11 research outputs found

    An Inequality Approach to Approximate Solutions of Set Optimization Problems in Real Linear Spaces

    Get PDF
    This paper explores new notions of approximate minimality in set optimization using a set approach. We propose characterizations of several approximate minimal elements of families of sets in real linear spaces by means of general functionals, which can be unified in an inequality approach. As particular cases, we investigate the use of the prominent Tammer–Weidner nonlinear scalarizing functionals, without assuming any topology, in our context. We also derive numerical methods to obtain approximate minimal elements of families of finitely many sets by means of our obtained results

    A solution method for arbitrary polyhedral convex set optimization problems

    Full text link
    We provide a solution method for a polyhedral convex set optimization problems, that is, the problem to minimize a set-valued mapping with polyhedral convex graph with respect to a set ordering relation which is generated by a polyhedral convex cone. The method is proven to be correct and finite without any further assumption to the problem.Comment: 16 page

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    An algorithmic approach to multiobjective optimization with decision uncertainty

    Get PDF
    In real life applications optimization problems with more than one objective function are often of interest. Next to handling multiple objective functions, another challenge is to deal with uncertainties concerning the realization of the decision variables. One approach to handle these uncertainties is to consider the objectives as set-valued functions. Hence, the image of one variable is a whole set, which includes all possible outcomes of this variable. We choose a robust approach and thus these sets have to be compared using the so called upper-type less order relation. We propose a numerical method to calculate a covering of the set of optimal solutions of such an uncertain multiobjective optimization problem. We use a branchand-bound approach and lower and upper bound sets for being able to compare the arising sets. The calculation of these lower and upper bound sets uses techniques known from global optimization as convex underestimators as well as techniques used in convex multiobjective optimization as outer approximation techniques. We also give first numerical results for this algorithm

    On classes of set optimization problems which are reducible to vector optimization problems and its impact on numerical test instances

    Get PDF
    Set optimization with the set approach has recently gained increasing interest due to its practical relevance. In this problem class one studies optimization problems with a set-valued objective map and defines optimality based on a direct comparison of the images of the objective function, which are sets here. Meanwhile, in the literature a wide range of theoretical tools as scalarization approaches and derivative concepts as well as first numerical algorithms are available. These numerical algorithms require on the one hand test instances where the optimal solution sets are known. On the other hand, in most examples and test instances in the literature only set-valued maps with a very simple structure are used. We study in this paper such special set-valued maps and we show that some of them are such simple that they can equivalently be expressed as a vector optimization problem. Thus we try to start drawing a line between simple set-valued problems and such problems which have no representation as multiobjective problems. Those having a representation can be used for defining test instances for numerical algorithms with easy verifiable optimal solution set

    Optimality conditions for set optimization using a directional derivative based on generalized Steiner sets

    Get PDF
    Set-optimization has attracted increasing interest in the last years, as for instance uncertain multiobjective optimization problems lead to such problems with a set- valued objective function. Thereby, from a practical point of view, most of all the so-called set approach is of interest. However, optimality conditions for these problems, for instance using directional derivatives, are still very limited. The key aspect for a useful directional derivative is the definition of a useful set difference for the evaluation of the numerator in the difference quotient. We present here a new set difference which avoids the use of a convex hull and which applies to arbitrary convex sets, and not to strictly convex sets only. The new set difference is based on the new concept of generalized Steiner sets. We introduce the Banach space of generalized Steiner sets as well as an embedding of convex sets in this space using Steiner points. In this Banach space we can easily define a difference and a directional derivative. We use the latter for new optimality conditions for set optimization. Numerical examples illustrate the new concepts

    Set approach for set optimization with variable ordering structures

    Get PDF
    This paper aims at combining variable ordering structures with set relations in set optimization, which have been dened using the constant ordering cone before. Since the purpose is to connect these two important approaches in set optimization, we do not restrict our considerations to one certain relation. Conversely, we provide the reader with many new variable set relations generalizing the relations from [16, 25] and discuss their usefulness. After analyzing the properties of the introduced relations, we dene new solution notions for set-valued optimization problems equipped with variable ordering structures and compare them with other concepts from the literature. In order to characterize the introduced solutions a nonlinear scalarization approach is used.Mathematics subject classifcations (MSC 2000): 49J53, 90C29, 90C30, 54C60, 06A7

    Nonconvex and mixed integer multiobjective optimization with an application to decision uncertainty

    Get PDF
    Multiobjective optimization problems commonly arise in different fields like economics or engineering. In general, when dealing with several conflicting objective functions, there is an infinite number of optimal solutions which cannot usually be determined analytically. This thesis presents new branch-and-bound-based approaches for computing the globally optimal solutions of multiobjective optimization problems of various types. New algorithms are proposed for smooth multiobjective nonconvex optimization problems with convex constraints as well as for multiobjective mixed integer convex optimization problems. Both algorithms guarantee a certain accuracy of the computed solutions, and belong to the first deterministic algorithms within their class of optimization problems. Additionally, a new approach to compute a covering of the optimal solution set of multiobjective optimization problems with decision uncertainty is presented. The three new algorithms are tested numerically. The results are evaluated in this thesis as well. The branch-and-bound based algorithms deal with box partitions and use selection rules, discarding tests and termination criteria. The discarding tests are the most important aspect, as they give criteria whether a box can be discarded as it does not contain any optimal solution. We present discarding tests which combine techniques from global single objective optimization with outer approximation techniques from multiobjective convex optimization and with the concept of local upper bounds from multiobjective combinatorial optimization. The new discarding tests aim to find appropriate lower bounds of subsets of the image set in order to compare them with known upper bounds numerically.Multikriterielle Optimierungprobleme sind in diversen Anwendungsgebieten wie beispielsweise in den Wirtschafts- oder Ingenieurwissenschaften zu finden. Da hierbei mehrere konkurrierende Zielfunktionen auftreten, ist die Lösungsmenge eines derartigen Optimierungsproblems im Allgemeinen unendlich groß und kann meist nicht in analytischer Form berechnet werden. In dieser Dissertation werden neue Branch-and-Bound basierte Algorithmen zur Lösung verschiedener Klassen von multikriteriellen Optimierungsproblemen entwickelt und vorgestellt. Der Branch-and-Bound Ansatz ist eine typische Methode der globalen Optimierung. Einer der neuen Algorithmen löst glatte multikriterielle nichtkonvexe Optimierungsprobleme mit konvexen Nebenbedingungen, während ein zweiter zur Lösung multikriterieller gemischt-ganzzahliger konvexer Optimierungsprobleme dient. Beide Algorithmen garantieren eine gewisse Genauigkeit der berechneten Lösungen und gehören damit zu den ersten deterministischen Algorithmen ihrer Art. Zusätzlich wird ein Algorithmus zur Berechnung einer Überdeckung der Lösungsmenge multikriterieller Optimierungsprobleme mit Entscheidungsunsicherheit vorgestellt. Alle drei Algorithmen wurden numerisch getestet. Die Ergebnisse werden ebenfalls in dieser Arbeit ausgewertet. Die neuen Algorithmen arbeiten alle mit Boxunterteilungen und nutzen Auswahlregeln, sowie Verwerfungs- und Terminierungskriterien. Dabei spielen gute Verwerfungskriterien eine zentrale Rolle. Diese entscheiden, ob eine Box verworfen werden kann, da diese sicher keine Optimallösung enthält. Die neuen Verwerfungskriterien nutzen Methoden aus der globalen skalarwertigen Optimierung, Approximationstechniken aus der multikriteriellen konvexen Optimierung sowie ein Konzept aus der kombinatorischen Optimierung. Dabei werden stets untere Schranken der Bildmengen konstruiert, die mit bisher berechneten oberen Schranken numerisch verglichen werden können
    corecore