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Abstract—Exploiting the huge amount of real time range
data provided by new multi-beam three-dimensional (3D) laser
scanners is challenging for vehicle and mobile robot applications.
The Coarse Binary Cube (CBC) method was proposed to achieve
fast and accurate scene registration by maximizing the number of
coincident cubes between a pair of scans. The aim of this paper
is speeding up CBC with a fast spatial subsampling strategy
for raw point clouds that employs the same type of efficient data
structures as CBC. Experimental results have been obtained with
the Velodyne HDL-32E sensor mounted on the Quadriga mobile
robot on irregular terrain. The influence of the subsampling rate
has been analyzed. Preliminary results show a relevant gain in
computation time without losing matching accuracy.

I. INTRODUCTION

Recently introduced multi-beam three-dimensional (3D)

laser scanners provide a huge amount of range data in real time

[1] [2] [3]. These point clouds can be employed for mobile

robot localization [4] [5] and for tracking mobile objects from

road vehicles [6] [7] [8].

Some 3D scene registration methods [9] have been adapted

from well-known object registration techniques such as It-

erative Closest Points (ICP) [10] [11]. To improve robust-

ness of ICP against initial misalignments due to odometric

estimations, a pre-processing step can perform either scan

segmentation to extract objects [12] or coarse octree alignment

in an exhaustive discrete search [13].

Specialized methods for pairwise scene alignment like Nor-

mal Distribution Transform (NDT) [14] and the Coarse Binary

Cubes technique (CBC) [15] improve performance by avoiding

computation of nearest neighbor points. Furthermore, CBC

explicitly takes into account that all scan directions and depths

can contain relevant data. Precisely, the point clouds from

commercial multi-beam scanners provide sparse data regions

due to limited vertical resolution [16]. Moreover, spherical

scanning mechanisms yield varying densities depending on the

distance to the sensor [17] [18].

CBC maximizes the number of coincident cubes between

a pair of raw scans [15]. The implementation of this method

with efficient one-dimensional data structures allows achieving

better computation times than ICP and NDT for similar reg-

istration accuracy [19]. Recently, we addressed parallelization

of the CBC optimization to profit from widespread multi-core

and multi-thread processors [20], where the maximum gain is

limited by the number of processor cores. Nevertheless, further

progress can be crucial to meet the demanding requirements

of vehicle-based applications. From a software perspective,

additional computation time improvement can be gained by

applying effective subsampling procedures to raw 3D scans

[21].
The major contribution of this paper is introducing spatial

subsampling to speed up CBC pairwise scene alignment

without degrading matching accuracy. In particular, a fast sub-

sampling strategy is proposed which employs the same type

of efficient data structures as CBC. Experimental results have

been obtained with the Velodyne HDL-32E sensor mounted on

the mobile robot Quadriga. The influence of the subsampling

rate on accuracy and computation time has been analyzed for

scans on irregular terrain.
The paper is organized as follows. Next section briefly

reviews the CBC method. Section III proposes the subsam-

pling strategy to be applied to CBC. Experimental results are

presented in section IV. Finally, the last section is devoted to

conclusions and future work.

II. THE CBC REGISTRATION TECHNIQUE

CBC looks for the spatial transformation

T = [x0, y0, z0, α, β, γ] that maximizes the number J
of coincident 3D binary occupancy cubes between the first

range image and the projection of the second range image

according to T in a 3D spatial grid (see Fig. 1). This grid is

defined in the frame of the first range image with regularly

sized cubes of edge length E [19].
Cost function J(T) is computed with the following data

structures:

• V is a binary vector whose elements correspond to the

cubes contained by the axis-aligned minimum bounding

box for the actual readings of the first range image. Each

cube has a unique integer index I in V .

• L is an unsorted integer list that contains the same

information as V in a non-sparse way. The length � of L
corresponds to the number of cubes set to one, which is

always less or equal than the number n of points from

the first scan. Note that the relation � � n holds with

coarse cubes.

In CBC, the first scan is processed once to build V and L
(see Fig. 2). Initially, V is created as a zero vector of length

v, and L is empty. Then, the I index is computed for each

point in the first range image. If V (I) = 0, then V (I) is set

to one, and I is inserted into L.
Let xmax, xmin, ymax, ymin, zmax, zmin be the Cartesian

coordinates of the minimum bounding box for the points of

the first point cloud. Then, the length v of V is given by:

v = Ixmax Iymax Izmax, (1)
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Figure 1. The CBC principle [19].

where

Ixmax = round

(
xmax − xmin

E

)
+ 1, (2)

Iymax = round

(
ymax − ymin

E

)
+ 1, (3)

Izmax = round

(
zmax − zmin

E

)
+ 1. (4)

The index I of a Cartesian scan point x, y, z from the first

scan is:

I = Ix + Iy Ixmax + Iz Ixmax Iymax, (5)

where Ix, Iy, Iz are the following integer grid coordinates:

Ix = round

(
x− xmin

E

)
, (6)

Iy = round

(
y − ymin

E

)
, (7)

Iz = round

(
z − zmin

E

)
. (8)

The objective function J has to be evaluated for each

prospective solution T in the optimization process. Prior to

each evaluation, J is initialized to zero. Next, for each point

of the second range image, its projection is obtained according

to T. Then, its I index is computed if the projected Cartesian

coordinates fall within the minimum boundary box for the first

range image. In this case, if V (I) = 1, then V (I) is set to

zero and J is incremented by one. Once J has been obtained

for a prospective solution, V can be recovered from L for a

new evaluation.

To search for a T that maximizes J(T), CBC employs

a globalized variation of the Nelder-Mead method [22] that

pursues escaping from local optima [19].
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Compute indices
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Figure 2. Flowchart for evaluating the CBC cost function. In shaded green
colour: new subsampling stage. Thick orange arrows: computations for a
single transformation T.

III. SUBSAMPLING STRATEGY

Evaluation of numerous prospective solutions in the Nelder-

Mead search is the bottleneck of the CBC method. Fur-

thermore, each evaluation of T requires projecting Cartesian

coordinates as well as calculating I indices for every point

of the second scan. This is highlighted in Fig. 2 with thick

orange arrows. Therefore, CBC can be sped up if a reduced

but representative set of points is chosen from the second scan.

This new subsampling step is shown in Fig. 2 with shaded

green color.

There are many subsampling procedures that can be applied

to raw 3D scans [18] [21]. Among them, choosing octree

cube centers [9] is closely related with the uniform spatial

representation implicitly used by CBC. This simple method

starts with a cube containing the whole 3D scan. Then, the

cube is divided recursively into eight octants. Empty octants

are pruned and the subdivision continues until a minimal

octant size Es is reached. Finally, the centers of the occupied

cubes are collected resulting in a subsampled set of m points.

Alternatively, we propose obtaining a subsampled set iden-

tical to octree centers by profiting from the same type of data

structures employed by CBC for the first scan: V and L (see

Section II). The equivalent subsampling structures V s and Ls

are computed in the Cartesian frame of the second scan and

with cube edges of length Es. Thus, the use of complex data

structures such as octrees is avoided.



The coordinates xs, ys, zs of the center of the cubes set

to one are obtained from the list Ls of indices Is as the

reciprocals of (5) to (8):

xs = Isx E
s + xs

min, (9)

ys = Isy E
s + ysmin, (10)

zs = Isz E
s + zsmin, (11)

where

Isx = remainder

(
Is

Isxmax

)
, (12)

Isy = remainder

(
(Is − Isx)/I

s
xmax

Isymax

)
, (13)

Isz =
Is − Isx − Isy I

s
xmax

Isxmax I
s
ymax

. (14)

IV. EXPERIMENTS

A. Experimental Setup

The method has been tested on scans acquired with the

Velodyne HDL-32E sensor. This scanner employs and array

of 32 lasers/detectors pairs located on a rotating head that

spins at 10Hz. It provides a measurement range of 1m to

100m with an accuracy of ±2 cm for distances below 70m.

The vertical field of view is 41.34◦ with a fixed resolution of

1.33◦, and the horizontal field of view is 360◦ with a minimum

resolution of 0.16◦.

The laser rangefinder is mounted 0.82m above the ground

on the 4-wheel skid-steer mobile robot Quadriga [23] (see

Fig. 3). With the minimum horizontal resolution, the resulting

range images have a maximum of 72000 points, with a

scanning time of 0.1 s. Nevertheless, the number of points of

a scan is smaller because sky points are discarded. Moreover,

given the maximum sensor range, measurements can spread

over a large area of π hectares.

A continuous sequence of point clouds with 10Hz scanning

frequency has been obtained during the nonstop forward

motion of Quadriga on irregular terrain (see Fig. 4). The first

scan of this sequence is presented in Fig. 5. The characteristic

scanning pattern and the uneven point distribution of the HDL-

32E sensor are noticeable in this figure.

A second scan has been selected after the robot advanced

a few meters from the initial pose. A ground truth spatial

transformation with respect to the first scan has been adjusted

manually by aligning salient features, resulting in Tgt =
[4.75m, 2.92m, 0.29m, 168.53◦, 2.52◦, 3.70◦] with the Roll-

Pitch-Yaw convention, and with axis Y and Z pointing forward

and upward, respectively.

B. Registration results

Registration of both scans has been evaluated in a PC with

an Intel Core i7 2720QM (2.20GHz, 6MByte cache, 8GByte

RAM) processor under the Linux operating system.

The CBC search has been carried out with 1000 evaluations

of the cost function J . The size of the cube edge is E =
0.9m. Initial estimations for each match have been obtained

Figure 3. The Quadriga mobile robot with the HDL-32E sensor mounted on
top.

Figure 4. Photograph of the outdoor environment.

by adding large random errors within ±1m for translations

and ±8◦ for rotations to the ground truth. A CBC alignment

obtained for the experimental data with no subsampling is

shown in Fig. 6.

Fig. 7 shows the resulting subsampled points with Es =
0.9m. Subsampling times range from 4ms to 9ms for

Es = 0.9m and Es = 0.2m, respectively. This is due

to initialization of V s, which is needed once for the whole

registration process. For comparison purposes, the same sets

of subsampled points have been computed as octree cube

centers [9] by using the Point Cloud Library [24]. In this case,

subsampling times vary from 7ms to 10ms, which are longer

than those achieved by the proposed solution.

For registration accuracy evaluation, the following errors in

distance Ds and in orientation Da are defined:

Ds =
√
Δx2 +Δy2 +Δz2, (15)

Da =
√
Δα2 +Δβ2 +Δγ2, (16)

where Δx,Δy,Δz and Δα,Δβ,Δγ are the differences with

respect to the ground truth.

Table I shows the influence of Es on accuracy and com-

putation time. The ratio of subsampled points r is also given.

Each row offers the average values of 40 registrations with
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Figure 5. Point cloud for the first scan.

Figure 6. Top view of an alignment with CBC and no subsampling.

different random initial estimations. All in all, the table offers

results from 640 different matches performed by CBC.

Computation times from the table have been summarized

in Fig. 8. It can be seen that registration time reduces almost

linearly with r. Besides, the gain in registration time of CBC

with respect to the non-subsampled case also varies linearly

with Es.

As for the relation of subsampling parameter Es with CBC

parameter E, it is noticeable that around Es = 0.225m, i.e., a

cube edge ratio E/Es = 4, the number of coincident cubes is

almost the same as without subsampling. This means that the

reduced set is very representative of the whole scan. Moreover,

the Ds and Da values in the table show that registration

accuracy only degrades when Es approaches E. Therefore,

a relation E/Es ≈ 3 is an acceptable compromise between

accuracy and computation time.
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Figure 7. Top view of the subsampled points for the second scan with Es =
0.9m.

V. CONCLUSIONS

In this paper, the Coarse Binary Cubes (CBC) pairwise

scene alignment is sped up by introducing a subsampling

step which selects a reduced and representative set of points

from the point cloud to be projected. For this purpose, a new

spatial subsampling procedure has been defined that employs

the same type of efficient data structures as CBC.

Experimental results have been obtained with the Velodyne

HDL-32E sensor mounted on the Quadriga mobile robot on

irregular terrain. The proposed subsampling method improves

the times given by octree computation. The influence of the

subsampling rate on CBC has been analyzed. Preliminary

results show that subsampling can achieve a relevant gain in



registration time without degrading matching accuracy.

Future work includes combining subsampling with parallel

execution of CBC via multi-core processors [20] to achieve

matching times less than scan acquisition times.

Table I
AVERAGE REGISTRATION RESULTS WITH CBC (E = 0.9m).

Es
m

r
J(Tgt) J(T)

Ds Da Time
(m) (%) (m) (o) (s)

- 65843 100.0 1583 1613 0.072 0.230 2.127
0.200 16960 25.8 1566 1615 0.091 0.069 0.585
0.212 16161 24.5 1578 1595 0.074 0.114 0.558
0.225 15462 23.5 1566 1598 0.062 0.080 0.543
0.240 14527 22.1 1558 1570 0.112 0.139 0.493
0.257 13676 20.8 1555 1588 0.069 0.125 0.460
0.277 12819 19.5 1548 1582 0.143 0.068 0.441
0.300 11878 18.0 1551 1571 0.066 0.175 0.405
0.327 11015 16.7 1553 1583 0.062 0.093 0.380
0.360 10117 15.4 1534 1554 0.105 0.189 0.352
0.400 9079 13.8 1497 1525 0.096 0.125 0.320
0.450 8156 12.4 1506 1526 0.059 0.093 0.288
0.514 7038 10.7 1456 1463 0.052 0.141 0.257
0.600 6059 9.2 1399 1421 0.064 0.252 0.227
0.720 4935 7.5 1334 1358 0.149 0.139 0.192
0.900 3873 5.9 1238 1302 0.243 0.308 0.149
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Figure 8. Computation time results: registration time versus r (a), and
computation time gain with respect to Es (b).
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