in two stages. First we establish the
following three conditions on any selection operator V :

1. For all ordinals α, if I = V α then V (I) = I iff T (I) = I

2. α ≤ β ⇒ V α ⊆ V β

3. For any model K of the program P and ordinal α then V α v K

Note that these conditions apply only to the interpretations V α, not to all in-
terpretations. As shown by the example earlier, the conditions do not hold in
general and require the construction of the least fixpoint to occur in the space
only of the sets V α, not the space of all possible interpretations.

Secondly we use these results to construct a least fixpoint and show that it
is equal to MP.

Theorem 22. For a selection operator V , V (I) = I iff T (I) = I.

Proof. Assume T (I) = I. From the definition of ∆, ∆(I) = ∅. From the definition
of Π,Π(I) = T (I) = I which in turn implies V (I) = I.

Assume V (I) = I. From the definition of selection operator V (I) ⊆ Π(I)
and from the definition of Π,Π(I) ⊆ T (I), thus I = V (I) ⊆ T (I). Conversely,
V (I) − I = ∅ and from the definition of selection operator ∆(I) = ∅, which
implies T (I) ⊆ I. ut
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Theorem 23. Given a selection operator V , then for all ordinals α,

V α ⊆ V (V α)

and
x ∈ ∆(V α)⇒ ∀β(β < α⇒ ∃y(y ∈ ∆(V β) ∧ y . x))

Proof. The proof will proceed by a transfinite induction on both hypotheses in
concert. Both hypotheses are trivially true for α = 0.

Consider the case when α is a sucessor ordinal and let α = β + 1. Note that
by the induction hypothesis V β ⊆ V α.

First establish that for x ∈ ∆(V α) there exists y ∈ ∆(V β), y . x. This
establishes the more general condition by recursion on β. From the definition of
∆, x ∈ ∆(V α) implies x /∈ V α and that there is some ground clause x ← B̄ ∈
P∗/I◦ where V α |= B̄. By the induction hypothesis x /∈ V β . We now split into
a number of subcases.

First consider the case when V β |= B̄. Because x /∈ V β then x ∈ ∆(V β) and
as x . x, x supplies a value for y.

Second consider the case when V β 6|= B̄. There are two possible reasons for
this: either y ∈ B̄+ and y /∈ V β , y ∈ V α, that is, y ∈ ∆(V β) but by causality
y ∈ B̄+ implies y . x and thus y satisfies the condition; or y ∈ B̄∼ and y ∈
V β , y /∈ V α which contradicts the induction hypothesis that V β ⊆ V α.

Continuing the successor case consider a counter example x for the subset
condition, a member of V α which satisfies the condition x ∈ V α, x /∈ V (V α).
From the definition of a selection operator this implies that there is a ground
clause x ← B̄ ∈ P∗/I◦ where V β |= B̄ and 6 ∃ y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z).
Given that x ∈ V α, x /∈ V (V α)) and the constraint Π(V α) ∩ V α ⊆ V (V α) then
x /∈ Π(V α). There are two possible reasons for this: either V α 6|= B̄ or V α |= B̄
and ∃y, z(y ∈ ∆(V α) ∧ z ∈ B̄− ∧ y . z).

Consider first V α 6|= B̄. There are two possible reasons for this: either ∃y(y ∈
B̄+ ∧ y ∈ V β ∧ y /∈ V α), but this contradicts the hypothesis that V β ⊆ V α;
or ∃y(y ∈ B̄− ∧ y /∈ V β ∧ y ∈ V α), which implies that y ∈ ∆(V β), but this
contradicts the selection of the ground clause x← B̄.

Consider second V α |= B̄ and ∃y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z). Using the
first result for the successor case this implies that z ∈ ∆(V β) which implies that
x /∈ Π(V β) and because V β ⊆ V α this contradicts the assumption that x ∈ V α.

This completes the proof of both the induction hypotheses for the successor
case.

Consider the case when α is a limit ordinal, that is, V α =
⋃

β<α V β(I). First
we will show that given x ∈ ∆(V α) then ∀β(β < α⇒ ∃y(y ∈ ∆(V β) ∧ y . x)).
From the definition of ∆, x ∈ ∆(V α) implies x /∈ V α and that there is some
ground clause x ← B̄ ∈ P∗/I◦ where V α |= B̄. Consider some β < α and note
that x /∈ V β . We now split into a number of subcases.

First, consider the case when V β |= B̄. Because x /∈ V β then x ∈ ∆(V β) and
as x . x, x supplies a value for y.

Second, consider the case when V β 6|= B̄. There are two possible reasons for
this. The first reason is that y ∈ B̄+ and y /∈ V β , y ∈ V α. These conditions
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imply that there is some ordinal γ > β such that y /∈ V γ ∧ y ∈ V γ+1, which
implies y ∈ ∆(V γ). From the induction hypotheses this implies there is some
z ∈ ∆(V β) such that z . y. Thus z . x and this supplies the value of y we are
seeking. The second possible reason is that y ∈ B̄∧y ∈ V β ∧ y /∈ V α but this
contradicts the induction hypothesis that V β ⊆ V α.

Continuing the limit case consider a counter example x for the subset condi-
tion, a member of V α which satisfies the condition x ∈ V α∧x /∈ V (V α). There is
an ordinal β < α where x /∈ V β and x ∈ V β+1. This implies that there is a ground
clause x ← B̄ ∈ P∗/I◦ where V β |= B̄ and 6 ∃ y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z).
Given that x ∈ V α∧x /∈ V (V α)) and the constraint Π(V α)∩V α ⊆ V (V α), then
x /∈ Π(V α). There are two possible reasons for this: either V α 6|= B̄ or V α |= B̄
and ∃y, z(y ∈ ∆(V α) ∧ z ∈ B̄− ∧ y . z).

Consider firstly V α 6|= B̄. There are two possible reasons for this: either
∃y(y ∈ B̄+∧y ∈ V β∧y /∈ V α, but this contradicts the hypothesis that V β ⊆ V α;
or ∃y(y ∈ B̄− ∧ y /∈ V β ∧ y ∈ V α, which implies that y ∈ ∆(V β), but this
contradicts the selection of the ground clause x← B̄.

Consider secondly V α |= B̄ and ∃y, z(y ∈ ∆(I) ∧ z ∈ B̄− ∧ y . z). Using
the first result for the limit case this implies that ∃w(w ∈ ∆(V β) ∧ w . y . z),
which implies that x /∈ Π(V β) and because V β ⊆ V β+1 this contradicts the
assumption that x ∈ V β+1.

This completes the proof of both the induction hypotheses for the limit case.
ut

Theorem 24. Given a selection operator V then for all ordinals α, β, α ≤ β
implies V α ⊆ V β.

Proof. Do a trans-finite induction on all ordinals using the previous theorem and
the definition of V α. ut

Theorem 25. Given a selection operator V then for all ordinals α and a model
K of P, V α v K.

Proof. The proof proceeds by trans-finite induction on α, using the induction
hypothesis:

∀x(x ∈ V α ∧ x /∈ K ⇒ ∃y(y < x ∧ y /∈ V α ∧ y ∈ K))

The result holds trivially for α = 0.
For the case when α is a successor ordinal, let α = β + 1. There will be at

least one ground clause x← B̄ ∈ P∗/I◦ where V β |= B̄∧ 6∃ y, z(y ∈ ∆(V β)∧ z ∈
B̄− ∧ y . z and K 6|= B̄.

There are two possible conditions where this will hold. Firstly, y ∈ B̄+ ∧ y ∈
V β ∧ y /∈ K. By the previous theorem this implies y ∈ V α. So by the induction
hypothesis ∃z(z < y ∧ z /∈ V α ∧ z ∈ K, but y . x so z < x and z is a witness
for y in the induction hypothesis.

Secondly, y ∈ B̄− ∧ y /∈ V β ∧ y ∈ K. From causality y < x. If Y ∈ V α then
y ∈ ∆(V β), which contradicts the assumption about the rule x← B̄. So y /∈ V α,
and y satisfies the hypothesis.
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For the case when α is a limit ordinal then V α =
⋃

β<α V β . There will be at
least one ground clause x ← B̄ ∈ P∗/I◦ and ordinal β < α where V β |= B̄ ∧
6∃ y, z(y ∈ ∆(V β) ∧ z ∈ B̄− ∧ y . z and K 6|= B̄.

There are two possible conditions where this will hold. Firstly, y ∈ B̄+ ∧ y ∈
V β ∧ y /∈ K. By the previous theorem this implies y ∈ V α. So by the induction
hypothesis ∃z(z < y ∧ z /∈ V α ∧ z ∈ K, but y . x so z < x and z satisfies the
hypothesis.

Secondly, y ∈ B̄− ∧ y /∈ V β ∧ y ∈ K. From causality y < x. If y ∈ V α then
∃γ(γ < α ∧ β < γ where y /∈ V γ ∧ y ∈ γ thus y ∈ ∆(V γ). From the previous
theorem this implies ∃z(z . y ∧ z ∈ ∆(V β) which contradicts the assumption
about the rule x← B̄, so y /∈ V α and y satisfies the hypothesis. ut

Definition 26. (Chain) An ordered set C is a chain iff ∀x ∈ C, y ∈ C either
x ≤ y or y ≤ x.

Definition 27. (CPO) A set C is a chain complete partial order over the
ordering ≤ if:

1. C is partially ordered by ≤;
2. there is a bottom element, ⊥, such that ⊥ ≤ x for all x ∈ C;
3. for all chains (Si)i∈I there is a least upper bound lubi∈I(Si) ∈ C.

Theorem 28. For a selection operator V there is a least ordinal δ where V δ is
a fixpoint.

Proof. Construct a CPO using ⊆ as the ordering. Consider the interpretations
V α for all ordinals α. These form a chain complete partial order (CPO) using the
ordering ⊆ [DP02]. Directly from Theorem 25, V is monotonic on this restricted
set. By the Tarski-Knaster theorem [Tar55], V has a least fixpoint on this CPO
computed by an ordinal δ. ut

Theorem 29. For a selection operator V with a least fixpoint V δ

V δ = MP

Proof. From theorem 22 V δ is a model. Also from theorem 25 V δ v MP but
MP is a minimal model (wrt v) so V δ = MP. ut

6.1 Strong Causality

The work above has been carried out using only the weak notion of causality.
This permits new literals to be added ‘at the same time’ as other literals which
cause them. Strongly causal programs, however, only permit the conclusions to
be added at a strictly later time. Assuming strong causality has two advantages:
firstly it gives a simpler semantics (shown below) where MP is the unique model
of the programs completion; and secondly it permits a small simplification of
the interpreters described later. This is achieved at some cost when writing pro-
grams, as it may be necessary to add both parameters and rules in order to
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achieve strong causality. For example, the strong causality version of the tran-
sitive closure program in Section 4.4 is significantly more complex and difficult
to understand than the simple causal version.

We now show that strongly causal programs have only a single model. This
provides an exact semantics similar to that for logic programs without negation.
It uses the notion of the completion of a program, comp(P), which is defined in
[ABW88,Llo87].

Theorem 30. If the program P is strongly causal then the perfect model MP is
a model of comp(P) and is the only model of comp(P).

Proof. MP is a model of comp(P) [ABW88,Llo87].
Let M,N be models of comp(P). Assume M 6= N and choose a minimal

A whose membership of M is different from its membership of N . That is,
A ∈ M ∧ A /∈ N or A /∈ M ∧ A ∈ N . But from the definition of comp(P) there
will be a ground clause A← B̄ ∈ P∗/I◦ where either M, I◦ |= B̄, and N, I◦ 6|= B̄
or M, I◦ 6|= B̄, and N, I◦ |= B̄. But this imples that there is some member B of B̄
where either B ∈M−N or B ∈ N−M . However B < A (from strong causality)
which contradicts the assumption that A is minimal. That is, the assumption
that M and N are different leads to a contradiction. Thus given that MP is a
model of comp(P) it is the only model. ut

7 Interpreters

Having established a semantics we will now define a sequence of algorithms for
generating the least fixpoint. The algorithms are given both a program, P, and a
selection operator V (see Defn. 19). The aim is to produce an efficient algorithm
that avoids re-computing earlier results. The selection operator that is used will
determine the resource usage of the algorithm and how much potential paral-
lelism is available. We give versions of the algorithm that become successively
more explicit and efficient, and we prove their correctness with respect to the
semantics.

7.1 Simple Least Fixpoint

The first interpreter (see Fig. 10) is a straightforward implementation of the
least-fixpoint procedure that introduces the notation used in the later versions.
It uses the following variables (we use the convention that variables that are held
over between iterations of the main loop are capitalised (Gamma) and those that
are local to one iteration of the loop are lower case (delta)):

1. Gamma - the set of all computed literals. This becomes the fixpoint model
of the program P when the algorithm terminates.

2. α - the number of iterations (used only to provide a link to the correctness
results).

3. new - a complete recalculation of the current set of results.
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1. α := 0;
2. Gamma := ∅ ;
3. do
4. assert Gamma = V α;
5. delta := T (Gamma)−Gamma;
6. assert delta = ∆(V α);
7. new := V (Gamma)−Gamma;
8. Gamma := new ∪Gamma;
9. α := α + 1;
10. until delta = ∅;
11. assert Gamma = MP;

Fig. 10. Simple Interpreter

4. delta - the computed results that have not been seen before, used to detect
termination.

Theorem 31. The assertions in the program are true.

Proof. See definitions 19(V α), 16(∆) and the theorems in Section 6. ut

7.2 Incremental Gamma

The aim of the following interpreters is to avoid as much re-computation of
results as possible. In the final version we will recompute both the set Gamma
and (a variant of) delta fully incrementally. To do this it is necessary to generalize
some of our earlier definitions to fit in with the new algorithms.

From Defn. 18 the definition of Π is:

Π(I) = {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄) ∧ 6∃ y, z(z ∈ B̄∼ ∧ y ∈ ∆(I) ∧ y . z)}

This definition references both the set ∆ and the negations B̄∼ that occur
in the rules. We want to make Π computable directly from ∆, but it does not
contain quite enough information as it lacks the information about the negations.
To provide this information we define variants of the operators T and ∆ that
contain both the head of rules and the (ground) negations in the rules. We also
define incremental variants of Π and the selection operator V .

Definition 32. (T ′)

T ′(I) ≡ {A← B̄− | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄)
∧ 6∃ y, z(z ∈ B̄∼ ∧ y ∈ ∆(I) ∧ y . z}
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Theorem 33.

T (I) = {A | A← B̄ ∈ T ′(I)}

Proof. Directly from the definitions of T ′ and T .

Definition 34. (∆′)

∆′(I) ≡ {A← B̄− | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄) ∧A /∈ I}

Theorem 35.

∆(I) = {A : A← B̄ ∈ ∆′(I)}

Proof. Directly from the definitions of ∆′ and ∆.

Π ′ is defined as an incremental version of Π.

Definition 36. (Π ′)

Π ′(I) ≡ {A | A← B̄ ∈ P∗ ∧ (I, I◦ |= B̄)
∧ 6∃ y, z(z ∈ B̄∼ ∧ y ∈ ∆(I) ∧ y . z ∧A /∈ I)}

Theorem 37.

Π ′(I) = Π(I)− I, and
T (I) ⊇ I ⇒ Π(I) = Π ′(I) ∪ I

Proof. Directly from the definitions of Π ′ and Π.

Note that T (V α) ⊇ V α, so the above theorem applies to the calculations in
the interpreter.

An important result, which enables incremental calculation, is that Π ′ can
be computed using only ∆′.

Theorem 38.

Π ′(I) = {A | A← B̄ ∈ ∆′(I)
∧ 6∃x, y, z(z ∈ B̄∼ ∧ y ← x ∈ ∆′(I) ∧ y . z)}

Proof. Directly from the definitions of Π ′ (Defn. 36), Π (Defn. 18), ∆ (Defn.
16) and ∆′ (Defn. 34).

Because the theorem above uses only ∆′ in the calculation of Π ′, we define
a version of Π, called Π∆, that requires only the delta tuples as input, rather
than all the delta and gamma tuples.

Definition 39. (Π∆)

Π∆(X) ≡ {A | A← B̄ ∈ X ∧ 6∃x, y, z(z ∈ B̄∼ ∧ y ← x ∈ X ∧ y . z)}
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Theorem 40.

Π∆(∆′(I)) = Π ′(I)

Proof. Directly from the definitions of Π ′ and Π∆.

Next we define an incremental form of each selection operator V .

Definition 41. (V ′)
V ′(I) ≡ V (I)− I

Theorem 42. If V (I) ⊇ I then V (I) = V ′(I) ∪ I.

Proof. Directly from the definitions of V and V ′.

As V (V α) ⊇ V α, this theorem applies to the calculations in the interpreters.
Now we further recast the calculation of V ′ so that it uses ∆′ directly. This

the efficient incremental form that will eventually be used in the interpreter.

Definition 43. (V ∆(I,∆′)) Given a selection function V , a function V ∆ :
2BP × 2BP → 2BP is an incremental delta version of V iff:

V ∆(I,∆′(I)) = V ′(I)
= V (I)− I

In general the calculation of V ∆(I,X) can depend on I, although in practice
this seems not to be an interesting or useful thing to do. Usually the calculation
need involve only consideration of the second parameter, X, which is ∆′(I). For
example, when the most general selection operator is used V (I) = Π(I) and
then V ∆(I,∆′(I)) = Π∆(∆′(I)) = Π ′(I).

Combining these definitions and adapting the previous interpreter we arrive
at the interpreter in Fig. 11, which calculates Gamma incrementally.

Line 5 of this interpreter uses the definition of ∆′ and expands it to an
explicit calculation on the set Gamma. Note that the expression I, I◦ |= B̄ in
the definition of T (I) is expanded into explicit conditions on the variable binding
θ applied to the rule selected from P. The process of generating the binding θ
has not yet been made explicit.

In lines 7-8, delta is then used for the incremental calculation of Gamma
using V ∆ (Defn. 43).

Event List There is one selection operator that is of significant interest in
practice. It selects all the minimal elements in ∆. This is similar to what is done
in discrete event simulation where the lowest event(s) on the current event list
are selected next for execution. It is formulated here in its incremental delta
form Ev∆.

Definition 44. (Ev∆)

Ev∆(I, X) ≡ {A | A← B ∈ X ∧ 6∃C,D(C ← D ∈ X ∧ C < A)}
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1. Gamma := ∅ ;
2. α := 0;
3. do
4. assert Gamma = V α;
5a. delta :=
5b. {(E← F̄−)θ |
5c. E← F̄ ∈ P ∧
5d. F̄+θ ⊆ Gamma ∧
5e. F̄◦θ ⊆ I◦ ∧
5f. Gamma ∩ F̄∼θ = ∅∧
5g. Eθ 6∈ Gamma
5h. };
6. assert delta = ∆′(V α);
7. new := V ∆(Gamma, delta);
8. Gamma := new ∪Gamma;
9. α := α + 1;
10. until delta = ∅;
11. assert Gamma = MP;

Fig. 11. Interpreter that Computes Gamma Incrementally

It is easily verified that for any interpretation I

∅ ⊆ Ev∆(I, ∆′(I)) ⊆ Π∆(∆′(I)) = Π ′(I)

and hence that the operator Ev(I) ≡ Ev∆(I,∆′(I))∪ I is a selection operator.
Ev∆ is interesting for both its simplicity and computational efficiency and its

ability to deliver multiple tuples for execution, thus making it suitable for parallel
and distributed execution. It also provides a tight coupling between the ordering
< and the execution order, which can be useful when resource consumption is
important and it is necessary to restrict the amount of parallel execution.

7.3 Incremental Delta

Although Gamma is now being incrementally calculated, delta is still being re-
computed from the full set Gamma on each iteration. The next version of the
interpreter, shown in Fig. 12, is modified so that delta is recomputed incremen-
tally from the previous value of delta.

The first modification to the previous interpreter maintains Delta (now cap-
italized) between the iterations and computes its initial value on line 2. This
computation is a specialization of line 5 of Fig. 11 and explicitly finds all rules
that have no positive goals (although they may contain builtin calculations and
negations that always succeed because there are no earlier results). This modifi-
cation also requires a slight re-adjustment of the loop with the check at the top
of the loop and a resulting re-arrangement of the calculations.
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1. α := 0;
2. Delta := {(E← F̄−)θ : E← F̄ ∈ P, F̄+ = ∅, F̄◦θ ⊆ I◦};
3. Gamma := ∅ ;
4. while Delta 6= ∅ do
5. assert Gamma =

S
β<α newβ = V α;

6. assert Delta = ∆′(V α);
7. new := V ∆(Gamma, Delta);
8. assert new = V (V α)− V α = V ′(V α);
9. Gamma := Gamma ∪ new;
10. d0 := {A← B̄ ∈ Delta | A ∈ new};
11. d1 := {A← B̄ ∈ Delta | new ∩ B̄∼ 6= ∅};
12a. d2 := {(E← F̄−)θ |
12b. E← F̄ ∈ P ∧
12c. ∃F (F ∈ F̄+θ ∩ new ∧ (F̄+θ − {F}) ⊆ Gamma) ∧
12d. F̄◦θ ⊆ I◦ ∧
12e Gamma ∩ F̄∼θ = ∅ ∧
12f. Eθ /∈ Gamma
12g. };
13. α := α + 1;
14. Delta := (Delta− d0 − d1) ∪ d2;
15. end while;
16. assert Gamma =

S
α newα = MP;

Fig. 12. Interpreter that Computes Delta Incrementally
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The core of the incremental calculation is the calculation of Delta on lines
10 through 14. Showing the correctness of these lines requires a non-trivial proof
(Theorem 46).

The variable new is broken out of the incremental calculation of Gamma.
It holds the items that have been selected from Delta as being safe (members
of Π) and whch trigger the next round of computation. In the assertions we
label the values of the variables by the iteration that they occur in (e.g., newα is
the value assigned to new in iteration α). From V (V α) ⊇ V α and the assertion
new = V (V α)− V α the sequence newα is a disjoint partition of the model MP.
So nothing is ever included in new more than once. From this it can be seen that
a rule E ← F̄ ∈ P will generate a result (E ← F̄−)θ at most once (this follows
from the condition F ∈ F̄+θ ∩ new).

Of course there can be multiple rules that all give the same answer, this is an
efficiency issue for the programmer not the interpreter. Also there can be partial
results placed in Delta that contain a negation, which are later eliminated on
line 11. Again we view this as an issue for the programmer who may be able
to manipulate the rules and the ordering so that the negation is resolved early
enough to eliminate it before it needs to be stored.

Examination of this interpreter can tell us a lot about its potential efficiency
when implemented. Significant experience in implementing versions of this in-
terpreter has been reported [CCPU02,Cla04].

The execution time of line 7 depends on the actual selection operator used.
In practice it requires an ordered event list over the set Delta. At one extreme,
the selection operator can be Ev (or a subset), which requires being able to find
one or more minimal elements in Delta. At the other extreme, when Π is the
selection operator the negations in Delta can be included in the ordering data
structure over Delta, allowing a fast check of whether the negations can still
potentially fail.

Line 9 is the inclusion of new into Gamma. Gamma will in practice require
some form of indexing [Cla04] and this step requires insertion into whatever
indexing has been chosen (the indexes may be highly dependent on the structure
of the program).

Line 10 (and 14) requires the removal of the selected elements in new from
Delta, which necessitates removal of the new items from the event list.

Line 11 (and 14) requires removal of items from Delta whose negations have
been selected. The best way of doing this will depend on which selection operator
is used. If Ev is the selection operator then line 11 can be omitted and replaced
by a check that the negations of elements in new are not currently in Gamma.
It is this variant of the interpreter that has been used elsewhere [Cla04].

The calculation in line 12 requires matching atoms in rules to both new and
Gamma. The first of these is on line 12c. For each item in new it requires finding
a rule that can match that item. This can be done by a static index across the
rules, or in many cases by generating explicit code to trigger the execution of
the matching rules. The fact that such optimization can be done is crucial for
fast execution of Starlog programs.
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Lines 12e, 12f and 12g all require finding items in Gamma, which are matched
against partially instantiated atoms from the current rule. This can be done by
providing suitable indexing on Gamma.

The following theorems establish the correctness of this interpreter. The main
theorem 46 establishes the assertion on line 6, by relating the constructions of
lines 10, 11, 12 and 14 back to V ′.

Definition 45. (Wα)

Wα ≡ V (V α)− V α = V ′(V α)

Theorem 46.

∆′(V α+1) = ∆′(V α) (1)
− {A← B̄ ∈ ∆′(V α) | A ∈Wα} (2)
− {A← B̄ ∈ ∆′(V α) |Wα ∩ B̄− 6= ∅} (3)
∪ { (E← F̄−)θ | E← F̄ ∈ P ∧

∃F (F ∈ F̄+θ ∩Wα ∧ (F̄+θ − {F}) ⊆ V α+1) ∧
F̄◦θ ⊆ I◦ ∧ V α+1 ∩ F̄∼θ = ∅ ∧Eθ /∈ V α+1 } (4)

Proof. First consider the ground clauses A ← B̄ ∈ P∗ such that A ← B̄− ∈
∆′(V α+1) and show that they are in the RHS of the equation. From the definition
of ∆′ recall that

A /∈ V α+1

and I◦, V
α+1 |= B̄.

The latter implies that B̄+ ⊆ V α+1

and B̄∼ ∩ V α+1 = ∅
and B̄◦ ⊆ I◦.

.
Now consider two cases: (I) B̄+ ⊆ V α; and (II) B̄+ 6⊆ V α

Case (I): From I◦, V
α+1 |= B̄ and B̄+ ⊆ V α we have I◦, V

α |= B̄. Also
A /∈ V α ⊆ V α+1. Combining these results shows that A ← B̄− ∈ ∆′(V α),
term (1) on the RHS. Also A /∈ Wα, excluding A ← B̄ from term (2). Finally,
Wα ⊆ V α+1 and B̄∼ ∩ V α+1 = ∅ so that Wα ∩ B̄∼ = ∅ and thus A← B̄− is not
in term (3).

Case (II): show that A ← B̄ is in term (4) of the RHS. From the premise
for this case there must be some B ∈ B̄+ where B ∈ V α+1 and B /∈ V α.
This implies that B ∈ Wα. Using the notation of the term (4), there will be a
(possibly non-ground) clause E ← F̄ ∈ P, atom F ∈ F̄+, and binding θ such
that A← B̄ = (E← F̄)θ, and B = Fθ and B̄◦ ⊆ I◦. That is, A← B̄ is included
in term (4).

To show the converse we consider all ground clauses A← B̄ ∈ P∗ that occur
in the RHS, and show that they also occur in the LHS. That is we need to show
that a ground clause A← B̄ satisfies A /∈ V α+1 and V α+1 |= B̄.
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First, consider the members of the first term on the RHS: ∆′(V α). It is
sufficient to consider just those members not also in terms (2) or (3). From term
(2) A /∈ Wα = V α+1 − V α. Also A ← B̄ ∈ ∆′(V α) implies A /∈ V α. Together
these imply A /∈ V α+1 the first required condition.

A ← B̄ ∈ ∆′(V α) implies V α |= B̄, which implies V α |= B̄+, and because
V α ⊆ V α+1, V α+1 |= B̄+. Also V α |= B̄−, that is V α ∩ B̄∼ = ∅, and I◦ |= B̄◦.
From term (3) Wα ∩ B̄∼ = ∅, that is, (V α+1 − V α) ∩ B̄∼ = ∅. Combined with
V α ∩ B̄∼ = ∅ this implies V α+1 ∩ B̄∼ = ∅, that is V α+1 |= B̄∼. Together these
all imply V α+1 |= B̄, the second required condition.

Second, consider the members of term (4) on the RHS. Using the notation
from that term B = Fθ ∈Wα, that is, B /∈ V α and B ∈ V α+1. Thus V α+1 |= B̄+

and from the definition of the term V α+1∩B̄∼ = ∅ and B̄◦ ⊆ I◦. Combining these
results with V α+1 |= B̄ establishes the second of the two required conditions.
From the last part of the term, we see that A = Eθ /∈ V α+1, which establishes
the first of the two required conditions. ut

Theorem 47. The assertions in the interpreter hold.

Proof. The assertion new = V (V α) − V α = V ′(V α) follows directly from the
definition of V ′. The two assertions about Gamma and Delta follow from that
and the theorem above. The terminating assertion follows in the event that the
while loop finitely terminates when Gamma is the least fixpoint of V . ut

7.4 Finite Interpreter

The final version of the interpreter in Fig. 13 ensures that all calculations are
finite, and as part of this, makes the calculations of bindings explicit.

Finite Builtin Calls So far all the proofs and interpreters have implicitly
allowed the Delta and Gamma sets to be infinite. Such infinite sets can actually
occur with rules such as:

p(X, Y )← X > Y

where built in calls return an infinite set of answers. Clearly, in practice this is
untenable.

This is dealt with by using a predicate finiteGoal(B), which can be applied
to a (possibly non-ground) builtin goal B. It should return true only if there
are a finite number of possible ground solutions for B. It is free to return false
if it is ever in doubt and a correct (but not very useful) implementation is
to always return false for a non-ground argument. One example technique for
arithmetic is to return true whenever the arguments are suitably ground. Thus
finiteGoal(add(X, Y, Z)) can return true whenever two or more of X, Y, Z are
ground. The result of this is that on line 41 in Fig. 13 it is possible to reach a
position where there are remaining unresolvable built in calls. This constitutes
an error on the programmers part. In many cases it will be possible to statically
check that this cannot happen, but in general this runtime check is needed.
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2’. Delta :=
[

E←F̄∈P|F̄+=∅

lookup(E, F̄);

12’. d2 :=
[

E←F̄∈P

trigger(E, F̄);

20. trigger(E, F̄) :

21. return
[

F∈F̄+

0@ [
θ|Fθ∈new

lookup(Eθ, (F̄− F)θ)

1A ;

30. lookup(E, F̄) :
31. if E ∈ Gamma→
32. return ∅
33. []

F∈F̄∼
F ∈ Gamma→

34. return ∅
35. []

F∈F̄◦
finiteGoal(F)→

36. return
[

θ|Fθ∈I◦

lookup(Eθ, (F̄− F)θ)

37. []
F∈F̄+

true→

38. return
[

θ|Fθ∈Gamma

lookup(Eθ, (F̄− F)θ)

39. else→
40. if F̄◦ = ∅
41. assert ground(F̄) ∧ F̄ = F̄−

42. return {E← F̄}
43. else
44. error floundered
45. fi
46. fi;

Fig. 13. Finite Interpreter (Lines 2’ and 12’ replace lines 2 and 12 of Fig 12), and lines
20 onwards are added.
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Explicit Bindings The calculation of d2 on line 12 of Fig. 12 is not explicit
about how the bindings are to computed. The final interpreter replaces this
with an explicit sequential calculation. It starts by iterating over all rules in the
program and calling the method trigger. This checks if there are any positive
goals in the rule that match against new. For each such match a lookup is done
to evaluate the remaining goals in the rule. A similar call is used to compute the
initial Delta set on line 2 where the rules with no positive goals are scanned.

lookup is a non-deterministic recursive routine that repeatedly checks the
remaining goals against Gamma and the built in results. It is written using non-
deterministic guards in an if of the form [] α→ β. Any one of the guards (α) that
evaluates to true can be selected non-deterministically and the corresponding
body (β) is executed. The full form of the guard syntax []x∈S α → β allows
choice over the members x of some set S. Any member of the set S can be
selected. This allows flexibility in the order in which goals are checked, matched
and evaluated. For example, an implementation might use a strict left-to-right
order or a more dynamic run-time selection of the next goal. The else guard is
true only when all earlier guards are false.

This version of the interpreter makes it clearer how indexing can be used to
improve performance. The rule selection in line 12 and the triggering on members
of new in line 21 can be done by constructing a static index over the positive
goals in the rules. This means it is not actually necessary to iterate over all the
rules, but rather that a direct selection of both a rule and a suitable positive
goal can be done given some member of new.

An index over Gamma can potentially improve execution speed in the lookup
of positive goals in line 37, and in the checks of the negations in line 33 and of
the newly generated head tuple in line 31.

Finite Execution To be sure that each iteration of the interpreter terminates
with a finite execution a number of assumptions need to be true:

1. Gamma and Delta are finite;
2. the program consists of a finite number of rules with a finite number of goals;
3. finitegoal(B) is computable in all cases;
4. the calculation of V ∆(Gamma, Delta) is finite.

Given these assumptions it is elementary to verify that the execution of one
iteration is finite and that if these are true at the start of an iteration then
Gamma and Delta will be finite at the start of the next iteration. A couple of
these do warrant some commentary.

In an actual system it will be necessary to specify (either directly from the
programmer or automatically) an executable version of X < Y or X . Y (de-
pending on the selection operator). It is outside the scope of this paper to detail
how this specification might be done. However, our experiences with various im-
plementations show that it is possible to have powerful classes of orderings that
can be efficiently executed [Cla04].
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It is possible to concoct a version of V ′ that is not computable. However, it
can be verified from Definitions 18 and 39 that Π∆ is finitely computable (given
that Delta is finite and that . is computable for ground arguments). Also, all the
different possible versions V ′ are subsets of Π∆. The other important selection
operator, Ev∆, (Definition 44), is also finitely computable (given that Delta is
finite and that < is computable for ground arguments).

7.5 Example Execution

The subsidiary information at http://www.cs.waikato.ac.nz/research/jstar in-
cludes both a reference interpreter written in Prolog and example programs and
traces of their execution. Three versions of the interpreter are used correspond-
ing to those in Figs. 10, 12 and 14. Multiple execution traces are included for
each program in Section 4. These illustrate the effects of the different order-
ing functions given for the programs and the use of different selection functions
including Π, Ev and a subset of Ev that selects one tuple at a time.

8 Conclusions

This paper is intended to be a first step on the way to a programming language
that combines the best of logic programming and imperative programming and
as well addresses the challenges laid down by the recent switch of performance
growth from faster processors to more parallel processors.

Logic programming in the broad sense, encompassing relational databases
and their query languages, has been very successful in enterprise computing but
has not significantly penetrated the practice of general purpose programming.
Its strengths are a strong ability to reason about program correctness and a
programming expressiveness that reduces the size of programs and the software
engineering burden.

Imperative programming is ubiquitous in general purpose programming. Its
perceived strengths are its execution time and memory usage efficiency, together
with an ability to reason informally about these resource requirements, inter-
faces to real time and hardware systems, and large and complex libraries which
interface to de facto and standards based external systems.

Since 2004, when CPU clock speeds ceased to increase [ABC+06,Osk08],
the entire computing world has been forced to confront an increasingly diverse
and parallel hardware regime for cost effective and high performance comput-
ing. This includes multi-core CPUs, general purpose graphic processing units
and circuit based technologies such as FPGAs and ASICs. Unfortunately, exist-
ing programming languages and their parallel programming semantics find this
regime challenging and expensive. There is evidence, for example, that the whole
thrust of hardware development is being called into question [ABC+06] because
of the difficulty of solving these software problems.

In the next section we summarize the steps that this paper has taken toward
fulfilling these aspirations and then consider the next steps necessary.
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8.1 Summary

The first accomplishment of this paper has been the specification of a simple
least fixpoint semantics for a pure logic programming language that explicitly
incorporates a general ordering across the tuples of the language. We have proved
that our fixpoint semantics agrees with the usual perfect model semantics for
datalog with negation, and have developed a fully incremental and hence efficient
interpreter that implements the semantics. The real importance of this is that we
have also demonstrated that this pure logic programming language can directly
deal with mutations and updates to data, as well as interfacing with external
data streams, without moving outside its pure logical framework.

The potential efficiency of the language is made plausible by the fully incre-
mental interpreter. Other work [Cla04] describes a scheme to automatically select
data structures for implementing relational tables. Using the kind of incremental
bottom-up fixpoint evaluation as this paper, that work showed that a variety of
Starlog benchmark programs could be compiled to code whose execution time
was comparable with fully imperative implementations. This was accomplished
by automatic estimation of the usage of each relational table within each pro-
gram, then using selection algorithms to choose efficient representations for each
table and each index.

The major technical challenge of this paper has been showing how to use
explicit time stamps on all tuples in the program. This allows the data to be
held and manipulated in relational tables rather than in the list and functor
intensive data structures of classical logic programming. The use of tables, which
are highly abstract, permits the efficient manipulation and optimization of the
runtime environment.

The execution order is explicitly determined by the ordering between tu-
ples. Thus the base assumption is that execution is parallel unless explicitly
constrained by the programmer or by the data causality of the algorithm. This
highly parallel basis for execution, together with the ability to retarget the highly
abstract data representations of relational tables, makes the language a plausible
candidate to address the problems inherent in increasingly diverse and parallel
modern computational hardware.

8.2 Related Work

John McCarthy’s unpublished Elephant 2000 language proposal [McC92] had
several similarities to Starlog. Elephant had the ideas of a time-stamped history,
interacting with the real-world via input and output tuples, data-structure-free
programming, and a compiler that chooses data structures. Starlog has a more
general notion of timestamps (any well-founded partial order), but in many other
ways follows a philosophy that is similar to that of Elephant.

An even more similar set of languages is the OverLog, Dedalus and (forth-
coming) Bloom languages from the Declarative Networking group at Berke-
ley [CCHM08,AMC+09]. These are declarative networking languages, intended
for specifying and implementing distributed protocols and algorithms. OverLog
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was based loosely on datalog, but with ad-hoc aspects to its semantics, while
Dedalus is closer to pure datalog with negation. Dedalus can be viewed as being
a subset of Starlog, where timestamps are restricted to positive integers and rules
are restricted so that timestamps can increase only by 0, 1, or an unspecified
amount of time for the case where a tuple moves between two different nodes
on a distributed network. Programs are also written in a style that explicitly
partitions the data tuples across the nodes of a distributed network.

There has been quite a lot of research on bottom-up evaluation strategies
for datalog, including naive evaluation, semi-naive evaluation, and pseudo-naive
evaluation [SU99], as well as various kinds of top-down tabled evaluation like
that used in XSB [ZS03]. Our final interpreter in this paper is more efficient
than semi-naive evaluation because it calculates the delta set incrementally, as
well as the gamma set, and it generalizes pseudo-naive evaluation by allowing a
wide range of selection operators, thus supporting many different parallelization
strategies.

There has been much research in the past on parallel implementations of logic
programming languages, particularly Prolog [GPA+01]. Most of this work deals
with top-down evaluation strategies rather than bottom-up, but some of the
underlying techniques will nevertheless be relevant for parallel implementations
of Starlog. Zhang et. al. describe a bottom-up evaluation strategy that improves
on semi-naive evaluation by partitioning the data tuples of a datalog program
rather than the rules [ZWC95]. Partitioning the program in this way is similar
to the parallel evaluation strategy used by the Berkeley languages, and is one of
the parallelization strategies that we plan to use for Starlog.

8.3 Future Work

An implementation of Starlog for sequential execution was been reported in
Clayton [Cla04]. This implementation was preliminary, and a number of aspects
were incomplete and need further work.

The various interpreters all contain the monotonically increasing set of com-
puted results Gamma. In practice it is untenable to retain all tuples as this set
may grow unboundedly, so ad hoc techniques are used where necessary to get
programs to run to completion. We are currently investigating more systematic
ways of implementing a correct and efficient garbage collector for Starlog [CU09].
We have defined a logical specification of what garbage collection means in the
Starlog context, and described one possible algorithm for garbage collection.
Thus, a major piece of work that remains is to implement a garbage collector
and to demonstrate that it can achieve sufficient memory compaction sufficiently
quickly that practical programs can run to completion.

We expect this to require an investigation of the tradeoffs between execution
time, compaction, and the complexity and sophistication of the techniques used.
It is also plausible that the user may need to provide guidance to the garbage
collector, similar to how programmers can specify the maximum time that tuples
should be retained in the Overlog language [LCH+05].
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The Starlog system includes a way of specifying the causal orderings. How-
ever, experience with using this indicates that it may be overly general. Also
it can be wordy for the programmer to specify the ordering, for example, some
programs have as many lines devoted to specifying the ordering as to the logic
of the code. Further investigation is needed of compact ways of specifying the
ordering, balancing the need to allow flexibility and parallelism, as well as en-
suring that execution time is not affected by the complexity of the ordering. One
interesting possibility is to provide ways of automatically inferring the ordering,
similar to the type inference of some programming languages [Pie02].

The system includes ways of specifying the data structures to be used. These
can be specified by the user or derived automatically. This is a rich and complex
area and much more work can be done on extending the range of underlying data
structures that can be used and on techniques for selecting them automatically.
One thorny problem here is what to do about situations where the best data
structure is data or size dependent.

Implementing this language efficiently on parallel and other special purpose
architectures will require a lot of work. Particular problems will be how to parti-
tion the data across the distributed resources and the communication algorithms
between the partitioned data. We anticipate that, like the data structures, this
will require a mixture of user specification and automatic techniques, coupled
with performance feedback from actual execution. One extreme challenge is to
compile programs to circuit based technologies such as FPGAs and ASICs.

Another area that still needs research and experience with real problems is
interfacing Starlog to external interfaces and APIs. Areas of particular inter-
est include: relational databases, file systems, operating systems, and libraries
provided by host languages.

Because of the lack of widespread experience with the syntax of logic pro-
grams as compared with popular imperative languages such as C or Java we
see a need to provide syntactic sugar to ease the transition. Areas of particular
promise include: looping constructs, call and return patterns, and assignment.

Given that Starlog has a pure semantics and does not need to step outside
them to deal with practical matters, there is an opportunity to use some of the
powerful logical tools that this makes possible, including: algorithmic debug-
ging [Sha82], automated unit testing [UL07], integrity constraints [Leu08], and
abstract interpretation [Gob08].

However, the most important next step is getting more experience with using
the language in a wide range of programs. We need to find out if programs can be
run efficiently in practice and if programmers can efficiently write and maintain
the programs. We are looking forward to the experience.

A Complete Interpreter

Fig. 14 shows a complete consolidated version of the interpreter of Fig. 12 in-
cluding the modifications of Fig. 13. This interpreter assumes that the following
methods have been provided:
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α := 0;

Delta :=
[

E←F̄∈P|F̄+=∅

lookup(E, F̄);

Gamma := ∅ ;
while Delta 6= ∅ do

assert Gamma ⊆
S

β<α newβ = V α;

assert Delta = ∆′(V α);
new := V ′(Gamma, Delta);
assert new = V (V α)− V α = V ′(V α);
Gamma := keep(Gamma, Delta) ∪ new;
d0 := {A← B̄ ∈ Delta | A ∈ new};
d1 := {A← B̄ ∈ Delta | new ∩ B̄∼ 6= ∅};
d2 :=

[
E←F̄∈P

trigger(E, F̄);

α := α + 1;
Delta := (Delta− d0 − d1) ∪ d2;

end while;
assert Gamma ⊆

`S
α newα

´
= MP;

trigger(E, F̄) :

return
[

F∈F̄+

0@ [
θ|Fθ∈new

lookup(Eθ, (F̄− F)θ)

1A ;

lookup(E, F̄) :
if E ∈ Gamma→

return ∅
[]

F∈F̄∼
F ∈ Gamma→

return ∅
[]

F∈F̄◦
finiteGoal(F)→

return
[

θ|Fθ∈I◦

lookup(Eθ, (F̄− F)θ)

[]
F∈F̄+

true→

return
[

θ|Fθ∈Gamma

lookup(Eθ, (F̄− F)θ)

else→
if F̄◦ = ∅

assert ground(F̄) ∧ F̄ = F̄−

return {E← F̄}
else

error floundered
fi

fi;

Fig. 14. Complete Incremental Interpreter (see Figs. 12 and 13).
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1. finitegoal(B), which is computable for all (possibly non-ground) goals B;
2. a selection function V ′(Gamma, Delta), which is computable for all finite

Gamma and Delta (depending on the selection function, this may require
that one or other of . or < be computable for ground arguments).
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