41 research outputs found

    Hybrid VLC Communications System for Increased Security Based on Raspberry Pi Microcomputer

    Get PDF
    VLC (Visible Light Communications) technology represents nowadays a new paradigm that could have a significant impact on future wireless communications. Although this technology has many advantages, one of the most common problem generated by the use of optical communication systems (based on the light in the visible spectrum), is the increased degree of disruption of the communication channel under the direct sunlight influence. The purpose of this article is to present the technological developments specific to the VLC/IR-RF (Visible Light Communication / Infrared - Radio-Frequency) hybrid system developed in the framework of a scientific research project started in 2017, which were recorded during the first half of 2019. This system based on multiple sensory devices such as temperature, motion, light intensity, dust, IR and microbolometer sensors will present the ability of intelligent monitoring and control of indoor environments (houses, office buildings, universities, campuses, etc.). From the point of view of the final purpose of the project, this will result in a hybrid bidirectional optical communication system capable of supporting high transfer rates, increased resistance to the specific sunlight disturbance, and the possibility of transmitting sensory information over long distances. The previous experimentation activities undertaken during the project were based on the use of the Arduino UNO development boards. Currently, it has been chosen to replace them with the development boards based on the ARM Cortex-A53 processor, in order to improve the system’s performance. The Arduino development boards have limited the performance of the communications system from the point of view of the transfer speeds and distances. The new Raspberry Pi development boards, being a complete operating and control system, presents high operational performances that can be used in favor of the final goal of the project.</p

    Statistical Modeling of Single-Photon Avalanche Diode Receivers for Optical Wireless Communications

    Get PDF
    In this paper, a comprehensive analytical approach is presented for modeling the counting statistics of active quenching and passive quenching single-photon avalanche diode (SPAD) detectors. It is shown that, unlike ideal photon counting receiver for which the detection process is described by a Poisson arrival process, photon counts in practical SPAD receivers do not follow a Poisson distribution and are highly affected by the dead time caused by the quenching circuit. Using the concepts of renewal theory, the exact expressions for the probability distribution and moments (mean and variance) of photocounts in the presence of dead time are derived for both active quenching and passive quenching SPADs. The derived probability distributions are validated through Monte Carlo simulations and it is demonstrated that the moments match with the existing empirical models for the moments of SPAD photocounts. Furthermore, an optical communication system with on-off keying and binary pulse position modulation is considered and the bit error performance of the system for different dead time values and background count levels is evaluated

    Optical Wireless Communication Channel Measurements and Models

    Get PDF

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Améliorations des transmissions VLC (Visible Light Communication) sous contrainte d'éclairage : études théoriques et expérimentations

    Get PDF
    Abstract : Indoor visible light communication (VLC) networks based on light-emitting diodes (LEDs) currently enjoy growing interest thanks in part to their robustness against interference, wide license-free available bandwidth, low cost, good energy efficiency and compatibility with existing lighting infrastructure. In this thesis, we investigate spectral-efficient modulation techniques for the physical layer of VLC to increase throughput while considering the quality of illumination as well as implementation costs. Numerical and experimental studies are performed employing pulse amplitude modulation (PAM) and carrierless amplitude and phase (CAP) modulation under illumination constraints and for high modulation orders. Furthermore, the impact of LED nonlinearity is investigated and a postdistortion technique is evaluated to compensate these nonlinear effects. Within this framework, transmission rates in the order of a few hundred Mb/s are achieved using a test bench made of low-cost components. In addition, an imaging multiple input multiple-output (MIMO) system is developed and the impact on performance of imaging lens misalignment is theoretically and numerically assessed. Finally, a polynomial matrix decomposition technique based on the classical LU factorization method is studied and applied for the first time to MIMO VLC systems in large space indoor environments.Les rĂ©seaux de communication en lumiĂšre visible (VLC) s’appuyant sur l’utilisation de diodes Ă©lectroluminescentes (LED) bĂ©nĂ©ficient actuellement d’un intĂ©rĂȘt grandissant, en partie grĂące Ă  leur robustesse face aux interfĂ©rences Ă©lectromagnĂ©tiques, leur large bande disponible non-rĂ©gulĂ©e, leur faible coĂ»t, leur bonne efficacitĂ© Ă©nergĂ©tique, ainsi que leur compatibilitĂ© avec les infrastructures d’éclairage dĂ©jĂ  existantes. Dans cette thĂšse, nous Ă©tudions des techniques de modulation Ă  haute efficacitĂ© spectrale pour la couche physique des VLC pour augmenter les dĂ©bits tout en considĂ©rant la qualitĂ© de l’éclairage ainsi que les coĂ»ts d’implĂ©mentation. Des Ă©tudes numĂ©riques et expĂ©rimentales sont rĂ©alisĂ©es sur la modulation d’impulsion d’amplitude (PAM) et sur la modulation d’amplitude et de phase sans porteuse (CAP) sous des contraintes d’éclairage et pour des grands ordres de modulation. De plus, l’impact des non-linĂ©aritĂ©s de la LED est Ă©tudiĂ© et une technique de post-distorsion est Ă©valuĂ©e pour corriger ces effets non-linĂ©aires. Dans ce cadre, des dĂ©bits de plusieurs centaines de Mb/s sont atteints en utilisant un banc de test rĂ©alisĂ© Ă  partir de composants Ă  bas coĂ»ts. Par ailleurs, un systĂšme multi-entrĂ©es multi-sorties (MIMO) imageant est Ă©galement dĂ©veloppĂ© et l’impact du dĂ©saxage de l’imageur sur les performances est Ă©tudiĂ©. Finalement, une technique de dĂ©composition polynomiale basĂ©e sur la mĂ©thode de factorisation classique LU est Ă©tudiĂ©e et appliquĂ©e aux systĂšmes MIMO VLC dans des grands espaces intĂ©rieurs

    Interference mitigation techniques for optical attocell networks

    Get PDF
    The amount of wireless data traffic has been increasing exponentially. This results in the shortage of radio frequency (RF) spectrum. In order to alleviate the looming spectrum crisis, visible light communication (VLC) has emerged as a supplement to RF techniques. VLC uses light emitting diodes (LEDs) for transmission and employs photodiodes (PDs) for detection. With the advancement of the LED technology, LEDs can now fulfil two functions at the same time: illumination and high-speed wireless communication. In a typical indoor scenario, each single light fixture can act as an access point (AP), and multiple light fixtures in a room can form a cellular wireless network. We refer to this type of networks as ‘optical attocell network’. This thesis focuses on interference mitigation in optical attocell networks. Firstly, the downlink inter-cell interference (ICI) model in optical attocell networks is investigated. The conventional ray-tracing channel model for non-line-of-sight (NLOS) path is studied. Although this model is accurate, it leads to time-consuming computer simulations. In order to reduce the computational complexity, a simplified channel model is proposed to accurately characterise NLOS ICI in optical attocell networks. Using the simplified model, the received signal-to-interference-plus-noise ratio (SINR) distribution in optical attocell networks can be derived in closed-form. This signifies that no Monte Carlo simulation is required to evaluate the user performance in optical attocell networks. Then, with the knowledge of simplified channel model, interference mitigation techniques using angle diversity receivers (ADRs) are investigated in optical attocell networks. An ADR typically consists of multiple PDs with different orientations. By using proper signal combining schemes, ICI in optical attocell networks can be significantly mitigated. Also, a novel double-source cell configuration is proposed. This configuration can further mitigate ICI in optical attocell networks in conjunction with ADRs. Moreover, an analytical framework is proposed to evaluate the user performance in optical attocell networks with ADRs. Finally, optical space division multiple access (SDMA) using angle diversity transmitters is proposed and investigated in optical attocell networks. Optical SDMA can exploit the available bandwidth resource in spatial dimension and mitigate ICI in optical attocell networks. Compared with optical time division multiple access (TDMA), optical SDMA can significantly improve the throughput of optical attocell networks. This improvement scales with the number of LED elements on each angle diversity transmitter. In addition, the upper bound and the lower bound of optical SDMA performance are derived analytically. These bounds can precisely evaluate the performance of optical SDMA systems. Furthermore, optical SDMA is shown to be robust against user position errors, and this makes optical SDMA suitable for practical implementations

    Visible Light Communications for Industrial Applications—Challenges and Potentials

    Get PDF
    Visible Light Communication (VLC) is a short-range optical wireless communication technology that has been gaining attention due to its potential to offload heavy data traffic from the congested radio wireless spectrum. At the same time, wireless communications are becoming crucial to smart manufacturing within the scope of Industry 4.0. Industry 4.0 is a developing trend of high-speed data exchange in automation for manufacturing technologies and is referred to as the fourth industrial revolution. This trend requires fast, reliable, low-latency, and cost-effective data transmissions with fast synchronizations to ensure smooth operations for various processes. VLC is capable of providing reliable, low-latency, and secure connections that do not penetrate walls and is immune to electromagnetic interference. As such, this paper aims to show the potential of VLC for industrial wireless applications by examining the latest research work in VLC systems. This work also highlights and classifies challenges that might arise with the applicability of VLC and visible light positioning (VLP) systems in these settings. Given the previous work performed in these areas, and the major ongoing experimental projects looking into the use of VLC systems for industrial applications, the use of VLC and VLP systems for industrial applications shows promising potential
    corecore