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Abstract—In this paper, we derive a novel iterative closest
point (ICP) technique that performs point cloud alignment in a
robust and consistent way. Traditional ICP techniques minimize
the point-to-point distances, which are successful when point
clouds contain no noise or clutter and moreover are dense and
more or less uniformly sampled. In the other case, it is better to
employ point-to-plane or other metrics to locally approximate the
surface of the objects. However, the point-to-plane metric does
not yield a symmetric solution, i.e. the estimated transformation
of point cloud p to point cloud q is not necessarily equal to
the inverse transformation of point cloud q to point cloud p. In
order to improve ICP, we will enforce such symmetry constraints
as prior knowledge and make it also robust to noise and clutter.
Experimental results show that our method is indeed much more
consistent and accurate in presence of noise and clutter compared
to existing ICP algorithms.

I. INTRODUCTION

The registration or alignment of point clouds is an important

process in 3D mobile mapping, which is the process of collect-

ing geospatial data from a mobile vehicle. In general, mobile

mapping employs a wide range of different sensors, which

can roughly be divided in two categories: the measurement

sensors (e.g. 360-degrees vision cameras and LiDAR scanners)

and positioning sensors (e.g. global positioning system (GPS),

wheel encoders and inertial navigation system (INS)). GPS

and inertial measurement units (IMU) allow for rapid and

quite accurate determination of the position and attitude of

the equipment or vehicle, or in other words, estimating the

ego-localization. Still there are some shortcomings: e.g. GPS

relies on external communication and lacks accuracy, while se-

quential IMU data (e.g. from gyroscopes and accelerometers)

suffers from drift and must therefore be processed, e.g. by

Kalman filters [5].

An alternative approach to ego-localization (when GPS

and IMU are missing or unavailable) is to perform relative

positioning based on images or overlapping point clouds. The

class of algorithms that jointly estimates ego-localization (or

odometry when we observe the positions over time) and the

3D reconstruction/mapping is called simultaneous localization

and mapping (SLAM). The performance of visual SLAM

(based on images or video) heavily depend on the environment

such as weather and light conditions (e.g. overexposure due

to direct sunlight). On the other hand, LiDAR technology is

more robust to these conditions. A very popular and simple

technique that performs LiDAR odometry and mapping is

iterative closest point (ICP). ICP is the main component

in large-scale 3D mapping and often it is combined with

other techniques such as global pose graph optimization or

loop closure in a larger framework to minimize drift and to

enforce consistency on a global scale. In this paper, we will

concentrate on improving the accuracy and consistency of the

core ICP algorithm, which then can be plugged in large-scale

3D mapping frameworks.

LiDAR technology measures the distance between the ob-

jects and the device by illuminating the target with a laser

light. The main advantage of LiDAR is that it can provide

a lot of range measurements within small time window with

errors that are relatively constant irrespective of the distances

measured. An example of LiDAR scanners is the Velodyne

series1, which produce enormous point clouds, capturing the

scene at approximately 10Hz using a relative low number of

scan lines (typically 16, 32 or 64 lines). Each full rotation

or sweep produces an inhomogeneous point cloud that is

densely sampled along the scan lines, but is sparse in the

direction across the scan lines. This type of point clouds puts

additional challenges in the alignment process, especially ICP:

the measured points in two subsequent moved point clouds are

(almost) never physically the same, which is a different starting

point compared to the basic definition of ICP, which effectively

minimizes the distances of the closest points assuming that

they are physically the same. By locally approximating the

surface of the scanned objects and minimizing the distance

between a point and this surface, the registration is improved

greatly.

With the emergence of affordable LiDAR technology, mo-

bile mapping systems are evolved into the third generation.

These new scanners become more lightweight, smaller and

cheaper, which make them more attractive to be mounted on

(aerial) drones or to be used in hand-held devices. We refer

the interested reader to an extended review on existing mobile

mapping technology [17] and overviews of commercially

available mobile mapping systems, e.g. [14] and [22].

In the next sections, we briefly discuss the state-of-the-art

1http://velodynelidar.com



of related work and the concept of consistent registration,

we propose a new consistent and robust ICP algorithm, we

show some experiment results and we end this paper with a

conclusion.

II. RELATED WORK

Point cloud registration is one of the important research

issues in 3D imaging and computer vision due to its wide

applications. The most often cited ICP algorithm is the tradi-

tional point-to-point ICP algorithm from Besl and McKay [2].

The key concept of the traditional ICP algorithm is estimating

the transformation by iteratively computing correspondences

between two point clouds and resolving the transformation

that minimizes the distance between the corresponding points.

Finding the correspondences is usually based on the Euclidean

distance, which can be done efficiently for large point clouds

using kd-trees. Zhang proposes to perform outlier rejection in

this correspondence selection phase to make ICP more robust

to errors [23]. Given two point clouds p and q, we denote the

set of corresponding points of q to p as q
′. The estimation

of the transformation Tpq from p to q (throughout this paper,

we assume a 6-DOF model) can be found by minimizing the

point-to-point metric:

T̂pq = argmin
Tpq

Np
∑

i=1

‖Tpqpi − q
′

i‖
2, (1)

where Np denotes the number of points in p; pi and q
′

i are

respectively the ith point in p and q
′. For reasons mentioned in

the previous section, it is not preferred to employ the point-

to-point metric for sparse and inhomogeneous point clouds.

Chen and Medioni introduces the point-to-plane metric that

matches points to (planar) surface patches, which are rough

approximations of the object’s surface [3]. The distance is now

minimized along the surface normal while not penalizing off-

sets along the surface, resulting in the following optimization

problem:

T̂pq = argmin
Tpq

Np
∑

i=1

‖(Tpqpi − q
′

i) · nq
′

i
‖2, (2)

where nq
′

i
is the normal estimated for point q

′

i. Segal et

al. combine the point-to-plane ICP algorithm into a probabilis-

tic framework, in which the locally planar surface structure of

both p and q is modeled [18]. This leads to a generalized

plane-to-plane concept of ICP, making the problem more

symmetrical and robust to noise and outliers.

Many other variants on ICP concentrate on accelera-

tion (e.g. [11]), robustness (e.g. [7]), affine transformation

(e.g. [4]), etc. We refer the interested reader to more complete

overviews (e.g. [12], [15], [16], [19]) of point cloud registra-

tion using ICP.

As discussed in the previous section, ICP plays an important

role in many LiDAR SLAM systems. Improvements to the ICP

algorithm can directly be applied in such SLAM systems. A

complete SLAM algorithm normally involves more than only

ICP: pre-processing and filtering, feature extraction, deskew-

ing, drift correction, loop closure detection, incorporation of

semantics about the environment or other data such as visual

SLAM or positioning information, etc.(e.g. [13], [24], [25]).

III. CONSISTENT REGISTRATION

If we take a closer look at Equation (2), we see that it is

not symmetric in p and q
′. This means that the transformation

from p to q is not necessarily equal to the inverse transforma-

tion from q to p (i.e. Tpq 6= T−1

qp
). As a result, the registration

method may produce inconsistent results when applied in one

direction versus the other.

In SLAM applications, ICP is computed for pairwise reg-

istrations, i.e. between two sweeps. This can be done succes-

sively, or with (semi-)fixed reference sweeps. Due to inaccura-

cies in pairwise registrations, the registration errors accumulate

over time such that the registration parameters between the

first and the last sweep can have a large cumulative error,

which is also known as drift. This problem leads also to

possible deadlocks, where it is impossible to find a proper

global reconstruction when there is a loop in the trajectory.

The deadlock problem can be solved using for example loop

closure or global pose graph optimization techniques [20].

The asymmetry of the point-to-plane ICP solution and the

deadlock problem indicate that there is a need for more

consistent ICP algorithms. In literature, there are two common

ways to achieve consistent registration, which are known as

bundle adjustment and global registration. The latter solves

all pairwise registrations jointly, which is often not desirable

due to high computation and memory requirements. Bundle

adjustment is a well-known computationally expensive tool

in the computer vision community, which produces jointly

optimal 3D structures and viewing parameters [21]. For sparse

point clouds, this strategy is not optimal since the 3D points

from different sweeps are physically different.

Related to global pose graph optimization, we can define

loops on a very local scale, for example, the transformation

from p to q should be equal to the inverse transformation

from q to p (i.e. Tpq ≡ T−1

qp
). With an additional point

cloud r, we can assume that consecutive transformations from

sweep p to r, r to q and q to p should result in the

identity transformation I (i.e. TqpTrqTpr ≡ I). The set of

combined pairwise transformations is conveniently described

by the group structures of the Lie algebra [10]. We will

employ this strategy to enforce pairwise transformations (and

its parameters) to be in a valid Lie group structure and obtain

as such consistent transformation parameters. Several group

structures are illustrated in Figure 1. The aforementioned two

examples coincide to the skew anti-symmetry and the Jacobi

identity properties respectively.

In [6], the authors incorporated the consistency constraints

as prior knowledge in a Bayesian framework of the gradient-

based image registration for image super-resolution applica-

tion. Instead of posing consistency with hard constraints, they

penalized inconsistencies directly in the estimation problem of
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Fig. 1. Group structures in the Lie algebra: (a) skew anti-symmetry and (b)
Jacobi identity.

the registration parameters. Because the inconsistency penal-

ties require all registration parameter sets, all pairwise registra-

tions must be performed simultaneously, which is undesirable

for large-scale 3D mapping applications. In this paper, we will

enforce the consistency constraints only locally to improve

a single pairwise registration, with or without an augmented

third supporting point cloud for the Jacobi identity constraint.

IV. CONSISTENT AND ROBUST ICP

To increase the robustness of the point-to-plane registration,

we propose two improvements to the standard ICP algorithm.

The first problem is that sweeps do not fully overlap with each

other or that one of the sweeps is incomplete (e.g. due to bad

acquisition or objects/persons too close to the device blocking

the line of sight). In [18], the authors introduce a maximum

match distance parameter to reject point correspondences that

are too far. Unfortunately, the choice of this parameter has a

large impact on the convergence and accuracy. We propose a

more symmetrical variant to solve this problem: we put an

adaptive threshold on the match distance (between pi and

q
′

i), which is computed as x times the match distance of

the dual correspondences (i.e. between qi and p
′

i). In the

experiments we choose x to be 1.25, meaning that we tolerate

that the match distance of pi or qi can be 25% larger than the

minimum match distance of pi and qi. The choice of x in the

range ]1, 2] will have a much lower impact on the convergence

and accuracy than the maximum match distance parameter due

to its adaptive behavior.

The second improvement is dealing with the ℓ2-norm in

Equation (2), which is not robust to outliers. A well-known

strategy is to adopt M-estimators [1], which is then typically

solved using iterative re-weighted least squares (IRLS). In

the experiments, we will use the Cauchy robust loss function

ρ(e) = log(1 + (e/c)2), with c being a tuning parameter and

e the residual error. Other robust loss functions such as the

ℓ1-norm, Huber and Geman-McClure can be used as well.

Similar to [6], we will incorporate the consistency con-

straints as prior knowledge in a Bayesian maximum a pos-

teriori framework. The new ICP metric is symmetric in p and

q and combined with the skew anti-symmetry property, the

metric becomes:

T̂pq, T̂qp = argmin
Tpq,Tqp

N ′

p
∑

i=1

ρ
(

(Tpqpi − q
′

i) · nq
′

i

)

+

N ′

q
∑

i=1

ρ
(

(Tqpqi − p
′

i) · np
′

i

)

+ λ‖TpqTqp − I‖2 + λ‖TqpTpq − I‖2, (3)

where λ is the regularization parameter and N ′

p
and N ′

q
are

the number of points left after point correspondence rejection

with the adaptive threshold. Both priors are mathematically

seen the same, however, due to local minima in the solution

space and the order of rotation axes that are applied in the 3D

rotation matrix (which will have an impact on the accuracy

of the floating point computations), it is better to incorporate

both priors in the metric.

Note that the normals of both point clouds are incorporated

in the metric, resulting in a plane-to-plane approach, similar

to [18]. We opt for the sequential quadratic programming

(SQP) algorithm to solve the non-linear minimization prob-

lem (3), instead of the standard IRLS approach. We refer the

interested reader to [8] for more details on the SQP algorithm.

When we augment the pairwise registration with a third

point cloud and include the Jacobi identity constraint, the

metric becomes much more complex: instead of 4 terms,

we will have to optimize 24 terms. The metric consists

of 6 fidelity terms, 6 consistency terms for the skew anti-

symmetry constraint and 12 consistency terms for the Jacobian

identity constraint. An example of the latter consistency term

is λ‖TqpTrqTpr−I‖2. We can see that adding a fourth, fifth, ...

supporting point cloud will result in a tremendous increase of

consistency terms, not to mention that even other Lie group

structures can then be taken into account. This is also the

main drawback of our proposed method compared to other

ICP algorithms: the optimization problem is much larger and

requires more computational power.

V. EXPERIMENTAL RESULTS

For the validation of ICP algorithms, we will use real

LiDAR data that is obtained by a Velodyne High Definition Li-

DAR scanner (HDL-32e). The scanner has 32 lasers covering a

vertical field-of-view (FOV) of 41.3 degrees hence resulting in

a vertical resolution of 1.29 degrees. The head is continuously

spinning at approximately 10 Hz covering a horizontal FOV

of 360 degrees. The data set has been captured outdoors,

obtained at a construction site, where the operator is also

captured (which can be seen as clutter). Although IMU data

has been collected, it is not a perfect way to generate ground

truth data from it. Therefore, we will evaluate and validate ICP

visually and objectively with back-projection errors. The back-

projection error is denoted as the mean Euclidean distance

of the reference point cloud and the same point cloud after

forward and backward transformation. Ideally this would result

in the identity transformation with zero back-projection error.



We call our proposed methods rICP (robust ICP without

consistency constraints), crICP (consistent and robust ICP as

discussed in the previous section) and acrICP (consistent and

robust ICP augmented with a third point cloud). We set the

following parameters for our algorithms: c = 0.5, 20 iterations

and λ = (N ′

p
+ N ′

q
) · 103 (because λ heavily depends on

the number of corresponding matches). We compare our algo-

rithms with standard point-to-point ICP (denoted as pointICP),

point-to-plane ICP (denoted as planeICP) and irlsICP [1] (with

Tukey’s biweight robust loss function). We set the outlier

rejection on the correspondence matches on 40% for standard

pointICP and planeICP [23].

In the first experiment, we compute the back-projection

error where we first compute the transformation from p to q

and back from q to p. The error is then computed over all the

points of p. We have 50 runs where the sweeps are selected

randomly, but with a large overlap (at least 80% coverage).

The average results are shown in Table I.

TABLE I
AVERAGE BACK-PROJECTION ERROR (µ) AND STANDARD DEVIATION (σ).

THE BEST RESULT IS WRITTEN IN BOLD.

Method µ σ

pointICP 2.04 6.58

planeICP 74.98 301.84

irlsICP 25.54 31.37

rICP 7.28 11.50

crICP 0.94 1.26

acrICP 0.73 1.21

We can observe that acrICP is the best performing ICP

method, which is what we expect since the skew anti-

symmetry constraint is also optimized. crICP is performing

slightly worse than acrICP because the supporting point

cloud aids in having more consistent registrations (point

clouds are also less sparse because there are more points

available). However, this comes with a huge drawback: the

computational load of acrICP is about 15 times higher than

crICP (in MATLAB). The average back-projection error

of pointICP is also relatively low because the metric (1)

is symmetrical in p and q (although the correspondence

matching is not completely symmetrical). Note that a low

back-projection error does not necessarily means that the

algorithm converges to the right solution. The large standard

deviation for planeICP and irlsICP points to divergent

registrations (i.e. where the consistency completely fails).

In the second experiment, we test the robustness of the ICP

algorithm to incomplete point cloud. A part of the point cloud

is missing because the operator was too close to the device

resulting in non-measured data. The projection of the point

clouds p and q on the ground plane is given in Figure 2.

The overlap after registration for different ICP algorithms is

given in Figure 3. We can observe that pointICP and irlsICP

completely diverge from the true solution, while planeICP
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Fig. 2. Projected point clouds on the ground plane: (a) p and (b) q.
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Fig. 3. Detailed part of the overlap between transformed p and q.

clearly is closer to the solution, but still does not give the cor-

rect solution. The proposed methods rICP and crICP converges

to the right solution. The proposed adaptive threshold on the

match distances prevents that the estimation is biased, while

outlier rejection based on a fixed percentage or fixed threshold

will not cope completely with incomplete point clouds.

In the third experiment, we build a complete reconstruction

by successive pairwise point cloud registrations. The complete

reconstruction is given in Figure 4. A part of the 3D mappings

of the construction site for planeICP, rICP and crICP are given

in Figure 5.

We notice that our proposed methods are more accurate



Fig. 4. Complete 3D mapping of the reconstruction site.

than planeICP, which is clearly visible due to the errors on

the reconstruction of the wall on the left of the image. rICP

and crICP produce similar visual results, but crICP is more

consistent.

VI. CONCLUSION

For the registration of sparse and inhomogeneous point

clouds, we have introduced a novel consistent and robust ICP

algorithm. We improve the ICP robustness by incorporating

an adaptive threshold on the match distance of the point

correspondences and by adopting M-estimators in the point-

to-plane metric. Next, we improve the ICP consistency by

enforcing valid Lie group structures such as the skew anti-

symmetry and the Jacobi identity to the different transfor-

mations in a Bayesian framework. Experimental results show

that the proposed method is more consistent and accurate for

real Velodyne LiDAR data compared to other ICP algorithms.

Future work is to include the proposed ICP algorithm in

more advanced LiDAR SLAM systems and to accelerate

the algorithm using GPU-computing, using for example the

Quasar programming framework [9].
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