72 research outputs found

    Towards online mobile mapping using inhomogeneous lidar data

    Get PDF
    In this paper we present a novel approach to quickly obtain detailed 3D reconstructions of large scale environments. The method is based on the consecutive registration of 3D point clouds generated by modern lidar scanners such as the Velodyne HDL-32e or HDL-64e. The main contribution of this work is that the proposed system specifically deals with the problem of sparsity and inhomogeneity of the point clouds typically produced by these scanners. More specifically, we combine the simplicity of the traditional iterative closest point (ICP) algorithm with the analysis of the underlying surface of each point in a local neighbourhood. The algorithm was evaluated on our own collected dataset captured with accurate ground truth. The experiments demonstrate that the system is producing highly detailed 3D maps at the speed of 10 sensor frames per second

    Benchmarking Particle Filter Algorithms for Efficient Velodyne-Based Vehicle Localization

    Get PDF
    Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∼2 particles/m 2 is required to achieve 100% convergence success for large-scale (∼100,000 m 2 ), outdoor global localization without any additional hint from GPS or magnetic field sensors. All implementations have been released as open-source software

    Consistent ICP for the registration of sparse and inhomogeneous point clouds

    Get PDF
    In this paper, we derive a novel iterative closest point (ICP) technique that performs point cloud alignment in a robust and consistent way. Traditional ICP techniques minimize the point-to-point distances, which are successful when point clouds contain no noise or clutter and moreover are dense and more or less uniformly sampled. In the other case, it is better to employ point-to-plane or other metrics to locally approximate the surface of the objects. However, the point-to-plane metric does not yield a symmetric solution, i.e. the estimated transformation of point cloud p to point cloud q is not necessarily equal to the inverse transformation of point cloud q to point cloud p. In order to improve ICP, we will enforce such symmetry constraints as prior knowledge and make it also robust to noise and clutter. Experimental results show that our method is indeed much more consistent and accurate in presence of noise and clutter compared to existing ICP algorithms

    FLAT2D: Fast localization from approximate transformation into 2D

    Get PDF
    Many autonomous vehicles require precise localization into a prior map in order to support planning and to leverage semantic information within those maps (e.g. that the right lane is a turn-only lane.) A popular approach in automotive systems is to use infrared intensity maps of the ground surface to localize, making them susceptible to failures when the surface is obscured by snow or when the road is repainted. An emerging alternative is to localize based on the 3D structure around the vehicle; these methods are robust to these types of changes, but the maps are costly both in terms of storage and the computational cost of matching. In this paper, we propose a fast method for localizing based on 3D structure around the vehicle using a 2D representation. This representation retains many of the advantages of "full" matching in 3D, but comes with dramatically lower space and computational requirements. We also introduce a variation of Graph-SLAM tailored to support localization, allowing us to make use of graph-based error-recovery techniques in our localization estimate. Finally, we present real-world localization results for both an indoor mobile robotic platform and an autonomous golf cart, demonstrating that autonomous vehicles do not need full 3D matching to accurately localize in the environment

    Probabilistic Surfel Fusion for Dense LiDAR Mapping

    Full text link
    With the recent development of high-end LiDARs, more and more systems are able to continuously map the environment while moving and producing spatially redundant information. However, none of the previous approaches were able to effectively exploit this redundancy in a dense LiDAR mapping problem. In this paper, we present a new approach for dense LiDAR mapping using probabilistic surfel fusion. The proposed system is capable of reconstructing a high-quality dense surface element (surfel) map from spatially redundant multiple views. This is achieved by a proposed probabilistic surfel fusion along with a geometry considered data association. The proposed surfel data association method considers surface resolution as well as high measurement uncertainty along its beam direction which enables the mapping system to be able to control surface resolution without introducing spatial digitization. The proposed fusion method successfully suppresses the map noise level by considering measurement noise caused by laser beam incident angle and depth distance in a Bayesian filtering framework. Experimental results with simulated and real data for the dense surfel mapping prove the ability of the proposed method to accurately find the canonical form of the environment without further post-processing.Comment: Accepted in Multiview Relationships in 3D Data 2017 (IEEE International Conference on Computer Vision Workshops

    Improving 3D Scan Matching Time of the Coarse Binary Cubes Method with Fast Spatial Subsampling

    Get PDF
    Morales, J.; Martinez, J.L.; Mandow, A.; Reina, A.J.; Seron, J.; Garcia-Cerezo, A., "Improving 3D scan matching time of the coarse binary cubes method with fast spatial subsampling," 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 4168-4173, 2013 doi:10.1109/IECON.2013.6699804Exploiting the huge amount of real time range data provided by new multi-beam three-dimensional (3D) laser scanners is challenging for vehicle and mobile robot applications. The Coarse Binary Cube (CBC) method was proposed to achieve fast and accurate scene registration by maximizing the number of coincident cubes between a pair of scans. The aim of this paper is speeding up CBC with a fast spatial subsampling strategy for raw point clouds that employs the same type of efficient data structures as CBC. Experimental results have been obtained with the Velodyne HDL-32E sensor mounted on the Quadriga mobile robot on irregular terrain. The influence of the subsampling rate has been analyzed. Preliminary results show a relevant gain in computation time without losing matching accuracy.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore