61 research outputs found

    Vehicle-Vehicle Channel Models for the 5 GHz Band

    Get PDF
    In this paper, we describe the results of a channel measurement and modeling campaign for the vehicle-to-vehicle (V2V) channel in the 5-GHz band. We describe measurements and results for delay spread, amplitude statistics, and correlations for multiple V2V environments. We also discuss considerations used in developing statistical channel models for these environments and provide some sample results. Several statistical channel models are presented, and using simulation results, we elucidate tradeoffs between model implementation complexity and fidelity. The channel models presented should be useful for system designers in future V2V communication systems

    Shaping spectral leakage for IEEE 802.11 p vehicular communications

    Get PDF
    IEEE 802.11p is a recently defined standard for the physical (PHY) and medium access control (MAC) layers for Dedicated Short-Range Communications. Four Spectrum Emission Masks (SEMs) are specified in 802.11p that are much more stringent than those for current 802.11 systems. In addition, the guard interval in 802.11p has been lengthened by reducing the bandwidth to support vehicular communication (VC) channels, and this results in a narrowing of the frequency guard. This raises a significant challenge for filtering the spectrum of 802.11p signals to meet the specifications of the SEMs. We investigate state of the art pulse shaping and filtering techniques for 802.11p, before proposing a new method of shaping the 802.11p spectral leakage to meet the most stringent, class D, SEM specification. The proposed method, performed at baseband to relax the strict constraints of the radio frequency (RF) front-end, allows 802.11p systems to be implemented using commercial off-the- shelf (COTS) 802.11a RF hardware, resulting in reduced total system cost

    Broadband radio communications in subway stations and tunnels

    Full text link
    Broadband radio communication systems are very important for railway traffic control systems and passengers network services. Nowadays, even though 4G LTE (Long Term Evolution) has deployed for commercial use with excellent results in open areas, it is still lack of knowledge regarding to how such broadband signals propagate inside complex environments with many complex structures that affect propagation such as subway tunnels and stations. For this reason, the aim of the presented measurements in this paper is to model the response of the broadband channel at 1000 MHz and 2450 MHz in the subway environments. These measurements focus on three types of scenarios: subway stations, straight tunnels and a train effect the signal. The results provide detailed information about the propagation channel, which can be useful to develop a broadband propagation model for underground communication systems

    Realistic wireless communication simulations for VANETS

    No full text
    International audienceVehicular Ad­hoc NETworks (VANETs) are mainly evaluated through simulations in which the choice of a realistic wireless channel model is a central point. Deterministic channel models bring good realism but need huge simulation time, whereas with statistical models the computational effort is reduced, but sadly so is the realism of the model. In this paper, we present a semi­deterministic channel model, called UM­CRT, based on a deterministic channel simulator, CRT (Communication Ray Tracer) and a statistical channel model, SCME-UM (Spatial Channel Model Extended - Urban Microcell). To integrate it into the NS­2 network simulator, we couple it to self­developed fully compliant 802.11p and 802.11n physical layers. Simulations in urban environment show both a good realism and a reduced computation time indicating that UM­CRT is adapted for VANETs simulations

    Making Transport Safer: V2V-Based Automated Emergency Braking System

    Get PDF
    An important goal in the field of intelligent transportation systems (ITS) is to provide driving aids aimed at preventing accidents and reducing the number of traffic victims. The commonest traffic accidents in urban areas are due to sudden braking that demands a very fast response on the part of drivers. Attempts to solve this problem have motivated many ITS advances including the detection of the intention of surrounding cars using lasers, radars or cameras. However, this might not be enough to increase safety when there is a danger of collision. Vehicle to vehicle communications are needed to ensure that the other intentions of cars are also available. The article describes the development of a controller to perform an emergency stop via an electro-hydraulic braking system employed on dry asphalt. An original V2V communication scheme based on WiFi cards has been used for broadcasting positioning information to other vehicles. The reliability of the scheme has been theoretically analyzed to estimate its performance when the number of vehicles involved is much higher. This controller has been incorporated into the AUTOPIA program control for automatic cars. The system has been implemented in Citroën C3 Pluriel, and various tests were performed to evaluate its operation

    A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

    Full text link
    The vehicle-to-vehicle (V2V) propagation channel has significant implications on the design and performance of novel communication protocols for vehicular ad hoc networks (VANETs). Extensive research efforts have been made to develop V2V channel models to be implemented in advanced VANET system simulators for performance evaluation. The impact of shadowing caused by other vehicles has, however, largely been neglected in most of the models, as well as in the system simulations. In this paper we present a shadow fading model targeting system simulations based on real measurements performed in urban and highway scenarios. The measurement data is separated into three categories, line-of-sight (LOS), obstructed line-of-sight (OLOS) by vehicles, and non line-of-sight due to buildings, with the help of video information recorded during the measurements. It is observed that vehicles obstructing the LOS induce an additional average attenuation of about 10 dB in the received signal power. An approach to incorporate the LOS/OLOS model into existing VANET simulators is also provided. Finally, system level VANET simulation results are presented, showing the difference between the LOS/OLOS model and a channel model based on Nakagami-m fading.Comment: 10 pages, 12 figures, submitted to Hindawi International Journal of Antennas and Propagatio

    5 GHz Band Vehicle-to-Vehicle Channels: Models for Multiple Values of Channel Bandwidth

    Get PDF
    In Sen and Matolak\u27s earlier paper, 5-GHz-band vehicle-to-vehicle (V2V) channel models were presented for channel bandwidths of 5 and 10 MHz. In this paper, we provide additional tapped delay line models for bandwidths of 1, 20, 33.33, and 50 MHz based upon the data used in Sen and Matolak\u27s paper. We provide tables of channel parameters for five types of V2V channel classes and also include example tap correlation coefficients. Root-mean-square delay spread values are summarized, as are values of bandwidth for which the channel frequency correlation takes values of 0.7 and 0.5. As with the results from Sen and Matolak\u27s paper, these models should be useful for designers in future V2V communication systems

    A survey of V2V channel modeling for VANET simulations

    No full text
    International audienceMost Vehicle to Vehicle (V2V) network protocols are evaluated by simulation. However in most network simulators, the physical layer suffers from a lack of realism. Therefore, realistic V2V channel modeling has become a crucial issue in Intelligent Transportation Systems (ITS) networks. V2V channels are known to exhibit specific features which imply the design of new simulation models. In this survey paper, we first recall the main physical features of such wireless time and frequency dispersive channels. Next, three "simulation-ready" V2V channel models found in the literature are reviewed. Finally, two complete VANET simulation frameworks are presented. They illustrate the importance of a realistic channel and physical layer modeling in vehicular networking
    • …
    corecore