
Faculty of Mathematics and Natural Sciences
Mathematical Methods of Operations Research

Nonconvex and Mixed Integer
Multiobjective Optimization with an
Application to Decision Uncertainty

by

Julia Niebling

Doctoral Thesis
in partial fulfillment of the requirements

for the degree Dr. rer. nat.

Supervisor: Prof. Dr. Gabriele Eichfelder

Second Reviewer: Prof. Dr. Kathrin Klamroth

Third Reviewer: Prof. Dr. Oliver Stein

Date of Submission: October 15, 2019

Date of Defense: December 18, 2019

urn:nbn:de:gbv:ilm1-2019000503

https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019000503

Acknowledgments

”We must have perseverance and above all confidence in ourselves. We
must believe that we are gifted for something and that this thing must be
attained.” Marie Curie (1867-1934)

Doing a doctorate is associated with facing a lot of challenges and motivational gaps,
having ups and downs, getting in touch with success and drawbacks. However, I am
grateful that I had people in my life who accompanied me on this way.

First, I want to express my gratitude to Prof. Dr. Gabriele Eichfelder for supervising
me, guiding me and keeping me on track. Thanks for valuable discussions as well as
some cheer-ups by certain, popular comic strips.

I appreciate the many possibilities to participate in conferences and workshops to
present my research and meet other scientists. At this point, I would like to thank Dr.
Thomas Boeck, Prof. Dr. Marianna De Santis, Prof. Dr. Kathrin Klamroth, Prof. Dr.
Andreas Löhne, M. Sc. Stefan Rocktäschel, Prof. Dr. Oliver Stein and Dr. Benjamin
Weißing for their scientific support or doing research together.

Moreover, I want to thank theThuringian State Graduate Support Regulation, the Carl
Zeiss foundation, and the DFG-funded Research Training Group 1567 “Lorentz Force
Velocimetry and Lorentz Force Eddy Current Testing” for financial support.

Last, but not least, my personal thanks and a lot of love go tomy family, my friends and
my boyfriend who were always by my side listening to my complaints, encouraging
me and motivating me. Thanks, mom and dad, that you recognized my talents early
and that you supported me my whole life. Danke!

Abstract

Multiobjective optimization problems commonly arise in different fields like econo-
mics or engineering. In general, when dealing with several conflicting objective func-
tions, there is an infinite number of optimal solutions which cannot usually be deter-
mined analytically.

This thesis presents new branch-and-bound-based approaches for computing the glob-
ally optimal solutions of multiobjective optimization problems of various types. New
algorithms are proposed for smooth multiobjective nonconvex optimization problems
with convex constraints as well as for multiobjective mixed integer convex optimiza-
tion problems. Both algorithms guarantee a certain accuracy of the computed solu-
tions, and belong to the first deterministic algorithms within their class of optimiza-
tion problems. Additionally, a new approach to compute a covering of the optimal
solution set of multiobjective optimization problems with decision uncertainty is pre-
sented. The three new algorithms are tested numerically. The results are evaluated in
this thesis as well.

The branch-and-bound based algorithms deal with box partitions and use selection
rules, discarding tests and termination criteria. The discarding tests are the most im-
portant aspect, as they give criteria whether a box can be discarded as it does not
contain any optimal solution. We present discarding tests which combine techniques
from global single objective optimization with outer approximation techniques from
multiobjective convex optimization and with the concept of local upper bounds from
multiobjective combinatorial optimization. The new discarding tests aim to find ap-
propriate lower bounds of subsets of the image set in order to compare them with
known upper bounds numerically.

Kurzfassung

Multikriterielle Optimierungprobleme sind in diversen Anwendungsgebieten wie bei-
spielsweise in den Wirtschafts- oder Ingenieurwissenschaften zu finden. Da hierbei
mehrere konkurrierende Zielfunktionen auftreten, ist die Lösungsmenge eines derar-
tigen Optimierungsproblems im Allgemeinen unendlich groß und kann meist nicht in
analytischer Form berechnet werden.

In dieser Dissertation werden neue Branch-and-Bound basierte Algorithmen zur Lö-
sung verschiedener Klassen von multikriteriellen Optimierungsproblemen entwickelt
und vorgestellt. Der Branch-and-Bound Ansatz ist eine typische Methode der globa-
len Optimierung. Einer der neuen Algorithmen löst glatte multikriterielle nichtkon-
vexe Optimierungsprobleme mit konvexen Nebenbedingungen, während ein zweiter
zur Lösung multikriterieller gemischt-ganzzahliger konvexer Optimierungsprobleme
dient. Beide Algorithmen garantieren eine gewisse Genauigkeit der berechneten Lö-
sungen und gehören damit zu den ersten deterministischen Algorithmen ihrer Art.
Zusätzlich wird ein Algorithmus zur Berechnung einer Überdeckung der Lösungs-
menge multikriterieller Optimierungsprobleme mit Entscheidungsunsicherheit vor-
gestellt. Alle drei Algorithmen wurden numerisch getestet. Die Ergebnisse werden
ebenfalls in dieser Arbeit ausgewertet.

Die neuen Algorithmen arbeiten alle mit Boxunterteilungen und nutzen Auswahl-
regeln, sowie Verwerfungs- und Terminierungskriterien. Dabei spielen gute Verwer-
fungskriterien eine zentrale Rolle. Diese entscheiden, ob eine Box verworfen werden
kann, da diese sicher keine Optimallösung enthält. Die neuen Verwerfungskriterien
nutzenMethoden aus der globalen skalarwertigenOptimierung, Approximationstech-
niken aus der multikriteriellen konvexen Optimierung sowie ein Konzept aus der
kombinatorischen Optimierung. Dabei werden stets untere Schranken der Bildmen-
gen konstruiert, die mit bisher berechneten oberen Schranken numerisch verglichen
werden können.

Table of Contents

1 Introduction 1
1.1 Organization of this Thesis . 1
1.2 Literature Review . 3

1.2.1 General Multiobjective Optimization with Continuous Vari-
ables . 3

1.2.2 Multiobjective Mixed Integer Nonlinear Optimization . . 6
1.2.3 Dealing with Uncertainties 7

1.3 Main Contribution of this Thesis 9

2 Basics of Multiobjective Optimization 11
2.1 Order Relations . 11
2.2 The Multiobjective Optimization Problem 13
2.3 Optimality Notions in Multiobjective Optimization 13
2.4 Approximate Solutions of Multiobjective Problems 15

3 Optimization Tools Utilized for the New Algorithms 19
3.1 Interval Arithmetic . 19
3.2 Convex Underestimators . 22
3.3 Benson’s Outer Approximation Algorithm 26
3.4 Local Upper Bounds . 34
3.5 A Basic Branch-and-Bound Method 39

4 A Global Solution Method for Multiobjective Nonconvex Optimiza-
tion 41
4.1 Discarding Test and Termination Procedure 42

4.1.1 Computing Lower and Upper Bounds 42
4.1.2 The Discarding Test Procedure 45

Table of Contents i

4.1.3 Some Notes on the Termination Procedure 52
4.2 Selection and Bisection Rules . 53
4.3 The Complete Algorithm . 54
4.4 Convergence Results . 56

4.4.1 Termination . 56
4.4.2 Correctness . 59

4.5 Discussion of Related Procedures 65
4.5.1 B&B Algorithms . 65
4.5.2 Heuristic Algorithms . 72

4.6 Conclusions . 75

5 Numerical Results for MOPBB 77
5.1 Numerical Results for some Test Instances 77
5.2 Application in Lorentz Force Velocimetry 82
5.3 Numerical Comparison with NSGA-II 86

5.3.1 Performance Indicators . 87
5.3.2 New Test Instances and Settings 89
5.3.3 Results . 94

6 Solving Multiobjective Mixed Integer Convex Optimization Prob-
lems 105
6.1 Definitions and Notations for MOMICPs 106
6.2 An Outer Approximation Based B&B Algorithm for MOMICPs . . 108

6.2.1 Computation of Upper Bounds 109
6.2.2 Determining Lower Bounds and Pruning Nodes 113
6.2.3 Correctness of MOMIX . 119

6.3 Numerical Results . 122
6.3.1 Branching Rules . 122
6.3.2 Results on Scalable Instances 124
6.3.3 Results on a Triobjective Instance 130
6.3.4 Results on a Non-Quadratic Convex Instance 131

6.4 Conclusions . 132

ii Table of Contents

7 SolvingMultiobjectiveOptimizationProblemswithDecisionUncer-
tainty 135
7.1 Specific Preliminaries for Multiobjective Optimization with Decision

Uncertainty . 135
7.1.1 Decision Uncertainty . 136
7.1.2 Relation to Set Optimization 139

7.2 Algorithmic Approach . 140
7.2.1 Concave Overestimators 141
7.2.2 Upper Bound Sets . 143
7.2.3 Lower Bound Sets . 148
7.2.4 Discarding Test . 150

7.3 The Algorithm and Numerical Results 151
7.3.1 The B&B Algorithm . 151
7.3.2 Numerical Results . 155

7.4 Conclusions . 161

A Appendix I

List of Nomenclature IX

List of Abbreviations XIII

List of Symbols XIV

List of Tables XVI

List of Figures XVII

List of Algorithms XVIII

Bibliography XX

Table of Contents iii

1 Introduction

A typical optimization problem consists of two things: an objective function and a
feasible set. When minimizing a classical single objective optimization problem, one
is interested in finding the smallest value of the objective function with respect to the
given feasible set. All other values of the objective function on the feasible set are
greater or equal to the desired “minimal” value. When using a total order relation,
the existence of this minimal value is equivalent to its uniqueness. All feasible points
that get mapped onto the minimal value are called optimal solutions of the single ob-
jective optimization problem. These terms are often used in a global sense, but also
locally optimal solutions may be of interest. As opposed to a globally optimal solu-
tion, a locally optimal solution is only required to obtain a minimal value in one of
its neighborhoods. Most algorithms for solving optimization problems only aim for
finding locally optimal solutions. This is reasonable since locally optimal solutions are
also globally optimal if we demand some additional properties. The usual way is to
require convexity of the objective function and the feasible set.

This thesis examines multiobjective optimization problems. Hence, we are interested
in the simultaneous minimization of more than one objective function. In general, we
cannot assume the existence of one point minimizing all objective functions at once.
As a consequence, we need to establish a different optimality concept than in single
objective optimization. Furthermore, wewant to ensure global optimality of the found
solutions.

1.1 Organization of this Thesis

This thesis proposes algorithms for different kinds ofmultiobjective optimization prob-
lems in order to find globally optimal solutions. In the next section of the current

1 Introduction 1

chapter, we review the existing literature concerning each kind of multiobjective opti-
mization problem considered in this work. Therein, each subsection contains a survey
on existing algorithms and issues about the respective optimization problem. Sec-
tion 1.2.1 deals with general multiobjective optimization, while Section 1.2.2 reviews
existing literature on multiobjective mixed integer optimization. The last subsection
in this chapter, Section 1.2.3, offers an overview of works dealing with uncertainty in
multiobjective optimization. After the literature review, we continue by stating the
main developments and insights for multiobjective optimization contributed by this
thesis.

The next chapter, Chapter 2, is dedicated to the introduction into multiobjective op-
timization clarifying the most important notions and definitions. Many tools in opti-
mization are already established. The ones which play an essential role in this work
are mentioned and explained in Chapter 3.

The topics of the next chapters are the newly developed algorithms for the different
types of multiobjective optimization problems. In Chapter 4, we start by considering
multiobjective optimization problems with smooth objective functions and a feasible
set described by continuous variables and convex constraints. The algorithm MOPBB

proposed in this chapter is one of the main contributions of this thesis and, thus, a
convergence analysis and numerical experiments are given. The numerical results are
stated in Chapter 5. It consists of illustrative examples and an application in the field of
Lorentz Force velocimetry. Moreover, MOPBB is compared numerically with another
algorithm in this chapter.

The newly developed techniques can also be applied for other optimization problems.
The algorithm MOMIX, described in Chapter 6, solves multiobjective mixed integer
convex optimization problems, i. e., optimization problems with continuous and inte-
ger decision variables and convex objective functions. For this procedure, theoretical
results concerning convergence and numerical results are presented.

Another new algorithm was developed for multiobjective optimization problems with
decision uncertainty and is presented in Chapter 7. Decision uncertainty means that
the variables are associated with uncertainties. For example, a certain temperature
which solves an optimization problem cannot be realized exactly within high preci-
sion. We model such problems as set optimization problems. Thus, new methods

2 1 Introduction

in order to compute lower and upper bounds of sets are proposed and used for the
new algorithm MOPDUBB to obtain a covering of the optimal solution set. The chapter
concludes with several examples of numerical experiments.

All terms and symbols which are standard mathematical vocabulary are listed after
Appendix A. All special terms or notions which play an important role in this thesis
are mentioned and defined in the relevant parts.

1.2 Literature Review

This section gives an overview of existing algorithms concerning multiobjective op-
timization and related topics. The first part represents a review of academic research
on general multiobjective optimization. Afterwards, we consider more specific opti-
mization, i. e., multiobjective mixed integer convex optimization problems as well as
multiobjective problems with uncertainties, and set optimization. As we have not de-
fined the notions for the solutions of a multiobjective optimization problem yet, these
are denoted by optimal solutions or images of optimal solutions in this section. The
proper definitions are stated in Section 2.3.

1.2.1 General Multiobjective Optimization with Continuous
Variables

Several algorithms already exist for solvingmultiobjective (convex) optimization prob-
lems, see [Ehr05; Jah11] for an introduction and overview. Most of them are based
on scalarization approaches [Eic08; FV16; MGS09]. In these approaches a new single
objective problem depending on some parameters is derived and solved by known
methods for single objective optimization problems. For instance, the weighted sum
scalarization is a sum of the objective functions each of them multiplied by a positive
weight. With a set of parameter values (e.g., weights) and more iterations, an approx-
imation of the optimal solution set can be obtained. If we only use local methods to
find optimal solutions of the nonconvex single objective problems, we will just ob-
tain locally optimal solutions of the original vector-valued problem. Using a global

1.2 Literature Review 3

solver for each choice of parameters for the scalarization problems is a very time-
consuming and inefficient approach. Moreover, most scalarizations turn some of the
nonconvex objective functions into constraints, but it is well-known that nonconvex
constraints are especially difficult to handle [KSS15]. The weighted sum scalarization
avoids this, even though it is not an appropriate scalarization for nonconvex problems.
Therefore, the development of global solvers for multiobjective optimization problems
without using scalarizations is important. For an introduction to global optimization,
see [HT10].

Many methods for global optimization use stochastic strategies. Evolutionary algo-
rithms are commonly used, see, for example, [Deb99; Deb01; Deb+02a; FF95; VFM96].
These algorithms try to find globally optimal solutions by mutation and crossover of
individuals of a constructed population, i. e., some feasible points of the optimization
problem. In fact, these procedures are able to find a global minimum in an infinite
amount of time, but they do not guarantee finding a good solution in a finite time.
That is one reason why it is of special interest to propose deterministic algorithms.

A deterministic approach to find globally optimal solutions for multiobjective opti-
mization problems was introduced by Jahn [Jah06]. In this approach, a search region
in the preimage space is discretized and then refined into “promising” areas. Though,
higher dimensions of the preimage space require a larger number of function evalua-
tions. This is due to the fact that Jahn’s method does not use any information about
derivatives. Another derivative-free algorithm for multiobjective optimization prob-
lems was proposed by Custódio and Madeira in [CM18] which is based on a direct
search approach with a multistart strategy and is also able to find globally optimal
solutions.

Some other algorithms for multiobjective optimization are based on inner or outer
approximation techniques. A popular algorithm for multiobjective linear optimiza-
tion is Benson’s algorithm [Ben98a] and its generalization to multiobjective convex
optimization [LRU14]. We consider this algorithm in Section 3.3 further. An approxi-
mation algorithm for multiobjective convex or nonconvex optimization can be found
in [SKW02]. It combines cones and norms to get a piecewise linear approximation of
the set of optimal solutions in the image space.

4 1 Introduction

Other global optimization algorithms are based on branch-and-bound (B&B) meth-
ods, see [Adj+98; Aud+00; Cam+18; Dür01; HP09; MF94; TH88; Wan+08]. In [Sch12],
general frameworks for geometric B&B algorithms for single and multiobjective opti-
mization are introduced. Additionally, certain bounding operations and convergence
theory are described. For single objective optimization problems, two of the most
well-known algorithms, which use box partitions, are the DIRECT algorithm [JPS93]
and the αBB method [MF94]. The DIRECT algorithm focuses on selecting boxes to
have a good balance between a local and a global search strategy. However, it cannot
guarantee finding good solutions in finite time [LS13b]. In contrast to this, the αBB al-
gorithm uses lower bounds of the global minimum which are obtained by minimizing
a convex underestimator of the objective function. These bounds are then improved
until a given accuracy is reached. Other methods for finding lower bounds for global
minima use maximal values of the dual problem [Dür01], or use the Lipschitz constant
[LS13a; ŽŽ16]. The DIRECT algorithm was also extended to multiobjective optimiza-
tion problems, see [Cam+18; Wan+08]. However, in most cases the multiobjective
version of the DIRECT algorithm shows bad convergence results and has to be accel-
erated by another global or local optimization method.

The first B&B based algorithm for more than one objective function and with some
basic convergence results was introduced by Fernández and Tóth in [FT09]. The de-
scribed procedure solves biobjective optimization problems, i.e., optimization prob-
lem with two objective functions, and is based on interval arithmetic. Another inter-
val B&B algorithm for biobjective optimization problems is proposed by Martin et al.
in [Mar+16]. It is similar to the one of [FT09], but it can handle equality constraints.
In addition, more discarding tests are applied and it uses a much more elaborated pro-
cedure to prune considered boxes to their interesting areas. The paper by Araya et
al. [ACA19] proposes further improvements. Recently, another algorithm for biob-
jective optimization problems was proposed by A. and J. Žilinskas, see [ŽŽ16] and
also [PŽŽ17]. They use the Lipschitz property of the objective functions and iterative
trisections of the feasible set which is assumed to be a box. An extension to more
general constraints might be possible, though it is not obvious how to accomplish
this.

Another algorithm for multiobjective optimization problems with box constraints was
introduced by Evtushenko and Posykin in [EP13; EP14]. They propose an algorithm

1.2 Literature Review 5

which guarantees a certain accuracy of the determined solutions in the image space.
Themultiobjective algorithm by Scholz, [Sch12], also provides accuracies of computed
solution. This accuracy concept is very similar to the one we use in this thesis. More-
over, some more discarding tests also for unconstrained optimization problems are
introduced in the work by [Sch12]. These tests work with necessary optimality con-
ditions. In Section 4.5, we consider most of the known algorithms for multiobjective
optimization problems in detail.

1.2.2 Multiobjective Mixed Integer Nonlinear Optimization

So far, most of the existing algorithms for multiobjective mixed integer optimization
are only for linear optimization problems. Those can be divided into two main classes:
decision space search algorithms, i. e., approaches that work in the space of feasible
points, and criterion space search algorithms, i. e., methods that work in the image
space.

Among the decision space search algorithms, the method proposed by Mavrotas and
Diakoulaki, [MD98], is the first B&B algorithm for solvingmultiobjectivemixed binary
programs. The authors improved and extended their work in [Mav09; MD05]. Other
approaches defining B&B algorithms for multiobjective integer linear programming
problems are [EG07; SS08]. There, the aim for the bounding procedure is to define
proper hyperplanes in the objective space in order to separate the upper and lower
bound sets. Our new algorithms which will be proposed in Chapter 6 belong to the
decision space search algorithms.

On the other hand, criterion space search algorithms find images of optimal solutions
by addressing a sequence of single objective optimization problems. Once an image
of an optimal solution is computed, dominated parts of the criterion space are re-
moved and the algorithms continue the search for new images of optimal solutions.
Several contributions in the context of criterion space search algorithms for biobjec-
tive and triobjective integer linear programming are given by Boland and co-authors,
see [BCS15; BCS16; BCS17a; BCS17b].

6 1 Introduction

As far as we know, the first general purpose method to tackle multiobjective mixed
integer convex programs is the heuristic approach based on a B&B algorithm proposed
by Cacchiani and D’Ambrosio in [CD17].

A classical technique to solve a multiobjective optimization problem is to convert
the problem into a parameter-dependent single objective one, known as scalariza-
tion. This approach was recently followed by Burachik et al. [BKR19] for multiobjec-
tive mixed integer optimization problems (see also the comment in the conclusions
of [BKR17]). The scalarized problems are then parameter-dependent single objective
mixed integer convex optimization problems. By following this approach, many of
these single objective problems have to be solved, one for each choice of the parame-
ter’s value. No gained information of pre-solved problems are typically used thereby.
Furthermore, it is not clear how to choose the parameter values in a smart way and
this is an open challenge: as the set of the images of optimal solutions is in general
disconnected and can have huge gaps, many subproblems defined according to differ-
ent parameter’s values might lead to the same objective values and, thus, solving such
subproblems is a wasted effort.

Contrary to the heuristic method in [CD17] and the scalarization approach in [BKR19],
we propose a procedure which works analytically, and uses already gained informa-
tion throughout the algorithm.

1.2.3 Dealing with Uncertainties

Dealing with multiobjective optimization for real life problems can lead to an addi-
tional difficulty. Often, the calculated optimal solutions cannot be used precisely, be-
cause they can only be realized within a certain accuracy. This is, for instance, the
case, when a magnet system for a measurement technique for electrically conducting
fluids should be constructed, see [EKS17]. There, the optimal direction of the magneti-
zation of each magnet and the optimal magnetization have to be determined such that
the so-called Lorentz force is maximized and the weight of the system is minimized. In
practice, an (optimally) chosen magnetic direction cannot be realized in any arbitrary
accuracy, as magnets can only be produced within some tolerances. Therefore, deci-
sion uncertainty has to be taken into account. Another example is the growing media

1.2 Literature Review 7

mixing problem for a plant nursery, see [EKS17; Krü+18; Krü18b]. There, a mixture
of peat and compost for the growing media has to be determined, which can also not
be mixed exactly by workers.

Also, in case of such uncertainties in the realization of variables, the actual realized so-
lutions should lead to near-optimal values. This kind of uncertainty in optimization is
called decision uncertainty, which should be distinguished from parameter uncertainty,
because the inaccuracies are caused by the decision variables, [EKS17]. Parameter
uncertainty was considered in several works, for instance, in [BGN09] in the single
objective case, or in [FW14; Gob+14; KL12] for the multiobjective case.

Decision uncertainty for single objective optimization problems has been handled
with minmax robustness under different names like robust optimization with imple-
mentation error, e. g., in [BN02], or robust regularization, e. g. in [LP09]. In multi-
objective optimization there are also different approaches to treat uncertainties, such
as sensitivity analysis [BA06], or evaluating the mean or integral of each objective
over the set of possible values of a solution [DG06], or adding a robustness measure
as a new objective function [ZMK19]. We follow the so-called worst-case robustness
approach as it was done in [EKS17], see also [Krü18a].

In the worst case approach one considers all possible outcomes leading to sets which
have to be compared. In the single objective case these sets are just intervals, which
can be compared much easier numerically. In case of a multiobjective optimization
problem with m objectives we have to compare subsets of Rm. This means, we have
to solve a specific set-valued optimization problem with a certain set-order relation to
handle the uncertainties.

In set-valued optimization different possibilities to compare sets are discussed in the
literature. In case of the worst-case approach we have to use the upper-type less order
relation, see, for instance, [Kur98; JH11]. When comparing whole sets one also speaks
of the set approach in set-valued optimization. So far, there is only a limited number
of numerical algorithms to solve such set optimization problems. For unconstrained
set-valued optimization and a similar order relation, Löhne and Schrage introduced
an algorithm in [LS13c], which is only applicable for linear problems. Jahn presented
some derivative-free algorithms, see [Jah15], to find one single solution of the whole
set of optimal solutions in case the sets which have to be compared are convex. Köbis

8 1 Introduction

and Köbis extended themethod from [Jah15] to the nonconvex case, i. e., when the sets
are nonconvex, see [KK16]. However, all methods aim at finding only one single min-
imal solution. In [Jah18] for the first time a method for nonconvex sets is presented,
which uses discretization to compare sets and which can findmanyminimal solutions,
but still not all. The procedure was parallelized and implemented on a CPU and GPU.
As set-valued optimization problems have in general an infinite number of optimal
solutions, a representation of the whole set of optimal solutions is of interest.

In [EKS17], see also [Krü+18; Krü18b], for some specific multiobjective decision un-
certain optimization problems, solution approaches or characterizations of the optimal
solution set have been provided. But they are all for specific cases only, as for linear
or for monotone objective functions.

1.3 Main Contribution of this Thesis

This thesis proposes a series of algorithms for solving multiobjective optimization
problems with different issues. The difficulty of the first type of multiobjective op-
timization problems is that the objective functions can be nonconvex and we aim
for globally optimal solutions. The new algorithm MOPBB which handles that kind
of optimization problem is one of the first deterministic algorithms which provides
an accuracy of the computed solutions. Additionally, the lower bounding procedure
establishes non-singleton lower bounds which are described by hyperplanes. Those
hyperplanes are constructed only if they improve a lower bound in order to discard
a subbox. Thereby, we use existing methods and ideas, and combine them to a new
discarding procedure. This work resulted in a publication, see [NE19].

The methods utilized in algorithm MOPBB can also be applied to other optimization
problems like mixed integer problems. Considering such optimization problems, one
has to deal with a nonconvex feasible set, because at least one of the variables is re-
stricted to be integer. We address this difficulty with similar methods as the ones
for the multiobjective nonconvex optimization problem with continuous variables.
For a first simplification, the objective functions of the multiobjective mixed integer
problem are assumed to be convex. The resulting algorithm is the first one which is

1.3 Main Contribution of this Thesis 9

able to approximate the optimal solution set of a multiobjective mixed integer convex
optimization problem. About those results, we have written a paper submitted for
publication, see [DeS+19]. This article is based on a master thesis, see [Roc18], whose
main ideas were improved. My contribution to the article [DeS+19] includes the main
work on the article (writing, proving) in cooperation with the first author. For the
numerical part, I added the new main idea to the existing implementation, improved
it and tested the procedure extensively.

The third difficulty in the context of multiobjective optimization considered in this
thesis is uncertainty in the realization of the decision variables of a multiobjective op-
timization problem. We model such problems by a set optimization problem. The im-
ages of the objective function of such optimization problems are sets. For comparing
these sets in the image space, we need lower and upper bounds. Thus, we developed a
completely new bounding procedure for those special types of sets and an algorithm
to obtain a covering of the optimal solution set in the preimage and the image space.
The base of this topic is a bachelor thesis supervised by myself, see [Roc16], which re-
sulted in a publication [ENR19]. Besides the supervision, my contribution to this work
includes collecting, summarizing, and checking of all important facts. Moreover, the
implementation by the bachelor student was improved and exhaustively tested bymy-
self.

10 1 Introduction

2 Basics of Multiobjective Optimization

This section is dedicated to the basics of solving multiobjective optimization problems.
Since we want to reach a minimum, we have to compare vectors in the multiobjective
context. A short introduction to order relations is given in Section 2.1. Although we
will only use the typical order relation in Rm in most of the chapters, this is also the
basis for dealing with set order relations in Section 7.1.2. Next, we introduce the basic
multiobjective optimization problem as well as the notions for the optimal solutions of
this problem. Additionally, some of the different concepts for approximate solutions of
a multiobjective optimization problem are mentioned and discussed in Section 2.4.

2.1 Order Relations

Order relations are a common concept in mathematics as they allow to compare two
elements of a set. Let S be an arbitrary set. A binary relation R on S is a subset of
S × S.

Definition 2.1 [Ehr05, Def. 1.4] LetR ⊆ S×S be a binary relation on S. The relation
R is called

(i) reflexive if (x, x) ∈ R for all x ∈ S;
(ii) antisymmetric if (x, y) ∈ R and (y, x) ∈ R =⇒ x = y for all x, y ∈ S;
(iii) transitive if (x, y) ∈ R and (y, z) ∈ R =⇒ (x, z) ∈ R for all x, y, z ∈ S;
(iv) total if (x, y) ∈ R or (y, x) ∈ R for all x, y ∈ S.

Order relations are special binary relations on S which fulfill transitivity, see Defini-
tion 2.1 (iii). Other special order relations are defined as follows:

2 Basics of Multiobjective Optimization 11

Definition 2.2 [Ehr05, Def. 1.5, 1.8, 1.10] Let R ⊆ S × S be a binary relation on S.
The relationR is called

(i) a preorder/quasi order ifR is reflexive and transitive;
(ii) a partial order ifR is reflexive, transitive and antisymmetric;
(iii) a total order ifR is reflexive, transitive, antisymmetric and total.

Remark 2.3 [Jah13, Def. 1.6, Th. 1.18, Def. 1.19] If S is a real linear space, we ad-
ditionally assume that a partial order R is compatible with the linear structure of S,
i. e., it holds

(i) (x, y) ∈ R, (w, z) ∈ R =⇒ (x+ w, y + z) ∈ R for all x, y, w, z ∈ S;
(ii) (x, y) ∈ R, α ∈ R+ =⇒ (αx, αy) ∈ R.

In a real linear space, a partial order relation R is induced by a convex cone K ⊆ S,
i. e.,

(x, y) ∈ R ⇔ y − x ∈ K.

We call K an ordering cone (of the relationR).

As usual, we also write xRy instead of the pairwise form (x, y) ∈ R. In this work,
we mainly compare elements of the spaces R and Rm. Therefore, we deal with the
componentwise order relations. For them-dimensional real space and y1, y2 ∈ Rm we
consider:

y1 ≤ y2 ⇔ y2 − y1 ∈ Rm
+ ⇔ y1j ≤ y2j for all j = 1, . . . ,m

y1 < y2 ⇔ y2 − y1 ∈ int(Rm
+) ⇔ y1j < y2j for all j = 1, . . . ,m

The order relation ≤ is a partial order relation on Rm whereas only transitivity holds
for <. Thus, < is neither a partial order nor a preorder.

In addition to these relations, we make use of the following ones:

y1 � y2 ⇔ y1 ≤ y2 and y1 6= y2

y1 � y2 ⇔ y1j > y2j for at least one j = 1, . . . ,m.

In case of y1 � y2, we say that y1 and y2 cannot be compared.

12 2 Basics of Multiobjective Optimization

2.2 The Multiobjective Optimization Problem

Let M ⊆ Rn be a nonempty set and f1, . . . , fm : Rn → R be the given objective
functions. The general multiobjective optimization problem is defined by:

min f(x) =


f1(x)
...

fm(x)


subject to (s. t.) x ∈M

(P)

Throughout this thesis, we assume different properties for the optimization problem
which has to be solved by the proposed algorithms. At the moment, we only assume,
that the objective functions fj, j = 1, . . . ,m are continuous differentiable and the
feasible setM is non-empty and compact.

All more specific assumptions are stated in the relevant sections. The image of a set
S ⊆M with respect to (w. r. t.) f is denoted by f(S) := {f(x) | x ∈ S}.

2.3 Optimality Notions in Multiobjective
Optimization

Dealing with multiple objective functions and the partial order relation≤ onRm leads
to the following optimality concept. In general, there is no feasible point which min-
imizes each objective function at the same time. Instead, there are several feasible
points whose objective values even cannot be compared, and in most circumstances,
it is not clear which point of them leads to the smaller objective values. The most
common optimality concept for multiobjective optimization problems is efficiency.

Definition 2.4 [Ehr05, Def. 2.1, Def. 2.24] Let the optimization problem (P) be given.

(i) A point x∗ ∈ M is said to be an efficient point/solution for (P) if there exists no
x ∈M such that

f(x) � f(x∗),

2.2 The Multiobjective Optimization Problem 13

i. e., such that f(x) ≤ f(x∗) and f(x) 6= f(x∗).
(ii) A point x∗ ∈ M is said to be strictly efficient for (P) if there exists no x ∈M ,

x 6= x∗ such that f(x) ≤ f(x∗).
(iii) The set of all efficient points is called efficient set and is denoted by XE .
(iv) We say x1 dominates x2 if x1, x2 ∈M and f(x1) � f(x2) hold.

Definition 2.4 gives a notion for the variables of f , i. e., for points of the preimage space.
The next definition states some terms for the points and sets in the image space.

Definition 2.5 [Ehr05, Def. 2.1] Let the optimization problem (P) be given.

(i) A point y∗ = f(x∗) is said to be nondominated for (P) if x∗ is efficient for (P).
(ii) The set of all nondominated points is called nondominated set of (P).

The next definition states common notions to say whether a point in the image space
is “better” than another one. Also, we give a definition for a special property of a
subset of the m-dimensional space.

Definition 2.6 Let y1, y2 ∈ Rm be given

(i) We say y1 dominates y2 if y1, y2 ∈ Rm and y1 � y2.
(ii) We say y1 strictly dominates y2 if y1, y2 ∈ Rm and y1 < y2.
(iii) A setN ⊆ Rm is said to be stable if for any y1, y2 ∈ N either y1 � y2 or y1 = y2

holds.

Figure 2.1 shows an image set of a biobjective optimization problem.

The thick curve on the lower left boundary of f(M) is the nondominated set. The
point y∗ belongs to this set, because {y∗} − (Rm

+ \ {0}) does not contain any other
image point. Thus, y∗ is called nondominated. On the other hand, y′ is dominated by y∗

and, therefore, not a nondominated point of this biobjective optimization problem.

Remark 2.7 In the literature there are several terms for efficient and nondominated
like solution,minimal, Pareto-optimal, Edgeworth-Pareto/EP-optimal, Paretofront. [Ehr05,
Table 2.4] gives an extensive overview of the different notions for the concepts we use.

14 2 Basics of Multiobjective Optimization

f(M)

y∗

y′

f1

f2

Figure 2.1. Image set of a biobjective optimization problem.

2.4 Approximate Solutions of Multiobjective
Problems

The cardinality of the efficient and nondominated set is not finite in general. There-
fore, an algorithm for multiobjective optimization problems cannot find all efficient or
nondominated points. Instead, it usually calculates a finite representation or approx-
imation of those sets. For real-life problems these methods are more suitable because
a user has to choose from a finite set rather than from an infinite one. The algorithms
still have to ensure that they determine “nearly”-efficient or “nearly”-nondominated
points. We call those points approximate solutions — no matter if they belong to the
preimage or image set — because they are in some way close to an efficient or non-
dominated point, respectively. Different formal definitions for approximate solutions
are known in the literature. We start by the one utilized in this work. Let e ∈ Rm be
the m-dimensional all-ones vector (1, . . . , 1)T .

Definition 2.8 Let ε ≥ 0 and δ ≥ 0 be given.

(i) A point x̄ ∈M is an ε-efficient point of (P) if there exists no x ∈M with

f(x) � f(x̄)− εe.

2.4 Approximate Solutions of Multiobjective Problems 15

(ii) A set A ⊆ M is an (ε, δ)-efficient set of (P) if every point of A is an ε-efficient
point of (P) and if for all x∗ ∈ XE there is an x̄ ∈ A with ‖x̄− x∗‖ ≤ δ.

This definition of ε-efficiency was introduced in an equivalent version in [Kut79]. A
more general concept for approximate solutions for vector optimization can be found
in [GJN06].

Besides the notion of Definition 2.8, there are more concepts for approximate solutions
of a multiobjective optimization problem known. In what follows, we introduce those
concepts and their relation to ε-efficient points and (ε, δ)-efficient sets from Defini-
tion 2.8. Those notions are used for the computed points obtained by other procedures
which solve multiobjective optimization problems. These procedures will be consid-
ered in Section 4.5 in more detail. Most of the following propositions which state the
relation of one concept to ε-efficiency are not proved as the relations are very sim-
ple.

We start by a concept similar to ε-efficiency, that is also presented in [Lor84].

Definition 2.9 [Sch12, Def. 4.4] For a given ε ∈ Rm
+ , a point x̂ ∈M is called ε-Pareto

optimal for (P) if there is no x ∈M satisfying

f(x) � f(x̂)− ε.

Note that ε-Pareto optimality is defined for a vector ε ∈ Rm, while ε-efficiency is
defined for a scalar ε. Nevertheless, both concepts are closely related as follows:

Proposition 2.10 Let a multiobjective optimization problem (P) be given. Every ε-
efficient point of (P) is an εe-Pareto optimal point of (P).

Therefore, ε-Pareto optimality is a generalization of ε-efficiency as different accura-
cies for each objective function are allowed. If different accuracies for each objective
function of a multiobjective optimization problem are requested for ε-efficient points,
the objective functions can be multiplied by appropriate scalars. Additionally, it is
easy to see that efficient points of a multiobjective optimization problem are efficient
as well when the objective functions are multiplied by positive scalars.

16 2 Basics of Multiobjective Optimization

Another concept defines approximate solutions in the image space:

Definition 2.11 [EP14] Let (P) and a scalar ε ≥ 0 be given. A discrete set of points
Y ε ⊆ f(M) is called ε-Pareto set for (P) if the following conditions hold:

(i) For any nondominated point y∗, there exists a point yε ∈ Y ε such that

yε − εe ≤ y∗.

(ii) Y ε is a stable set (see Definition 2.6 (iii)).

This definition differs from our definition about ε-efficient points and (ε, δ)-efficient
sets. First, an ε-Pareto set Y ε is defined in the image space, while an (ε, δ)-efficient
setA is a subset of the preimage space. Second, Y ε has to be stable, whereas this is not
required for the image set ofA. If we take a subsetA′ ⊆ A such that f(A′) is a stable
set, it may happen that there is a δ-neighborhood of an efficient point which does not
contain any ε-efficient point of the new setA′. In this case,A′ is not an (ε, δ)-efficient
set. The following proposition states the similarities and a further slight difference of
both concepts.

Proposition 2.12 Let a multiobjective optimization problem (P) and an ε-Pareto set Y ε

of (P) be given. Moreover, consider a point yε ∈ Y ε for which a nondominated point y∗

with yε − εe ≤ y∗ exists. Then there is an ε-efficient point xε ∈M with f(xε) = yε.

Proof. Let yε be chosen from the set Y ε such that a nondominated point y∗ exists
with yε − εe ≤ y∗. Assume that a preimage xε of yε is not ε-efficient. Thus, there is an
x ∈M with f(x) 6= f(xε) = yε with f(x) � yε − εe. It follows f(x) � yε − εe ≤ y∗,

which contradicts the fact that y∗ is nondominated for (P). Hence, xε is ε-efficient
for (P).

The next concept by [FT09] is defined for biobjective optimization problems:

Definition 2.13 [FT09, Def. 16] Let x1, x2 ∈M be two feasible points, and β1, β2 ≥ 0

two non-negative scalars. We say that x1 (β1, β2)-superdominates x2 if it holds

f1(x
1) + β1 < f1(x

2) and f2(x
1) + β2 < f2(x

2).

2.4 Approximate Solutions of Multiobjective Problems 17

Proposition 2.14 Let a biobjective optimization problem, i. e., (P)withm = 2, be given.
An ε-efficient point for (P) is not (ε, ε)-superdominated by any other feasible point of
(P). The converse does not hold in general.

Proof. The first assertion is easy to see. To show that the converse does not hold, let
x̄ ∈ M be a point, which is not (ε, ε)-superdominated by any other feasible point.
This means, there is no x ∈ M with f1(x) < f1(x̄) − ε and f1(x) < f2(x̄) − ε. It is
still possible that there is a x̃ ∈M for which f1(x̃) = f1(x̄)− ε and f2(x̃) < f2(x̄)− ε

hold. In this case x̄ is not ε-efficient of (P).

18 2 Basics of Multiobjective Optimization

3 Optimization Tools Utilized for the New
Algorithms

In this chapter, we summarize some known results and techniques which will be used
for the new algorithms described in the following chapters. The first section consid-
ers interval arithmetic which is often used in global single objective optimization to
obtain lower and upper bounds for the globally minimal value. Another method for
obtaining lower bounds by convex underestimators is explained in the next section.
Section 3.3 introduces an algorithm which solves multiobjective linear or multiobjec-
tive convex optimization problems. Thereafter, another concept from multiobjective
(combinatorial) optimization is the topic of Section 3.4. Finally, we briefly introduce a
general B&B algorithm in Section 3.5.

3.1 Interval Arithmetic

In the following, we present the concept of interval arithmetic which is a common tool
in global optimization to handle n-dimensional intervals and interval-valued func-
tions. For a more extensive introduction to interval arithmetic, we refer the reader to
the common literature, see e.g. [Han92; Moo66; MKC09; Neu90]. A set X ⊆ Rn is
called n-dimensional box (or hyper rectangle) if there are two vectors x, x ∈ Rn with
x ≤ x such that

X := [x, x] := {x ∈ Rn | x ≤ x ≤ x}.

For a box X := [x, x] we define

inf(X) := x and sup(X) = x.

3 Optimization Tools Utilized for the New Algorithms 19

Theset of alln-dimensional real boxes is denoted by IRn. Thewidth of ann-dimensional
box X = [x, x] ∈ IRn is defined as

ω(X) := ‖x− x‖, (3.1)

where ‖·‖ is the Euclidean norm. It is possible to define the basic arithmetic operations
to enable the calculation with intervals or boxes.

Definition 3.1 [MKC09, (2.19)] Let X,Y ∈ IR and ∗ ∈ {+,−, ·, /}. Then we define

X ∗ Y = {x ∗ y | x ∈ X, y ∈ Y },

where X/Y is only defined if 0 /∈ Y holds.

In addition, this can be extended to elementary functions. Elementary functions belong
to the set of real, continuous (on every closed interval on which they are defined)
functions, [Neu90]. For example, typical elementary functions are |x|,

√
x, expx, lnx,

sinx, cos x and arctan(x). Usually, toolboxes which enable interval arithmetic work
with libraries to allow the box-valued evaluation of elementary functions. With those
tools it is further possible to combine elementary functions and interval operations
(+,−, ·, /), and thus, to evaluate more complicated functions on a box:

Definition 3.2 [Ste17; McC76] A function h : Rn → R is factorable if it can be for-
mulated as a concatenation of basic arithmetic operations (+,−, ·, /) and elementary
functions.

For every factorable function we can now define interval extensions and the natural
interval extension.

Definition 3.3 [MKC09, Def. 5.2] A function H : IRn → IR is an interval extension
of h : Rn → R if it holds

H([x1, x1], . . . , [xn, xn]) = [h(x1, . . . , xn), h(x1, . . . , xn)] for all x ∈ Rn.

20 3 Optimization Tools Utilized for the New Algorithms

Note that [h(x1, . . . , xn), h(x1, . . . , xn)] is an interval containing only one point, namely
h(x1, . . . , xn).

Definition 3.4 [MKC09, Section 5.4] For a factorable function h : Rn → R the natural
interval extension is the functionH : IRn → IR which is obtained if every occurrence
of xi in h is replaced by Xi, i = 1 . . . , n, and all basic arithmetic operations and
elementary functions are interpreted as interval operations.

The natural interval extension is a special interval extension. Since a function can usu-
ally be described by different formulas, each of these formulas leads to another natural
interval extension. For example, the function h defined by h(x) = x−x2 can be writ-
ten by h̃(x) = x(1−x) as well. Both natural interval extensionsH(X) = X −X ·X
and H̃(X) = X · (1−X) are interval extensions for h, but give in general different re-
sults when they are evaluated for a boxX . Upcoming issues are extensively discussed
in common literature, [Han92; Moo66; MKC09; Neu90]. An important property for
interval-valued functions is inclusion isotonicity:

Definition 3.5 [MKC09, Def. 5.4] A function H : IRn → IR is inclusion isotonic if
X̃ i ⊆ Xi, i = 1, . . . , n, implies H(X̃1, . . . , X̃n) ⊆ H(X1, . . . , Xn).

Remark 3.6 [MKC09, Section 5.4] By Definition 3.1, the operators +,−, ·, / on R
are inclusion isotonic. Toolboxes for interval arithmetic are implemented in such a
way that the natural interval extension is also inclusion isotonic. For calculations for
this thesis, we use the MATLAB toolbox Intlab [Rum99] for interval arithmetic which
works with inclusion isotonic natural interval extensions.

Theorem 3.7 [Moo66] Define h(X1, . . . , Xn) := {h(x) | xi ∈ Xi for all i = 1 . . . , n}.
If H is an inclusion isotonic interval extension of h, it holds that

h(X1, . . . , Xn) ⊆ H(X1, . . . , Xn).

This is the fundamental theorem of interval arithmetic and the reason why interval
arithmetic is a common tool for calculating lower bounds of function values on a given

3.1 Interval Arithmetic 21

box. As the image set of h on X ∈ IRn is always a subset of the image box obtained
by an inclusion isotonic interval extension H to X , inf(H(X)) is a lower bound for
all h(x) with x ∈ X .

3.2 Convex Underestimators

Another way to calculate lower bounds for real-valued functions was proposed in
[MF94] under the name αBB and is based on the concept of convex underestimators.

Definition 3.8 Let a function h : X → R on a box X = [x, x] ∈ IRn be given.
A function ĥ : X → R is called convex underestimator for h on X if ĥ is a convex
function with ĥ(x) ≤ h(x) for all x ∈ X .

Lemma 3.9 [MF94, Property 1 and 3] Let a twice continuously differentiable function
h : X → R on a box X = [x, x] ∈ IRn be given. Let λmin(x) denote the smallest eigen-
value of the Hessian Hh(x) of h at x and choose an α ≥ max{0,−minx∈X λmin(x)}.
Then the function hα : X → R with

hα(x) := h(x) +
α

2
(x− x)T (x− x) (3.2)

is a convex underestimator for h on X and is called αBB-underestimator

A lower bound forλmin(x) overX can be calculatedwith the help of interval arithmetic
and Gerschgorin’s theorem:

Lemma 3.10 [Adj+98, Theorem 3.2] Let ∂2

∂xi∂xj
H(X) =: [aij, aij] denote the box ob-

tained by the natural interval extension of the second partial derivative of h on the boxX
according to the i-th and j-th coordinate for all i, j = 1, . . . , n. A lower bound on the
minimum eigenvalue minx∈X λmin(x) is given by

min
x∈X

λmin(x) ≥ min
i=1,...,n

{
aii −

∑
j ̸=i

max{|aij|, |aij|}
}
.

22 3 Optimization Tools Utilized for the New Algorithms

According to this lemma, we can use any toolbox for interval arithmetic to evaluate
the right hand side of the equation in Lemma 3.10. Thus, a suitable α is given by

α = max
{
0,− min

i=1,...,n

{
aii −

∑
j ̸=i

max{|aij|, |aij|}
}}

. (3.3)

For additional and improved lower bounds for λmin(x), see also [Adj+98; SM16].

The main benefit of convex underestimators is that the minimal value of ĥ over X ,
which can be calculated by standard techniques from convex optimization, yields a
lower bound for the values of h on X . There are also other possibilities for the cal-
culation of convex underestimators. For example, in [Adj+98] special convex under-
estimators for bilinear, trilinear, fractional, fractional trilinear or univariate concave
functions were defined. Here, we restrict ourselves to the above proposed convex
underestimator. The theoretical results remain true if the above underestimators are
replaced by tighter ones. In this work, we only make use of αBB-underestimators.
Therefore, “αBB underestimator” is meant implicitly when “convex underestimator”
is written.

We can state the following lemma:

Lemma 3.11 Let h : R → R, a box X = [x, x] ∈ IR and a subbox X̃ = [x̃, x̃] ⊆ X be
given. Define

hα(x) := h(x) +
α

2
(x− x)T (x− x),

hα̃(x) := h(x) +
α̃

2
(x− x)T (x− x),

h̃α(x) := h(x) +
α

2
(x̃− x)T (x̃− x),

h̃α̃(x) := h(x) +
α̃

2
(x̃− x)T (x̃− x),

where α ≥ max{0,−minx∈X λmin(x)} and α̃ ≥ max{0,−minx∈X̃ λmin(x)}. In case of
α̃ ≤ α, it holds:

(i) hα, hα̃, h̃α and h̃α̃ are convex underestimators for h on X̃ .

(ii) h̃α̃(x) ≥ hα̃(x) ≥ hα(x) holds for all x ∈ X̃ .

(iii) h̃α̃(x) ≥ h̃α(x) ≥ hα(x) holds for all x ∈ X̃ .

3.2 Convex Underestimators 23

Proof. The two chains of inequalities in (ii) and (iii) follow by using the properties
x ≤ x̃ ≤ x ≤ x̃ ≤ x for all x ∈ X̃ and α̃ ≤ α. Using this, we obtain that all functions
are underestimators for h on X̃ . The convexity of all functions follows immediately
by Lemma 3.9.

Remark 3.12 If α̃ and α are calculated by Intlab, [Rum99], we always obtain α̃ ≤ α

because the natural interval extensions are inclusion isotonic. Thus, the requirements
of Lemma 3.11 are fulfilled in our context.

The consequence of Lemma 3.11 is that we can obtain better convex undererstimators
on a subbox (in the sense that they are closer to the original function) if we recal-
culate the parameter α or use the boundaries of the subbox. This is actually done in
the algorithm. However, for simplicity of presentation in this work, we use only the
parameter α for which hα is a convex underestimator of h on the initial box X even
if we consider the function on a subbox of X .

An important benefit, especially of αBB-underestimators, is stated in the following
remark.

Remark 3.13 [MF94, Property 4] For all α ≥ 0 the maximal pointwise difference
between h and hα is α

2
ω(X)2, i. e., maxx∈X |h(x) − hα(x)| = α

2
ω(X)2 with ω(X) is

the box width of a box X defined in (3.1).

This remark states that the maximal pointwise difference of a factorable function and
its αBB underestimator is bounded by the parameter α and the box width of the box
on which the underestimator is defined. In the next lemma, we show that the distance
between the minimal value of a convex underestimator and other function values of
a smooth function h over a box is bounded by a given ε > 0 if the box width is small
enough.

Lemma 3.14 Let a boxX ∈ IRn, a twice continuously differentiable nonconvex function
h : Rn → R, a constant α ≥ max{0,−minx∈X λmin(x)} and a positive scalar ε > 0 be

24 3 Optimization Tools Utilized for the New Algorithms

given. Moreover, chose L > 0 such that L ≥
√
n
∣∣∣ ∂
∂xi

h(x)
∣∣∣ holds for all i ∈ {1, . . . , n}

and x ∈ X. Let X̃ = [x̃, x̃] be a box with X̃ ⊆ X and

ω(X̃) ≤ −L

α
+

√
L2

α2
+

ε

α
=: δX . (3.4)

Furthermore, let h̃α : Rn → R defined by h̃α(x) := h(x)+ α
2
(x̃−x)T (x̃−x) be a convex

underestimator of h on X̃ . Then for v := minx∈X̃ h̃α(x) it holds that |h(x)− v| ≤ ε
2
for

all x ∈ X̃ .

Proof. Note that α 6= 0 because h is nonconvex. Let x̃ be a minimal solution of
minx∈X̃ h̃α(x), i. e., v = h̃α(x̃). With Remark 3.13, it follows that

|h(x̃)− v| = |h(x̃)− h̃α(x̃)| ≤
α

2
ω(X̃)2.

Let x, y ∈ X̃ be arbitrarily chosen. By the mean value theorem there exists a point
ξ ∈ {λx+ (1− λ)y ∈ Rn | λ ∈ (0, 1)} with h(x)− h(y) = ∇h(ξ)T (x− y). Together
with the Cauchy-Schwarz inequality we obtain |h(x) − h(y)| ≤ ‖∇h(ξ)‖‖x − y‖.
Since

‖∇h(ξ)‖ =

√√√√ n∑
i=1

(
∂

∂xi

h(ξ)

)2

≤

√√√√ n∑
i=1

L2

n
= L,

we derive |h(x) − h(y)| ≤ Lω(X̃) for all x, y ∈ X̃ . Let x ∈ X̃ be arbitrarily chosen.
Then, due to (3.4), it follows that the distance between v and h(x) is

|h(x)− v| ≤ |h(x)− h(x̃)|+ |h(x̃)− v| ≤ Lω(X̃) +
α

2
ω(X̃)2 ≤ ε

2
.

The constant L in the above lemma can be obtained by using techniques from interval
arithmetic, e.g., bounds for the partial derivatives of h on a box X can be computed
by evaluating the respective natural interval extensions.

As vector-valued functions are considered in this work, we use convex underestima-
tors for every objective function separately.

3.2 Convex Underestimators 25

We denote the vector-valued convex underestimator of the function f : Rn → Rm by
fα : Rn → Rm, x 7→ (f1,α(x), . . . , fm,α(x))

T , where fj,α is a convex underestimator
of fj, j = 1, . . . ,m. It is convenient to use the same parameter α for the convex
underestimators of each objective function for an easier notation. Lemma 3.14 can
easily be generalized to the vector-valued case by considering each objective function
on its own.

3.3 Benson’s Outer Approximation Algorithm

By using convex underestimators, we formulate in our procedure convex multiob-
jective optimization problems to our original nonconvex multiobjective optimization
problem. For solving convex multiobjective optimization problems, solution meth-
ods are known. One of these is Benson’s outer approximation algorithm (Benson’s
algorithm), which was originally developed by H. P. Benson for multiobjective lin-
ear optimization problems, [Ben98a; Ben98b]. The aim of this algorithm is to find a
representation of the nondominated set by constructing supporting hyperplanes. The
nondominated set of a multiobjective linear optimization problem consists of vertices
and faces of a polyhedral convex set. Therefore, it is possible to obtain a complete
representation of this set. The algorithm is extensively studied in the literature: a dual
variant was proposed in [ELS12], while in [ESS11], Benson’s algorithm was general-
ized to multiobjective convex optimization problems. In this latter case, the procedure
is only able to compute an approximation of the nondominated set, because the non-
dominated set is in general a curve. The authors of [HLR14] generalized the original
algorithm to linear multiobjective optimization problems with more general ordering
cones. In fact, these cones have to be solid, pointed and polyhedral. In [LRU14], this
algorithm was further developed for convex multiobjective optimization problems,
and in addition, its dual variant is presented. A version for special nonconvex multi-
objective optimization problems, i. e., “convexlike” functions, can be found in [Sha17],
which uses Wolfe duality.

Here, we briefly recall one version of the algorithm for convex multiobjective opti-
mization problems with the natural ordering cone Rm

+ . Therefore, we mainly follow
the presentation in [ESS11; LRU14].

26 3 Optimization Tools Utilized for the New Algorithms

Consider the convex multiobjective optimization problem

min
x∈X

f(x) = (f1(x), . . . , fm(x))
T

s. t. g(x) ≤ 0,
(MOCP)

where all functions f1, . . . , fm, g1, . . . , gp are continuously differentiable, convex func-
tions and X ∈ IRn is a box. The feasible set of (MOCP) is denoted by

M := {x ∈ X | g(x) ≤ 0}.

It is a convex set and we assume it to be non-empty. We define the upper image of
(MOCP) by

P := {y ∈ Rm | f(x) ≤ y for one x ∈ Rn with g(x) ≤ 0} = f(M) + Rm
+ .

Benson’s algorithm aims at finding an outer approximation of the set P which is
indeed an approximation of the (weakly) nondominated set of (MOCP), [Ben98a;
ESS11]. This approximation is computed by using supporting hyperplanes of P .

Definition 3.15 [Roc70, Section 11] Let P ⊂ Rm be a nonempty set, let λ ∈ Rm \{0}
and z ∈ ∂P , where ∂P is the boundary of the set P . The hyperplane

Hλ,z := {y ∈ Rm | λTy = λT z}

is called supporting hyperplane (of P), if λTy ≥ λT z holds for all y ∈ P .

The algorithm begins with the calculation of the so-called ideal point of f on M . For
the sake of completeness, the following definition states the definition of the ideal
point and the anti-ideal point.

Definition 3.16 [Ehr05, Def. 2.22] Let a function f : Rn → Rm and a set M ∈ Rn be
given.

(i) The ideal point a = (a1, . . . , am)
T of f on M consists of the global minimal

values of every fj, j = 1, . . . ,m on M , i. e.,

aj := min
x∈M

fj(x) for all j = 1, . . . ,m. (3.5)

3.3 Benson’s Outer Approximation Algorithm 27

(ii) The anti-ideal point z = (z1, . . . , zm)
T of f onM consists of the global maximal

values of every fj, j = 1, . . . ,m on M , i. e.,

zj := max
x∈M

fj(x) for all j = 1, . . . ,m. (3.6)

Remark 3.17 The anti-ideal point of a function f multiplied by −1 is also the ideal
point of −f . We distinguish the anti-ideal point from the nadir point yN , which is
defined as the componentwise maximum of the nondominated points:

yNj = max
x∈XE

fj(x) for all j = 1, . . . ,m.

The ideal and the anti-ideal point exist if the objective functions f1, . . . , fm are con-
tinuous and the feasible setM is compact. For the remainder of this chapter, we need
only the ideal point. The global minima required for the ideal point can be obtained by
local optimization methods because we assumed the objective functions to be convex.
Thus, the locally minimal solutions and values are globally minimal as well.

Let uj be the j-th unit vector in Rm. The ideal point a and the m unit vectors form
the initial outer approximation of P . This initial outer approximation consists of the
m hyperplanes defined by

Huj ,a := {y ∈ Rm | (uj)Ta = (uj)Ty}, j = 1, . . . ,m.

The two possibilities of a representation of a polyhedron are called V -representation
(vertices and directions) or H-representation (hyperplanes/half spaces) in the litera-
ture [LW17]. It is possible to obtain one representation using the other one and vice
versa. The procedure to obtain the V -representation from the H-representation is
called vertex enumeration, see e. g. [BFM98] for more information.

In every iteration of Benson’s algorithm, a vertex p̄ of the current outer approximation
is chosen. Then the following optimization problem is solved:

min
(x,t)∈Rn+1

t

s. t. p̄+ te ≥ f(x),

x ∈M.

(Pp̄,M)

28 3 Optimization Tools Utilized for the New Algorithms

Recall that e is the m-dimensional all-ones vector. Actually, e can be replaced by any
vector which belongs to the ordering cone Rm

+ . As we adapted Benson’s algorithm for
the algorithm presented in Chapter 4, and in order to prove some convergence results,
we use the vector e. The optimization problem (Pp̄,M) is related to a minimization of
the well-known Tammer-Weidner functional, see [GW90].

Depending on the minimal value t̃ of (Pp̄,M) and a given scalar ε > 0 the algorithm
continues:

• t̃ < ε: The point p̄ lies close enough to the boundary of P and is added to
the final outer approximation. In particular, if t̃ = 0 holds, p̄ belongs to the
boundary of P . The case of t̃ < 0 does not appear in Benson’s algorithm if p̄ is
a vertex of an outer approximation of P .

• t̃ ≥ ε: The point p̄ lies too far away from the boundary of P and a supporting
hyperplane of P is determined.

In order to determine the hyperplane different methods are known. In early works, a
further single objective optimization problem was solved. However, it is also possible
to use a Lagrange multiplier λ̃ (if present) to the constraint p̄ + te ≥ f(x) of (Pp̄,M).
This fact is stated and proved in the forthcoming Theorem 3.18. The new hyperplane
is added to the H-representation of an outer approximation of P . Via vertex enu-
meration the new vertices of the V -representation are calculated and another vertex,
which was not considered yet, can be chosen. If for all computed vertices p̄ the min-
imal value t̃ of (Pp̄,M) is smaller than ε, the algorithm stops. The output is the V - or
the H-representation of an outer approximation of P .

Figure 3.1 illustrates Benson’s outer approximation algorithm by presenting different
iterations and the overall result after three iterations.

Determining Supporting Hyperplanes The next theorem proves that a Lagrange
multiplier to the constraint p̄ + te ≥ f(x) of (Pp̄,M) can be used as a normal vector
of a supporting hyperplane of the set P at p̄+ t̃e. Even while this fact is well-known
because of duality properties, we show it for the sake of completeness.

3.3 Benson’s Outer Approximation Algorithm 29

p̄

P

a: First iteration: Ideal point
is chosen as the first point
p̄ in order to solve (Pp̄,M).

p̄

P

b: First iteration: (Pp̄,M) is
solved to get a point at the
boundary of P and a
supporting hyperplane.

p̄

p̄

P

c: First iteration: Via vertex
enumeration two new
vertices of the outer
approximation are
computed.

p̄

P

d: Second iteration: One
vertex is chosen as p̄ in
order to solve (Pp̄,M).

p̄

P

e: Second iteration: (Pp̄,M) is
solved to get a point at the
boundary of P and a
supporting hyperplane.

P

f: Outer approximation
after three iterations.

Figure 3.1. Visualization of Benson’s outer approximation algorithm.

30 3 Optimization Tools Utilized for the New Algorithms

The optimization problem (Pp̄,M) can be equivalently written as:

min
(x,t)∈Rn+1

t

s. t. f(x)− p̄− te ≤ 0,

g̃(x) ≤ 0.

(Pp̄,M)

The function g̃ : Rn → Rp+2n is defined by the convex constraints gk, k = 1, . . . , p

and the box constraints for x ∈ X = [x, x], i. e.,

g̃(x) :=


g(x)

x− x

x− x

 .

Theorem 3.18 Let

L1(x, t, λ, µ) = t+
m∑
j=1

λj(fj(x)− p̄j − t) +

p+2n∑
k=1

µkg̃k(x)

be the Lagrange function for (Pp̄,M) and let (x̃, t̃, λ̃, µ̃) ∈ Rn+1+m+p+2n be a KKT point
of (Pp̄,M). Then the set {y ∈ Rm | λ̃T

y = λ̃
T
(p̄ + t̃e)} is a supporting hyperplane for

P = f(M) + Rm
+ at p̄+ t̃e.

Proof. As (x̃, t̃, λ̃, µ̃) is a KKT point of (Pp̄,M) the following conditions are satisfied:

∇x,tL
1(x̃, t̃, λ̃, µ̃) = 0, (3.7)

f(x̃)− p̄− t̃e ≤ 0, (3.8)

g̃(x) ≤ 0, (3.9)

λ̃ ≥ 0, (3.10)

µ̃ ≥ 0, (3.11)

λ̃
T
(f(x̃)− p̄− t̃e) + µ̃T g̃(x̃) = 0. (3.12)

3.3 Benson’s Outer Approximation Algorithm 31

Statement (3.7) is equivalent to

m∑
j=1

λ̃j
∂fj(x̃)

∂xi

+

p+2n∑
k=1

µ̃k

∂g̃k(x̃)

∂xi

= 0 for all i = 1, . . . , n and
m∑
j=1

λ̃j = 1. (3.7’)

Moreover, from those conditions one can easily obtain

λ̃
T
(f(x̃)− p̄− t̃e) = 0, and µ̃T g̃(x̃) = 0. (3.12’)

Now consider another convex single objective optimization problem

min
x∈Rn

λ̃
T
f(x) s. t. g̃(x) ≤ 0 (Pλ̃)

and its Lagrange function

L2(x, σ) = λ̃
T
f(x) +

p+2n∑
k=1

σkg̃k(x).

Choosing σk = µ̃k for every k = 1, . . . , p+ 2n, we obtain for (x̃, σ) by the conditions
(3.7’), (3.9), (3.11) and (3.12’)

∇xL
2(x, σ) = 0, (3.13)

g̃(x) ≤ 0, (3.14)

σ ≥ 0, (3.15)

σT g̃(x) = 0. (3.16)

Thus, the point (x̃, σ) is a KKT point of (Pλ̃). Since (Pλ̃) is a convex optimization
problem, the KKT point (x̃, σ) is a minimal solution of (Pλ̃). Therefore,

λ̃
T
f(x̃) ≤ λ̃

T
f(x) for all x ∈M

⇔ λ̃
T
f(x̃)− λ̃

T
(p̄+ t̃e) ≤ λ̃

T
f(x)− λ̃

T
(p̄+ t̃e) for all x ∈M

⇔ λ̃
T
(f(x̃)− p̄− t̃e) ≤ λ̃

T
(f(x)− p̄− t̃e) for all x ∈M

32 3 Optimization Tools Utilized for the New Algorithms

As λ̃ is a Lagrange multiplier, it follows with (3.12’)

0 = λ̃
T
(f(x̃)− p̄− t̃e) ≤ λ̃

T
(f(x)− p̄− t̃e) for all x ∈M.

From this and as λ̃ ≥ 0 holds, we obtain

0 ≤ λ̃
T
(f(x)− p̄− t̃e) for all x ∈M

⇔ λ̃
T
(p̄+ t̃e) ≤ λ̃

T
f(x) for all x ∈M

⇔ λ̃
T
(p̄+ t̃e) ≤ λ̃

T
(f(x) + c) for all x ∈M, c ∈ Rm

+

⇔ λ̃
T
(p̄+ t̃e) ≤ λ̃

T
y for all y ∈ f(M) + Rm

+ . (3.17)

By (3.8) we have p̄ + t̃e = f(x̃) + c for some c ∈ Rm
+ . Thus, p̄ + t̃e ∈ f(M) + Rm

+

holds. Moreover, because of (3.17), the point p̄ + t̃e is on the boundary of P . Finally
with λ̃ 6= 0, see (3.7’), we conclude that the set {y ∈ Rm | λ̃T

y = λ̃
T
(p̄ + t̃e)} is a

supporting hyperplane of f(M) + Rm
+ at the point p̄+ t̃e.

The next remarks give some notes about the relation of KKT-points to minimal solu-
tions of (Pp̄,M) as well as their existence.

Remark 3.19 If we assume additionally some regularity for (Pp̄,M), the assumptions
of this theorem hold for every minimal solution (x̃, t̃) of (Pp̄,M). Especially, if we
assume that M is a box with int(M) 6= ∅, the Slater condition is satisfied for (Pp̄,M).
We just have to chose an x̂ ∈ int(M) and t̂ large enough such that p̄+ t̂e > f(x̂) holds
to prove this condition.

Remark 3.20 Theoretically, the convex optimization problem (Pp̄,M) can be replaced
by the following slightly different optimization problem

min
(x,t)∈Rn+1

t

s. t. p̄+ te ≥ f(x),

x ∈M,

t ∈M t :=

[
min

j=1,...,m
min
x∈M

fj(x)− p̄j, max
j=1,...,m

max
x∈M

fj(x)− p̄j

]
.

(P ′
p̄,M)

3.3 Benson’s Outer Approximation Algorithm 33

The feasible set concerning x of both problems is bounded because of the box con-
straints described byX . The two bounds ofM t exist because all fj are continuous on
the compact set M . The lower bound of M t is a lower bound of the minimal value
of (Pp̄,M), because all t smaller than minj=1,...,m minx∈M fj(x) − p̄j cannot be feasi-
ble for (Pp̄,M). The upper bound maxj=1,...,m maxx∈M fj(x)− p̄j itself gives a feasible
value for t with an arbitrary x ∈ M . Therefore, we can reduce the feasible set of
(Pp̄,M) concerning t to the interval M t. As (Pp̄,M) and (P ′

p̄,M) aim for the minimiza-
tion of t onM×R orM×M t, respectively, (Pp̄,M) and (P ′

p̄,M) have the same minimal
solutions and minimal values. For problem (P ′

p̄,M) a minimal solution exists, because
of the continuous objective function and the compact feasible set. Thus, a minimal
solution of (Pp̄,M) exists as well.

3.4 Local Upper Bounds

For B&B methods upper bounds are important. Within this context we will also need
so called local upper bounds. The concept of local upper bounds is a versatile tool
mainly used in multiobjective combinatorial optimization. Let a finite and stable set
of function values N ⊆ f(M) be given. Recall that for a stable set N and points
y1, y2 ∈ N either y1 � y2 or y1 = y2 holds. Let Ẑ be a box with f(M) ⊆ int(Ẑ). The
search region S is the set which contains all points which are not dominated by N ,
i. e.,

S := {z ∈ int(Ẑ) | q � z for all q ∈ N} = int(Ẑ) \
(⋃

q∈N

{q}+ Rm
+

)
. (3.18)

This set can be characterized with the help of local upper bounds, which are the ele-
ments of the local upper bound set as defined below.

Definition 3.21 [KLV15] LetN be a finite and stable set and Ẑ be a boxwithN ⊆ int(Ẑ).
A list L ⊆ Ẑ is called a local upper bound set w. r. t. N if

(i) ∀z ∈ S ∃p ∈ L : z < p,
(ii) ∀z ∈

(
int(Ẑ)

)
\ S ∀p ∈ L : z ≮ p and

(iii) ∀p1, p2 ∈ L : p1 � p2 or p1 = p2.

34 3 Optimization Tools Utilized for the New Algorithms

The next propositions give some equivalent characterizations.

Proposition 3.22 [KLV15] Let N be a finite and stable set.

(i) The search zone for some p ∈ Rm related to the box Ẑ is defined as

C(p) = {w ∈ int(Ẑ) | w < p}.

(ii) A list L ⊆ Ẑ is called a local upper bound set w. r. t. N , if

(a) S =
⋃

p∈L C(p) ,

(b) C(p) is not a subset of C(p̃) for all p, p̃ ∈ L.

Proposition 3.23 [KLV15] A set L is called a local upper bound set w. r. t. a finite and
stable set N if and only if L consists of all points p ∈ Ẑ that satisfy the following two
conditions:

(i) no point of N strictly dominates p and

(ii) for any z ∈ Ẑ such that z ≥ p, z 6= p, there exists z̄ ∈ N such that z̄ < z, i. e., p
is a maximal point with property (i).

The following lemma is useful for understanding further relations between N and L.
It is due to [Kla17; NE19].

Lemma 3.24 Let L be a local upper bound set w. r. t. a finite and stable setN . For every
z̄ ∈ N and for every j ∈ {1, . . . ,m} there is a local upper bound p ∈ L with z̄j = pj

and z̄r < pr for all r ∈ {1, . . . ,m} \ {j}.

Proof. Let z̄ ∈ N ⊆ int(Ẑ). AsN is a finite set, there exists a neighborhood of z̄ such
that no other point of N is contained in that neighborhood. Hence, choose ν > 0

such that
Nν(z̄) := {z ∈ Rm | ‖z̄ − z‖ ≤ ν} ⊆ int(Ẑ)

and with Nν(z̄) ∩N = {z̄}. Then we obtain for ν small enough

Nν(z̄) ∩ S = Nν(z̄) \ ({z̄}+ Rm
+).

3.4 Local Upper Bounds 35

Now, fix a j ∈ {1, . . . ,m} and let (δt)t∈N be a null sequence with ν > δt > 0 for all
t ∈ N. Then we consider the sequence (qt)t∈N defined componentwise by qtj = z̄j − δt

and qtr = z̄r for all r ∈ {1, . . . ,m} \ {j} and for all t ∈ N. It holds that limt→∞ qt = z̄

and qt ∈ Nν(z̄) ∩ S for all t ∈ N. Hence, with Definition 3.21 (i), we conclude that
there is a local upper bound pt ∈ L with qt < pt for every t ∈ N. Since L is a finite
set, additionally the sequence (pt)t∈N contains a constant subsequence with a (limit)
value p̄j ∈ L. For its limit value it holds that z̄ ≤ p̄j. Moreover, for all t ∈ N of the
constant subsequence we have z̄r = qtr < ptr = p̄jr for all r ∈ {1, . . . ,m} \ {j}. By
Proposition 3.23 (i) it follows that z̄j = p̄jj .

As a result of Lemma 3.24, for every z̄ ∈ N there exists a local upper bound p ∈ L
with z̄ ≤ p.

Figure 3.2 illustrates the setsN and L form = 2. The boundary of the box Ẑ is drawn
in gray. The search region is the lower left white subset of int(Ẑ).

S

Ẑ

f1

f2
N

L

Figure 3.2. Stable set N and local upper bound set L,m = 2, cf. [KLV15, Fig. 1]

In case of m = 2, the calculation of the local upper bounds is very simple if the list
N = {q1, . . . , qk} is sorted in ascending order according to one component. Assume
N is sorted w. r. t. the first component. Then every local upper bound has the form
ps = (qs1, q

s−1
2)T for s = 2, . . . , r. We define p1 = (q11,M2)

T and pr+1 = (M1, q
r
2)

T ,
where (M1,M2)

T = sup(Ẑ).

36 3 Optimization Tools Utilized for the New Algorithms

For higher dimensions, various algorithms can be found in [KLV15] to calculate the set
L fromN . Here, we present one of those algorithms, see Algorithm 1. All algorithms
proposed in [KLV15] require an already existing local upper bound set L w. r. t. a
setN and a point q̄, which is a new point forN , i. e., q̄ is not dominated by any point
of N . The update procedure of N ∪ {q̄} to a stable set N ′ should be done separately.
Then the algorithms compute a new upper bound set L′ w. r. t. N ′. In the algorithms
of this thesis the setN grows incrementally. Thus, we can directly use the algorithms
proposed in [KLV15] every time a new point is added to N .

The initial upper bound set, i. e., for N = ∅, is L = sup(Ẑ). Algorithm 1 is based
on so-called redundancy elimination and uses an enhanced filtering step compared to
other procedures. For this, we need the following notations: For any p ∈ Rm and
j ∈ {1, . . . ,m} the point p−j denotes the (m− 1)-dimensional vector

p−j := (p1, . . . , pj−1, pj+1, . . . , pm)
T .

The vector (aj, p−j) is the vector p ∈ Rm with a j-th component replaced by the j-th
component of a ∈ Rm, i. e., (aj, p−j) = (p1, . . . , pj−1, aj, pj+1, . . . , pm)

T .

Algorithm 1 Update procedure of an upper bound set, cf. [KLV15, Algorithm 3]
Input: N ,L w. r. t. N , q̄

Output: L′ w. r. t. N ∪ {q̄}
1: A← {p ∈ L | q̄ < p}
2: for j ∈ {1, . . . ,m} do
3: Bj ← {p ∈ L | pj = q̄j and q̄−j < p−j}
4: Pj ← ∅

5: for p ∈ A do
6: for j ∈ {1, . . . ,m} do
7: Pj ← Pj ∪ {(q̄j, p−j)}

8: for j ∈ {1, . . . ,m} do
9: Pj ← {(q̄j, p−j) ∈ Pj | (q̄j, p−j) � p′ or (q̄j, p−j) = p′, ∀p′ ∈ Pj ∪Bj}

10: L′ ← (L \ A) ∪
⋃m

j=1 Pj

We explain the procedure of Algorithm 1 by an example.

3.4 Local Upper Bounds 37

Example 3.25 [KLV15, Example 2, adapted] Letm = 3 and assume

N = {(3, 5, 7)T, (6, 5, 4)T}

as well as Ẑ = [(0, 0, 0)T, (10, 10, 10)T]. As Algorithm 1 is an incremental algorithm,
we start with N = ∅, and the initial upper bound set is then L = {(10, 10, 10)T}.
First, the point (3, 5, 7)T is added to N . In line 1, A is set to {(10, 10, 10)T}. As
(10, 10, 10)T has no components with (3, 5, 7)T in common, all setsBj get to be empty
in line 3 as well as all Pj . In line 7, for every local upper bound from A we obtain
new candidates by replacing the j-th component of the former local upper bound by
the j-th component of the new point for N . Thus, we get here P1 = {(3, 10, 10)T},
P2 = {(10, 5, 10)T} and P3 = {(10, 10, 7)T}. These points are possible candidates
for L. However, it may happen that one of the local upper bounds is componentwise
greater than a new one. In order to satisfy (iii) of Definition 3.21, only the local upper
bounds are used which are not less than any other one. Here, all new upper bounds
cannot be compared with each other. Thus, the new local upper bound set is

L = {(3, 10, 10)T, (10, 5, 10)T, (10, 10, 7)T}.

In the next step, the point (6, 5, 4)T is added to N . Note that points are allowed to
be only added to N if they are not dominated by any point of N . The points of N
dominated by the new point have to to be removed fromN . Since (6, 5, 4)T is neither
dominated nor dominates a point ofN , it can be added toN easily. The only local up-
per bound which components are greater than the ones from (6, 5, 4)T is (10, 10, 7)T .
This one is added to A. Now in line 3, B2 = {(10, 5, 10)T} holds since this local upper
bound shares one component with (6, 5, 4)T , and all others are larger. For the oth-
ers, it holds B1 = B3 = ∅. Then in line 7, we get possible new local upper bounds
by replacing each component from the ones of A separately by those from (6, 5, 4)T :
P1 = {(6, 10, 7)T}, P2 = {(10, 5, 7)T} and P3 = {(10, 10, 4)T}. As B1 and B3 are
empty and P1 and P3 are only singletons, nothing changes for P1 and P3 in line 9. For
P2 we are searching for redundant local upper bounds. As (10, 5, 7)T ≤ (10, 5, 10)T

holds, the candidate (10, 5, 7)T is redundant and P2 is set to ∅. The final list of local
upper bounds is then L = {(3, 10, 10)T, (10, 5, 10)T, (6, 10, 7)T, (10, 10, 4)T}.

38 3 Optimization Tools Utilized for the New Algorithms

As already mentioned, several algorithms to compute L from N exist. Next to Algo-
rithm 1, which is Algorithm 3 in [KLV15], we also use Algorithm 5 of [KLV15], which
is based on avoidance of redundancies. Both procedures work fine, but computational
tests by [KLV15] reveal that Algorithm 1, i. e., Algorithm 3 of [KLV15], should be used
for lower dimensions (up to m = 5). For higher dimensions Algorithm 5 of [KLV15]
is preferable.

The following remark states a property of consecutive sets of N and L during an
optimization algorithm or the procedure where L is determined incrementally.

Remark 3.26 Let N ′ and N be two consecutive stable sets, and let L′ and L be the
related local upper bound sets. Then for every p ∈ L there exists a local upper bound
p′ ∈ L′ such that p ≤ p′. This can be seen, for example, by induction considering the
updating procedure in Algorithm 1.

3.5 A Basic Branch-and-Bound Method

All forthcoming algorithms of this thesis are B&B based algorithms. Looking at the
abundance of publications considering and using B&B methods, it is clear that B&B is
widely used in many application scopes. For example, [Adj+98; Aud+00; Dür01; HP09;
KSS15; TH88] use B&B approaches for single objective optimization and [ACA19;
Cam+18; FT09; Mar+16; Wan+08; ŽŽ16] for multiobjective optimization. In particu-
lar, the work of [Sch12] deals with B&B algorithms for both single and multiobjective
optimization extensively.

The main idea of the B&B approach is to divide the feasible set or a super set of it
iteratively into subsets. Usually, these sets are boxes because they can simply be bi-
sected. The subsets or subboxes are further examined whether they contain any effi-
cient points of the given optimization problem. In case of no efficient solutions this
subbox does not have to be further bisected and can be discarded. A typical B&B
algorithm is stated in Algorithm 2, see also, for example, [FT09].

The lists LW and LS are the working list and the solution list, respectively. The se-
lection, bisection and termination rule as well as the discarding tests are specified for

3.5 A Basic Branch-and-Bound Method 39

Algorithm 2 Basic B&B algorithm
Input: multiobjective optimization problem with box constraints described by X

Output: LS

1: LW ← {X}, LS ← ∅
2: while LW 6= ∅ do
3: Select a box X∗ from LW and delete it from LW Selection rule
4: Bisect X∗ into subboxes X1, X2 Bisection rule
5: for l = 1, 2 do
6: if X l cannot be discarded then Discarding tests
7: if X l satisfies a termination rule then Termination rule
8: Store X l in LS

9: else Store X l in LW

every B&B algorithm separately. The rules for selection, bisection and termination are
usually heuristically motivated. Instead, a discarding test has to ensure that no box
with efficient points gets eliminated. For each algorithm of the forthcoming chapters,
we examine those rules and tests individually.

40 3 Optimization Tools Utilized for the New Algorithms

4 A Global Solution Method for
Multiobjective Nonconvex Optimization

This chapter proposes an algorithm for solvingmultiobjective nonconvex optimization
problems globally, i. e., the objective functions f1, . . . , fm : Rn → R do not have to be
convex functions. The considered multiobjective nonconvex optimization problem is
(MOP) with inequality constraints described by g1, . . . , gp : Rn → R.

min
x∈X

f(x) =


f1(x)
...

fm(x)


s. t. gk(x) ≤ 0 for all k = 1, . . . , p.

(MOP)

We assume the following properties for (MOP):

• fj is a twice continuously differentiable function for all j = 1, . . . ,m,
• fj is a factorable function for all j = 1, . . . ,m, see Definition 3.2,
• gk is a continuously differentiable and convex function for all k = 1, . . . , p,
• X is an n-dimensional box, see Section 3.1.

The feasible set of (MOP) is thus defined by

M := {x ∈ X | gk(x) ≤ 0 for all k = 1, . . . , p}.

Analogously to [FT09], the new algorithm is based on a B&B approach. However, the
algorithm is suitable for an arbitrary number of objective functions and we provide a
new discarding test procedure based on the concept of convex underestimators from

4 A Global Solution Method for Multiobjective Nonconvex Optimization 41

the αBBmethod, [MF94]. This results in convex multiobjective optimization problems
which have to be considered on each subbox. We combine approaches from multiob-
jective convex optimization with the concept of the local upper bounds in order to
obtain improved lower bounds. For an introduction to local upper bounds, see Sec-
tion 3.4. Finally, we are able to prove that the new algorithm finds an approximation
of the set of globally optimal solutions for multiobjective optimization problems with
predefined quality in finite time.

Section 4.1 deals with a new discarding test for the B&B algorithm and presents a ter-
mination procedure which is able to guarantee (ε, δ)-efficiency of the output set. Then
the used rules for the selection and bisection steps, which are already well-known
in the literature, are introduced in Section 4.2. The complete algorithm is stated in
Section 4.3. Later on, in Section 4.4, we prove the termination and correctness of
the proposed algorithm. The algorithm and the proofs are also published our article
[NE19].

At the end of this chapter, we discuss the relation of the new algorithm to other global
solution methods for multiobjective optimization problems. These algorithms will be
shortly introduced in this part.

4.1 Discarding Test and Termination Procedure

First, we state how lower and upper bounds for the B&B algorithm are computed.
Afterwards, the complete discarding test is described. Since the termination procedure
is deeply related to the discarding test, this procedure is described in this section as
well.

4.1.1 Computing Lower and Upper Bounds

We generate a stable setLPNS of objective values (called the provisional nondominated
set) representing upper bounds for the global nondominated set for (MOP). For this,
we need the images of some feasible points of (MOP). Each point q as a new candidate
for LPNS is checked if it is dominated by any other point of LPNS . In this case, q will

42 4 A Global Solution Method for Multiobjective Nonconvex Optimization

not be included inLPNS . Otherwise, q will be added toLPNS and all points dominated
by q will be removed. The procedure is described in Algorithm 3 as well.

Algorithm 3 Updating procedure for LPNS

Input: finite list LPNS ⊆ Rm, q∗ ∈ Rm

Output: updated list LPNS

1: for q ∈ LPNS do
2: if q ≤ q∗ then break for-loop
3: else if q∗ ≤ q then
4: if q∗ /∈ LPNS then Add q∗ to LPNS and remove q from LPNS

5: else Remove q from LPNS

Figure 4.1 shows an example for the provisional nondominated set LPNS of a two-
dimensional image set f(M).

f1

f2

f(M)

LPNS

Figure 4.1. Example for LPNS , m = 2.

Having this list of upper bounds, a discarding test for a given box X∗ also requires a
lower bound for the values of f over

M∗ := X∗ ∩M = {x ∈ X∗ | g(x) ≤ 0}.

Let LB ⊆ Rm be a set with f(M∗) ⊆ LB + Rm
+ . If LB ⊆ (LPNS + Rm

+) \ LPNS , the
box X∗ can be discarded, because every point of f(M∗) is in (LPNS + Rm

+) \ LPNS .
Hence, every point of f(M∗) is dominated by one point of LPNS . For the set LB we

4.1 Discarding Test and Termination Procedure 43

first recall the approach proposed so far in the literature, (I), and then present our new
approach which consists of two steps (II) and (III):

(I) Proposed in [FT09]: LB is chosen as the lower vertex of a boxwhich contains all
values of f on X∗ and which is generated by the natural interval extension F

of f on X∗. Note that this approach cannot take the convex constraints into
account.

(II) LB is chosen as the ideal point of the convex underestimators of the functions
fj over M∗, see Definition 3.16, and set LB = {a = (a1, . . . , am)}. For an
illustration, see Figure 4.2.

(III) Find a tighter and not necessarily singleton set LB with f(M∗) ⊆ LB + Rm
+

and with (LB + Rm
+) \ (f(M∗) + Rm

+) as small as possible by using convex
underestimators and techniques from multiobjective convex optimization. We
illustrate and discuss this new discarding test in Section 4.1.2.

a

fα(M
∗) + Rm

+

f1

f2

Figure 4.2. Upper image set fα(M∗) + Rm
+ for m = 2, LPNS and an ideal point a

of fα.

We start by briefly discussing the first step of our new approach, i. e., we show that a
from (II) (see (3.5)) already delivers a lower bound:

Lemma 4.1 Let fj,α be a convex underestimator of fj on X∗ for j = 1, . . . ,m and
define the ideal point a ∈ Rm onM∗ by (3.5). Then a ≤ f(x) holds for all x ∈M∗, i. e.,
f(M∗) ⊆ {a}+ Rm

+ .

44 4 A Global Solution Method for Multiobjective Nonconvex Optimization

Proof. Let j ∈ {1, . . . ,m}. Because fj,α is a convex underestimator of fj onX∗ ⊇M∗

and from the definition of aj it follows that aj ≤ fj,α(x) ≤ fj(x) holds for all x ∈M∗.

Numerical experiments show that using (I) or (II) makes no big difference if there are
no convex contraints. In some cases the lower bounds by interval arithmetic are better
than the ones by convex underestimators. In other cases, the converse holds. How-
ever, (II) has the advantage that the maximal error between the computed lower bound
and actual function values is bounded (see Remark 3.13 and Lemma 3.14). Moreover,
it is possible to improve (II) to (III) by using the convexity of fα, which is not possible
for (I). This is the basic idea of our new discarding test.

The tighter bounds will be reached by adding cuts as known from Benson’s outer
approximation algorithm for convex multiobjective optimization problems, see Sec-
tion 3.3 or [Ben98a; ESS11]. The cuts separate selected points p from the upper image
set of the convex underestimators such that the cuts are supporting hyperplanes, see
Figures 4.3a and 4.3c. This leads to new sets LB as illustrated in Figures 4.3b and 4.3d.
As we can see, the cut in Figure 4.3a would lead to a set LB which does not allow to
discard the box. This is due to the white triangle, which is circled in Figure 4.3a. This
triangle is not dominated by any point of LPNS but it is in LB + R2

+. However, the
cut in Figures 4.3c and 4.3d allows to discard the box.

Here, the local upper bounds from Section 3.4 play an important role as these are
exactly the points p which have to be separated from the upper image set. The set of
upper bounds serves as the stable set N . The local upper bound set is now further
denoted by LLUB .

4.1.2 The Discarding Test Procedure

As visualized in Figure 4.3, the local upper bounds w.r.t. the set LPNS are important as
we can discard a boxX∗ if no local upper bound is contained in the set fα(M∗)+Rm

+ .
Recall that M∗ is the intersection between the box X∗ and the feasible set M .

4.1 Discarding Test and Termination Procedure 45

a

fα(M
∗) + Rm

+

f1

f2

a: A cut which separates a from fα(M
∗) + Rm

+ .

fα(M
∗) + Rm

+

LB

f1

f2

b: A lower bound LB for the situation in
Figure 4.3a.

a

fα(M
∗) + Rm

+

p

f1

f2

c: A cut which separates p from fα(M
∗) + Rm

+ .

a

fα(M
∗) + Rm

+

LB

f1

f2

d: A lower bound LB for the situation in
Figure 4.3c.

Figure 4.3. Possible cuts to obtain a tighter set LB with f(M∗) ⊆ LB + Rm
+ ,

m = 2.

46 4 A Global Solution Method for Multiobjective Nonconvex Optimization

Lemma 4.2 Let a box X∗ ∈ IRn, X∗ ⊆ X be given and let fj,α be a convex underesti-
mator of fj onX∗ for j = 1, . . . ,m. Let LLUB ⊆ Rm be the local upper bound set w. r. t.
LPNS . If

p̄ /∈ fα(M
∗) + Rm

+ holds for all p̄ ∈ LLUB, (4.1)

X∗ does not contain any efficient point of (MOP).

Proof. Assume that there is some efficient point x∗ of (MOP) with x∗ ∈M∗. Because
fj,α is a convex underestimator of fj on X∗ for all j ∈ {1, . . . ,m} no local upper
bound p̄ ∈ LLUB belongs to f(M∗) + Rm

+ . Thus, f(x∗) 6≤ p̄ for all p̄ ∈ LLUB . From
Definition 3.21 (i) it follows that f(x∗) cannot be an element of the search region
S. With (3.18), we conclude that there exists a point q ∈ LPNS with q ≤ f(x∗).
As q is the image of a feasible point of (MOP) and as x∗ is efficient for (MOP),
we obtain f(x∗) = q ∈ LPNS . By Lemma 3.24, a local upper bound p ∈ LLUB

exists with f(x∗) ≤ p or, equivalently, p ∈ {f(x∗)} + Rm
+ . Again, as fj,α are convex

underestimators of fj on X∗ for all j ∈ {1, . . . ,m}, we conclude p ∈ {fα(x∗)}+ Rm
+

which is a contradiction to (4.1). Thus, M∗ contains no efficient point. The points of
X∗ \M∗ cannot be efficient for (MOP), because they are infeasible.

Condition (4.1) can be tested by solving a convex single objective optimization prob-
lem for every local upper bound. Instead of solving such an optimization problem for
each point p̄ ∈ LLUB , we solve it for a few points and immediately obtain the infor-
mation on how to generate and improve an outer approximation of fα(M∗) + Rm

+ .
This information can be used to efficiently reduce the number of points for which the
single objective optimization problem has to be solved. This corresponds to generat-
ing tighter lower bounds for the values of f over a box. Thus, let p̄ ∈ LLUB and let
a box X∗ be given. We check if p̄ ∈ fα(M

∗) + Rm
+ holds by solving the following

convex single objective optimization problem:

min
(x,t)∈Rn+1

t

s. t. p̄+ te ≥ fα(x),

g(x) ≤ 0,

x ∈ X∗.

(Pp̄, X∗)

4.1 Discarding Test and Termination Procedure 47

Aminimal solution of (Pp̄, X∗) is named (x̃, t̃). If t̃ ≤ 0, it holds that p̄ ∈ fα(M
∗) + Rm

+ .
Otherwise, if t̃ > 0, the point p̄ lies outside of fα(M∗)+Rm

+ and can be separated from
fα(M

∗)+Rm
+ with a supporting hyperplane. This is used for our new discarding test.

The test is applied to a box X∗ and consists of a finite number of iterations where an
outer approximation of fα(M∗) +Rm

+ is determined. The initial outer approximation
is {a} + Rm

+ , where a is the ideal point of fα on M∗, see (3.5). In each iteration a
local upper bound p̄ is chosen. The first step is the comparison of the current outer
approximation of fα(M∗) +Rm

+ with p̄ by checking if the inequalities which describe
the outer approximation are satisfied. In the case in which p̄ is not an element of this
outer approximation, the next iteration, namely choosing a next local upper bound,
starts. Otherwise we continue with solving (Pp̄, X∗) to obtain the position of p̄ w. r. t.
fα(M

∗) + Rm
+ . The abovementioned cases (t̃ > 0, t̃ ≤ 0) can occur. We extend this

to three cases to reduce the effort as only ε-efficiency is the aim for a given scalar
ε > 0. Hence, we distinguish between the following cases for the minimum value t̃ of
(Pp̄, X∗):

(1) t̃ ≤ 0, i. e., p̄ ∈ fα(M
∗) + Rm

+ : Efficient points in X∗ are possible. Thus, X∗

cannot be discarded and we distinguish between the following two subcases:
(1a) t̃ < − ε

2
: Stop the whole discarding test in order to bisect X∗ later.

(1b) − ε
2
≤ t̃ ≤ 0: Construct a supporting hyperplane to improve the outer

approximation of fα(M∗) + Rm
+ and choose the next local upper bound.

Moreover, set a flag that X∗ cannot be discarded.
(2) t̃ > 0, i. e., p̄ /∈ fα(M

∗)+Rm
+ : Construct a supporting hyperplane to improve the

outer approximation of fα(M∗) + Rm
+ and choose the next local upper bound.

Only if case (2) holds for every local upper bound, the box X∗ can be discarded, see
Lemma 4.2. The case (1b) is motivated by obtaining ε-efficient points at the end of the
algorithm as we will prove later. To store X∗ in the solution list, there has to be at
least one p̄ where case (1b) is fulfilled and no p̄ for which (1a) holds.

During the discarding test new supporting hyperplanes are constructed if t̃ ≥ − ε
2

holds. The support vector of such a hyperplane is ỹ := p̄+ t̃e. For calculating a normal
vector λ∗ ∈ Rm of the supporting hyperplane a procedure is given in [ESS11], where
a linear single objective optimization problem has to be solved. Alternatively to this
and with help of properties of duality theory, we can also use a Lagrange multiplier

48 4 A Global Solution Method for Multiobjective Nonconvex Optimization

λ∗ ∈ Rm of the constraint p̄+ te ≥ fα(x) to obtain a normal vector of the supporting
hyperplane, as explained in detail in Section 3.3. Algorithm 4 describes the procedure,
where the flag D stands for the decision to discard a box after the algorithm and the
flag B for bisecting the box, respectively. It can be applied to a box X∗ if M∗ 6= ∅
holds.

Algorithm 4 Discarding test
Input: X∗ ∈ IRn, f ∈ C2(Rn,Rm), g ∈ C(Rn,Rp), LPNS, LLUB ⊆ Rm, ε > 0, α

Output: flags D, B
1: Compute for every objective function its convex underestimator on X∗ and its

corresponding minimum xj on M∗

2: Update LPNS by f(xj) and LLUB =: {p1, . . . , pr} by Algorithms 1 and 3
3: D ← 1, B ← 0

4: for s = 1, . . . , r do
5: if ps is inside the current outer approximation of fα(M∗) + Rm

+ then
6: Solve (Pps, X∗) with minimal solution (x̃, t̃)

7: if t̃ < − ε
2
then

8: break for-loop
9: Set flags D ← 0 and B ← 1

10: else if t̃ ≤ 0 then
11: Update outer approximation of fα(M∗) + Rm

+ and set flag D ← 0

12: else Update outer approximation of fα(M∗) + Rm
+

If the feasible set M∗ is empty, we can discard the box. It might be difficult to verify
numerically that the feasible set is indeed empty. A quickly evaluable and efficient
sufficient condition was proposed in [FT09] and uses interval arithmetic to obtain
lower and upper bounds of gk, k = 1, . . . , p. In case of a lower bound of gk on X∗

which is greater than 0 for at least one k ∈ {1, . . . , p}, the whole boxX∗ is infeasible.
If all upper bounds of gk on a box X∗ are less than 0 for all k = 1, . . . , p, X∗ = M∗

holds. Then the constraints can be neglected forX∗ and all its subboxes. It is possible
that none of the two cases occurs. Then the discarding test continues and takes the
constraints into account while solving some single objective optimization problems.

4.1 Discarding Test and Termination Procedure 49

Note that the condition of line 5 of Algorithm 4 can be checked by evaluating a fi-
nite number of inequalities which are given by the current outer approximation. The
following theorem gives the correctness of this discarding test.

Theorem 4.3 Let a box X∗ ⊆ X ∈ IRn and (MOP) be given. Let LLUB ⊆ Rm be
a local upper bound set w. r. t. LPNS . If X∗ contains an efficient point of (MOP), the
output of Algorithm 4 is D = 0, i. e., X∗ will not be discarded by Algorithm 4.

Proof. Assume that there is some efficient point x∗ of (MOP) with x∗ ∈M∗. Suppose
the output of Algorithm 4 applied to X∗ is D = 1. This means that for all local
upper bounds either the conditions in lines 7 and 10 are not satisfied or they are not
contained in the current outer approximation (see line 5). If the latter occurs, the
local upper bound is clearly not in fα(M

∗) + Rm
+ . For the other local upper bounds

p̄ ∈ LLUB , which do not satisfy lines 7 and 10, but do satisfy line 5, the optimization
problem (Pp̄, X∗) has a minimal value t̃ > 0. Hence, p̄ /∈ fα(M

∗) + Rm
+ holds for all

p̄ ∈ LLUB and with Lemma 4.2 we have a contradiction to the assumption that X∗

contains an efficient point.

All possibilities for the results of the discarding test applied to a box X∗ in the two-
dimensional case are illustrated in Figure 4.4.

×

×

×
fα(M

∗) + Rm
+

a: Discard box X∗.

×

×

×

− ε
2
e

fα(M
∗) + Rm

+

b: Do not discard box X∗, but
bisect it.

×

×

×

− ε
2
e

− ε
2
e

fα(M
∗) + Rm

+

c: Neither discard box X∗, nor
bisect it.

Figure 4.4. Possible situations during a discarding test applied to box X∗.
• - LPNS ; × - LLUB .

50 4 A Global Solution Method for Multiobjective Nonconvex Optimization

The list LPNS is growing during the algorithm. Hence, we obtain better upper bounds
for the nondominated set. It is possible that a box X∗ was not discarded and not
bisected by Algorithm 4, even though it could be discarded if we compared it with a
later version of the list LPNS . Theoretically, after every update of LPNS and LLUB ,
it should be checked whether these new lists can discard a box from the solution list.
This requires the repetition of Algorithm 4 to every box of the solution list. As LPNS

and LLUB can possibly change after every evaluation of Algorithm 4, this might be a
very time-consuming and inefficient procedure. Thus, these two lists get constructed
in a first while-loop which has the style like the loop in Algorithm 2. Then a new
loop compares the boxes from the solution list with the fixed lists LPNS and LLUB .
To evaluate the comparisons, Algorithm 4 is applied again, but without the updating
in line 2. This adapted method can be found in Algorithm 5. Additionally, in that
procedure we reuse the already calculated approximation of fα(M∗)+Rm

+ and, what is
more important, we save the feasible points x̃which are a minimal solution of (Pp̄, X∗)
if its corresponding t̃ is between − ε

2
and 0. Note that the t̃ < − ε

2
case is not possible

for a box X∗, which passed Algorithm 4 with any bisecting (B = 1). This fact will be
shown in Lemma 4.10. The points x̃ with − ε

2
≤ t̃ ≤ 0 are collected in the list X and

will serve as the possible points of the (ε, δ)-efficient set A.

Algorithm 5 Discarding test with static lists LPNS,LLUB

Input: X∗ ∈ IRn, f ∈ C2(Rn,Rm), g ∈ C(Rn,Rp), LPNS, LLUB = {p1, . . . , pk} ⊆
Rm, ε > 0, α

Output: list X , flag D
1: if there is no current outer approximation of fα(M∗) + Rm

+ calculated yet then
2: Calculate ideal point a of fα on M∗ and initialize {a} + Rm

+ as an outer
approximation of fα(M∗) + Rm

+

3: D ← 1, X ← ∅
4: for s = 1, . . . , r do
5: if ps is inside the current outer approximation of fα(M∗) + Rm

+ then
6: Solve (Pps, X∗) with minimal solution (x̃, t̃)

7: Update outer approximation of fα(M∗) + Rm
+

8: if t̃ ≤ 0 then
9: X ← X ∪ x̃ and set flag D ← 0

4.1 Discarding Test and Termination Procedure 51

The next theorem shows that boxes with efficient points do not get discarded by Al-
gorithm 5.

Theorem 4.4 Let a box X∗ ⊆ X ∈ IRn and (MOP) be given. Let LLUB ⊆ Rm be
a local upper bound set w. r. t. LPNS . If X∗ contains an efficient point of (MOP), the
output of Algorithm 5 is D = 0, i. e., X∗ will not be discarded by Algorithm 5.

Proof. The proof is analogous to the proof of Theorem 4.3.

4.1.3 Some Notes on the Termination Procedure

In contrast to many other B&B-algorithms, the present algorithm does not use one
specific termination rule which can usually be applied directly. In [FT09], Fernández
and Tóth use a similar termination rule to this one:
Store X∗ in LS if the following condition for given ε, δ > 0 holds: ω(X∗) < ε and
ω(F (X∗)) < δ.

Recall, F : IRn → IRm is the natural interval extension of f which evaluates the
function with interval arithmetic, see Definition 3.4 or [Neu90]. Moreover, ω(X∗)

denotes the box width of the box X∗, see (3.1).

We use a much more detailed termination procedure which is included in the discard-
ing tests, see Algorithms 4 and 5. Thus, the first two while-loops use the following
rules:

Termination rule for first while-loop: Store the box X∗ in the solution list if the
output of Algorithm 4 applied to X∗ is D = 0 and B = 0.

Termination rule for second while-loop: Store the boxX∗ in the solution list if the
output of Algorithm 5 applied to X∗ is D = 0.

As the algorithm should provide an (ε, δ)-efficient set at the end, a third while-loop
is used. In this loop the termination rule is:

Termination rule for third while-loop: Store the box X∗ in the solution list if the
output of Algorithm 5 applied toX∗ is D = 0, ω(X∗) ≤ δ and at least one of the x ∈ X
is ε-efficient for (MOP).

52 4 A Global Solution Method for Multiobjective Nonconvex Optimization

Note that the last condition is not easy to prove. Nevertheless, it is possible to find
sufficient criteria for x ∈ X such that this condition holds for x. Hence, we use
a weaker condition which is explained in more detail in Section 4.3. To summarize,
these termination rules guarantee the (ε, δ)-efficiency of the calculated approximation
set that will be shown in Section 4.4.2.

4.2 Selection and Bisection Rules

The selection rule is mostly heuristically motivated. In general, it is useful to consider
boxes which can deserve “good bounds” at an early stage. Then boxes with worse
bounds can be discarded early. Thus, we need a criterion which gives a direction to
“good bounds” and which can be examined without or with a little further effort. A
typical selection rule is the one proposed in [FT09].

Selection rule: Select the box X∗ ∈ LW with a minimum lower bound of f1.

In our algorithm this lower bound will be calculated by underestimating f1 within the
considered box by a convex underestimator. In [FT09], the lower bound is calculated
by interval arithmetic. Certainly, it is possible to replace f1 by any fj, j ∈ {1, . . . ,m}
or by a weighted sum of the objectives or similar. The observation of some numerical
test runs shows that the nondominated set is explored firstly at the lower values for
f1 if the above selection rule is used. If f1 is replaced by another fj , the exploration
starts at the smallest values for the j-th objective function.

The choosing of an appropriate bisection rule is another heuristic task. Consider a
sequence of subboxes X ⊃ X1 ⊃ . . . ⊃ Xk ⊃ . . ., where every Xk is obtained by
bisecting the box Xk−1, k = 1, . . . , as defined by a bisection rule. We require that
the box widths of such a sequence form a null sequence, i. e., limk→∞ ω(Xk) = 0.
Therefore, we use the following bisection rule.

Bisection rule: Bisect the box X∗ ∈ LW perpendicularly to a direction of maximum
width.

4.2 Selection and Bisection Rules 53

4.3 The Complete Algorithm

Having now the new discarding and termination procedure as well as the rules for
selection and bisection, we can present the complete algorithm. The whole algorithm
for (MOP) is given in Algorithm 6.

The algorithm consists of three while-loops. The list LS,t, t = 1, 2, 3 is the solution
list of the t-th while-loop and becomes the working list for the next loop if t = 1, 2.
The first loop from line 3 handles the basic discarding test, which was explained at the
beginning of Section 4.1 in detail. It generates the list LPNS until this list is close to
the nondominated set in dependence of ε. All boxesX∗ fromLS,1 withM∗ = X∗∩M
have the following properties:

∃p̄ ∈ LLUB : p̄ ∈ fα(M
∗) + Rm

+ (4.2)

∀p ∈ LLUB : p− ε

2
e /∈ fα(M

∗) + Rm
+ (4.3)

The first property is true, because if all local upper bounds were outside of the set
fα(M

∗) + Rm
+ , the box X∗ would be discarded, see Lemma 4.2 for the proof. If the

second property did not hold for X∗, this box would not be stored in the solution list
LS,1, because line 7 of Algorithm 4 would be satisfied and X∗ would be bisected into
subboxes.

With the second and third while-loop of MOPBB we do not lose characteristics (4.2)
and (4.3). The second loop only checks whether some boxes fromLS,1 can be discarded
by the final lists LPNS and LLUB. In the third loop we check for every boxX∗ ∈ LS,2

whether ω(X∗) is less than or equal to δ for a predefined δ > 0. If the box X∗ is not
small enough, we bisect it and apply the discarding test to both subboxes. Moreover,
we compute the (ε, δ)-efficient set A, which can be stated as:

A := {x ∈M | f(x) ∈ LPNS}

∪
⋃

X∗∈LS,2

x ∈M∗

∣∣∣∣∣∣∣∣∣
(∃ p̄ ∈ LLUB, t ≤ 0 : (x, t) is a min. solution of (Pp̄, X∗))

∧ (ω(X∗) ≤ δ)

∧
(
(∃p̃ ∈ LLUB : f(x) ≤ p̃) ∨ (ω(X∗) <

√
ε
α
)
)



54 4 A Global Solution Method for Multiobjective Nonconvex Optimization

Algorithm 6 MOPBB: Algorithm to find an (ε, δ)-efficient set of (MOP)
Input: X ∈ IRn, f ∈ C2(Rn,Rm), g ∈ C(Rn,Rp), ε > 0, δ > 0

Output: A, LS,3, LPNS, LLUB

1: LW ← {X},LS,1 ← ∅,LS,2 ← ∅,LS,3 ← ∅,A ← ∅,LPNS ← ∅,LLUB ← ∅
2: Calculate α such that fj,α is a convex underestimator of fj on X, j = 1, . . . ,m

3: while LW 6= ∅ do
4: Select a box X∗ from LW and delete it from LW

5: Bisect X∗ perpendicularly to a direction of maximum width→ X1, X2

6: for l = 1, 2 do
7: Apply Algorithm 4 to X l

8: if B = 1 then Store X l in LW

9: else if D = 0 then Store X l in LS,1

10: else Discard X l

11: while LS,1 6= ∅ do
12: Select a box X∗ from LS,1 and delete it from LS,1

13: Apply Algorithm 5 to X∗

14: if D = 0 then Store X∗ in LS,2

15: else Discard X∗

16: while LS,2 6= ∅ do
17: Select a box X∗ from LS,2 and delete it from LS,2

18: Apply Algorithm 5 to X∗ and obtain X
19: if D = 1 then Discard X∗

20: else if D = 0 and ω(X∗) ≤ δ then
21: {x1, . . . , xk} ← X
22: for s = 1, . . . , r do
23: if f(xs) ≤ p̄ for at least one p̄ ∈ LLUB or ω(X∗) <

√
ε
α
then

24: A ← A∪ {xs}
25: Store X∗ in LS,3

26: if D = 0 and no point of X was stored in A then
27: Bisect X∗ perpendicularly to a direction of maximum width→ X1, X2

28: Store X1 and X2 in LS,2

29: A ← A∪ {x ∈ X | f(x) ∈ LPNS}

4.3 The Complete Algorithm 55

Note that the union in the description of A is not a disjoint union. Moreover, the list
LS,2 in this description includes all boxeswhich have been inLS,2 during the execution
of MOPBB at least once. In fact, these are all boxes of LS,2 after the second while-loop
in line 15 and those which were obtained by bisection in line 27. The proof of the
(ε, δ)-efficiency of A is a main part of Section 4.4.2. To explain the definition of the
sets in the second line of the description of A we have to consider the third while-
loop: When a subbox X∗ is considered in this loop, (Pp̄, X∗) is solved for some local
upper bounds p̄. A point x, which belongs to a minimal solution (x, t) of (Pp̄, X∗) and
with a nonpositive t, is a possible candidate for an ε-efficient point and thus x ∈ X . If
f(x) is less than or equal to a local upper bound, then x is added to A. Furthermore,
if ω(X) is bounded by

√
ε
α
(usually smaller than δ) we add all elements of X to A.

Note that X 6= ∅ if and only if D = 0. Moreover, the preimages of the points of the
final list LPNS , i. e., points of the first set in the description of A, are also added to A
at the end of the algorithm.

4.4 Convergence Results

This section details the results regarding the finiteness and correctness of the new
algorithm MOPBB.

4.4.1 Termination

To show the termination of the algorithm MOPBB we have to verify that each while-
loop of MOPBB is finite. We start by showing the termination of the first while-loop.

Lemma 4.5 The first while-loop (lines 3-10) of MOPBB terminates.

Proof. Assume the first while-loop does not terminate. Hence, there must be an
infinite sequence of boxes X ⊃ X1 ⊃ . . . ⊃ Xk ⊃ . . . which were not discarded,
but bisected after applying Algorithm 4 on each box. Thus, every box Xk will be
stored in LW and bisected in another iteration, where the boxXk+1 is one of the two
obtained subboxes. Obviously, the box width decreases among the sequence of boxes,

56 4 A Global Solution Method for Multiobjective Nonconvex Optimization

i. e., ω(Xk) ≥ ω(Xk+1) for every k ∈ N and converges to 0 (because we divide the
boxes perpendicular to a side with maximal width). For δX as in (3.4) choose the first
box X k̃ with ω(X k̃) ≤ δX . Let a ∈ Rm be the ideal point of f on M k̃ := X k̃ ∩M

(see (3.5)). From Lemma 3.14 for every objective function it results that for all x ∈M k̃

and all j = 1, . . . ,m it holds |fj(x)− aj| ≤ ε
2
, or

f(x) ∈
(
{a}+ Rm

+

)
∩
({

a+
ε

2
e
}
− Rm

+

)
. (4.4)

Now consider the minima of each convex underestimator. Choose an arbitrary point
x̃j ∈ argmin{fj,α(x) | x ∈M k̃} for every j = 1, . . . ,m. The images of the points x̃j

under the original function, i. e., f(x̃j), are potential points of the list LPNS (see line 2
of Algorithm 4) and clearly satisfy (4.4) as well. Let us choose one of these and denote
it by q. This point will be added to LPNS if there is no other point from the current
list LPNS dominating q.

Because of the assumption thatX k̃ will be bisected, there must be a local upper bound
p̄ with the minimal solution (x̃, t̃) of (Pp̄, X k̃), where t̃ is less than − ε

2
. Now, we check

for each local upper bound if this is possible. If we show that for any local upper
bound p̄ the minimal solution of (Pp̄, X k̃) is never less than − ε

2
, we can conclude that

the assumption is wrong and X k̃ will not be bisected.

First, consider all local upper bounds which do not belong to {a}+Rm
+ . Therefore, let

p̄ ∈ LLUB \ ({a} + Rm
+), i. e., there is a u ∈ {1, . . . ,m} with p̄u < au. The condition

in line 5 of Algorithm 4 is not satisfied and (Pp̄, X k̃) will not be solved.

Next, we consider those p̄ ∈ LLUB with p̄ ∈ LLUB ∩ ({a} + Rm
+), if there exist any,

and distinguish two cases: The first of which is

|p̄u − au| = p̄u − au ≤
ε

2
for one u ∈ {1, . . . ,m}. (4.5)

Problem (Pp̄, X k̃) is solved and has aminimal solution (x̃, t̃). Then p̄u + t̃ ≥ fu,α(x̃) ≥ au

holds. Hence, ε
2
≥ p̄u − au ≥ −t̃, which leads to t̃ ≥ − ε

2
. In the second case, there is

some p̄ ∈ LLUB ∩ ({a}+ Rm
+) with

|p̄j − aj| = p̄j − aj >
ε

2
for all j ∈ {1, . . . ,m} (4.6)

4.4 Convergence Results 57

or equivalently p̄ ∈ {a + ε
2
e} + int(Rm

+). It follows for every j ∈ {1, . . . ,m} that
aj +

ε
2
< p̄j . But we know there is a point q (see above) which is a candidate for LPNS

and belongs to the set ({a}+ Rm
+) ∩ ({a+ ε

2
e} − Rm

+). Define

y :=

{
q′ if there is a q′ ∈ LPNS with q′ ≤ q

q otherwise,

and thus y ∈ LPNS . By considering each component of a, y and p̄, we obtain the
inequalities yj ≤ qj ≤ aj +

ε
2
< p̄j for all j = 1, . . . ,m. Hence, y strictly dominates

p̄, which is a contradiction to Proposition 3.23 (i). Thus, the existence of a local upper
bound in {a+ ε

2
e}+ int(Rm

+) is not possible. Clearly, it is not possible forX k̃ to satisfy
the conditions for bisection. Hence, the assumed infinite sequence of subboxes does
not exist. According to this, the first while-loop will terminate.

Lemma 4.6 The second while-loop (lines 11-15) of MOPBB terminates.

Proof. The termination of the second while-loop is obvious, because it has exactly
|LS,1| iterations.

Lemma 4.7 The third while-loop (lines 16-28) of MOPBB terminates.

Proof. Assume the third while-loop does not terminate. Hence, there must be an
infinite sequence of boxes X1 ⊃ . . . ⊃ Xk ⊃ . . . with X1 ∈ LS,2 after the second
loop, which were not discarded, but bisected after applying Algorithm 5 on each box.
Hence, every box Xk will be stored in LS,2 and bisected in another iteration, where
the boxXk+1 is one of the two obtained subboxes. Obviously, the box width decreases
among the sequence of boxes, i. e., ω(Xk) ≥ ω(Xk+1) for every k ∈ N and converges
to 0 (because we divide the boxes perpendicular to a side with maximal width). Let
us choose the first box X k̃ with ω(X k̃) < min{δ,

√
ε
α
}. For X k̃ we have D = 0,

otherwise it will be discarded. Therefore, the conditions in lines 20 and 23 of MOPBB
are satisfied and X k̃ will be stored in LS,3. This contradicts the assumption that X k̃

will be bisected. Eventually, the assumed infinite sequence of subboxes does not exist
and the third while-loop terminates.

Proposition 4.8 By Lemmas 4.5 to 4.7 we obtain that the whole algorithm MOPBB ter-
minates.

58 4 A Global Solution Method for Multiobjective Nonconvex Optimization

4.4.2 Correctness

First, we state that all efficient points x of (MOP) are contained in the union of boxes
from the final list LS,3:

Lemma 4.9 Let LS,3 be the output of MOPBB for arbitrary ε, δ > 0 and let LS,1 and
LS,2 be the lists after the first and the second while-loops, respectively. Then

XE ⊆
⋃

X∗∈LS,3

X∗ ⊆
⋃

X∗∈LS,2

X∗ ⊆
⋃

X∗∈LS,1

X∗.

Proof. This is a direct consequence of Theorems 4.3 and 4.4 and the way the lists are
constructed.

The next two lemmas show that in Algorithm 5 the case of t̃ < − ε
2
is not possible in

the second and third while-loops of MOPBB (Algorithm 6) as mentioned in Section 4.1
on page 51.

Lemma 4.10 Let X∗ ∈ IRm be chosen from the working list LS,1 during the second
while-loop of MOPBB and hence be an input for Algorithm 5. If (Pp̄, X∗) is solved for
any p̄ ∈ LLUB within Algorithm 5, we obtain a minimal solution (x∗, t∗) with t∗ ≥ − ε

2
.

Proof. Let p̄ ∈ LLUB be inside the current outer approximation of fα(X∗ ∩ M) +

Rm
+ and let (x∗, t∗) be the minimal solution of (Pp̄, X∗). Assume now that t∗ < − ε

2

holds. In particular, by fα(x
∗) ≤ p̄ + t∗e < p̄ we obtain p̄ ∈ fα(X

∗ ∩ M) + Rm
+ .

Because of X∗ ∈ LS,1, this box was not discarded in the first while-loop of MOPBB,
i. e., D = 0 and B = 0. For the next steps consider X∗ during the first while-loop,
where Algorithm 4 is called. Let L′

LUB be the set of local upper bounds at this time.
Then it holds that

∀p′ ∈ L′
LUB : (Pp′, X∗) was solved with minimal solution (x′, t′)⇒ t′ ≥ −ε

2
. (4.7)

Now, we distinguish two cases, the first is p̄ ∈ L′
LUB . Because p̄ ∈ fα(X

∗ ∩M) + Rm
+

holds, the problem (Pp̄, X∗) was solved. As (x∗, t∗) is feasible for (Pp̄, X∗) with t∗ < − ε
2
,

this contradicts (4.7).

4.4 Convergence Results 59

The second case is p̄ /∈ L′
LUB , i. e., p̄ was added to the set of local upper bounds after

X∗ was considered in the first while-loop. Then there exists a p∗ ∈ L′
LUB with p̄ ≤ p∗

and p̄ 6= p∗, see Remark 3.26. Because of p̄ ∈ fα(X
∗ ∩M) + Rm

+ , it also holds that
p∗ ∈ fα(X

∗ ∩M) + Rm
+ and the optimization problem (Pp∗, X∗) was solved in Algo-

rithm 4. Then (x∗, t∗) is also feasible for (Pp∗, X∗), because fα(x∗) ≤ p̄+ t∗e ≤ p∗ + t∗e,
which contradicts (4.7).

Lemma 4.11 Let X∗ ∈ IRm be chosen from the working list in LS,2 during the third
while-loop of MOPBB and hence be an input for Algorithm 5. If (Pp̄, X∗) is solved for
any p̄ ∈ LLUB within Algorithm 5, we obtain a minimal solution (x∗, t∗) with t∗ ≥ − ε

2
.

Proof. Let p̄ ∈ LLUB be inside the current outer approximation of fα(X∗ ∩M) + Rm
+

and let (x∗, t∗) be the minimal solution of (Pp̄, X∗). Assume now that t∗ < − ε
2
. In

particular, by fα(x
∗) ≤ p̄ + t∗e < p̄ we obtain p̄ ∈ fα(X

∗ ∩M) + Rm
+ . Note that the

set LLUB is fixed after the first loop.

Because of Lemma 4.10 the box X∗ was not considered in the second while-loop,
i. e., X∗ 6∈ LS,2 after line 15. But there exists a box X̃ with X∗ ⊆ X̃ , which has
been considered and not discarded in this loop. Let f̃α be the componentwise convex
underestimator of f on X̃ = [x′, x′], i. e., f̃ j,α(x) = f(x)− α

2
(x′ − x)T (x′ − x) for all

x ∈ X̃, j = 1, . . . ,m. The convex underestimator f̃α is clearly less than fα onX∗, i. e.,
f̃α(x) ≤ fα(x) for all x ∈ X∗, see also Lemma 3.11. Because of p̄ ∈ fα(X

∗∩M)+Rm
+

it also holds that p̄ ∈ f̃α(X̃∩M)+Rm
+ and the optimization problem (Pp̄, X̃) was solved

in Algorithm 5. Let (x̃, t̃) be a minimal solution of (Pp̄, X̃). Because of Lemma 4.10 we
have t̃ ≥ − ε

2
. Since X∗ ⊆ X̃ and fα(x

∗) ≥ f ∗
α(x

∗) the pair (x∗, t∗) is also feasible for
(Pp̄, X∗), which contradicts the minimality of (x̃, t̃).

Based on the list LLUB and thus on the list LPNS which are calculated by MOPBB, one
obtains a set, which contains all nondominated points of (MOP). We prove this in
Theorem 4.13. This set, which looks like a staircase-shaped tube or pipe in the two-
dimensional case, is defined as follows:

T :=
(⋃

p̄∈LLUB
{p̄} − Rm

+

)
\
(⋃

p̄∈LLUB

{
p̄− ε

2
e
}
− int(Rm

+)
)
. (4.8)

60 4 A Global Solution Method for Multiobjective Nonconvex Optimization

An illustration of such a set T is shown in Figure 4.5. Recall that Ẑ was defined as a
box with f(X) ⊆ int(Ẑ).

Ẑ

f1

f2

LPNS

LLUB

ε
2

ε
2

T

Figure 4.5. The set T , which depends on ε
2 ; m = 2.

The set T contains all points from LPNS , which will be shown in the next lemma.

Lemma 4.12 Let LLUB be the local upper bound set w. r. t. LPNS . Let T be defined as in
(4.8). Then LPNS ⊆ T .

Proof. Because of Lemma 3.24 there exists for every point q ∈ LPNS a point pq ∈ LLUB

with q ∈ {pq}−Rm
+ . Assume q belongs to a set {p− ε

2
e}− int(Rm

+) for any p ∈ LLUB .
Then it holds for every j ∈ {1, . . . ,m} that qj < pj − ε

2
< pj. Certainly, this contra-

dicts Proposition 3.23 (i). Thus, LPNS ⊆ T .

Theorem 4.13 Let LLUB be the local upper bound set w. r. t. LPNS with LPNS from
MOPBB and let T be defined as in (4.8). Let x̄ be an efficient point of (MOP). Then
f(x̄) ∈ T , i. e., the nondominated set of (MOP) is a subset of T .

Proof. Let x̄ ∈ XE , i. e., x̄ is an efficient point of (MOP). We assume that f(x̄) /∈ T.

There are two possibilities: First, f(x̄) lies above T , i. e., f(x̄) ∈ Ẑ \ (T − Rm
+). By

4.4 Convergence Results 61

f(x̄) /∈ T − Rm
+ , it holds for all p ∈ LLUB that f(x̄) � p. In particular, f(x̄) /∈ S,

where S is the search region (see (3.18)). Otherwise, we have a contradiction to Defi-
nition 3.21 (i). Using the definition of S, it follows that there exists a point q ∈ LPNS

with q ≤ f(x̄). Since q is an image of a feasible point and x̄ is efficient, q = f(x̄)

holds. However, we have assumed that f(x̄) /∈ T , which contradicts q ∈ LPNS ⊆ T .

The other case is f(x̄) ∈ (T −Rm
+) \T . Hence, there is a local upper bound p̄ ∈ LLUB

with f(x̄) < p̄− ε
2
e, which leads to the chain of inequalities fα(x̄) ≤ f(x̄) < p̄− ε

2
e. By

Lemma 4.9 there is some boxX ∈ LS,1 with x̄ ∈ X and thus p̄− ε
2
∈ fα(X∩M)+Rm

+ .
This is a contradiction to (4.3). Therefore, f(x̄) belongs to T .

Remark 4.14 As a consequence of Theorem 4.13 we also have f(M) ⊆ T +Rm
+ , i. e.,

f(M)∩(Rm\(T+Rm
+)) = ∅, whichmeans that no image of a feasible point of (MOP)

lies below T . This is due to the fact that the ordering cone Rm
+ is a pointed closed

convex cone and f(M) is a compact set, and thus external stability holds, (cf. [SNT85,
Th. 3.2.9]).

Next, we show the (ε, δ)-efficiency of the output set A. Recall that the set X is calcu-
lated individually for every considered subbox X∗ in Algorithm 5. All x ∈ X may be
ε-efficient points of (MOP). In MOPBB, line 23, two conditions are checked and we
will prove in the next lemmas that for those x ∈ X which satisfy one of the conditions
in line 23, ε-efficiency indeed holds.

Lemma 4.15 Every subbox X∗ ∈ IRn of X which is not discarded in the third while-
loop of MOPBB and with ω(X∗) <

√
ε
α
contains a point x̃ which is ε-efficient.

Proof. Set δ̃ :=
√

ε
α
and let X∗ ⊆ X be a box with ω(X∗) < δ̃. By Remark 3.13 we

know that for arbitrary x ∈ X∗ and all j = 1, . . . ,m it holds that

fj(x)− fj,α(x) = |fj(x)− fj,α(x)| ≤
α

2
ω(X)2 <

α

2
· ε
α

=
ε

2
.

As fα is a convex underestimator of f (componentwise), we obtain

fj,α(x) ≤ fj(x) < fj,α(x) +
ε

2
for every j ∈ {1, . . . ,m} and all x ∈ X∗, (4.9)

62 4 A Global Solution Method for Multiobjective Nonconvex Optimization

which is equivalent to f(x) ∈
({

fα(x) +
ε
2
e
}
− int(Rm

+)
)
∩
(
{fα(x)}+ Rm

+

)
. The

boxX∗ was not discarded in the third while-loop. Hence, Algorithm 5 applied toX∗

delivered the output D = 0 and a list X 6= ∅, see line 9 of Algorithm 5. Consider an
x̃ ∈ X∗ ∩M , which was calculated in line 6 of Algorithm 5 w. r. t. the corresponding
local upper bound ps ∈ LLUB . Note that for the minimal solution (x̃, t̃) of (Pps, X∗) we
have− ε

2
≤ t̃ ≤ 0. Recall that− ε

2
≤ t̃ holds because of Lemma 4.11. Suppose now that

there is an x̂ ∈M with f(x̂) ≤ f(x̃)− εe and f(x̂) 6= f(x̃)− εe, which is equivalent
to f(x̂) ∈ {f(x̃)}−{εe}− (Rm

+ \ {0m}). Hence, with the above shown property (4.9)
we conclude that

f(x̂) ∈ {f(x̃)} − {εe} − (Rm
+ \ {0m})

⊆
(({

fα(x̃) +
ε

2
e
}
− int(Rm

+)
)
∩
(
{fα(x̃)}+ Rm

+

))
− {εe} − (Rm

+ \ {0m})

⊆
{
fα(x̃)−

ε

2
e
}
− int(Rm

+), (4.10)

which is equivalent to f(x̂) < fα(x̃)− ε
2
.

As (x̃, t̃) is a feasible point of (Pps, X∗), it holds that ps + t̃e ≥ fα(x̃). Given this and
t̃ ≤ 0, we obtain fα(x̃) ≤ ps. By (4.10) it follows that f(x̂) < ps − ε

2
and, thus, f(x̂)

is not in T + Rm
+ , which contradicts Remark 4.14 that no feasible image is below T .

Hence, x̃ is ε-efficient.

Lemma 4.16 Let A be the set generated by MOPBB. Then every x̃ ∈ A is an ε-efficient
point of (MOP).

Proof. Let x̃ be an arbitrary element of A. If x̃ is added in line 29 to A, the point
f(x̃) is an element of LPNS and thus by Lemma 3.24 there is a local upper bound
p̄ ∈ LLUB with f(x̃) ≤ p̄. Suppose there is an x̂ ∈ M with f(x̂) ≤ f(x̃) − εe and
f(x̂) 6= f(x̃)− εe. With f(x̃) ≤ p̃ we obtain f(x̂) ≤ p̃− εe and hence f(x̂) /∈ T , but
f(x̂) lies below T . That contradicts Remark 4.14.

If x̃ is added in line 24, x̃ belongs to a boxX∗ with ω(X∗) ≤ δ which was not discarded
in the third while-loop, and moreover, x̃ ∈ X . Hence, there is a local upper bound
p̄ ∈ LLUB such that (x̃, t̃) is a minimal solution of (Pp̄, X∗) and − ε

2
≤ t̃ ≤ 0. Recall

that− ε
2
≤ t̃ holds because of Lemma 4.11. As the first condition in line 23 of MOPBB is

4.4 Convergence Results 63

satisfied, we have f(x̃) ≤ p̃ for a local upper bound p̃ ∈ LLUB . By the same arguments
as at the beginning of this proof, we can show that x̃ is ε-efficient.

If the first condition in line 23 is not satisfied, but the second one is, i. e., ω(X∗) <
√

ε
α
,

we have to show that each x ∈ X is ε-efficient. For this we refer the reader to the
proof of Lemma 4.15, because the points in X for a box X∗ with ω(X∗) <

√
ε
α
are

exactly those ε-efficient points from Lemma 4.15.

Theorem 4.17 Let A be the set generated by MOPBB. Then A is an (ε, δ)-efficient set of
(MOP).

Proof. With Lemma 4.16, we know that A only contains ε-efficient points.

Let x∗ ∈ XE be efficient for (MOP). With Lemma 4.9, we know that a box X∗

which contains x∗ cannot be discarded in any while-loop. Thus, choose now a box
X∗ ∈ LS,3 with x∗ ∈ X∗. This box exists because the algorithm terminates; see Lem-
mas 4.5 to 4.7. In lines 23 and 24 of MOPBB,X∗ is stored inLS,3 and an ε-efficient point
x ∈ X ⊆ X∗ is added to the setA. Moreover, ω(X∗) ≤ δ and thus ‖x− x∗‖ ≤ δ.

64 4 A Global Solution Method for Multiobjective Nonconvex Optimization

4.5 Discussion of Related Procedures

This section provides an overview of global algorithms for solving multiobjective op-
timization problems. Commonly, a global algorithm is an algorithm which is able —
or aims — to find globally optimal or globally efficient points. This section includes
deterministic algorithms as well as heuristic algorithms. First, we consider B&B al-
gorithms, which are deterministic and ensure an accuracy of the calculated solutions
like MOPBB. In the second section, we explain heuristically motivated procedures. One
of them is the most-known and state-of-the-art evolutionary algorithm NSGA-II.

4.5.1 B&B Algorithms

All B&B algorithms have some aspects in common: Next to executing partitions in the
preimage or image space, they need lower and upper bounds for the minimal values or
nondominated points. Thereby, upper bounds are always objective values of feasible
points. For obtaining feasible points, different strategies can be used. Since most
methods are for solving multiobjective optimization problems with box constraints,
the midpoint of a subbox is a suitable choice. The lower bounding procedures are
often a part of the discarding tests, see Section 4.5.1.1.

Despite all multiobjective B&B algorithms aim to find approximate solutions of a mul-
tiobjective optimization problem, not all of them ensure a certain accuracy of their
computed solution. In Section 2.4, we introduced different concepts for approximate
solutions. The discarding tests are mostly developed in such a way that the obtained
solutions fulfill the properties of one of these specific optimality concepts.

A very general B&B algorithm for multiobjective optimization problems with conver-
gence theory was presented in [Sch12]. There, the feasible set is only described by box
constraints. The bounding procedure consists of computing lower and upper bounds
for all objective values on a subbox, but it is not further specified. The algorithm de-
scribed in [Sch12, Sec. 4.3] ensures that its output only consists of ε-Pareto optimal
points, see Definition 2.9. One difference to MOPBB is that the algorithm by [Sch12]
works with an additional upper bounding procedure. This one is necessary in [Sch12]
to prove the ε-Pareto optimality of the points belonging to the output set. Another

4.5 Discussion of Related Procedures 65

important difference between MOPBB and the general framework by [Sch12] is the
lower bounding procedure. While the objective functions are considered separately
in [Sch12] (see also the forthcoming Definition 4.18), MOPBB considers all objective
functions as one unit.

Another algorithmwhich ensures some accuracies is the one proposed in [EP13; EP14].
This algorithm generates formultiobjective optimization problemswith box constraints
a set of points which do not dominate each other, i. e., a stable set. This set is an ε-
Pareto set, see Definition 2.11.

The B&B algorithms by [FT09; Mar+16; ACA19] have the same foundations, which are
set by [FT09], and are based on the other, respectively. Therefore, they have similar
convergence results. The authors of [FT09] name different termination rules. One of
them is that a boxX∗ is stored in the solution list LS ifX∗∩M 6= ∅, ω(F1(X

∗)) < ε1

and ω(F2(X
∗)) < ε2 hold for two given scalars ε1, ε2 > 0. In this case, the algorithm

of [FT09] ensures that all points of the boxes from a final solution list are not (2ε1, 2ε2)-
superdominated, see Definition 2.13.

4.5.1.1 Other Discarding Tests

The most used discarding test executes the pairwise comparison of a lower bound
of the objective functions on a box with the upper bounds which are found so far.
Thereby, computing a lower bound can be done in different ways. For example, the
natural interval extension F of a function f on a box X∗ gives another box F (X∗),
which includes all function values. The lower left corner of this box, i. e., inf(F (X∗)),
is a lower bound of all function values f(x) with x ∈ X∗. Since toolboxes for inter-
val arithmetic like Intlab (for MATLAB) are well developed, this is a fast and simple
method. In contrast to this, MOPBB uses the convex underestimators and their min-
imal values to get lower bounds. Even any other underestimator can be chosen like
underestimators based on Lipschitz constants, see [EP13; ŽŽ16]. For those it is even
possible to obtain minimal solutions analytically, and thus, no time-consuming single
objective optimization problem has to be solved throughout the algorithm. In con-
trast to other B&B algorithm, MOPBB does not only determine singleton lower bounds
by considering each objective function decoupled from the other ones. By applying

66 4 A Global Solution Method for Multiobjective Nonconvex Optimization

the approach of Benson’s algorithm, the discarding test of MOPBB takes lower bounds
described by hyperplanes into account.

Interval arithmetic can be used further. By evaluating the partial derivatives, a mono-
tonicity test is developed in [FT09] for biobjective optimization problems. A box can
be discarded, if both objective functions have the same monotonicity along the same
direction in this box and the “best” points belong also to a boundary of another feasi-
ble box. Figure 4.6 shows this case: Both functions decrease onX∗ while xi increases.
Thus, those points with xi = xi are the “best points” of X∗ and, thereby, candidates
for the efficient points. Since these points belong also to another box, namely X∗∗,
the box X∗ can be discarded.

xi

F

xi xiX∗
i X∗∗

i

f1

f2

Figure 4.6. Monotonicity test, cf. [FT09].

Another type of discarding test is about using criteria based on first order condi-
tions for optimality of multiobjective optimization problems. For instance, the authors
of [GDC14] present three discarding tests of this type. These tests explore conditions
such that there exist no multipliers λ ∈ Rm, µ ∈ Rp to satisfy the well-known Fritz-
John or Karush-Kuhn-Tucker conditions for multiobjective problems for all points of
a box. As a consequence, no point of the box fulfills a necessary condition to be effi-
cient and the box can be discarded. Similar tests based on first order conditions were
presented in [Sch12] as well, which also includes a generalization of the abovemen-
tioned monotonicity test to more than two objective functions. Interval arithmetic is
here again a suitable tool to perform those type of discarding tests.

4.5 Discussion of Related Procedures 67

It is also possible to discard (parts of) boxes in the image space. For example, the
authors of [Mar+16] deal with a tree-search structure based on boxes of IRn × IR2.
The overall discarding test consists of different steps: First, classic discarding tests are
applied, for example, the monotonicity test by [FT09], or first order tests by [GDC14].
If a box could not be discarded directly, so-called dominance decomposition is applied.
This method aims to contract boxes in the image space based on the upper bound set.
Figure 4.7 illustrates different variants to contract the box Y into subboxes. A first
variant is shown in the middle picture. The points ŷ1 and ŷ2 are the closest upper
bounds to the image box Y which do not belong to Y . Then the box Y can be con-
tracted to Y ′ because the remaining parts cannot contain any nondominated points.
A second variant is based on one upper bound inside the box Y , see right picture of
Figure 4.7. The part which is dominated by this upper bound can be excluded. Thus,
Y is reduced to two (or three) new boxes Y l ∪ Y lb and Y b. A very detailed variant
is shown in the left picture: There, Y is contracted into 10 smaller subboxes, but this
would lead to higher computational costs in the further procedure. Given a set of
contracted subboxes of Y , the box of the preimage space can be narrowed as well.
For that, classical contractors from the literature are applied to a numerical constraint
satisfaction problem, [Mar+16].

Y

ŷ1

ŷ2

Y

ŷ1

ŷ2

Y ′

Y

Y lb Y b

Y l

Figure 4.7. Dominance decomposition of a box in the image space, cf. [Mar+16].

4.5.1.2 Other Selection and Partition Rules

A selection rule to choose a box from the working list of a B&B algorithm is heuris-
tically motivated, but also affects the whole algorithm. The aim of a selection rule
should be to choose a box which delivers “good” upper bounds. As soon as the upper

68 4 A Global Solution Method for Multiobjective Nonconvex Optimization

bounds are very close to the nondominated set, the discarding tests are able to discard
other boxes earlier. For that reason, a common rule is the one proposed in Section 4.2
which is used for MOPBB. Other algorithms introduce new distance measures to eval-
uate which box should be chosen next, see, for instance, [ACA19]. In [Mar+16], every
box from the working list is stored with a normalized sum of objectives, i. e., the ob-
jectives are scaled such that they have the same range, and summarized afterwards.
Then the box with a smallest normalized sum of objectives is selected as a next box
for bisection.

Usually, a B&B bisects boxes into two subboxes. However, it is not necessary to par-
tition a box into exactly two smaller boxes. The works by [CCC00b; CCC00a; CGC00]
discuss so-called multisection rules theoretically and numerically. Another approach
described by [ŽŽ16] is to trisect a chosen box, because the discarding test of their al-
gorithm needs only the endpoints of a diagonal of the box. The advantage of trisection
is that only two new end points have to be computed to get the three new diagonals,
see Figure 4.8. For bisection also two new points are required, but this cannot be fur-
ther improved. Thus, with the same amount of new required points the boxes can be
reduced more.

1
2

0 x1

0

x2

1

1

a: Original box

0 x1

0

x2

1

1

1
2

b: Bisection

0 x1

0

x2

1

1

1
3

2
3

c: Trisection

Figure 4.8. Bisection and trisection of a box, solid points are the end points of the
original diagonal, circles show the points which have to be computed to
get new end points of diagonals, cf. [ŽŽ16].

Moreover, a partition rule specifies the direction along which a box gets partitioned.
In MOPBB a box is bisected perpendicularly to the direction of maximum width which

4.5 Discussion of Related Procedures 69

is the case for many B&B algorithms. We will see in Section 6.3.1 that in the presence
of integer variables some other partition rules are possible and useful.

4.5.1.3 Handling of Equality Constraints

A first biobjective B&B algorithm which is able to deal with equality constraints is
proposed in [Mar+16]. The equality constraints are handled via so-called interval con-
straint propagation. Its aim is to find feasible points, i. e., solutions to a constraint
system described by equality and inequality constraints. This can be used to further
contract boxes of the preimage and image space. The authors propose to use already
known dominance constructors, see [Mar+16, Subsection 3.3] for an overview of con-
tractors and related literature. Note that in this thesis, we only consider multiobjective
optimization problems with inequality constraints.

4.5.1.4 Convergence Rate

Adefinition for a convergence rate ofmultiobjective B&B algorithmswas given in [Sch12]
for so-called multiobjective bounding operations.

Definition 4.18 [Sch12, Def. 4.5] Let X ⊆ Rn be a box and consider a function
f : X → Rm. A multiobjective bounding operation is a procedure to calculate for any
subbox X∗ ⊆ X lower and upper bounds LBi(X

∗), UBi(X
∗) ∈ R such that

LBi(X
∗) ≤ fi(x) ≤ UBi(X

∗)

for all i = 1, . . . ,m and all x ∈ X∗. Moreover, with a c ∈ X∗ define

LB(X∗) = (LB1(X
∗), . . . , LBm(X

∗)),

UB(X∗) = (UB1(X
∗), . . . , UBm(X

∗)),

OV (X∗) = (f1(c), . . . , fm(c)).

Formally, we obtain the multiobjective bounding operation

(LB(X∗), UB(X∗), OV (X∗)).

70 4 A Global Solution Method for Multiobjective Nonconvex Optimization

The bounding procedure of MOPBB does not fit into this definition completely. First,
MOPBB only deals with lower bounds, which do not have to be singletons. For OV ,
MOPBB uses objective values as well. In this general framework of [Sch12], any feasible
point of the boxX∗ can be chosen for c, for example, themidpoint orminimal solutions
of some objective functions are possible. The definition of the convergence rate is the
following.

Definition 4.19 [Sch12, Def. 4.6] Let X ⊆ Rn be a box and f : X → Rm. Further-
more, consider the multiobjective optimization problem

min
x∈X

f(x) = (f1(x), . . . , fm(x))
T .

We say a multiobjective bounding operation (LB(X∗), UB(X∗), OV (X∗)) is conver-
gent if there exist a fixed constant C > 0 such that for all boxes X∗ ⊆ X , it holds

‖UB(X∗)− LB(X∗)‖1 ≤ Cω(X∗).

Recall that ω(X∗) is the box width of the boxX∗, see (3.1). Definition 4.19 is a general-
ization of the definition of the rate of convergence of 1 in single objective optimization
given in [Sch12, Def. 2.4]:

Definition 4.20 [Sch12, Def. 2.2, 2.4] Let X ⊆ Rn be a box and f : X → R.

(i) A (single objective) bounding operation is a procedure to specify a feasible
point r(X∗) ∈ X∗ and to calculate for any subbox X∗ ⊆ X a lower bound
LB(X∗) ∈ R with

LB(X∗) ≤ f(x) for all x ∈ X∗.

(ii) Furthermore, consider the minimization problem

min
x∈X

f(x).

4.5 Discussion of Related Procedures 71

We say a bounding operation has the rate of convergence p ∈ N if there exist a
fixed constant C > 0 such that for all boxes X∗ ⊆ X , it holds

‖f(r(X∗)− LB(X∗))‖1 ≤ Cω(X∗)p.

For example, using an αBB-underestimator from Section 3.2 for the (scalar-valued) ob-
jective f leads to the classical αBB method introduced in [Adj+98]. In fact, LB(X∗)

is the minimal value of the underestimator on X∗, and r(X∗) can be chosen as the
midpoint ofX∗ or the minimal solution obtained from the minimization of the under-
estimator. With this setting and because of Remark 3.13, this bounding operation has
a rate of convergence of 2.

Currently, for multiobjective bounding procedures there have been defined no fur-
ther rates yet. For MOPBB it is not possible to show whether the used multiobjective
bounding procedure is convergent in the sense of Definition 4.19. There are two rea-
sons for that: first, we do not compute upper bounds UBi(X

∗), and second, the lower
bounds are in general not singletons. However, it is possible to get an upper bound
UBi(X

∗), for example, by maximizing a concave overestimator for each objective (see
Section 7.2.1). Then UB(X∗) is given by the anti-ideal point (see (3.6)) of the concave
overestimator on X∗. Together with the ideal point for LB(X∗) this multiobjective
bounding operation is convergent, which can be shown by using Remark 3.13. In
fact, the procedure for MOPBB described in Section 4.1.1 is at least as good as using
only the ideal point of the underestimators, because we improve this by supporting
hyperplanes to get an outer approximation as a lower bound.

4.5.2 Heuristic Algorithms

There are plenty of heuristically motivated algorithms which aim to find globally ef-
ficient solutions of multiobjective optimization problems. Here, we mention two of
them. The first uses a direct search approach. The second is the most frequently used
evolutionary algorithm for multiobjective problems — NSGA-II. Recently, there are
(heuristical) improvements for NSGA-II, for example, [DJ12; Han+14]. In this work,
we focus on the basic version.

72 4 A Global Solution Method for Multiobjective Nonconvex Optimization

MultiGLODS Afirst heuristic algorithm isMultiGLODS (Multiobjective Global and
Local Optimization using Direct Search) which was introduced in [CM18]. It is based
on the direct search approach. Thus, it does not require any information about deriva-
tives. However, to prove some convergence results, this method requires certain
kinds of differentiability. The single objective variant was developed at first and
is known under the name of GLODS (Global and Local Optimization using Direct
Search). Because of direct search and under some certain assumptions, the algo-
rithm finds sequences of feasible points converging to Pareto-Clarke critical points,
see [CM18, Def. 6] for a definition. By using a multistart strategy, the procedure aims
for globally efficient points. MultiGLODSworks by alternating between new searches,
multistarts and exploring subregions of the feasible set. Hence, this procedure seeks
sets of globally and locally nondominated points. Constraints are handled by using
an extreme barrier approach, i. e., the function values of infeasible points are set to∞.
This is possible since no derivatives are needed.

MultiGLODS and MOPBB differ significantly. First, MultiGLODS is basically a local
solver which is also able to obtain globally efficient and nondominated points by using
multistarts. However, there is no guarantee of getting globally efficient points. MOPBB
works with a B&B approach and tries to discard subregions of the feasible set as early
as possible. Most of all, it guarantees a certain accuracy of the computed points.

NSGA-II A popular algorithm which aims for globally efficient solutions and non-
dominated points of multiobjective optimization problems is the evolutionary algo-
rithmNSGA-II (Nondominated SortingGenetic Algorithm-II), see [Deb+02a] or [Deb01,
Section 6.2]. Evolutionary algorithmsworkwith heuristic strategies to generate “good
solutions” randomly. In what follows, NSGA-II is explained in detail because it will
be compared numerically with MOPBB in Section 5.3. Words like population and gen-
eration are very common in evolutionary algorithms and are explained and used here
as well.

The procedure of the t-th iteration of NSGA-II is the following: For a given set of
feasible points Pt — the current population — with a fixed size N , another new pop-
ulation is generated. For this, some common operations of evolutionary algorithms
like selection, recombination and mutation are applied. Now a population Pt ∪Qt of

4.5 Discussion of Related Procedures 73

the size 2N is present and is sorted by a fast nondominating sorting algorithm: The
exact sorting procedure is one of the key features of NSGA-II and sorts the popula-
tion into so-called nondominated fronts. The points which are not dominated by any
other point of the population belong to the first nondominated front F1. The nondom-
inated points of the finite set of remaining points are identified as well and build the
second nondominated front F2. The procedure continues and adds the nondominated
fronts successively to the new population Pt+1 until at least N points were added. If
more than N points are found, the last nondominated front is considered separately.
There, a measure, called crowding distance, is assigned to every point of this set. The
crowding distance is based on some certain distances in the objective space to estimate
the density of points surrounding another point of the same nondominated front. A
lower crowding distance for one point means that this point is more crowded by other
found image points. After the assignment of the crowding distance, the points with
the highest crowding distance are selected until the new population consists of exactly
N points.

Different parameters can be chosen by the user. The most common are the popula-
tion size N , and the total number of iterations, also known as generations. Moreover,
it is possible to set some internal parameters like selection strategies, crossover and
mutation functions as well as a crossover fraction. The crossover fraction is the ra-
tio of new feasible points which are created by the crossover function, [MAT18b]: A
crossover fraction of 1 means that only crossover is performed without any mutations.
Otherwise, in case of a crossover fraction of 0, there is no crossover, only mutation.

NSGA-II and MOPBB cannot be compared theoretically because both are based on sig-
nificantly different approaches. MOPBB is deterministic and gives a guarantee to com-
pute an (ε, δ)-efficient set, while NSGA-II works heuristically and cannot guarantee
any accuracies of the computed solutions. It is possible to get only locally efficient
points, which are not globally efficient. By variation of parameters and performing
multiple runs globally efficient points can be found, but a guarantee of that is not
given.

74 4 A Global Solution Method for Multiobjective Nonconvex Optimization

4.6 Conclusions

In this chapter, we have combined the ideas of convex underestimators with tech-
niques from multiobjective convex optimization and the idea of local upper bounds
from multiobjective combinatorial optimization to obtain an efficient discarding test.
In contrast to other global multiobjective optimization algorithms our algorithm guar-
antees the (ε, δ)-efficiency of the output A in a finite time. Because of this, the intro-
duced algorithm is not comparable with existing state-of-the-art algorithms which are
usually heuristics and do not provide accuracy of their computed solutions. Numerical
experiments will be presented in the next chapter. They will show that good results
can be obtained even with large values for ε and δ. This is due to the fact that the
estimations in some proofs are quite rough.

The current implementation does not use other, simpler, discarding tests as already
proposed in the literature. Therefore, further time savings can be expected if these ex-
isting discarding tests are used additionally. An example of these tests are the mono-
tonicity tests as proposed in [FT09; Sch12]. Moreover, in [ŽŽ16] bounds based on
Lipschitz constants are derived and it would be of interest to explore possible combi-
nations. Also the handling of nonconvex constraints should be considered. However,
the same difficulties as for global single objective optimization algorithms will arise.
These difficulties are discussed, for instance, in [KSS15].

4.6 Conclusions 75

5 Numerical Results for MOPBB

In this chapter, we test the newly developed algorithm MOPBB on some chosen test
problems and on a design problem, which occurs in engineering. This gives a brief
overview on different aspects of the algorithm and illustrates that it runs satisfyingly.
The test results and their interpretation can be found in Section 5.1

Moreover, we compare MOPBB with the state-of-the-art evolutionary algorithm for
multiobjective optimization problems called NSGA-II, explained in Section 4.5.2. For
that, in Section 5.3, performance indicators are introduced briefly. Then we present
and discuss the results for some test instances.

MOPBB has been implemented in MATLAB R2018a [MAT18a] and uses the optimiza-
tion toolbox [MAT18c] as well as the toolbox Intlab [Rum99] for interval arithmetic.
The experiments of Sections 5.1 and 5.2 have been done on a computer with Intel(R)
Core(TM) i3-2015 CPU and 16 Gbytes RAM on operation systemWindows 7 PRofes-
sional. The experiments of Section 5.3 have been done on a computer with Intel(R)
Core(TM) i5-7400T CPU and 16 Gbytes RAM on operating system Windows 10 En-
teRpRise.

5.1 Numerical Results for some Test Instances

In this section, we test algorithm MOPBB on some instances from the literature. First,
we compare two approaches for a possible discarding test. In fact, we test cases (II)
and (III) from the beginning of Section 4.1.1. Recall that (II) uses the ideal point of the
convex underestimators to obtain lower bounds and compares them with LPNS only.
Case (III) implements the new discarding test. For a better comparability, we restrict

5 Numerical Results for MOPBB 77

our algorithm to the first while-loop with a termination rule ω(X l) < δ. Therefore,
there is no dependency on ε in this test run.

Test instance T.1 [FF]This test instance is based on [FF95] and the dimension of the
preimage space n ∈ N can be chosen arbitrarily.

f1(x) = 1− exp
(
−

n∑
i=1

(
xi −

1√
n

)2
)
, f2(x) = 1− exp

(
−

n∑
i=1

(
xi +

1√
n

)2
)

with −2 ≤ xi ≤ 2 for all i = 1, . . . , n. It should be mentioned that in [FF95] the
domain was originally given by −4 ≤ xi ≤ 4 for all i = 1, . . . , n.

For the number of iterations, the computation time t, and the number of boxes in the
solution list LS , we obtain the results presented in Table 5.1.

Table 5.1. Results for Test instance T.1 with δ = 0.1.

case (II) only ideal point case (III) new discarding test
n # iterations t [s] |LS| # iterations t [s] |LS|
1 41 3.60 34 41 4.19 34
2 456 39.43 262 359 38.14 210
3 6283 626.73 3434 3055 364.11 1268
4 78965 10014.12 42540 20966 2958.71 7644

The plots in Figure 5.1 show the results in the image space for n = 3. The image set
is represented by some image points in gray which are obtained by a discretization of
the feasible set X . The black points are the images of the midpoints of the boxes of
the list LS .

It can be seen that we can decrease the number of iterations with the new approach
(III), which is clear, because computing the ideal point by minimizing convex under-
estimators is also a part of (III). Additionally, for n ≥ 2 approach (III) is faster even
though we have to solve more optimization problems on each subbox. In the n = 3

case the approximation of the nondominated set obtained with the new discarding
test is much tighter than the one which only uses the ideal point. This can be seen in
Figure 5.1. In the other cases for n we obtained similar results.

78 5 Numerical Results for MOPBB

a: Image set with discarding test based on case
(II).

b: Image set with discarding test based on case
(III).

Figure 5.1. Test instance T.1 with n = 3, δ = 0.1

To illustrate MOPBB with the new discarding test and with all three while-loops, we
choose ε = 0.05 and δ = 0.1. The plots in Figures 5.2a and 5.2b show the partitioning
of the feasible set after the second and third while-loops. The different shades of
gray indicates in which while-loop a box was discarded or whether it still belongs to
a solution list: Medium gray boxes are those which have been discarded in the first
while-loop, the light gray boxes were discarded in the second while-loop. Further-
more, the new light gray boxes compared to Figure 5.2a were discarded within the
third while-loop. The dark gray boxes were not discarded after the second and third
while-loops. In Figure 5.2c the boxes of LS,3 are shown together with some black
points which are the points from the (ε, δ)-efficient set A. Figure 5.2d shows the im-
age set of the test function. The black points are the images of the approximation set
A. Additionally, in Figures 5.2e and 5.2f the obtained set T is shown.

The results of the next test instance show that our new algorithm is also able to find
globally efficient and nondominated points if there are also locally efficient points
which are not globally efficient.

Test instance T.2 [Deb41]This test instance was proposed in [Deb99]:

f1(x) = x1,

f2(x) =
1

x1

(
2− exp

(
−
(
x2 − 0.2

0.004

)2
)
− 0.8 exp

(
−
(
x2 − 0.6

0.4

)2
))

5.1 Numerical Results for some Test Instances 79

a: Partition of the feasible set after second
while-loop, 66 discarded boxes.

b: Partition of the feasible set after third
while-loop, 151 discarded boxes.

c: 222 boxes of the solution list LS,3, 279
points in A.

d: Image set and images of the (ε, δ)-efficient
set A.

e: Image set, images of the (ε, δ)-efficient sets
A and T .

f: Part of Figure 5.2e magnified.

Figure 5.2. Test instance T.1 with n = 2, ε = 0.05 and δ = 0.1

80 5 Numerical Results for MOPBB

with 0.1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1. The globally efficient points are (x̃1, x̃2) with
x̃2 ≈ 0.2 and x̃1 ∈ [0.1, 1]. This test instance has also locally (non globally) efficient
points with x̃2 ≈ 0.6 and x̃1 ∈ [0.1, 1].

Figure 5.3 shows the results of our algorithm on this test instance. In total 648 ε-
efficient points are found, where 608 are in a δ-neighborhood of a globally efficient
point. The other 40 points are the ones with x1 ≈ 0.1 and x2 6≈ 0.2 whose images
are located on the right boundary of the image set above the nondominated set. Even
while those points are not close to the efficient set, they are still ε-efficient. Recall that
the images of these ε-efficient points are visualized as black points in Figure 5.3b. It can
be seen that MOPBB computed an approximation of the set of globally efficient points
and did not aim for locally (non globally) efficient points. For example, a weighted
sum approach with a local optimization solver such as sequential quadratic program-
ming (SQP) may be able to find the locally efficient points and does not ensure to find
globally efficient points.

a: Partition of the feasible set after third
while-loop, 2039 discarded boxes, 648
points in A.

b: Image set and images of the (ε, δ)-efficient
set A.

Figure 5.3. Test instance T.2 with ε = 0.01 and δ = 0.01

The next test instance has three objective functions. Moreover, we added a convex
constraint g.

5.1 Numerical Results for some Test Instances 81

Test instance T.3 [ViennetCon] This test instance (without the convex constraint)
was introduced in [VFM96]:

f1(x) = 0.5(x2
1 + x2

2)
2 + sin(x1

1 + x2
2)

f2(x) =
(3x1 − 2x2 + 4)2

8
+

(x1 − x2 + 1)2

27
+ 15

f3(x) =
1

x2
1 − x2

2 − 1
− 1.1 exp(−x2

1 − x2
2)

with −3 ≤ xi ≤ 3, i = 1, 2 and in addition g(x) = x2
1 + x2

2 − 4.

Figure 5.4 shows the results of this test instance. In addition to the meanings of gray
shades in the former graphical results, the white boxes are ones which were discarded
because of infeasibility. In this example no box was discarded in the second while-
loop. Figure 5.4c shows the boxes of the solution listLS,3 and the computed ε-efficient
points. Moreover, we can see in Figures 5.4b and 5.4d that, in the case of disconnected
areas of efficient or nondominated points, our algorithm is also able to find all these
areas.

5.2 Application in Lorentz Force Velocimetry

We have applied MOPBB to a problem which arises in the optimization of a measure
technique known as Lorentz force velocimetry (LFV). In LFV the aim is to measure,
for example, the velocity of fluids. The technique is based on measures of the Lorentz
force that occurs due to the flow of an electric conductive fluid under the influence of
a variable magnetic field. The following setting was also considered in [BTE18]. For
generating a measure system in our problem setting n dipoles have to be arranged
around a cylinder. An electric conductive fluid will flow through this cylinder during
themeasures. Figure 5.5 shows a sketch of the settingwith one dipole. We assume that
the dipoles are placed at equidistant positions ri = (0, cos γi, sin γi)T, i = 1, . . . , n,
γi = (i− 1)2π

n
fixed, around the cylinder and aim to find the optimalmagnetic orienta-

tion. We assume that all dipole moments have the samemagnitudem. The orientation
of an individual dipole i is represented in terms of polar and azimuthal angles θi and

82 5 Numerical Results for MOPBB

a: Partition of the feasible set after second
while-loop, 108 discarded boxes.

b: Partition of the feasible set after third
while-loop, 315 discarded boxes, 360
points in A.

c: 299 boxes of the solution list LS,3. d: Image set and images of the (ε, δ)-efficient
set A.

Figure 5.4. Test instance T.3 with ε = 0.1 and δ = 0.1

5.2 Application in Lorentz Force Velocimetry 83

φi, where φi is split into the two angles βi and fixed γi. Thus, the magnetic moment
vector mi ismi(θi, βi) = (m cos θi,m sin θi cos(βi + γi),m sin θi sin(βi + γi)).

v⃗

x y

z m⃗

h

R

Ω, σ

Figure 5.5. Sketch of the problem geometry, taken from [BTE18].

The first objective is to maximize the absolute value of the axial force component as
in [BTE18]. Since the dipoles are on a circle of radius H in the plane x = 0, the force
can be expressed analytically. The self-interaction term for a dipole i and the mutual
interaction term between dipoles i and j are

Fs(βi, θi) =
45π

4096
· vσR

4µ2
0m

2

128πH7
[355 + 25 cos(2θi) + 266 cos(2βi) sin2 θi] and

Fm(βi, βj, θi, θj) =
45π
1024
· vσR

4µ2
0m

2

128πH7 [10(5 + 14 cos(γi − γj)) cos θi cos θj
+ sin θi sin θj (49 cos(γi − γj − βi − βj) + 35 cos(βi − βj)

+25 cos(γi − γj + βi − βj) + 105 cos(γi − γj − βi + βj)

+35 cos(βi + βj) + 49 cos(γi − γj + βi + βj))],

respectively. For the resulting interaction force, we obtain

Fx(β, θ) =
n∑

i=1

Fs(βi, θi) +
∑
i<j

Fm(βi, βj, θi, θj).

The constants are the velocity of the fluid v, the electric conductivity σ, the radius of
the cylinder R and the vacuum permeability µ0 = 4π · 10−7Vs/Am.

The second goal is the minimization of the interaction potential energy between the
dipoles, because arrangements with a high interaction potential energy are more dif-
ficult to realize. The vector ri,j represents the vector between the positions of both

84 5 Numerical Results for MOPBB

dipoles: ri,j = rj − ri. The function is the sum of all energies between every pair of
dipoles:

V (β, θ) =
∑
i<j

µ0

4π|ri,j|5
[|ri,j|2mi(θi, βi)mj(θj, βj)− 3(mi(θi, βi)ri,j)(mj(θj, βj)ri,j)].

To reduce the dimension of the preimage space, we fix θi = π
2
for all i = 1, . . . n.

Because of this and the symmetry of the arrangements, the feasible set of interesting
angles β is given by X = [(−π/2,−π, . . . ,−π)T , (π/2, π, . . . , π)T] ∈ IRn. All con-
stant coefficients are set to 1 and we scale the objective functions by −0.1 (to switch
from maximization to minimization) and 100, respectively, to obtain different accura-
cies for both objective functions.

Figure 5.6a shows the image set after executing the algorithm with ε = δ = 0.5 for
three dipoles. The results after using a weighted sum approach with a standard SQP
solver for the scalarized problems are shown in Figure 5.6b. The black points con-
nected by black lines are the minimal solutions of minimizing a weighted sum of the
objectives and are used as the starting point for the next weighted sum. Obviously, this
approach was able to find locally efficient points first and after some iterations some of
the globally efficient points. Moreover, the lower-right part of the nondominated set
was not found. Even for different starting points, we never obtained an approximation
of the whole nondominated set, as was achieved with our algorithm.

a: Image set after MOPBB. b: Image set after a weighted sum approach
with a random starting point.

Figure 5.6. Graphical results for 3 dipoles on a circle around a cylinder.

5.2 Application in Lorentz Force Velocimetry 85

5.3 Numerical Comparison with NSGA-II

The topic of this section is the numerical comparison of MOPBB with the evolutionary
algorithm NSGA-II. This algorithm was introduced and described in Section 4.5.2 and
is a popular algorithm for multiobjective optimization problems. However, it works
heuristically and cannot guarantee a certain accuracy after a finite amount of time. In
contrast to this, the new algorithm MOPBB ensures an (ε, δ)-efficient set, after finite
time, see Lemmas 4.5 to 4.7 and Theorem 4.17. Therefore, the comparison of both
algorithms is done by test runs of MOPBB, and test runs of NSGA-II depending on the
results of MOPBB.

To perform NSGA-II in order to compare it with the algorithm MOPBB, we use the
function gamultiobj from the global optimization toolbox of MATLAB [MAT18b].
This function is a variant of NSGA-II. In particular, it executes a controlled version of
NSGA-II, see [DG01]. This means that the number of points in the first nondominated
front is restricted as well as in the other nondominated fronts [Deb01]. An advantage
of the controlled version is that the total number of nondominated fronts is retained
in order to keep some variance and diversity in the found population. The controlling
part is done via a positive scalar from 0 to 1, which specifies the fraction of points
belonging to the first nondominated front.

The algorithm gamultiobj calculates an internal measure which indicates the move-
ment of the found nondominated set in dependence of the crowding distance. If the
change of this value is less than a predefined tolerance for a predefined number of
generations, the algorithm gamultiobj stops.

In the following, we introduce three performance indicators, which enable the com-
parison of algorithms. Then, the test instances are introduced and the settings for both
algorithms are stated. In the remaining subsection, we present the numerical results
and discuss these.

86 5 Numerical Results for MOPBB

5.3.1 Performance Indicators

There are many performance indicators known for comparing outputs of multiobjec-
tive algorithms, see [Aud+18] for an extensive overview. Usually, two sets, which
both approximate the nondominated set, are compared by considering a certain mea-
sure. Some of the performance indicators need the information of the nondominated
set.

First, to apply ameasure to the outputA of MOPBBwe have to adapt the outputA: One
requirement is that the approximate set in the objective space has to be stable. The set
A is a subset of the preimage space. Therefore, the function values of all points of A
are calculated and those which are dominated by other points of f(A) are removed.
We denote the new (stable) set of points of the objective space by F .

Hypervolume The hypervolume (or S-metric) is the volume of the area which is
dominated by an approximation of the nondominated set. For the calculation a refer-
ence point is required which is greater than all objective values of the efficient points.
Choosing a good reference point can already be a difficult task. For example, this can
be the nadir point, which is defined by the maximum of each objective function over
all points from XE , see Remark 3.17. Computing the nadir point is not simple as the
whole efficient set has to be known. Thus, the anti-ideal point of f onX or any other
upper bound can be a suitable choice. For simplicity, we use sup(F (X)) here, i. e., the
upper right vertex of the image box which is obtained by the natural interval exten-
sion. Within the numerical tests, it appears that this is not a good choice in each case.
Thus, for some special instances, where the hypervolume was too large to compare
the algorithms properly, we chose a reference point by hand. Note that the reference
point has to be the same for each test instance to compare two algorithms.

There are different algorithms for computing the hypervolume [Bra11]: The inclusion-
exclusion principle is one of the most simple methods. However, this method is not
very time-efficient as it is exponential in the number of points. Other algorithms,
which identify disjoint boxes which contribute to the hypervolume, work in expo-
nential time according to the numbers of objectives. There are also algorithms which

5.3 Numerical Comparison with NSGA-II 87

were developed for specific dimensions of the objective space. In this thesis, we com-
pute the hypervolume only for biobjective problems. In this case, this indicator can be
obtained by sorting the points of the approximation of the nondominated set and by
adding the volume of rectangular slices, see Figure 5.7 for an illustration. The higher
the hypervolume, the better the computed set approximates the nondominated set.

rp

f1

f2

Figure 5.7. Computation of the hypervolume form = 2 by adding the volume of
each rectangle. rp is the reference point.

SpacingMetric The spacingmetric was proposed in [Sch95, Sect. 13.2]. For a stable
set F = {y1, . . . , y|F|}, it can be computed by

SP (F) =

√√√√ 1

|F| − 1

|F|∑
i=1

(di − d)2,

where di = minyj∈F ,j ̸=i ‖yi − yj‖, i. e., the minimal distance from the i-th point of
the approximation F of the nondominated set to another point of F . The value d is
the mean of all di. Originally, the distance described by di was chosen to be the l1

distance. As far as the Euclidean distance was only used in this work, we will use it
here as well. Here, a smaller spacing metric more suitable, because this means that
the approximation is more uniformly distributed than the one with a larger spacing
metric.

88 5 Numerical Results for MOPBB

Generational Distance The generational distance was introduced in [Van99, Sect.
6.3.4.2] and requires the knowledge of the nondominated set. For simplicity, let P
be a discrete representation of the nondominated set f(XE). Then this indicator is
computed by

GDp(F ,P) =
1

|F|

(∑
s∈F

min
r∈P
‖s− r‖p

) 1
p

.

It measures the mean of the distance of the approximationF to the real nondominated
set in dependence of p > 0. We use here p = 2. The method which produces a small
generational distance is the preferable one. If two algorithms should be compared
by the generational distance, it is recommended to ensure that both found approxi-
mations have an almost equal cardinality. The reason for this is, for example, that an
approximation which consists of one point of the true nondominated set has a genera-
tional distance of 0. On the other hand, an approximation with many well-distributed
points close to the nondominated set has a generational distance greater than 0 al-
though it approximates the true nondominated set much better.

5.3.2 New Test Instances and Settings

Table 5.2 gives an overview of the chosen test instances. For these, we use common
abbreviations from the literature as well as an internal numbering. The description
of Test instance T.4 to Test instance T.22 can be found in Appendix A. All others
(Test instance T.1 to Test instance T.3) are already stated in Section 5.1. In Table 5.2,
“s” means that the instance is scalable according to the number of variables or ob-
jectives. The sixth column states whether an analytical form of the efficient set XE

or of the nondominated set f(XE) is known. The next column describes whether
there are constraints other than box constraints. The last column describes the ge-
ometry of the nondominated set. Note that “convex” means that the upper image,
i. e., f(M) + Rm

+

(
= f(XE) + Rm

+

)
, is convex. “Concave” means that f(XE)− Rm

+ is
convex.

The geometry of the nondominated set of DTLZ5 and DTLZ6 is not completely known.
The authors of [Deb+02b] claim that the set is degenerated.For example, a nondom-
inated set in the three-dimensional space with a lower dimension than two (e.g., a

5.3 Numerical Comparison with NSGA-II 89

Table 5.2. Overview about chosen test instances.

reference name T.X n m XE constraints geometry

[Deb+02b]

DTLZ1 T.4 s s yes no linear
DTLZ2 T.5 s s yes no concave
DTLZ3 T.6 s s yes no concave
DTLZ4 T.7 s s yes no concave
DTLZ5 T.8 s s (yes)1 no (concave)1

DTLZ6 T.9 s s (yes)1 no (concave)1,2

DTLZ7 T.10 s s yes no disconnected

[ZDT00]
ZDT1 T.11 s 2 yes no convex
ZDT2 T.12 s 2 yes no concave
ZDT4 T.13 s 2 yes yes convex2

[FF95] FF T.1 s 2 yes no concave

[Deb99]

Deb41 T.2 2 2 no3 no convex2

Deb41Con T.14 2 2 no yes4 convex2

Deb513 T.15 2 2 no no disconnected
Deb521a T.16 2 2 no no concave2

Deb521b T.17 2 2 no no concave

[VFM96] Viennet T.18 2 3 no no disconnected
ViennetCon T.3 2 3 no yes4 disconnected

[Deb01] SRN T.19 2 2 yes yes convex
[PMC96] Pol T.20 2 2 no no disconnected
[Far02] Far1 T.21 2 2 no no mixed5

[KW05] KW2 T.22 2 2 no no disconnected
1 only known form = 2 and m = 3; more complicated for higher dimensions
2 locally (but not globally) nondominated sets possible
3 globally efficient set only roughly known
4 constraints added by this work’s author
5 the nondominated set is connected, but consists of convex and nonconvex parts

90 5 Numerical Results for MOPBB

curve or a line) is degenerated. Studies of [Hub+06] showed that this is not true for
instances with more than three objective functions. The instances ZDT3, ZDT5 and
ZDT6 (which belong to the ZDT test suite) are not used in this work, because the vari-
ables for ZDT5 are binary, and ZDT3 and ZDT6 are not differentiable in all points of
the preimage space, especially not in the efficient points. The instance Far1 has some
typographic mistakes in the original paper by [Far02]. Thus, we used the corrected
version from [Hub+06]. Instance Deb521a is not twice continuously differentiable in
the suggested interval. However, we adapt the box constraints to exclude the points
in which the objective function is not differentiable.

The following experiments have been done with MATLAB R2018a [MAT18a] on a
computer with Intel(R) Core(TM) i5-7400T CPU and 16 Gbytes RAM on operating
system Windows 10 EnteRpRise. For the numerical testing, MOPBB is performed for
maximal six hours (21600 seconds). Depending on the number of points inF and calls
of the discarding test, the population size and the maximal number of generations
for NSGA-II are chosen. If MOPBB did not deliver any results within the time limit,
gamultiobj was also not executed.

The settings for NSGA-II are stated next. Thereby, DT is the number of executed dis-
carding tests by MOPBB (in the first and third while-loop), and |F| the number of
points of the stable set F obtained by MOPBB. Thus, we used the following:

• PopulationSize = [|F|/ParetoFraction]

• Generations = DT

• TimeLimit = 21600

• TolFun = 10−4 (or = 10−5 in some special cases)
• all others by default:

– CrossoverFcn = 'crossoverintermediate'

– CrossoverFraction = 0.8

– MaxStallGenerations = 100

– ParetoFraction = 0.35

– SelectionFcn = 'selectiontournament'

5.3 Numerical Comparison with NSGA-II 91

TolFun and MaxStallGenerations are parameters to stop gamultiobj before
themaximumnumber of generations is reached. Asmentioned at the beginning of this
subsection, gamultiobj stops if an internal measure does not change significantly.
More precisely and with the default parameters, gamultiobj stops if the changes of
thismeasure are below 10−4 (TolFun) for 100 generations (MaxStallGenerations).
The parameter ParetoFraction gives the percentage of points in the first front ac-
cording to the size of the whole population. The other default parameters are impor-
tant for creating a new population from a former one.

The algorithm gamultiobj is run for ten times since it is an evolutionary algorithm
and produces different populations in each run. In Section 5.3.3, we present the mean
of the chosen performance indicators as this is an estimation of valueswhich can be ex-
pected. We also discuss a test instance for which the performance indicators differ sig-
nificantly. There are some instances for which NSGA-II was faster than MOPBB but de-
livered worse values for at least one performance indicator. To give NSGA-II a chance
to improve, we run it again for ten times for these instances with TolFun = 10−5 and
added those results as well.

Tables 5.3 and 5.4 show the additional settings of the scalable test instances as well
as analytical descriptions of the nondominated set. For the non-scalable instances
the values of ε and δ are mentioned within Table 5.8. The chosen values for ε and δ

were set after separate test runs in order to find reasonable computational times and
approximations of the nondominated set. The tables list only those parameters for
which MOPBB got results within the time limit.

Since the nondominated set of Deb41 is not knownmore precisely, this instancewill be
handled like an instancewith unknown nondominated set. Moreover, for SRN [Deb01]
suggests an analytical description of the efficient and, thus, of the nondominated set.
But this description is not complete as it considers not all efficient points.

92 5 Numerical Results for MOPBB

Table 5.3. Settings for the DTLZ-instances which are scalable in n andm with a
known nondominated set.

name n m ε δ nondominated set Y = f(XE)

DTLZ1 2 2 0.1 0.1 Y = {y ∈ R2 | y1 ∈ [0, 0.5], y2 = 0.5− y1}
DTLZ2 2 2 0.01 0.1

Y ={y ∈ R2 | y1 ∈ [0, 1], y2 =
√

1− y21}DTLZ2 3 2 0.01 0.1
DTLZ3 2 2 0.1 0.1 Y ={y ∈ R2 | y1 ∈ [0, 1], y2 =

√
1− y21}

DTLZ4 2 2 0.1 0.1 Y ={y ∈ R2 | y1 ∈ [0, 1], y2 =
√

1− y21}
DTLZ5 2 2 0.01 0.1

Y ={y ∈ R2 | y1 ∈ [0, 1], y2 =
√

1− y21}DTLZ5 3 2 0.01 0.1
DTLZ6 2 2 0.01 0.1

for m = 2:
Y ={y ∈ R2 | y1 ∈ [0, 1], y2 =

√
1− y21}

for m = 3:
Y =

{
y ∈ R3 | y1 = y2 ∈ [0, 1√

2
], y3 =

√
1− y21 − y22

}
DTLZ6 3 2 0.01 0.1
DTLZ6 3 3 0.01 0.1
DTLZ6 4 2 0.01 0.1
DTLZ6 4 3 0.01 0.1
DTLZ7 2 2 0.01 0.1

Y =

{
y ∈ R2

∣∣∣∣ y1 ∈ [0, 0.251] ∪ [0.633, 0.859],

y2 = 4− y1(1 + sin(3πy1))

}
DTLZ7 3 2 0.01 0.1

Table 5.4. Settings for the instances with a known nondominated set,m = 2.

name n ε δ nondominated set Y = f(XE)

ZDT1 2 0.01 0.1
Y ={y ∈ R2 | y1 ∈ [0, 1], y2 = 1−√y1}ZDT1 3 0.01 0.1

ZDT1 4 0.01 0.1
ZDT2 2 0.01 0.1

Y ={y ∈ R2 | y1 ∈ [0, 1], y2 = 1− y21}ZDT2 3 0.01 0.1
ZDT4 2 0.01 0.1

Y ={y ∈ R2 | y1 ∈ [0, 1], y2 = 1−√y1}ZDT4 3 0.01 0.1
FF 2 0.05 0.1

Y =

{
y ∈ R2

∣∣∣∣ y =

(
1− exp(−4(t− 1)2)

1− exp(−4t2)

)
, t∈ [0, 1]

}
FF 3 0.05 0.1
FF 4 0.05 0.1

Deb41 2 0.01 0.01 Y =

{
y ∈ R2

∣∣∣∣ y1 ∈ [0.1, 1],

y2 = f2(x), x1 ∈ [0.1, 1], x2 ≈ 0.2

}

5.3 Numerical Comparison with NSGA-II 93

5.3.3 Results

In Tables 5.5 to 5.8 all results are stated. As already mentioned, MOPBBwas performed
first and the number of points in the stable set F and the number DT of calls of the
discarding test are counted. Moreover, the overall computational time for all while-
loops was recorded. Afterwards, the performance indicators hypervolume HV (F),
spacing metric SP (F) and generational distance GD(F ,P) are computed if possi-
ble.

Then the controlled version of NSGA-II was performed with the settings mentioned
in Section 5.3.2. Thereby, the first row for each test instance states the results of
gamultiobj with TolFun= 10−4. If a second row is present with no entries for
MOPBB, this row states the results with TolFun= 10−5. |PF | denotes the number of
found solutions of the first front, i. e., the approximation of the nondominated set. Be-
cause of the setting for the population size, the number in the |PF |-column is nearly
equal to |F|. Since NSGA-II is performed for ten times, the next columns of the ta-
bles mention the average values of needed generations, needed time, hypervolume,
spacing metric and generational distance.

Bold numbers indicate the best results for each performance indicator or the compu-
tational time. Recall that a higher hypervolume is preferable. For all other indica-
tors, spacing, generational distance and time, a smaller value is desirable. The num-
ber of generations needed in average are italic if the maximal number of generations
(bounded by the number of calls of discarding tests of MOPBB) was reached.

Consider the row of Table 5.5 for DTLZ2 with the settings n = m = 2 exemplary.
The first line, column 4 to 9 shows the results of MOPBB, and column 10 to 15 the ones
obtained by gamultiobj. In average, gamultiobj needed about 1.99 seconds and
108.6 generations to compute an approximation of the nondominated set consisting of
209 points. The average hypervolume was 0.7736 which is less than the one obtained
by MOPBB (0.7750). For that reason, we decreased TolFun to 10−5 and executed ten
additional runs of gamultiobj. The results for those ten runs can be found in the
second line of the current row. With that lower function tolerance the average compu-
tational time increased to 27.86 seconds. Each run needed 1652 generations which is
the maximal number of allowed generations because MOPBB executed 1652 discarding

94 5 Numerical Results for MOPBB

Ta
bl
e
5.
5.

Re
su
lts

fo
rt
he

D
TL

Z-
in
st
an
ce
s(
1-
5)

w
hi
ch

ar
e
sc
al
ab
le
in

n
an
d
m
.

M
O
P
B
B

g
a
m
u
l
t
i
o
b
j

na
m
e

n
m

|F
|

D
T

t
[s
]

H
V

S
P

G
D

|P
F
|

∅
Ge

n
∅
t
[s
]

∅
H
V

∅
S
P

∅
G
D

D
TL

Z1
2

2
36
5

57
62

70
8.2

9
8.8

67
6

0.
05

95
0.
01

32
36
6

11
0.1

3.
77

8.
87

43
0.1

27
4

0.0
49
5

36
6

28
31
.9

93
.80

8.
87

44
0.
00

26
0.
00

18
D
TL

Z2
2

2
20
9

16
52

15
9.1

3
0.
77

50
0.0

04
3

5.
8e

-0
5

20
9

10
8.6

1.
99

0.7
73
6

0.
00

26
1.9

e-
04

20
9

16
52
.0

27
.86

0.7
73
7

0.
00

23
1.7

e-
04

D
TL

Z2
3

2
21
3

14
28
2

13
84
.56

1.
46

24
0.0

04
3

5.
6e

-0
5

21
4

10
5.7

2.
07

1.4
61
1

0.
00

37
8.0

e-
04

21
4

12
09
8.1

22
.65

1.4
61
3

0.
00

24
1.7

e-
04

D
TL

Z3
2

2
64
0

13
74
4

17
30
.53

8.2
05
2

0.
04

04
0.
00

32
64
1

11
4.4

7.
55

8.
21

31
0.1

62
4

0.0
07
9

64
1

10
51
.9

67
.96

8.
21

35
0.
00

08
0.
00

15
D
TL

Z4
2

2
10
0

55
80

15
84
.24

0.7
69
6

0.0
23
9

0.
00

05
10
1

11
1.2

1.
09

0.
77

01
0.
00

58
0.0

02
4

10
1

55
80
.0

51
.60

0.
77

04
0.
00

53
0.
00

03
D
TL

Z5
2

2
20
5

16
50

37
3.9

5
0.
77

49
0.0

04
4

5.
8e

-0
5

20
6

10
6.2

3.
06

0.7
73
5

0.
00

28
4.4

e-
04

20
6

16
50
.0

46
.47

0.7
73
7

0.
00

25
1.7

e-
04

D
TL

Z5
3

2
21
3

14
26
6

33
58
.42

1.
46

24
0.0

04
3

5.
6e

-0
5

21
4

10
5.7

3.
53

1.4
61
1

0.
00

37
8.0

e-
04

21
4

11
27
6.4

37
1.0

4
1.4

61
2

0.
00

24
1.7

e-
04

Fo
rD

TL
Z1

an
d
D
TL

Z3
w
e
us
ed

an
ot
he
rr
ef
er
en
ce

po
in
tt
ha
n
su
p(
F
(X

))
.W

e
us
ed

he
re

(3
,3
)T

5.3 Numerical Comparison with NSGA-II 95

Table
5.6.Resultsforthe

D
TLZ-instances(6,7)w

hich
are

scalable
in

n
and

m
.

M
O
P
B
B

g
a
m
u
l
t
i
o
b
j

nam
e

n
m

|F
|

D
T

t
[s]

H
V

S
P

G
D

|P
F
|

∅
Gen

∅
t
[s]

∅
H
V

∅
S
P

∅
G
D

D
TLZ6

2
2

93
288

8.85
3.2052

0.0195
6.1e-05

94
115.7

1.64
2.8736

0.0085
0.0234

94
288.0

4.09
3.0204

0.0081
0.0168

D
TLZ6

3
2

45
1020

17.86
8.1977

0.0423
0.0004

46
125.6

1.39
7.1171

0.0242
0.0920

46
1020.0

11.71
7.9259

0.0165
0.0280

D
TLZ6

3
3

1799
5326

301.79
-

0.0027
1.6e-05

1799
110.2

50.04
-

0.0044
0.0048

1799
391.8

156.08
-

0.0038
0.0039

D
TLZ6

4
2

67
13680

279.25
15.2026

0.0379
0.0001

67
124.6

2.24
13.0292

0.0222
0.1266

67
13680.0

235.92
14.8368

0.0105
0.0251

D
TLZ6

4
3

281
15378

418.01
-

0.0201
0.0001

282
113.8

9.93
-

0.0250
0.0353

282
1430.5

126.11
-

0.0197
0.0278

D
TLZ7

2
2

235
502

39.27
18.7261

0.0046
0.0003

235
127.2

2.73
18.7194

0.0043
0.0005

235
502.0

10.76
18.7255

0.0119
0.0090

D
TLZ7

3
2

240
3078

209.30
18.7261

0.0014
0.0004

241
142.3

3.29
18.7011

0.0049
0.0023

241
3068.6

67.61
18.7257

0.0028
0.0003

96 5 Numerical Results for MOPBB

Ta
bl
e
5.
7.

Re
su
lts

fo
rt
he

in
st
an
ce
sw

ith
kn

ow
n
no

nd
om

in
at
ed

se
t,
m

=
2
.

M
O
P
B
B

g
a
m
u
l
t
i
o
b
j

na
m
e

n
|F
|

D
T

t
[s
]

H
V

S
P

G
D

|P
F
|

∅
Ge

n
∅
t
[s
]

∅
H
V

∅
S
P

∅
G
D

ZD
T1

2
28
2

59
8

16
.50

9.
66

46
0.
00

11
0.
00

02
28
3

10
7.8

2.
27

9.6
62
6

0.0
06
2

0.0
01
3

28
3

59
8.
0

12
.40

9.6
63
3

0.0
01
6

0.
00

01
ZD

T1
3

28
3

19
96

34
.25

9.
66

46
0.0

05
5

0.
00

01
28
4

11
7.4

2.
82

9.6
61
0

0.
00

47
0.0

01
4

28
4

15
92
.8

35
.58

9.6
63
2

0.
00

16
0.
00

01
ZD

T1
4

28
3

26
82
8

51
8.5

2
9.
66

46
0.
00

54
3

0.
00

01
28
4

12
7.6

3.
16

9.6
56
5

0.0
05
37

0.0
02
6

28
4

76
08
.1

17
2.4

0
9.6

63
0

0.
00

16
0.0

00
1

ZD
T2

2
49
2

50
8

35
.37

9.
33

19
0.
00

13
9.
8e

-0
5

49
3

11
1

4.
43

9.3
31
2

0.0
17
4

9.4
e-
04

49
3

46
2.0

17
.52

9.3
31
4

0.
00

09
9.
6e

-0
5

ZD
T2

3
41
9

48
10

27
6.9

9
9.
33

16
0.
00

22
7.
8e

-0
5

41
9

10
8.3

3.
92

9.3
26
4

0.0
04
5

8.8
e-
04

41
9

26
66
.8

91
.05

9.3
30
9

0.
00

11
4.
0e

-0
5

ZD
T4

2
29
7

20
18

46
.44

3.
66

48
0.
00

16
3.
4e

-0
5

29
8

10
8.1

2.
45

3.6
63
3

0.0
13
4

1.2
e-
03

29
8

20
09
.2

44
.56

3.6
63
9

0.0
01
7

9.3
e-
05

ZD
T4

3
31
1

15
14
36

74
81
.58

3.
66

47
0.
00

41
3.
6e

-0
5

31
2

11
0.5

3.
02

3.6
62
9

0.0
11
9

1.4
e-
03

31
2

73
01
.3

19
1.3

4
3.6

64
0

0.
00

15
1.2

e-
04

FF
2

12
4

74
4

44
.42

0.
33

62
0.0

06
4

5.
4e

-0
5

12
4

10
5.6

0.
88

0.3
36
1

0.
00

37
1.4

e-
04

12
4

74
4.
0

6.1
0

0.3
36
0

0.0
03
8

1.5
e-
04

FF
3

23
3

86
36

52
1.8

1
0.3

37
6

0.0
04
4

4.
7e

-0
5

23
4

10
3.5

1.
64

0.
33

87
0.
00

18
8.4

e-
05

23
4

50
70
.3

80
.11

0.3
38
6

0.0
02
0

8.3
e-
05

FF
4

38
0

77
62
6

57
69
.81

0.3
38
6

0.0
03
3

3.
6e

-0
5

38
1

10
5.7

2.
89

0.
33

99
0.
00

11
5.0

e-
05

38
1

26
13
.3

68
.96

0.3
39
9

0.0
01
2

5.1
e-
05

Fo
rZ

D
T4

w
e
us
ed

an
ot
he
rr
ef
er
en
ce

po
in
tt
ha
n
su
p(
F
(X

))
.W

e
us
ed

he
re

(2
,2
)T

5.3 Numerical Comparison with NSGA-II 97

Table
5.8.Resultsforthe

instancesw
hich

are
notscalable

and
w
ith

analytically
unknow

n
nondom

inated
set.

M
O
P
B
B

g
a
m
u
l
t
i
o
b
j

nam
e

ε
δ

|F
|

D
T

t
[s]

H
V

S
P

|P
F
|

∅
Gen

∅
t
[s]

∅
H
V

∅
S
P

D
eb41

0.01
0.01

657
4734

355.05
15.6098

0.2327
657

131
6.55

15.6100
0.0656

D
eb41Cons

0.01
0.01

469
3067

23.95
14.1060

0.0199
469

110.0
4.91

14.1117
0.0137

D
eb513

0.01
0.1

142
406

35.99
21.6640

0.0068
143

106.8
1.30

21.6604
0.0201

143
406

4.85
21.6643

0.0041
D
eb521a

0.1
0.1

8167
4068

844.02
1.0886

3.3e-04
8167

110.7
286.73

1.1044
7.1e-05

D
eb521b

0.01
0.1

258
556

34.54
1.3313

0.0013
258

107.3
1.94

1.3293
0.0030

258
556

10.01
1.3298

0.0030
Viennet

0.1
0.1

1587
2084

458.53
-

0.0079
1587

104.2
18.47

-
0.0050

ViennetCons
0.1

0.1
288

1205
246.09

-
0.0095

289
104.9

2.76
-

0.0089
SRN

1
0.5

2239
2610

331.10
3.43e+05

0.0861
2239

106.3
39.52

3.44e+05
0.0475

Pol
0.1

0.1
282

928
134.48

535.88
0.0358

283
124.0

2.74
535.74

0.0227
KW

2
0.1

0.1
1216

2990
779.42

155.92
0.0098

1216
122.8

13.69
155.97

0.0042
Far1

0.1
0.1

600
1856

471.44
22.0258

0.0046
600

102.5
4.23

22.0420
0.0022

ForPoland
KW

2
w
e
used

anotherreference
pointthan

sup
(F

(X
)).W

e
used

here
(20,30)and

(7,7)
T,respectively.

98 5 Numerical Results for MOPBB

tests in the first and third while-loop. The performance indicators improved with
this smaller function tolerance, but the hypervolume and the generational distance
did not improve in comparison to the ones obtained by MOPBB.

For some instances, sup(F (X))was too large for a reference point to compute compa-
rable values for the hypervolume. Another reference point was chosen in those cases.
The chosen reference points are stated below the certain tables.

General Results Overall, it cannot be stated that one of the both algorithms outper-
forms the other one regarding the chosen performance indicators. This is expectable
since different test instances with diverse difficulties were tested. NSGA-II is well de-
veloped and implemented, and widely used, besides it does not guarantee any accura-
cies. Nevertheless, there are some instances for which MOPBB obtained better results,
for example, for the ZDT-instances. In many cases, NSGA-II was performed with a
smaller tolerance additionally to see whether this smaller tolerance for gamultiobj
leads to better results than those from MOPBB. Even with higher precision, NSGA-II
could not improve some parameters in few cases (for example, FF), or the improve-
ment were just small. The results for smaller tolerances also showed that the multiple
runs of NSGA-II differ very much. This is also typical for evolutionary algorithms and
a reason why one should run NSGA-II more than once. Even in dimension n = 2,
MOPBB was sometimes as fast as NSGA-II. In higher dimensions (n ≥ 3) this is not
the case, because the computational time of MOPBB increases significantly in higher
dimensions.

Inmost cases, gamultiobj delivers a smaller value for the spacingmetric thanMOPBB.
The reason for that is the way how points for a new population are selected. This de-
pends on the crowding distance which estimates the density of points surrounding
another point. If a point is less crowded, it is a good choice for the new population.
Therefore, NSGA-II tries to find a well distributed approximation of the nondominated
set which leads to a smaller spacing metric. In contrast to this, MOPBB does not take
the distribution of the points into account. However, it aims for finding points close to
the efficient and nondominated set. Thus, the hypervolume and generational distance
obtained by MOPBB are inmost cases better than the ones obtained by gamultiobj.

5.3 Numerical Comparison with NSGA-II 99

The instances for which NSGA-II delivers better performance indicators than MOPBB

are, in particular, “simple” instances (Viennet, Pol, Far1, KW2). This means that they
are defined for low dimensions, the image points are relatively well distributed in the
image space and there are no locally efficient points which are not globally efficient.
Conversely, the DTLZ- and ZDT-instances are made for testing primarily evolutionary
algorithms and have diverse properties which are difficult to handle by evolutionary
algorithms.

In the next paragraphs, some individual cases and issues are considered, which are
more noticeable than others.

DTLZ-instances Thefirst fiveDTLZ-instances (DTLZ1-DTLZ5) require a lot of com-
putational time for the performance of MOPBB, which is the reason why instances with
larger values for n and m exceed the time limit. The remaining two DTLZ-instances
were solved faster and could be scaled into higher dimensions, i. e., DTLZ6 could be
scaled up to n = 4 and m = 3. Nevertheless, gamultiobj was always faster and
would also run for higher dimensions. In every case, MOPBB gives better values for
the generational distances than gamultiobj. Often, also the hypervolume and spac-
ing metric are better, although MOPBB does not aim at a large hypervolume or a small
spacing metric directly. Here, the smaller tolerances for NSGA-II could improve the
indicators sometimes. However, the improvements of the hypervolume were not that
significant.

ZDT-instances and FF The ZDT-instances are a good example for which MOPBB

works well. In low dimensions, i. e., for n = 2, the deterministic algorithm is very
fast but not faster than the evolutionary one, and has better performance indicators
in all cases. Actually, decreasing the tolerance for NSGA-II could not give better val-
ues for the performance indicators than MOPBB on some instances. Noteworthily,
gamultiobj even delivered worse values for the FF instance when requiring a higher
tolerance. This emphasizes how unpredictable evolutionary algorithms are. Even
smaller tolerances do not lead to better results in every case.

100 5 Numerical Results for MOPBB

Aiming for Globality To evaluate the ability of finding global solutions of a mul-
tiobjective optimization problem, we take a closer look on DTLZ6, ZDT4, Deb41 and
Deb521a. Those instances have locally efficient and nondominated points which are
not globally efficient and nondominated, respectively.

First, we consider the test instance DTLZ6. Since the globally nondominated set is
known, the generational distance is a suitable indicator for how well the globally non-
dominated set is approximated. The high average values for the generational distance
obtained by gamultiobj already indicate that the evolutionary algorithm cannot al-
ways find points close to the globally nondominated set. In fact, the individual gener-
ational distances for n = 3, m = 2,TolFun = 10−4 differ from 8.6 ·10−4 to 1.4 ·10−1.
Thus, there are runs of gamultiobj which found points close to the nondominated
set, and there are other runs which could not reach it. Figure 5.8 shows the image
space and the obtained approximations of the nondominated set of different runs of
gamultiobj.

The upper pictures show the best (HV = 8.1939, GD = 8.6 · 10−4) and the worst
(HV = 6.0968, GD = 0.1414) run for n = 3, m = 2. In all illustrations of this
section, the gray points are some function values obtained by applying the objective
function to a discretized feasible set. The black points are the points of PF or F
obtained by gamultiobj or MOPBB, respectively. Obviously, the approximation in
Figure 5.8b is very far away from the actual nondominated set: The image points
are near to the circle line of the quarter circle with radius 2 instead of the quarter
circle with radius 1, where the nondominated set is located. The lower two pictures
Figures 5.8c and 5.8d are for the instance DTLZ6 with n = m = 3. On the left, we
present the approximation obtained by MOPBB, and on the right, one approximation
obtained by one run of gamultiobj is shown. MOPBB is able to approximate the
nondominated set, which is a curve here, while in this run gamultiobj did not find
any image point which is close to the nondominated set.

The instance ZDT4 has many locally nondominated points. Here, MOPBB delivers a
value for the generational distance of 3.5 ·10−5. The approximations by gamultiobj

have an average generational distance of 1.3 · 10−3 which is nearly 40 times more
than the one by MOPBB. Figure 5.9 visualizes the obtained approximation by MOPBB

and the worst (i. e., the one with the highest generational distance) approximation by

5.3 Numerical Comparison with NSGA-II 101

a: Approximation of the nondominated set of
DTLZ6, n = 3, m = 2, obtained by
gamultiobj — best run.

b: Approximation of the nondominated set of
DTLZ6, n = 3, m = 2, obtained by
gamultiobj — worst run.

c: Approximation of the nondominated set of
DTLZ6, n = 3, m = 3, obtained by MOPBB.

d: Approximation of the nondominated set of
DTLZ6, n = 3, m = 3, obtained by
gamultiobj.

Figure 5.8. Globally vs. locally nondominated sets of DTLZ6.

102 5 Numerical Results for MOPBB

gamultiobj. The dashed line is the best locally nondominated set, which is not glob-
ally nondominated. Although the generational distances differ between MOPBB and
gamultiobj, both algorithms could find a suitable approximation of the nondomi-
nated set.

a: Approximation of the nondominated set of
ZDT4 obtained by MOPBB.

b: Approximation of the nondominated set of
ZDT4 obtained by gamultiobj.

Figure 5.9. Globally vs. locally nondominated sets of ZDT4 with n = 3.

Furthermore, in Figures 5.10 and 5.11 it can be seen that both algorithms could reach
the globally nondominated set of the test instances Deb41 and Deb521a.

a: Approximation of the nondominated set of
Deb41 obtained by MOPBB.

b: Approximation of the nondominated set of
Deb41 obtained by gamultiobj.

Figure 5.10. Globally vs. locally nondominated sets of Deb41.

5.3 Numerical Comparison with NSGA-II 103

a: Approximation of the nondominated set of
Deb521a obtained by MOPBB.

b: Approximation of the nondominated set of
Deb521a obtained by gamultiobj.

Figure 5.11. Globally vs. locally nondominated sets of Deb521a.

For test instance Deb521a, we have to remark that we slightly changed the feasible
set in the test instance definition. The reason for that is the non-differentiability of
the second objective function in x2 = 0 although there are efficient points of Deb521a
with x2 = 0. We restricted the feasible set for x2 to [0.001, 1] for both algorithms,
MOPBB and gamultiobj. This might be the cause why MOPBB was a little bit worse
than gamultiobj in this case. However, it seems that gamultiobj had also some
troubles to get appropriate solutions because in average it needed a higher amount of
time (more than 4 minutes) than usual.

All those figures except Figure 5.8 suggest that both algorithms are able to approxi-
mate the globally nondominated set. Nevertheless, there are instances (like DTLZ6)
designed to mislead evolutionary algorithms. For those the evolutionary algorithm
resulted in points which are far away from the nondominated set.

104 5 Numerical Results for MOPBB

6 Solving Multiobjective Mixed Integer
Convex Optimization Problems

When a problem involves both continuous and integer variables we are in the context
of multiobjective mixed integer programming. In this chapter, we focus on multiob-
jective mixed integer convex optimization problems (MOMICPs), namely problems of
the following form:

min f(x) =


f1(x)
...

fm(x)


s. t. gk(x) ≤ 0 for all k = 1, . . . , p,

x ∈ X := [l, u],

xi ∈ Z ∀i ∈ I,

(MOMIC)

where fj, gk : X → R, j = 1, . . . ,m, k = 1, . . . , p are convex and continuously dif-
ferentiable functions. The vectors l, u ∈ Rn are lower and upper bounds on the vari-
ables x ∈ Rn and define a box X . The index set I ⊆ {1, . . . , n} specifies which vari-
ables have to take integer values. We assume without loss of generality that li, ui ∈ Z
holds for all i ∈ I .

Multiobjective mixed integer optimization problems arise in many application fields
such as location or production planning, finance, manufacturing, and emergencyman-
agement (see [Ehr+09; PY14; XMP10]). As an example, we can think of the unca-
pacitated facility location problem, studied in the single objective case in [GLW07].
The first objective hereby is to decide which facilities to build in order to minimize
costs. As a second objective function one could consider the total negative impact on

6 Solving Multiobjective Mixed Integer Convex Optimization Problems 105

the environment with the building plan for the facilities, e. g., the carbon emissions,
[Roc18].

It is well-known that mixed integer nonlinear optimization is NP-hard and its solution
typically requires dealing with enormous search trees, [Bel+13]. Handling more than
one objective function adds an additional difficulty: assume there is only one binary
variable, i. e., I = {1} with x1 ∈ {0, 1}, and we have just one objective function, i. e.,
m = 1. Then for solving (MOMIC) only two convex optimization problems have to
be addressed, one with x1 fixed to 0 and one with x1 fixed to 1. Clearly, the smallest
minimal value is the optimal value of the original problem. In case of two or more
objective functions already this simple setting is much more challenging. Solving the
problems with fixed values for x1 would mean to determine the whole efficient set of a
multiobjective convex optimization problem, which is in general infinite. After com-
puting two sets of nondominated points, one has to compare them and to determine
the “smallest” values. See Figure 6.1 on page 107 for an illustration of this observation
for four choices of the integer variables.

6.1 Definitions and Notations for MOMICPs

Given a vector x ∈ Rn and an index set I ⊆ {1, . . . , n}, we denote by xI the subvector
with components xi, i ∈ I .

By Xg, XZ and Xg,Z we denote the following sets related to the constraints of the
optimization problem (MOMIC):

Xg := {x ∈ X | g(x) ≤ 0},

XZ := {x ∈ X | xi ∈ Z for all i ∈ I},

Xg,Z := Xg ∩XZ.

(6.1)

Using these sets, we can write (MOMIC) in short form as

min f(x)

s. t. x ∈ Xg,Z.

106 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

As mentioned before, we are going to define a B&B method based on partitioning the
feasible set of (MOMIC). Our branching rule is based on bisections of the box X .
Let X̃ be a subbox of X . By X̃

g, X̃Z and X̃
g,Z we denote the sets defined according

to (6.1), where the set X is replaced by X̃ (i. e., “x ∈ X̃” in all the set definitions).

z∗ − R2
+

z∗

F1

F2

F3

F4

z′ − R2
+

z′

f1

f2

Figure 6.1. Image set of a biobjective instance of (MOMIC).

In Figure 6.1, we plot the image set of a biobjective mixed integer convex optimiza-
tion problem. Here, we assume that {xI | x ∈ Xg,Z} =: {y1, y2, y3, y4} and we show
the sets Fj := {f(x) | x ∈ Xg,Z, xI = yj}, j = 1, . . . , 4. Then the union of
all Fj describes the whole image set, i. e.,

⋃
j=1,...,4 Fj = {f(x) | x ∈ Xg,Z}.The point

z∗ ∈ f(Xg,Z) is nondominated and the preimage of z∗ is an efficient point. On the
other hand, z′ ∈ f(Xg,Z) is dominated because of z∗ ≤ z′ and z∗ 6= z′. In fact, all the
points z ∈ F3 are dominated, as points w ∈ f(Xg,Z) exist such that w < z. The non-
dominated set of the problem is visualized as the thick boundary of the image set. The
efficient set is made of all preimages of the nondominated set. Figure 6.1 shows that
the nondominated set of a multiobjective mixed integer nonlinear programming prob-
lem is in general a disconnected set. From an algorithmic point of view, this makes the
detection of the efficient set of (MOMIC) an extremely challenging problem. Fur-
thermore, there is the necessity of comparing sets of points: this is a crucial difference
with respect to single objective mixed integer nonlinear optimization.

6.1 Definitions and Notations for MOMICPs 107

6.2 An Outer Approximation Based B&B Algorithm
for MOMICPs

The algorithm we propose is a B&B method that seeks the efficient set of (MOMIC)
by partitioning the box X . At every node of the B&B tree, a subbox X̃ ⊆ X is se-
lected and lower and upper bounds on the nondominated set of (MOMIC) are de-
rived. When considering the subbox X̃ , a lower bound is any set LX̃ ⊆ Rm such
that the set LX̃ + Rm

+ contains the image of feasible points X̃g,Z through f , namely
f(X̃

g,Z
) ⊆ LX̃ + Rm

+ . In Figure 6.2, we illustrate the set f(X̃g,Z
) and a lower bound

LX̃ for a biobjective purely integer programming problem: note that the image of
feasible points in X̃ through f is a set of isolated points in Rm.

{z} − Rm
+

z
f(X̃

g,Z
)

LX̃

f1

f2

Figure 6.2. Image set of a biobjective purely integer instance of (MOMIC).

In our algorithm we derive lower bounds by building linear outer approximations of
conv(f(X̃g,Z

)). As f(X̃g,Z
) ⊆ conv(f(X̃g,Z

)) holds, linear outer approximations of
the convex hull of f(X̃g,Z

) are valid lower bounds on X̃ . Details on how we compute
the hyperplanes to outer approximate conv(f(X̃g,Z

)) will be given in Section 6.2.2.

108 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

Upper bounds are just computed by evaluating the objective functions at feasible
points. As soon as an upper bound z exists such that LX̃ +Rm

+ ⊆ {z}+Rm
+ \{0} we

can discard the subbox X̃ . Or, in other words, we can avoid to go on partitioning X̃ ,
as we have an evidence that it cannot contain any efficient point for (MOMIC). Our
discarding procedure is in fact using a list of upper bounds and it will be detailed in
Section 6.2.1 and Section 6.2.2.

In Figure 6.2, the point z ∈ f(X̃
g,Z

) is an upper bound for the nondominated set
of the problem, as it is the image of an feasible point. All the points that belong to
Rm \ ({z} + Rm

+ \ {0}) are candidates for belonging to the nondominated set (note
that it is not enough to consider {z} − Rm

+).

Let δ > 0 be a positive scalar, which is the input parameter of our B&Bmethod. As the
output of our algorithm, we will have a list of subboxes X̃ with ω(X̃) < δ, containing
the set of efficient points, and a list of upper bounds approximating the nondominated
set.

Algorithm 7 is a basic scheme of our B&B procedure: LW denotes the working list
and contains boxes that still have to be examined. LS is the list of boxes that fulfill
the termination criteria, i. e., those subboxes X̃ that were not discarded and satisfy
ω(X̃) < δ. In Section 6.2.3 we will prove that LS represents a cover of the efficient
set XE , namely XE ⊆

⋃
X̃∈LS

X̃ . The list LPNS denotes a set of upper bounds (as in
MOPBB) and it will be defined in Section 6.2.1. Note that the flag D is used in order to
decide if a box should be discarded, and it is an output of Algorithm 8. As a final step
in Algorithm 7, we filter the list LS by a postprocessing phase. Further details will be
given in Section 6.2.2.

6.2.1 Computation of Upper Bounds

In order to compute upper bounds of the nondominated set of (MOMIC), we evaluate
the objective functions at feasible points x ∈ Xg,Z. It is well-known in mixed inte-
ger optimization that determining feasible points of a mixed integer set is an NP-hard
problem. In the literature, several heuristic methods have been proposed. The most
popular one is the Feasibility Pump [FGL05] and some of its enhancements, among

6.2 An Outer Approximation Based B&B Algorithm for MOMICPs 109

Algorithm 7 MOMIX: A (MOMIC) Solver
INPUT: (MOMIC), δ > 0

OUTPUT: LS , LPNS

1: LS ← ∅ LW ← {B} LPNS ← ∅
2: while LW 6= ∅ do
3: Select a box X̃ of LW and update LW := LW \ X̃
4: Bisect X̃ into subboxes X̃1 and X̃

2

5: for k = 1, 2 do
6: Apply Algorithm 8 to X̃

k and obtain D and an updated LPNS

7: if D = true then Discard X̃
k

8: else
9: if ω(X̃k

) < δ then Add X̃
k to LS

10: else Add X̃
k to LW

11: Postprocessing(LS,LPNS)

them [Bol+12; Bon+09; DLR13; Gei+17]. Within our algorithm, we either detect feasi-
ble points by addressing specific single objective mixed integer convex programming
problems (see Section 6.2.2) or we try to build feasible points simply by rounding the
integer components of points x ∈ X̃ , which are generated in our discarding test. Let
round(x) be the point defined by

(round(x))i =

 [xi], i ∈ I

xi, otherwise,
for each i ∈ {1, . . . , n}.

If round(x) ∈ Xg,Z holds, f(round(x)) is a valid upper bound.

Upper bounds are needed in order to discard boxes or, in other words, to prune nodes
in the B&B tree. For that, we need to introduce two finite sets of points, namely the
list of potentially nondominated solutions LPNS ⊆ f(Xg,Z) and the list of local upper
bounds LLUB ⊆ Rm. For a repetition of local upper bounds, see Section 3.4.

In our algorithm the list of potentially nondominated solutions LPNS is initialized as
the empty set. Then every time an upper bound z ∈ f(Xg,Z) is computed, we check
whether it is dominated by any point in LPNS . If this is the case, z is not added to
LPNS . Otherwise, we update the list by adding z to LPNS and by removing all the

110 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

upper bounds dominated by z from LPNS . This is the same procedure as described in
Algorithm 3. By doing this, we ensure that LPNS is a stable set of points. Recall that
a set N ⊆ Rm is said to be stable if there are no x, y ∈ N with x ≤ y and x 6= y, see
also the last point of Definition 2.6.

Similar to Lemma 4.2 from Section 4.1.2, we can prove our main result for the pruning
of nodes:

Theorem 6.1 Consider a subbox X̃ ⊆ X . Let LPNS ⊆ f(Xg,Z) be a finite and stable
set. Let LLUB be the local upper bound set w. r. t. LPNS . If

p /∈ f(X̃
g,Z

) + Rm
+ holds for all p ∈ LLUB, (6.2)

X̃ does not contain any efficient point for (MOMIC).

Proof. Assume by contradiction that an efficient point x∗ ∈ X̃
g,Z for (MOMIC) ex-

ists. From (6.2), we have

f(x∗) � p for all p ∈ LLUB. (6.3)

Since LLUB is a local upper bound set w. r. t. LPNS , it follows from (6.3) and Propo-
sition 3.22 (ii), (a) and (b), that f(x∗) does not belong to the search region S. Hence,
there exists a point z ∈ LPNS with z ≤ f(x∗). As z ∈ LPNS , a point x′ ∈ Xg,Z exists
such that z = f(x′). Since x∗ is efficient for (MOMIC), it follows z = f(x′) = f(x∗).
Lemma 3.24 implies that there is a point p′ ∈ LLUB with f(x∗) ≤ p′, which is a con-
tradiction to (6.3) and the theorem is proved.

From Theorem 6.1, since X̃g,Z ⊆ X̃
g and f(X̃

g,Z
) ⊆ conv(f(X̃g,Z

)) hold, we obtain
the following corollary.

Corollary 6.2 Let X̃ be a subbox of X . Let LPNS ⊆ f(Xg,Z) be a finite and stable set
and let LLUB be the local upper bound set w. r. t. LPNS .

(i) If
p /∈ f(X̃

g
) + Rm

+ holds for all p ∈ LLUB,

X̃ does not contain any efficient point for (MOMIC).

6.2 An Outer Approximation Based B&B Algorithm for MOMICPs 111

(ii) If
p /∈ conv(f(X̃g,Z

)) + Rm
+ holds for all p ∈ LLUB,

X̃ does not contain any efficient point for (MOMIC).

The following remark clarifies how the assumptions of Corollary 6.2 are related. Fur-
thermore, it gives the basis of the hierarchy of lower bounds in our bounding proce-
dure.

Remark 6.3 Note that due to the convexity of the objective functions fj, j = 1, . . . ,m

and of X̃g the following holds

conv(f(X̃g,Z
)) + Rm

+ ⊆ f(X̃
g
) + Rm

+ .

f(X̃
g
) + Rm

+

conv(f(X̃g,Z
)) + Rm

+

f(X̃
g,Z

)

f1

f2

Figure 6.3. Discarding a box X̃ by Theorem 6.1 and Corollary 6.2.

Figure 6.3 illustrates Remark 6.3. The thick curve which touches some points of the
boundary of f(X̃g,Z

) is the boundary of conv(f(X̃g,Z
))+Rm

+ , while the dashed curve
is the boundary of f(X̃g

) + Rm
+ .

112 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

6.2.2 Determining Lower Bounds and Pruning Nodes

The theoretical results introduced in the previous section, namely Corollary 6.2, give
the basis of the discarding procedure in our B&B algorithm: For every subbox X̃ we
check whether p 6∈ LX̃ + Rm

+ holds for all p ∈ LLUB , being LX̃ a valid lower bound
for X̃g,Z.

As f(X̃
g
) is a valid lower bound, a straightforward way to verify if a box should

be discarded would be to check whether a local upper bound p ∈ LLUB belongs to
this lower bound given by the convex relaxation. This would mean to check whether
p ∈ f(X̃

g
) + Rm

+ holds. This can be done by addressing a simple single objective
continuous convex problem.

From a computational point of view, this means that we would need to solve |LLUB|
single objective continuous convex problems, at every node of the branching tree.

In our algorithm, in order to reduce this numerical effort, we check instead whether
a local upper bound belongs to a linear outer approximation of f(X̃g

) + Rm
+ , i. e., we

only need to check whether a local upper bound satisfies linear inequalities. Further-
more, our linear outer approximations are built in a smart way: the supporting hy-
perplanes computation is adaptively driven by some “meaningful” local upper bounds
p ∈ LLUB .

Additionally, if wewant to improve our lower bound, we compute further hyperplanes
to outer approximate conv(f(X̃g,Z

)) + Rm
+ . Again this computation is done in an

adaptive way, and the supporting hyperplanes computation is steered by some specific
local upper bounds p ∈ LLUB .

In what follows, we give details on how the supporting hyperplanes are computed and
how the discarding procedure works.

At an arbitrary node of our branching tree we select a subbox X̃ ⊆ X . In order
to compute valid lower bounds on X̃ , we build linear outer approximations LX̃ of
conv(f(X̃g,Z

)), such that

f(X̃
g,Z

) ⊆ conv(f(X̃g,Z
)) ⊆ LX̃ + Rm

+ .

6.2 An Outer Approximation Based B&B Algorithm for MOMICPs 113

In order to discard the subbox X̃ and prune the current node, we check whether

p 6∈ LX̃ + Rm holds for all p ∈ LLUB.

Then from Corollary 6.2, X̃ does not contain any efficient point for (MOMIC) and
the current node can be pruned. As we will deal with linear outer approximations of
sets, recall the definition of supporting hyperplane

Hλ,z := {y ∈ Rm | λTy = λT z}

of a set by Definition 3.15.

We propose two versions of the new B&B algorithm. The difference lies in the lower
bounds computation. The first version of our algorithm, named MOMIXlight, com-
putes valid lower bounds by addressing only single objective continuous convex opti-
mization problems. The second version, named MOMIX, tries to define stronger lower
bounds by dealing also with single objectivemixed integer convex programming prob-
lems. In our algorithm we use a flag light to distinguish between the two versions of
the method.

Both, MOMIXlight and MOMIX, start by computing linear outer approximations of the
convex set f(X̃g

)+Rm
+ by solving a family of single objective continuous convex op-

timization problems. As conv(f(X̃g,Z
)) + Rm

+ ⊆ f(X̃
g
) + Rm

+ holds by Remark 6.3,
we have that linear outer approximations of f(X̃g

) + Rm
+ are valid lower bounds for

conv(f(X̃g,Z
)) as well (see Figure 6.4 on page 117). If the linear outer approxima-

tion of f(X̃g
) + Rm

+ does not allow to discard the box X̃ , MOMIX tries to improve it
by addressing properly defined single objective mixed integer convex programming
problems.

As a first step for the outer approximation, we compute the ideal point a ∈ Rm of
f(X̃

g
), see also Definition 3.16:

aj := min
x∈X̃g

fj(x) j = 1, . . . ,m. (6.4)

114 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

We denote by x̃j ∈ X̃
g a minimal solution of (6.4). Let uj be the j-th unit vector, then

Huj ,a is a supporting hyperplane of f(X̃g
). As a first linear outer approximation of

f(X̃
g
) or, in other words, as a first lower bound for f(X̃g,Z

) we consider

LX̃ := bd
(⋂

j∈{1,...,m}

(Huj ,a + Rm
+)

)
= {a}+ bd(Rm

+). (6.5)

Note that building LX̃ requires to solve m single objective continuous convex opti-
mization problems for the computation of a.

Once LX̃ is computed, we enter in a loop. For every p ∈ LLUB we check whether
p ∈ LX̃ + Rm

+ holds. If this is the case, we try to improve the current linear outer
approximation LX̃ by computing a further hyperplane based on p ∈ LLUB . This is
done by addressing the following single objective continuous convex programming
problem (see also [ESS11; LRU14] or Section 3.3)

min t

s. t. f(x) ≤ p+ te

x ∈ X̃
g

t ∈ R,

(Pp(X̃
g
))

where e = (1, . . . , 1)T ∈ Rm is the m-dimensional all-ones vector.

Note that (Pp(X̃
g
)) needs to be addressed only in case of p ∈ LX̃ + Rm

+ . In other
words, in our lower bound computation, we do not necessarily address (Pp(X̃

g
)) for

all p ∈ LLUB , as it would be the case if we would only rely on the convex relax-
ation f(X̃

g
).

Under regularity assumptions, we have that any minimal solution (x̂, t̂) ∈ X̃
g × R

of Problem (Pp(X̃
g
)) admits Lagrange multipliers. We refer to [ESS11] in case of non

existing Lagrange multipliers. Let (x̂, t̂) ∈ X̃
g ×R be a minimal solution of (Pp(X̃

g
))

and let λ̂ ∈ Rm
+ be a Lagrangemultiplier for the constraint f(x) ≤ p+te. Then, the hy-

perplaneH λ̂,ŷ(p) with ŷ(p) := p+ t̂e is a supporting hyperplane of f(X̃g
), cf. [LRU14]

or Theorem 3.18.

6.2 An Outer Approximation Based B&B Algorithm for MOMICPs 115

There are two possibilities:

(i) If t̂ > 0 holds, then p /∈ f(X̃
g
) + Rm

+ , we improve the outer approximation by
H λ̂,ŷ(p), and consider the next local upper bound.

(ii) If t̂ ≤ 0 holds, then p ∈ f(X̃
g
) + Rm

+ and the assumption of Corollary 6.2 (i) is
not satisfied.

If case (ii) occurs, so far we cannot discard X̃ based on Corollary 6.2 (i) as it may con-
tain efficient points for (MOMIC). Then, in case we apply MOMIX, i. e., light = 0,
we try to apply Corollary 6.2 (ii) and thus we try to improve our linear outer approxi-
mation by addressing a single objective mixed integer convex programming problem.
Let λ̂ ∈ Rm be a Lagrange multiplier for the constraint f(x) ≤ p+ te for the solution
of (Pp(X̃

g
)). We define the following problem

min λ̂
T
f(x)

s. t. x ∈ X̃
g,Z

.
(MICP p(λ̂, X̃))

Let x̂ ∈ X̃
g,Z be a minimal solution of (MICP p(λ̂, X̃)). Then the hyperplane H λ̂,f(x̂)

is a supporting hyperplane of conv(f(X̃g,Z
)) and conv(f(X̃g,Z

)) + Rm
+ ⊆ H λ̂,f(x̂) + Rm

+

holds. Furthermore, f(x̂) is a valid upper bound for (MOMIC). Note that in case we
are at a node where all integer variables are fixed, we do not need to perform this step,
because X̃g,Z

= X̃
g holds.

Again two situations occur:

(i) If λ̂
T
p < λ̂

T
f(x̂) holds, we improve the outer approximation by H λ̂,f(x̂) and

consider the next local upper bound.
(ii) If λ̂

T
p ≥ λ̂

T
f(x̂) holds, the local upper bound p lies above the hyperplane

H λ̂,f(x̂).

If we are in case (ii), we do not continuewith improving the linear outer approximation
and we branch the current node by bisecting X̃ in a later iteration.

Algorithm 8 is reporting our lower bound computation in detail.

As soon as feasible points of X̃g,Z are found, both LPNS and LLUB are updated. This
is the reason why in Algorithm 8 we make use of the list L∗

LUB which does not change

116 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

along the discarding test: We need a fixed set of local upper bounds in order to ensure
the termination of the loop starting in line 8.

Note that in line 14 we update the linear outer approximation even if the subbox X̃

is further kept either in the working list LW or in the solution list LS . This is done
in order to perform the postprocessing phase in Algorithm 7: Let X̃ ∈ LS and let H
be the linear outer approximation of f(X̃g,Z

) built by Algorithm 8. This subbox X̃ is
removed from LS if for all local upper bounds p belonging to the final list LLUB we
have that a hyperplane Hλ,z′ ∈ H exists such that λTp ≥ λT z′ holds.

Example 6.4 In Figure 6.4 we illustrate our lower bounding procedure on a biobjec-
tive purely integer convex programming instance. Note that in this case the image of
feasible points is a set of isolated points in R2. The first outer approximation consid-
ered is based on the ideal point a. Then, considering the local upper bound p ∈ LLUB ,
the supporting hyperplaneH λ̂,ŷ(p) for f(X̃g

) is built by solving Problem (Pp(X̃
g
)) and

added to the linear outer approximation. Finally, in case MOMIX (and not MOMIXlight)
is applied, the linear outer approximation is further refined by considering H λ̂,f(x̂),
being x̂ a solution of (MICP p(λ̂, X̃)).

p

f id

f(x̂)

H λ̂,ŷ(p)

H λ̂,f(x̂)

f(X̃
g
)

conv(f(X̃g,Z
))

Figure 6.4. Illustration of our lower bounding procedure on a biobjective purely
integer convex programming instance.

6.2 An Outer Approximation Based B&B Algorithm for MOMICPs 117

Algorithm 8 Lower bounding procedure
INPUT: (MOMIC), a subbox X̃ ⊆ B, LPNS , LLUB , light ∈ {0, 1}
OUTPUT: LPNS , LLUB , D, where D = true means “Discard X̃”
1: Set D ← true

2: for j ∈ {1, . . . ,m} do
3: Compute f id

j and obtain x̃j ∈ X̃
g

4: if round(x̃j) ∈ Bg,Z then
5: Update LPNS by f(round(x̃j)) and update LLUB by Algorithms 1 and 3
6: Set L∗

LUB ← LLUB

7: SetH ← {Huj ,a | j ∈ {1, ...,m}}
8: for p ∈ L∗

LUB do
9: if λTp ≥ λT z′ for all Hλ,z′ ∈ H then
10: Solve (Pp(X̃

g
)) and get (x∗, t∗) ∈ X̃

g × R, λ̂ ∈ Rm Lagrange multiplier
for the constraint f(x) ≤ p+ te

11: if round(x∗) ∈ Bg,Z then
12: UpdateLPNS by f(round(x∗)) and updateLLUB byAlgorithms 1 and 3
13: if t∗ ≤ 0 and light = 1 then
14: SetH ← H∪ {H λ̂,p+t∗e}
15: Set D ← false and break for-loop
16: else if t∗ ≤ 0 and light = 0 then
17: Solve Problem (MICP p(λ̂, X̃))
18: if (MICP p(λ̂, X̃)) is infeasible then
19: Set D ← true and break for-loop
20: else
21: Let x̂ ∈ X̃

g,Z be a solution of Problem (MICP p(λ̂, X̃))
22: Update LPNS by f(x̂) and update LLUB by Algorithms 1 and 3
23: SetH ← H∪ {H λ̂,f(x̂)}
24: if λ̂

T
p ≥ λ̂

T
f(x̂) then

25: Set D ← false and break for-loop

26: else
27: SetH ← H∪ {H λ̂,p+t∗e}.

118 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

In the following lemma, we prove the exactness of our lower bounding procedure:
we show that Algorithm 8 returns D = false if X̃ contains an efficient point of
(MOMIC). Thus, it will be further partitioned.

Lemma 6.5 Let X̃ be a subbox of X that contains an efficient point x∗ ∈ X̃
g,Z

of
(MOMIC). Then Algorithm 8 returns D = false.

Proof. We distinguish two cases for which Algorithm 8 returns D = true: either
D = true because (MICP p(λ̂, X̃)) is infeasible for any p ∈ L∗

LUB or because lines
15 or 25 are never reached for any p ∈ L∗

LUB . The first case cannot occur as x∗ ∈ X̃
g,Z.

The second case may occur if for all p ∈ L∗
LUB one of the conditions in line 9, 13

or 24 is not satisfied. In all three cases we get that p /∈ f(X̃
g
) + Rm

+ holds for all
p ∈ L∗

LUB . Corollary 6.2 then implies that X̃ does not contain any efficient point
for (MOMIC).

6.2.3 Correctness of MOMIX

We already mentioned that our algorithm stops as soon as the working list LW is
empty, and we get a list of subboxes X̃ of width less than a prescribed value δ > 0,
i. e., ω(X̃) < δ. In this section, we first prove the exactness of Algorithm 7, namely we
prove that it returns the set LS which is a cover of the efficient setXE of (MOMIC).
In order to do that, we need tomake the following assumption related to the branching
rule adopted.

Assumption A.1 Let X̃ ⊆ X . Let the branching rule in Algorithm 7 be in such a way
that

X̃
g,Z ⊆ X̃

1 ∪ X̃
2

holds for the subboxes X̃1 and X̃
2 derived from X̃ , and that the algorithm performs

a finite number of branching steps before stopping.

Note that Assumption A.1 implies that the set of efficient points for (MOMIC) be-
longing to X̃ is a subset of X̃1 ∪ X̃

2. In Section 6.3 we propose and compare two
branching rules which both satisfy Assumption A.1.

6.2 An Outer Approximation Based B&B Algorithm for MOMICPs 119

From Assumption A.1 and Lemma 6.5 we directly get the following:

Theorem 6.6 Let XE be the efficient set of (MOMIC). Let LS be the output of Algo-
rithm 7. Then LS is a cover of XE , namely XE ⊆

⋃
X̃∈LS

X̃ .

We underline that when MOMIX (and not MOMIXlight) is applied, the list LS is built in a
way such that every subbox X̃ belonging to LS admits at least one feasible point, i. e.,
X̃

g,Z 6= ∅. Note that a feasible point x̂ ∈ X̃
g,Z is computed in line 21 in Algorithm 8.

We further prove that the points in the final list LPNS are images of some points in
the cover of the efficient set of (MOMIC).

Proposition 6.7 LetLPNS andLS be the output of Algorithm 7. Then, for every z ∈ LPNS

there exists a subbox X̃ ∈ LS such that z ∈ f(X̃
g,Z

).

Proof. Assume by contradiction that the preimage x of z ∈ LPNS belongs to a dis-
carded subbox X̃g,Z. Then, at a certain node of our branching tree, a lower bound LX̃

was computed such that for all p ∈ L′
LUB

p /∈ LX̃ + Rm
+

holds, where L′
LUB is the list of local upper bounds at that node. Hence,

p 6∈ f(X̃
g,Z

) + Rm
+ holds for all p ∈ L′

LUB. (6.6)

Let LLUB be the final list of local upper bounds related to LPNS . By Lemma 3.24, a
local upper bound p̂ ∈ LLUB exists such that z ≤ p̂ holds, i. e., p̂ ∈ f(X̃

g,Z
) + Rm

+ . If
p̂ ∈ L′

LUB holds, we directly get a contradiction to (6.6). Otherwise, from Remark 3.26
it follows that a local upper bound p̄ ∈ L′

LUB exists such that p̂ ≤ p̄ holds. Hence,
p̄ ∈ f(X̃

g,Z
) + Rm

+ holds, which contradicts (6.6).

We now show that, in case MOMIX is applied, LPNS is a “good” approximation of the
nondominated set. This means that the distance of the image of efficient points from
LPNS is bounded by a quantity that depends on δ > 0, which is the input parameter
of Algorithm 7. For this, we exploit the Lipschitz continuity of the objective functions

120 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

fj , j = 1, . . . ,m, which holds as the functions are continuously differentiable and
the feasible sets are compact. Let Lj ≥ 0 be the Lipschitz constant for function fj ,
j = 1, . . . ,m.

Theorem 6.8 Let δ > 0 be the input parameter and LPNS , LS be the output of Algo-
rithm 7 where MOMIX is applied, i. e., light = 0. Let LLUB be the local upper bound set
w. r. t. LPNS andXE ⊆ Xg,Z be the efficient set of (MOMIC). SetL := maxj=1,...,m Lj .
Then

f(XE) ⊆

(⋃
p∈LLUB

({p} − Rm
+)

)⋂(⋃
z∈LPNS

({z − Lδe}+ Rm
+)

)

holds, where e = (1, . . . , 1)T ∈ Rm.

Proof. Let x ∈ XE . In order to prove f(x) ∈
⋃

p∈LLUB
({p} − Rm

+), we distinguish
two cases. Assume first that f(x) belongs to the search region S related to LPNS (see
(3.18) and Proposition 3.22). Then, a local upper bound p ∈ LLUB exists such that f(x)
belongs to the search zone C(p) related to p. It follows that f(x) < p.

On the other hand, if f(x) /∈ S, by (3.18) a point z ∈ LPNS exists such that z ≤ f(x).
Since f(x) is nondominated and z ∈ LPNS is the image of a feasible point, we neces-
sarily have f(x) = z. From Lemma 3.24 we obtain that a p ∈ LLUB exists such that
f(x) = z ≤ p holds.

Next, we prove f(x) ∈
⋃

z∈LPNS
({z−Lδe}+Rm

+): For this, we choose a box X̃ ∈ LS

with x ∈ X̃
g,Z which exists by Theorem 6.6. From Algorithm 8, if light = 0, a fea-

sible point x̂ ∈ X̃
g,Z is computed for X̃ (see line 21). The point f(x̂) is an upper

bound for (MOMIC) and then a candidate to belong to LPNS . Then, either f(x̂)
is an element of LPNS or z ∈ LPNS exists such that z ≤ f(x̂). Since ω(X̃) < δ

holds, we have ‖x − x̂‖ < δ and, by Lipschitz continuity of fj we obtain for all
j = 1, . . . ,m |fj(x)− fj(x̂)| ≤ Ljδ ≤ Lδ. Therefore, since Lδ ≥ 0 holds, it follows
fj(x) ≥ fj(x̂)− Lδ ≥ zj − Lδ for all j = 1, . . . ,m, and the theorem is proved.

An illustration of Theorem 6.8 on a test instance solved by (MOMIC) is given in
Figure 6.7 in Section 6.3.

6.2 An Outer Approximation Based B&B Algorithm for MOMICPs 121

6.3 Numerical Results

In this section, we present our numerical experience on different test instances of
(MOMIC). Next to some results for biobjective quadratic instances, we show results
for an instance withm = 3 objective functions and results for a mixed integer convex
non-quadratic instance.

In our implementation of Algorithm 7, at line 3, in order to select a subbox X̃ ∈ LW ,
we consider the ideal point a computed according to (6.4). We pick at first those sub-
boxes with the lexicographic smallest ideal point a, with the idea that boxes with small
a may lead to good upper bounds. Concerning the branching rule, we adopted two
different strategies detailed in Section 6.3.1. For all runs we set δ = 0.1 if it is not
stated otherwise.

For the solution of the mixed integer convex programming problem used to define the
hyperplaneH λ̂,f(x̂) that enriches the linear outer approximation of f(X̃g,Z

) (line 17 of
Algorithm 8), we can adopt any solver which is able to deal with convex mixed integer
linear problems as e. g. SCIP [Gle+18]. In our numerical experiments, we mainly used
quadratic instances and within our implementation of MOMIX we adopted the mixed
integer quadratic solver of GUROBI, [Gur18].

Both versions of Algorithm 7, MOMIX and MOMIXlight, have been implemented inMAT-
LAB R2018a, [MAT18a]. All experiments have been performed on a computer with
Intel(R) Core(TM) i5-7400T CPU and 16 Gbytes RAM on operating system Windows
10 EnteRpRise.

6.3.1 Branching Rules

In our numerical experiments, we make use of two different branching rules. Both
rules are based on the idea of partitioning boxes considering first the largest edges,
giving priority to the integer variables in two different ways.

Let X̃ = [l̃, ũ] be a subbox ofX . We consider the following two sets of indices in order
to identify the branching variable ı̂ ∈ {1, . . . , n}:

122 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

(br1) J1 = argmax{ũi − l̃i | i ∈ I}. If ũi − l̃i = 0 for all i ∈ I , i. e., if all the integer
variables are fixed, define J1 = argmax{ũi − l̃i | i ∈ {1, . . . , n} \ I}. Choose
ı̂ ∈ J1.

(br2) J2 = argmax{ũi − l̃i | i ∈ {1, ..., n}}. If J2 ∩ I 6= ∅ holds, choose ı̂ ∈ J2 ∩ I .
Otherwise, choose ı̂ ∈ J2.

The first strategy is standard in mixed integer procedures: the integer variables are
fixed at first. The second strategy aims to reduce the largest edge of the boxes, no
matter whether it is related to an integer variable or not. Only if there is more than
one largest edge and one of them belongs to an integer variable, we prefer to branch
at this variable. We will show that this second non-standard branching rule performs
better on some of the test instances.

Once the branching variable ı̂ ∈ {1, . . . , n} has been selected, we partition the box X̃
into two boxes X̃1, X̃2 as follows: We set for c1, c2 ∈ [l̃ı̂, ũı̂] :

X̃1 :=
[
l̃,
(
ũ1, ..., ũı̂−1, c1, ũı̂+1, ..., ũn

)T]
and X̃2 :=

[(
l̃1, ..., l̃ı̂−1, c2, l̃ı̂+1, ..., l̃n

)T
, ũ
]
.

Thereby, we differentiate between ı̂ ∈ I and ı̂ /∈ I . If ı̂ /∈ I , we set c1 = c2 = (l̃ı̂+ũı̂)/2.
If ı̂ ∈ I , we set c1 = b(l̃ı̂ + ũı̂)/2c and c2 = d(l̃ı̂ + ũı̂)/2e. If l̃ı̂ + ũı̂ is an even
number, in order to avoid X̃1 ∩ X̃2 6= ∅, we split considering c1 = (l̃ı̂ + ũı̂)/2 and
c2 = 1 + (l̃ı̂ + ũı̂)/2. Note that such a bisection excludes the infeasible part between
c1 and c2.

As already mentioned in the introduction, we assumeX = [l, u] ⊂ Rn with li, ui ∈ Z
for all i ∈ I . Then, for all subboxes X̃ obtained by any of the branching rules pre-
sented, it holds l̃i, ũi ∈ Z for all i ∈ I . Furthermore, it is easy to see that both
branching rules adopted in MOMIX and MOMIXlight satisfy Assumption A.1.

In order to clarify the differences between the two rules (br1) and (br2), we present
the results obtained by MOMIX applied to the following:

6.3 Numerical Results 123

Test instance T.23We study the biobjective mixed integer instance with two vari-
ables:

min

x1 + x2

x2
1 + x2

2


s. t. (x1 − 2)2 + (x2 − 2)2 ≤ 36

x1 ∈ [−2, 2]

x2 ∈ [−4, 4] ∩ Z.

In Figures 6.5b and 6.5d, we show in gray the image ofXg,Z under the objective func-
tions. In black we give the set LPNS obtained by applying MOMIXwith (br1) and (br2),
respectively. Note that MOMIX is able to find in both cases a good approximation of
the non-connected nondominated set of the instance.

Both branching rules explore the whole feasible set of Test instance T.23. Even while
they partition the boxX in different ways, the outputs of MOMIX are very similar, i. e.,
with (br1) and (br2) the boxes in the solution listLS and the list of upper boundsLPNS

are nearly the same.

6.3.2 Results on Scalable Instances

In this section, we show results on three different test instances of (MOMIC), all
scalable in the number of variables. We apply MOMIX and MOMIXlight in combination
with (br1) and (br2) on all instances. We analyze the impact of the branching rules as
well as the difference between MOMIX and MOMIXlight. Recall that MOMIX uses stronger
lower bounds but these require to solve single objective mixed integer convex opti-
mization problems.

Test instance T.24This instance has quadratic objective functions and the number of
integer variables can be set to different values. Let the matrices Q1 and Q2 be defined
as follows:

(Q1)i,j =


3 if i=j=1

4 if i=j=n

1 else

and (Q2)i,j =


2 if i=j=1 or i=j= n

4 if i=j and i 6∈{1, n}

1 else.

124 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

a: Partition of the box X obtained by applying
MOMIX with (br1).

b: LPNS obtained by applying MOMIX with
(br1).

c: Partition of the box X obtained by applying
MOMIX with (br2).

d: LPNS obtained by applying MOMIX with
(br2).

Figure 6.5. Results for Test instance T.23 obtained by applying MOMIX with
different branching rules.

6.3 Numerical Results 125

Then the optimization problem is stated by

min

 xTQT
1Q1x+ (1, 2, . . . , 2, 1)x

xTQT
2Q2x+ (−1,−2, . . . ,−2, 5)x


s. t. xi ∈ [−5, 5] for all i = 1, . . . , n

I = {3, . . . , n}.

Note thatQT
1Q1 andQT

2Q2 are positive semidefinite matrices, and hence f1 and f2 are
convex functions.

Test instance T.25This instance is also scalable in the number of integer variables.

min

 x1

x2 +
n∑

i=3

10(xi − 0.4)2


s. t.

n∑
i=1

x2
i ≤ 4

xi ∈ [−2, 2] for all i = 1, . . . , n

I = {3, . . . , n}

Here, we can explicitly give the set of all efficient points by

XE = {x ∈ Rn | x2
1 + x2

2 = 4, x1 ∈ [−2, 0], x2 ∈ [−2, 0], xi = 0 for all i ≥ 3}.

Test instance T.26 In this instance both the number of continuous and integer vari-
ables can be set to different values, with the restriction that kc = |{1, . . . , n} \ I| has
to be even.

min


kc/2∑
i=1

xi +
n∑

i=kc+1

xi

kc∑
i=kc/2+1

xi −
n∑

i=kc+1

xi


s. t.

kc∑
i=1

x2
i ≤ 1

xi ∈ [−2, 2] for all i = 1, . . . , n

I = {kc + 1, ..., n}

126 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

For both objective functions the Lipschitz constant is L =
√
kc/2 + |I| .

For all instances but Test instance T.26 we set half an hour (1800 seconds) as a time
limit. For Test instance T.26 we set the time limit to one hour (3600 seconds).

In Figures 6.6a, 6.6b and 6.7, we show our results in the image space. As the set LPNS

is similar for all versions of MOMIX and choices of the branching rule within one test
instance, we present only the results for MOMIXwith (br2) within the figures. In black
we plot the points of LPNS . The gray points are the images of the feasible points,
i. e., the upper bounds, computed along the algorithm. The parameter for the set from
Theorem 6.8 applied to Test instance T.26 with kc = 2 and |I| = 1 is Lδ = 0.1

√
2.

Hence, the set described by
⋃

z∈LPNS
({z−Lδe}+Rm

+) is just a rough lower bound of
the nondominated set. From a practical point of view, in all our test runs, the points
from the lists LPNS deliver a good approximation of the nondominated sets.

a: The set LPNS of Test instance T.24 for
|I| = 5, n = 7.

b: The set LPNS of Test instance T.25 for
|I| = 10, n = 12.

Figure 6.6. Results for Test instances T.24 and T.25 obtained by applying MOMIX.

The numerical results on all instances are shown in Table 6.1. In the first two columns
we state the number of integer variables (|I|) and the number of continuous variables
(|C|) for each instance. For both MOMIX and MOMIXlight we report the total computa-
tional time in seconds (t [s]) and the number of considered boxes in the branching tree
(#nod). For MOMIX we additionally show the total time needed by Gurobi to address
the single objective mixed integer quadratic problems (MIQP). Failures, i. e., instances
for which the time limit was exceeded, are marked with “-”.

6.3 Numerical Results 127

Table 6.1. Numerical results for Test instances T.24 to T.26.

MOMIX MOMIXlight

(br1) (br2) (br1) (br2)
|I| |C| t [s] #nod MIQP t [s] #nod MIQP t [s] #nod t [s] #nod
Test instance T.24 - time limit 1800s
1 2 40.1 757 2.3 38.7 765 2.3 849.9 609 524.5 669
2 2 30.8 537 1.6 31.6 575 1.7 667.2 555 563.0 641
3 2 31.0 535 1.5 30.8 521 1.5 1381.2 1127 814.4 917
4 2 34.7 567 1.7 65.6 1095 3.0 - - 1134.9 1285
5 2 38.5 587 1.6 81.5 1259 3.2 - - - -
10 2 350.3 2707 9.5 - - - - - - -
Test instance T.25 - time limit 1800s
1 2 15.5 301 0.5 14.6 299 0.4 1045.4 299 1025.6 299
10 2 36.5 413 1.2 27.1 353 0.7 - - - -
20 2 - - - 46.9 411 0.9 - - - -
30 2 - - - 80.4 471 1.1 - - - -
50 2 - - - - - - - - - -
Test instance T.26 - time limit 3600s
1 2 41.5 749 1.3 44.3 771 1.3 296.3 747 225.6 801
2 2 226.2 3683 6.3 240.5 3761 6.2 - - 3090.4 3701
3 2 1354.9 19127 32.3 1321.5 18451 31.1 - - - -
1 4 2199.5 23935 53.5 2246.6 24399 53.8 - - - -

128 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

Figure 6.7. The set LPNS of Test instance T.26 for |I| = 1, n− |I| = 2 and the
boundary of the set from Theorem 6.8, Lδ = 0.1

√
2. Right picture

shows a detail of the left one.

We observe that MOMIX outperforms MOMIXlight on all test instances. MOMIX is able to
solve a higher number of instances within the time limit. This seems to indicate that
the improved lower bounding procedure of MOMIX and the effort in solving single
objective mixed integer convex problems pays off.

We notice that the timeGurobi needs to address the single objectivemixed integer sub-
problems is a small percentage of the whole computational time. By using the MAT-
LAB profiler on our code, we figured out that the bottleneck in our implementation
is fmincon: Most of the computational time was spent to solve the single objective
continuous convex problems. In fact, for high dimensional test instances fmincon

was not able to solve some of the single objective continuous convex problems. This
was the case for, e. g., Test instance T.25 with |I| = 50. Note that fmincon can be
replaced by any solver for convex problems within both, MOMIX and MOMIXlight.

Regarding the two branching rules, we can notice some differences as soon as the
dimension of the instances grows. In most cases, MOMIX and MOMIXlight with (br2)
could solve instances with a larger number of integer variables.

6.3 Numerical Results 129

6.3.3 Results on a Triobjective Instance

Our implementation of MOMIX and MOMIXlight can handle instances of (MOMIC)
with a general number of objective functionsm ≥ 2. In the following, we present the
results obtained by applying MOMIX with branching rule (br2).

Test instance T.27We consider the triobjective mixed integer instance

min


x1 + x4

x2 − x4

x3 + x2
4


s. t.

3∑
i=1

x2
i ≤ 1

xi ∈ [−2, 2] for all i = 1, . . . , 4

x4 ∈ Z.

We set δ = 0.5 in MOMIX. In order to detect LS , the cover of the efficient set of Test
instance T.27, MOMIX needed to explore 1237 nodes. This was done within 190 sec-
onds.

In Figure 6.8 the points in LPNS are plotted in black, giving an approximation of the
nondominated set of Test instance T.27. In gray we plot the images of the feasible
points computed along the algorithm.

Figure 6.8. The set LPNS for Test instance T.27 from two different perspectives.

130 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

6.3.4 Results on a Non-Quadratic Convex Instance

As a further example, we report the results obtained applying MOMIXlight with branch-
ing rule (br1) on the following non-quadratic instance:

Test instance T.28

min

 x1 + x3

x2 + exp(−x3)


s. t. x2

1 + x2
2 ≤ 1

xi ∈ [−2, 2] for all i = 1, . . . , 3

x3 ∈ Z

Note that the second objective of Test instance T.28 is a convex non-quadratic function.

As alreadymentioned at the beginning of the section, in our implementation of MOMIX
we use GUROBI, [Gur18] as mixed integer quadratic solver and we did not include
any other solver within it. Therefore, in order to solve Test instance T.28 we applied
MOMIXlight setting δ = 0.1. MOMIXlight was able to detectLS by addressing 1105 nodes
within 20 seconds. In Figure 6.9, we plot the obtained approximation of the nondom-
inated set of Test instance T.28.

Assume that Test instance T.28 is solved by using the ε-constraint method. The ε-
constraint scalarization of Test instance T.28 for some ε ∈ R is then defined by

min f1(x) = x1 + x3

s. t. f2(x) = x2 + exp(−x3) ≤ ε

x2
1 + x2

2 ≤ 1

xi ∈ [−2, 2] for all i = 1, . . . , 3

x3 ∈ Z.

(6.7)

Considering the gap in the nondominated set of Test instance T.28 (see Figure 6.9),
solving (6.7) for all values ε in the interval [3, 6] would lead to the same solution. The

6.3 Numerical Results 131

Figure 6.9. The set LPNS of Test instance T.28 obtained by MOMIXlight.

significant values for ε are only those in the intervals [−1, 3] and [6, 7.5]. Clearly, the
significant intervals are not known in advance and this is a big issue when applying
the ε-constraint method on (MOMIC), as the nondominated set of a multiobjective
mixed integer convex problem may have huge gaps.

6.4 Conclusions

In this chapter, the first deterministic algorithm for solving multiobjective mixed in-
teger convex programming problems is presented. The presentation is based on the
paper [DeS+19] which is available online and submitted for publication. The method
of the new algorithm MOMIX is based on linear outer approximations of the image set.
We first build linear outer approximations of the convex relaxation of the problem by
adaptively computing hyperplanes considering some meaningful local upper bounds.
Then in some cases, we compute additional hyperplanes which outer approximate the
convex hull of the true image set. This is again done in an adaptive way, taking spe-
cific local upper bounds into account. The local upper bound sets are updated as soon
as a new upper bound is found and are used both to have a pruning criterion and to
approximate the dominated set. Theoretical results related to the correctness of our

132 6 Solving Multiobjective Mixed Integer Convex Optimization Problems

algorithm are provided. Numerical examples on biobjective and triobjective instances
show the ability of our procedure to detect nondominated points of multiobjective
mixed integer convex programming problems. We also explored the possibility of us-
ing two different branching rules. Each of these two are suitable for our new approach,
but differences depending on the instance, which has to be solved, can be observed.

The algorithm MOMIX is similar to algorithm MOPBB introduced in Chapter 4. Ba-
sically, both are B&B algorithms dealing with different issues. While MOPBB has to
handle nonconvex objective functions, MOMIX deals with continuous and integer vari-
ables. However, both algorithms use a discarding test which is based on the idea of
Benson’s outer approximation algorithm. Therefore, it might be of interest to combine
both approaches to obtain a B&B algorithmwhich solves multiobjective mixed integer
nonconvex optimization problems. The new procedure has to use the convex under-
estimators of the objective functions instead of taking them directly, because solving
(Pp(X̃

g
)) and (MICP p(λ̂, X̃)) globally needs too much computational time.

However, in case of an existing “fast” algorithm for mixed integer (single objective)
nonconvex optimization problems, it might even be possible to solve (MICP p(λ̂, X̃))
directly in order to improve the hyperplane found by (Pp(X̃

g
)) w. r. t. the convex

underestimator. Then, it is of interest whether those two types of relaxations, using the
convex underestimator and neglecting the integrality constraints in (Pp(X̃

g
)), are still

worth to obtain approximate solutions with a certain accuracy of this multiobjective
mixed integer nonconvex optimization problem.

6.4 Conclusions 133

7 Solving Multiobjective Optimization
Problems with Decision Uncertainty

This chapter handles multiobjective optimization problems with decision uncertainty,
i. e., we have to deal with uncertainties concerning the realization of the decision vari-
ables. It comprises three sections, the first of which provides a brief introduction into
decision uncertainty and the relationship to set optimization. In the second section we
present the key features for a possible algorithm to solve multiobjective optimization
problems with decision uncertainties. The overall algorithm is stated in the last part,
together with the presentation and discussion of some numerical results. The results
of this chapter are based on [ENR19].

7.1 Specific Preliminaries for Multiobjective
Optimization with Decision Uncertainty

Recall the multiobjective optimization problem (P). For that, let a nonempty feasible
setM ⊆ Rn and twice continuously differentiable functions fj : M → R, j = 1, . . . ,m

be given.
min f(x)

s. t. x ∈M
(P)

Additionally, we assume the objective functions fj to be factorable for all j = 1, . . . ,m,
see Definition 3.2. Next, we introduce the relevant notions from multiobjective opti-
mization with decision uncertainty, before we shortly point out the relations to the
more general class of set optimization problems.

7 Solving Multiobjective Optimization Problems with Decision Uncertainty 135

7.1.1 Decision Uncertainty

As described in the introduction, it is possible that the realization of a decision variable
x is associated with uncertainties. These uncertainties will be modeled by a convex
and compact setZ ⊆ Rn with 0 ∈ Z . Hence, instead of x it might happen that x+z for
some z ∈ Z is realized due to the uncertainties. We follow the notation as introduced
in [EKS17].

In view of robustness, only feasible points x ∈ M which are feasible for any uncer-
tainty z ∈ Z are of interest. This reduces the feasible set to the set of decision robust
feasible points defined by

S := {x ∈M | x+ z ∈M for all z ∈ Z}.

It is a well-known challenge in robust optimization to calculate S from M and Z ,
also in the single objective case. Here, we assume that S is known and nonempty
and we only concentrate on those challenges which are due to the multiple objectives.
Moreover, we assume that S is convex and that there exists a box X ∈ IRn which
contains S. We require these properties because single objective subproblems with a
convex objective function over the set S have to be solved. For being able to solve
those problems globally and efficiently, we need the assumption of convexity of S.
As our algorithm works with subdivisions in the preimage space, we also need the
structure of the box.

For defining decision robust efficient solutions, we have to take all possible realiza-
tions of each x into account. The set of all these realizations for one x is given by
{x+ z | z ∈ Z}. As we are interested in the values of the objective functions, we
have to compare the sets

fZ(x) := {f(x+ z) ∈ Rm | z ∈ Z} for all x ∈ S,

which define a set-valued map fZ : S ⇒ Rm.

In case of linear functions fj we have fZ(x) = {f(x)} + {f(z) ∈ Rm | z ∈ Z}.
This simplifies the problem significantly, see [EKS17, Theorem 23] or [EG19]. If the

136 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

functions fj and the set Z are convex, the sets fZ(x) for x ∈ S do not have to be
convex, as the following example shows:

Example 7.1 Let the two functions f1, f2 : R2 → Rwith f1(x) = x1, f2(x) = x2
1+x2

2,
and the set Z = [−0.1, 0.1]× [0, 0.1] be given. Then for x = 0, the set

fZ(0) = {f(0 + z) | z ∈ Z} =


 z1

z21 + z22

 ∈ R2

∣∣∣∣∣∣ z ∈ Z


contains the two points y1 = (−0.1, 0.02) and y2 = (0.1, 0.02), but not the point
0.5y1 + 0.5y2 = (0, 0.02). This is because f(0 + z) = (0, 0.02) only holds for the
points z = (0,−

√
0.02) or z = (0,

√
0.02). But in both cases it is z /∈ Z . Hence, the

set fZ(0) is not convex.

We define the difference of two sets A,B ⊆ Rm by

A−B := {a− b | a ∈ A, b ∈ B}.

Due to [EKS17], we introduce the following optimality concept for the problem (P)
with respect to decision uncertainty given by the set Z . It is motivated by the defi-
nition of optimality for single objective decision uncertain optimization as well as by
the definition of optimality in parameter uncertain multiobjective optimization.

Definition 7.2 [EKS17] A point x∗ ∈ S is called a decision robust strictly efficient
solution of (P) w. r. t. Z if there is no x ∈ S \ {x∗} with the property

fZ(x) ⊆ fZ(x
∗)− Rm

+ .

We illustrate this definition with the following example:

Example 7.3 Assume S = {x1, x2}, and Z as well as f : S → R2 are in such a way
that the sets fZ(x1) and fZ(x

2) look as in Figures 7.1a and 7.1b, respectively. Then
for the situation in Figure 7.1a, only x1 is a decision robust strictly efficient solution
w. r. t. Z , while for Figure 7.1b both points, x1 and x2, are decision robust strictly
efficient solutions.

7.1 Specific Preliminaries for Multiobjective Optimization with Decision Uncertainty 137

fZ(x
2)

fZ(x
2)− Rm

+

fZ(x
1)

a: First case.

fZ(x
2)

fZ(x
2)− Rm

+

fZ(x
1)

b: Second case.

Figure 7.1. Illustration for Example 7.3.

Note that in the case of Z = {0}, i. e., the case of no uncertainty, there can be efficient
solutions of (P) that are not decision robust strictly efficient solutions of (P) w. r. t. Z .
This is due to the fact that decision robust strict efficiency is a generalization of strict
efficiency for multiobjective optimization problems, see Definition 2.4 (ii). In contrast
to efficiency, strict efficiency of a point x∗ does not allow the existence of another
point x with f(x) = f(x∗). For more details and a more detailed example we refer
to [EKS17, Sect. 2].

For applying Definition 7.2 in an algorithm, one has to be able to verify numerically
whetherA ⊆ B−Rm

+ holds for two setsA,B ⊆ Rm. In case of polyhedral sets this can
be done by using a finite number of support functionals, see [Jah15]. In case of arbi-
trary closed convex sets one might need an infinite number of such linear functionals.
Additionally, one has to solve a minimizing problem for each of these functionals and
for each of the sets to decide whether the subset condition holds. This is based on the
equivalence

A ⊆ B − Rm
+ ⇔ ∀ ℓ ∈ Rm

+ : sup
a∈A

ℓTa ≤ sup
b∈B

ℓT b,

which was formulated in a more general setting in [Jah13, Theorem 2.1].

138 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

7.1.2 Relation to Set Optimization

In set optimization one studies set-valued optimization problems. Solving the follow-
ing set optimization problem is closely related to determining decision robust strictly
efficient solutions.

min fZ(x) = {f(x+ z) | z ∈ Z}

s. t. x ∈ S
(SOP)

There are different approaches to define optimal solutions for problems like (SOP).
For an introduction to set optimization, see the book [KTZ15]. In case of the set ap-
proach, see [JH11], one uses order relations to compare the sets which are the images
of the objective function. As we are minimizing in our multiobjective optimization
problem, the “maximal elements” of a set are in some sense the worst elements, which
fits to our worst-case approach. Comparing the “maximal elements” of a set corre-
sponds to the upper-less order relation, which we introduce next.

Definition 7.4 [JH11] Let A,B ⊆ Rm be two nonempty sets. The upper-type (u-type)
less order relation 4u is defined by:

A 4u B ⇔ A ⊆ B − Rm
+ .

For nonempty sets A,B ⊆ Rm, this characterization is equivalent to

A 4u B ⇔ ∀a ∈ A ∃b ∈ B : a ≤ b.

Moreover, the upper-type less order relation is reflexive and transitive, but it is in
general not anti-symmetric. However, it holds

A 4u B and B 4u A⇔ A− Rm
+ = B − Rm

+ .

Now we can state the definition of an optimal solution of a set-valued optimization
problem as (SOP). For this, we use a definition which was formulated in [RS07]:

7.1 Specific Preliminaries for Multiobjective Optimization with Decision Uncertainty 139

Definition 7.5 Let a nonempty set X ⊆ Rn and a set-valued map H : X ⇒ Rm be
given, whereH(x) 6= ∅ holds for all x ∈ X . A point x∗ ∈ X is called a strictly optimal
solution of the set optimization problem

min
x∈X

H(x)

w. r. t. 4u if there exists no x ∈ X \ {x∗} with H(x) 4u H(x∗).

In our case, we have the special set-valued map described by fZ : S ⇒ Rm with
fZ(x) = {f(x + z) | z ∈ Z}. Obviously, a point x∗ ∈ S is a decision robust strictly
efficient solution of (P) w. r. t. Z if and only if x∗ ∈ S is a strictly optimal solution of
the set optimization problem (SOP). Hence, we present in this chapter an algorithm
to calculate a covering of the set of strictly optimal solutions of a specific set opti-
mization problem. The proposed techniques can also be used to develop algorithms
for more general set optimization problems. We discuss this in Section 7.4 briefly.

A basic technique of our algorithm will be a B&B approach. Lower and upper bounds
will be important for the bounding step. The next definition clarifies these terms.

Definition 7.6 Let A ⊆ Rm be a nonempty set.

(i) A set U ⊆ Rm is called an upper bound set/upper bound for A if A 4u U .
(ii) A set L ⊆ Rm is called a lower bound set/lower bound for A if L 4u A.

7.2 Algorithmic Approach

Our algorithm uses the concept of a B&B method. The branching will be in the preim-
age space Rn. We have assumed that there is a box X which contains the convex
feasible set S. This is, for instance, the case when S is given by convex inequality
constraints and by lower and upper bounds for each variable. We start with the box
X and partition it along the longest edge into two subboxes. See, for instance, Sec-
tion 4.2 for a more detailed description of such a partitioning. On each subboxX∗, we
test whether a sufficient criteria is satisfiedwhich guarantees thatX∗∩S does not con-
tain any decision robust strictly efficient solution of (P) w. r. t. Z . If such a criterion

140 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

is satisfied, we do not consider this subbox and the feasible points inX∗∩S anymore.
Otherwise, we partition the box until all boxes are either discarded or smaller than a
predefined value.

For such a B&B scheme, a good criterion for discarding a box is essential. These cri-
teria are in general based on lower bounds obtained on the subboxes and on upper
bounds obtained within the procedure. In single objective global (i. e., nonconvex)
optimization, the upper bounds are function values of feasible solutions. The lower
bounds are bounds for all possible values of the objective over a subbox which are
determined by interval arithmetic or by other underestimation methods. Hence, just
scalars have to be compared. In our setting, already a “function value” fZ(x) for some
feasible point x is a whole set. As these lower and upper bounds have to be com-
pared frequently within such an algorithm, we will present a way to avoid to com-
pare sets as fZ(x) for some x directly. We will present replacements (i. e., sufficient
conditions) using sets which have a very simple structure. To distinguish between
upper and lower bound sets in this chapter, the corresponding variables x, z and sub-
boxes or subsets of X and Z are indicated with ·̃ or ·∗, respectively. This means that
an upper bound set of fZ(x̃) is computed with respect to a fixed point x̃ ∈ X̃ and
a lower bound set is determined for all sets fZ(x∗) = {f(x∗ + z) | z ∈ Z} with
x∗ ∈ X∗. Note that determining a lower bound L for all sets fZ(x∗) with x∗ ∈ X∗

(i. e., L 4u fZ(x
∗) for all x∗ ∈ X∗) is not equivalent to simply determining a lower

bound for fZ(X∗) :=
⋃

x∗∈X∗{f(x∗ + z) | z ∈ Z} (i. e., with L 4u fZ(X
∗)).

As the objective functions fi, and also the sets fZ(x), are not necessarily convex, we
will use the concept of convex underestimators for being able to formulate such re-
placements and a numerically tractable sufficient condition finally.

7.2.1 Concave Overestimators

As shown in Example 7.1, the sets fZ(x) for x ∈ S may be nonconvex, even in case
of convex functions fi : S → R. For that reason, we will make use of the concept
of convex underestimators and concave overestimators, respectively, depending on
whether we aim at lower or at upper bounds. In Section 3.2 we already got familiar

7.2 Algorithmic Approach 141

with convex underestimators. Now, we need the converse — concave overestimators
— additionally.

Definition 7.7 Let a function h : Rn → R on a box X = [x, x] ∈ IRn be given.
A function h : X → R is called concave overestimator for h on X if h is a concave
function with h(x) ≥ h(x) for all x ∈ X .

Let a box be defined by X = [x, x] ∈ IRn. Recall that we obtain a convex underesti-
mator h of a smooth function h by

h(x) := h(x) +
αh

2
(x− x)T (x− x),

where αh ≥ max{0,−minx∈X λmin,h(x)}. Here, λmin,h(x) denotes the smallest eigen-
value of the Hessian Hh(x) of h in x, [MF94].

We use convex underestimators to be able to calculate the elements of sets L ⊆ Rm

numerically such that

L ⊆ fZ(x)− Rm
+ (⇔ L 4u fZ(x))

holds for all x ∈ X∗ ∩ S for some subbox X∗ of X .

Also concave overestimators of a function h on X are of interest. If we calculate a
convex underestimator of the function −h as described above, i. e.,

−h(x) := −h(x) + α−h

2
(x− x)T (x− x),

where α−h ≥ max{0,−minx∈X λmin,−h(x)}, the function h := −(−h) is such a con-
cave overestimator of h on X . We use such concave overestimators to be able to
calculate sets U ⊆ Rm numerically such that

fZ(x̃) ⊆ U − Rm
+ (⇔ fZ(x̃) 4u U)

142 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

holds for some given x̃ ∈ S. The advantage is that while it might be numerically
difficult to compare the lower bound L of all sets fZ(x) for all x ∈ X∗∩S with fZ(x̃),
it might be much easier to compare L with U . Note that we have

U ⊆ L− Rm
+ ⇒ fZ(x̃) ⊆ fZ(x)− Rm

+ for all x ∈ X∗ ∩ S.

When we use the set order relation as defined in Definition 7.4 we can write this
equivalently as

U 4u L ⇒ fZ(x̃) 4u U 4u L 4u fZ(x) for all x ∈ X∗ ∩ S

⇒ fZ(x̃) 4u fZ(x) for all x ∈ X∗ ∩ S.
(7.1)

The implication holds as 4u is a transitive set order relation. Thus, if x̃ ∈ S \X∗

holds, we can discard the subboxX∗ as it does not contain any decision robust strictly
efficient solution of (P) w. r. t. Z .

7.2.2 Upper Bound Sets

First, we describe how to calculate a simple set U with fZ(x̃) 4u U , where x̃ is a fixed
feasible point of a given box X̃ . To begin with, we explain how to construct such a
set U which is a singleton. Then we describe how this upper bound can be improved
by using outer approximations as known from convex multiobjective optimization.

For deriving a singleton upper bound for a set, we use the anti-ideal point, see also
Definition 3.16 (ii). For the set fZ(x̃) = {f(x̃+ z) | z ∈ Z}, this is the point a defined
by

aj := max
y∈fZ(x̃)

yj = max
z∈Z

fj(x̃+ z) for all j = 1, . . . ,m.

Hence, the anti-ideal point can easily be determined if fj is a concave function for
j = 1, . . . ,m, as Z is assumed to be a convex and compact set and the functions fj
are twice continuously differentiable. One can apply any solution method from single
objective constrained optimization, for instance, an algorithm which uses SQP.

7.2 Algorithmic Approach 143

However, if fj is not concave, such a local solution method as SQP might only deliver
a locally maximal solution and not a globally maximal one. In that case we use the
concave overestimators which were introduced in Section 7.2.1. The result is summa-
rized in the next lemma. This lemma needs a box Ẑ with Z ⊆ Ẑ . Recall that Z was
assumed to be a compact convex set and thus such a set Ẑ can easily be calculated.
The reason for the assumption of a box is that we can determine concave overestima-
tors only over boxes, as explained in Section 7.2.1. With Remark 3.13 it follows that a
small box Ẑ leads to a tighter concave overestimator. Therefore, Ẑ should be chosen
as small as possible.

Lemma 7.8 Let Ẑ ∈ IRn be a box with Z ⊆ Ẑ , and let x̃ ∈ S be given. Let fj be
the concave overestimator of fj on the box {x̃} + Ẑ for all j = 1, . . . ,m as defined in
Definition 7.7. The singleton set U with

U := {p̄} with p̄ := (max
z∈Z

f1(x̃+ z), . . . ,max
z∈Z

fm(x̃+ z))T (7.2)

is an upper bound set for fZ(x̃), i. e., fZ(x̃) 4u U .

Proof. For the proof of this lemma, we show fZ(x̃) ⊆ U−Rm
+ . Therefore, letw ∈ fZ(x̃)

be arbitrary, i. e., there is a z ∈ Z with w = f(x̃+z). As fj is a concave overestimator
of fj on {x̃}+ Ẑ and z ∈ Z ⊆ Z̃ , we obtain for every j = 1, . . . ,m:

wj = fj(x̃+ z) ≤ fj(x̃+ z) ≤ max
z∈Z

fj(x̃+ z).

Therefore, w ∈ U − Rm
+ holds.

The optimization problems in (7.2) have a convex and compact feasible set and twice
continuously differentiable concave objective functions, which are maximized. Thus,
they can be solved, for instance, with an SQP method. Lemma 7.8 uses that it holds
for the set

fZ(x̃) := {(f1(x̃+ z), . . . , fm(x̃+ z))T | z ∈ Z}

that fZ(x̃) ⊆ fZ(x̃)−Rm
+ and that fZ(x̃)−Rm

+ is a convex set. Thus, the anti-ideal point
of fZ(x̃) can be calculated by known local methods for single objective optimization.
Figure 7.2 shows how to obtain the upper bound set U .

144 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

fZ(x̃)

fZ(x̃)− Rm
+

U

Figure 7.2. The set fZ(x̃) and its singleton upper bound set U according to Lemma
7.8.

This rough upper bound can be improved by using outer approximation techniques
from convex multiobjective optimization. These can be applied as the set fZ(x̃)−Rm

+

is a convex set. The algorithm which we are using is called Benson’s outer approx-
imation algorithm, extensively introduced in Section 3.3. One step depends on one
fixed point p̄, which can, for instance, be the anti-ideal point. With the idea of Ben-
son’s outer approximation algorithm we adapt (Pp̄,M) to the single objective convex
optimization problems of the following type:

min
(z,t)∈Rn×R

t

s. t. z ∈ Z,

p̄− te ≤ f(x̃+ z).

(Px̃,p̄)

Let (z̃, t̃) be an optimal solution of (Px̃,p̄) and let λ̃ ≥ 0 be a Lagrange multiplier to the
constraint p̄− te ≤ f(x̃+ z). Then the set

{y ∈ Rm | λ̃T
y = λ̃

T
(p̄− t̃e)}

describes a supporting hyperplane of fZ(x̃), see also Section 3.3 for a general proof. If
no Lagrange multiplier is available, a single objective linear optimization problem can
be solved to calculate a normal vector λ̃ of the supporting hyperplane, see [ESS11].

Note that the anti-ideal point of fZ(x̃) gives m supporting hyperplanes of fZ(x̃) by

{y ∈ Rm | yj = max
z∈Z

fj(x̃+ z)} (7.3)

7.2 Algorithmic Approach 145

for every j = 1, . . . ,m. Several such supporting hyperplanes can be constructed to
various points p̄ with the help of (Px̃,p̄). In our numerical experiments we limited
ourselves to the hyperplane which we obtain by solving (Px̃,p̄) for p̄ as the anti-ideal
point of fZ(x̃) and to those whichwe obtain directly from the anti-ideal point of fZ(x̃),
see (7.3).

Adding more hyperplanes to get a better outer approximation is possible, but then
evenmore single objective convex optimization problems have to be solved. Moreover,
the calculation of the intersection of these hyperplanes gets more challenging. Also
steering the calculation of the hyperplanes within the algorithm by an adaptive choice
of the points p̄ in (Px̃,p̄) is an interesting approach for further improvements of the
proposed algorithmic approach. Such an approach was, for instance, followed for
nonconvex multiobjective optimization problems in Chapter 4.

The next lemma gives a summary of the construction of our upper bound set, which
is also illustrated in Figure 7.3.

Lemma 7.9 Let Ẑ ∈ IRn be a box with Z ⊆ Ẑ and let x̃ ∈ S be given. Let fj be the
concave overestimator of fj on the box {x̃}+ Ẑ for all j = 1, . . . ,m as defined in Defi-
nition 7.7. Furthermore, let p̄ ∈ Rm be the anti-ideal point of the concave overestimators
f = (f1, . . . , fm)

T on {x̃}+Z , see Lemma 7.8. Moreover, let (z̃, t̃) be a minimal solution
of (Px̃,p̄) with Lagrange multiplier λ̃ ≥ 0 to the constraint p̄− te ≤ f(x̃+ z). Then the
set U with

U := {y ∈ Rm | yj ≤ pj, j = 1, . . . ,m, λ̃
T
y = λ̃

T
(p̄− t̃e)} (7.4)

is an upper bound set for fZ(x̃), i. e., fZ(x̃) 4u U .

Proof. We denote the hyperplane to which λ̃ ≥ 0 is the normal vector by

U∗ := {y ∈ Rm | λ̃T
y = λ̃

T
(p̄− t̃e)}.

As (z̃, t̃) is feasible for (Px̃,p̄) and by the definition of p̄, we get for each j = 1, . . . ,m:

t̃ ≥ p̄j − fj(x̃+ z̃) ≥ 0.

146 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

fZ(x̃)

fZ(x̃)− Rm
+

U

Figure 7.3. The set fZ(x̃) and its upper bound set U according to Lemma 7.9.

As a consequence, we have p̄ − t̃e ∈ U . In particular, p̄ − t̃e ∈ U∗ holds and thus
p̄ ∈ U∗ + Rm

+ .

Next, we show that fZ(x̃) ⊆ U∗ − Rm
+ . This follows from the theory in Section 3.3

or [LRU14] as (Px̃,p̄) is the same optimization problem which is solved to obtain a
supporting hyperplane of−fZ(x̃)+Rm

+ with the ideal point−p̄ (see Definition 3.16 for
the definition of ideal point). There, U∗ is by construction a supporting hyperplane of
−fZ(x̃)+Rm

+ , i. e., λ̃
T
(−p̄+ t̃e) ≤ λ̃

T
y holds for all y ∈ −fZ(x̃)+Rm

+ . By multiplying
with −1, this is equivalent to λ̃

T
(p̄ − t̃e) ≥ λ̃

T
y for all y ∈ fZ(x̃) − Rm

+ . Hence, U∗

is a supporting hyperplane of fZ(x̃)− Rm
+ . As fj is a concave overestimator of fj on

the box {x̃}+ Ẑ for all j = 1, . . . ,m, it follows:

fZ(x̃) ⊆ fZ(x̃)− Rm
+ ⊆ U∗ − Rm

+ .

Now, let w ∈ fZ(x̃) be arbitrarily chosen. Then

w ∈ U∗ − Rm
+ = {y ∈ Rm | λ̃T

y ≤ λ̃
T
(p̄− t̃e)}

and p̄ ∈ U∗ + Rm
+ = {y ∈ Rm | λ̃T

y ≥ λ̃
T
(p̄ − t̃e)} hold. Thus, there exists some

µ ∈ [0, 1] with y := µp̄+ (1− µ)w ∈ U∗. By Lemma 7.8 we have w ≤ p̄. Therefore,

w ≤ w + µ(p̄− w) = y = µp̄+ (1− µ)w ≤ p̄

and w ≤ y with y ∈ U∗ ∩ ({p̄} − Rm
+) = U. Hence, we derive fZ(x̃) ⊆ U − Rm

+ .

7.2 Algorithmic Approach 147

7.2.3 Lower Bound Sets

Recall, for a subbox X∗ of X we denote the feasible set of X∗ by S∗ := X∗ ∩ S. For
applying the implication (7.1), we propose a method to determine a setLwith a simple
structure, i. e., with

L 4u fZ(x) for all x ∈ S∗ (⇔ L ⊆ fZ(x)− Rm
+ for all x ∈ S∗).

“Simple structure” means that it should be easy computable and comparable with the
obtained upper bounds. Similar to the anti-ideal point from Lemma 7.8, we can use
here the ideal point of a set. While one could use the ideal point of the set

{f(x+ z) ∈ Rm | x ∈ S∗, z ∈ Z},

already the ideal point of any set

f(S∗ + z∗) := {f(x+ z∗) ∈ Rm | x ∈ S∗}

for any z∗ ∈ Z delivers a lower bound:

Lemma 7.10 Let z∗ ∈ Z , X∗ be a subbox of X , and let a ∈ Rm be defined by

aj := min{fj(x+ z∗) ∈ R | x ∈ S∗}, j = 1, . . . ,m. (7.5)

Then the set L := {a} is a lower bound set of fZ(x) for all x ∈ S∗.

Proof. Let x ∈ S∗ be arbitrarily chosen. We have to show that a ∈ fZ(x) − Rm
+ . As

aj ≤ fj(x+ z∗) holds for all j = 1, . . . ,m, a ∈ {f(x + z∗)} − Rm
+ ⊆ fZ(x) − Rm

+

holds as well.

In case of convex functions fj , j = 1, . . . ,m, the single objective optimization prob-
lems in (7.5) can be solved by any local solution method as an SQPmethod. Otherwise,
convex underestimators, see Section 3.2, can be used. Let fj be the convex underes-

148 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

timator of fj on the box X∗ for all j = 1, . . . ,m. Define f := (f1, . . . , fm)
T. We can

choose one or several points z∗ ∈ Z and determine the ideal point of the set

f(S∗ + z∗) := {f(x+ z∗) ∈ Rm | x ∈ S∗}

for each chosen z∗. As each ideal point gives a lower bound set of the sets fZ(x) for
all x ∈ S∗, also the set of all ideal points to the various points z∗ is a lower bound set
of fZ(x) for all x ∈ S∗:

Lemma 7.11 LetX∗ be a subbox ofX , and let fj be the convex underestimator of fj on
X∗ for all j = 1, . . . ,m as defined in Definition 3.8. Let Z∗ = {z1, . . . , zp} ⊆ Z , and
for k = 1, . . . , p determine the ideal point ak of f(S∗ + zk), i. e., calculate

ak := (min
x∈S∗

f1(x+ zk), . . . ,min
x∈S∗

fm(x+ zk))T .

Then it holds:
L := {a1, . . . , ap} 4u fZ(x) for all x ∈ S∗,

i. e., L is a lower bound set for all sets fZ(x) with x ∈ S∗.

Proof. We have to show that for any k ∈ {1, . . . , p} and for all x∗ ∈ S∗ it holds that
ak ∈ fZ(x

∗)− Rm
+ . Thus, let k ∈ {1, . . . , p} and x∗ ∈ S∗ be arbitrarily chosen. As

aj
k = min

x∈S∗
fj(x+ zk) ≤ fj(x

∗ + zk) ≤ fj(x
∗ + zk)

holds for all j = 1, . . . ,m, if follows ak ∈ {f(x∗ + zk)} − Rm
+ ⊆ fZ(x

∗)− Rm
+ .

A visualization of this lemma can be found in Figure 7.4. The set fZ(S∗) is defined
by {fZ(x + z) | x ∈ S∗, z ∈ Z} and includes all images of all possible outcomes
x∗ + z with x∗ ∈ S∗ and z ∈ Z . By fixing a point zk ∈ Z we only obtain a subset
{f(x+ zk) | x ∈ S∗} =: Ak of fZ(S∗) for every k = 1, . . . , p. AsAk+Rm

+ is in general
nonconvex, a convex underestimator and its ideal point ak are computed. The lower
bound set L consists of all ideal points ak, k = 1, . . . , p.

For the algorithm, a large p, i. e., many elements {z1, . . . , zp}, improves the lower
bound set. On the other hand, a large p implies that we have to solve a large number

7.2 Algorithmic Approach 149

of convex single objective optimization problems on each subbox to determine the
ideal points ak, k = 1, . . . , p. We explore this issue in Section 7.3.2.

fZ(S
∗) f(A1) + Rm

+

f(A2) + Rm
+

f(A3) + Rm
+

a1

a2

a3

A1

A2

A3

L

Figure 7.4. The set fZ(S∗), the sets Ak = {f(x+ zk) | x ∈ S∗}, k = 1, 2, 3 and
the lower bound set L = {a1, a2, a3} according to Lemma 7.11.

7.2.4 Discarding Test

The main idea of our discarding test is the implication given in (7.1) together with the
way in which we construct the sets L and U . We summarize our discarding test in the
next theorem.

Theorem 7.12 Let X∗ be a subbox of X , x̃ ∈ S with x̃ 6∈ X∗, and let the set U be
defined as in Lemma 7.9 and the set L as in Lemma 7.11. If U 4u L, the subboxX∗ can
be discarded, i. e., X∗ ∩ S does not contain any decision robust strictly efficient solution
of (P) w. r. t. Z .

Proof. With U as in Lemma 7.9 and with L as in Lemma 7.11 we obtain

fZ(x̃) 4u U 4u L 4u fZ(x) for all x ∈ S∗,

150 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

i. e., no x ∈ S∗ can be a strictly optimal solution of the set optimization problem
minx∈S fZ(x). Therefore, no x ∈ S can be decision robust strictly efficient for (P)
w. r. t. Z .

With our choice for the construction of the sets L and U we aim at two goals. Firstly,
we want to be able to easily calculate them. This is achieved since the arising convex
single objective optimization problems can easily be solved, as any locally optimal
solution is already a globally optimal solution. Secondly, we want the sets L and U

to have a simple structure such that they can easily be compared w. r. t. the upper-
type less order relation. If L and U are finite sets, this can be done with a pairwise
comparison. In case of m = 2 and U is not finite, i. e., not just the anti-ideal point,
then U is just a line segment and we can easily check whether U 4u L holds. For
m ≥ 3 and non-finite U such comparisons get already more complicated, as U is
then a subset of a hyperplane. This comparison becomes even more difficult if several
points p̄ are used in (Px̃,p̄) to construct improved outer approximations, as it was done
in Chapters 4 and 6. In that case the concept of local upper bounds might be helpful
as used and explained in detail in Section 4.1.2. As this is an implementation issue and
does not add insights to the main idea of the discarding test above, we limit ourselves
here to cases which can easily be implemented.

7.3 The Algorithm and Numerical Results

In this section, we derive the algorithm based on the proposed discarding test in The-
orem 7.12. We also illustrate and discuss the algorithm on several test instances.

7.3.1 The B&B Algorithm

The base of our algorithm MOPDUBB is a B&B approach in which we partition the box
X into subboxes, see also Algorithm 2. Then we try to discard subboxes which do not
contain decision robust strictly efficient solutions.

7.3 The Algorithm and Numerical Results 151

Algorithm9 MOPDUBB: Algorithm formultiobjective optimization problemswith De-
cision Uncertainty
Input: f ∈ C2(Rn,Rm), S ⊆ Rn, X ∈ IRn with S ⊆ X, Z ⊆ Rn,

Ẑ ∈ IRn with Z ⊆ Ẑ, Z∗ = {z1, . . . , zp}
Output: LS,final
1: LW ← {X},LS ← ∅,LS,final ← ∅
2: if mid(X) ∈ S then
3: x̃← mid(X)

4: Compute U with fZ(x̃) 4u U , see Lemmas 7.8 and 7.9
5: Store U in LU

6: else LU ← ∅
7: while LW 6= ∅ do
8: Select a box X∗ from LW and delete it from LW

9: Bisect X∗ perpendicularly to a direction of maximum width→ X1, X2

10: for l = 1, 2 do
11: Compute L with L 4u fZ(x) for all x ∈ X l ∩ S, see Lemma 7.11, obtain

an x̃ ∈ X l ∩ S or X l ∩ S = ∅
12: if X l ∩ S = ∅ then Discard X l

13: else
14: if there is an U ∈ LU with U 4u L then Discard X l

15: else
16: Compute U with fZ(x̃) 4u U , see Lemmas 7.8 and 7.9
17: Store U in LU and update LU

18: if ω(X l) < δ then Store X l with L in LS

19: else Store X l in LW

20: while LS 6= ∅ do
21: Select a box X∗ with its lower bound L from LS and delete it from LS

22: if there is a U ∈ LU with U 4u L then Discard X l

23: else Store X l in LS,final

152 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

We are working with several lists. The list LW is as usual the working list, which
collects those boxes which are still of interest. The upper bound sets for some feasible
points x̃ ∈ S are collected in the listLU . The listLS collects those boxes which deliver
a first cover of the set of decision robust strictly efficient solutions. In the second
while-loop from line 20 we check again if boxes from LS can now be discarded,
because the set of upper bound sets LU changes during the main while-loop (lines 7
to 19). The final solution list is denoted by LS,final.

For obtaining lower and upper bound sets, single objective optimization problems are
solved. In lines 4 and 16 the upper bound set U of a set fZ(x) is computed. If the set U
consists of the anti-ideal point only,m optimization problems are solved. If the set U
is determined by outer approximations, we needm+1 optimization problems. For the
lower bound set in line 11, the algorithm solves mp = m|Z∗| additional optimization
problems.

For computing upper bound sets, at least one feasible point x̃ ∈ S∗ of a currently
considered box X∗ is required. One possibility is to use the midpoints of the boxes,
i. e., x̃ := mid(X∗) as far as x̃ ∈ S. Another possibility to obtain feasible points is
the following: in line 11, see also Lemma 7.11, for each z ∈ Z∗ and for each objective
function fj an optimization problem is solved with feasible set S∗. The minimal solu-
tions can thus be used as feasible points for computing upper bound sets. In addition,
we obtain the information whether S∗ is empty.

To get only one upper bound set per considered box and to make numerical experi-
ments comparable, we use the minimal solution of the first (underestimated) objective
function without uncertainties, i. e., with z∗ = 0.

After adding a new upper bound set to LU , an update procedure is applied in line 17:
If there is a set U ′ ∈ LU with U ′ 4u U for some U ∈ LU , all those dominated U are
removed from LU . Moreover, U ′ is not stored in LU if U 4u U ′ holds for one U ∈ LU .
This reduces the amount of comparisons for checking the conditions in lines 14 and
22.

We stop MOPDUBBwhen all boxes are either discarded or put into the solution list, i. e.,
if the working list is empty. We put a box X∗ to the solution list if its box width is
small enough, i. e., for given δ > 0 it holds: ω(X∗) < δ.

7.3 The Algorithm and Numerical Results 153

Theorem 7.13 Let LS,final be the output of MOPDUBB, and LS be the solution list after
line 19. Moreover, let XE be the set of decision robust strictly efficient solutions of (P)
w. r. t. Z . Then the following holds:

(i) XE ⊆
⋃

X∈LS,final
X ⊆

⋃
X∈LS

X

(ii) For every box X∗ ∈ LS,final it holds: ω(X∗) < δ

Moreover, the algorithm terminates after finitely many subdivisions in line 9.

Proof. Property (i) holds because of Theorem 7.12. In line 18 only boxes X∗ with
ω(X∗) < δ are stored in the solution list LS . The final elimination in the second
while-loop of the algorithm just discards some boxes from LS , but the box width of
the boxes does not change. This proves (ii).

The boxes are bisected perpendicularly to a direction of maximum width. Boxes are
either discarded or partitioned until the subboxes have a width smaller than δ. Hence,
even if no box is discarded, all subboxes have a width smaller than δ after a finite
number of subdivisions.

We would like to mention that MOPDUBB does not guarantee to find anything like
almost decision robust strictly efficient solutions or that with decreasing δ the covering
of XE gets arbitrarily close. For being able to show something like that, we would
need lower and upper bound sets which get closer to the sets which are compared
for smaller boxes. With Remark 3.13 it follows that for smaller boxes X∗ the lower
bounds for f(S∗+z∗) for one z∗ ∈ Z∗ are indeed tighter than for larger boxes. For an
upper bound set U one has to calculate concave overestimators fj for each fj on the
box {x̃} + Ẑ . However, the distance between fj and fj does not decrease, when the
boxesX∗ become smaller, as it only depends on the size of Ẑ (and the non-concavity of
fj). The boxes in the setLS,finalmight contain infeasible points. However, the distance
from any point in any box in LS,final to the feasible set is bounded from above by δ,
because in every box in LS,final there exists at least one feasible point. Otherwise, it
would have been discarded.

154 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

7.3.2 Numerical Results

Theproposed algorithm MOPDUBB has been implemented inMATLABR2018a and uses
the toolbox Intlab [Rum99] for interval arithmetic. All experiments have been done
on a computer with Intel(R) Core(TM) i5-7400T CPU and 16 Gbytes RAM on operating
system Windows 10 EnteRpRise.

As the notion of decision robust strictly efficient solutions has been introduced in
multiobjective optimization recently, there are no test instances from the literature
so far. Here, we introduce some test instances where it is possible to calculate the
decision robust strictly efficient solution sets analytically. This allows to verify our
results. We also discuss the impact of various parameters of the algorithm as, for
instance, the choice and the number p of elements of the set Z∗ which are used to
calculate the lower bounds in Lemma 7.11.

For all instances we used δ = 0.05. Additionally, we used δ = 0.01 for the last two
test instances to explore the influence of δ. In Table 7.1 the number of subdivisions
in line 9 of MOPDUBB, the time, the number of boxes in the final solution list, and
the total number of solved single objective optimization problems are given for each
test instance. The last number is split into the number of solved problems to obtain
the upper bounds U and the number of solved problems to get the lower bounds L.
Also, visualizations of the partitions of the initial box X after the execution of the
algorithm are presented. The light gray boxes are the discarded boxes. All boxes from
the final solution list LS,final are dark gray. In case of convex constraints, boxes can
be discarded because of infeasibility. These boxes are white in the figures.

Moreover, we compare the impact of using upper bounds only based on the anti-ideal
point, as in Lemma 7.8, and based on an improved outer approximations, as defined
in Lemma 7.9.

Test instance T.29This convex test function is inspired by [BK97]:

f(x) =

 x2
1 + x2

2

(x1 − 5)2 + (x2 − 5)2


with S = X = [−5, 5]× [−5, 5] and Ẑ = Z = [−0.3, 0.1]× [−0.3, 0.1].

7.3 The Algorithm and Numerical Results 155

The set of decision robust strictly efficient solutions is a line segment:

L = {λ(0.1, 0.1)T + (1− λ)(5, 5)T | λ ∈ [0, 1]}.

The sets Z0 to Z3 are chosen as

Z0 = {0},
Z1 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.3, 0.1}} ∪ {0},
Z2 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.3,−0.1, 0.1}} ∪ {0} and
Z3 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.3,−0.2,−0.1, 0, 0.1}}.

The results of MOPDUBB are shown in Figure 7.5 and Table 7.1, first part.

a: Z∗ = Z0, upper bounds by anti-ideal points
or improved outer approximation.

b: Z∗ = Z3, upper bounds by improved outer
approximation.

Figure 7.5. Partition of the feasible set of Test instance T.29 after MOPDUBB.

By Table 7.1, first part, and Figure 7.5, we recognize that choosing a larger set Z∗ and
computing the lower bound set U by an improved outer approximation leads to better
results. However, the improvement from the case Z∗ = Z1 to Z∗ = Z2 or Z∗ = Z3 is
not as significant as the one fromZ∗ = Z0 toZ∗ = Z1. The best choice forZ∗ depends
on how tight the covering of the set of decision robust strictly efficient solutions should
be. Note that the point x̄ = 0 is not a decision robust strictly efficient solution while
x̄ is an efficient solution of the corresponding multiobjective optimization problem
without uncertainties. That point is still included in the covering of the efficient set

156 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

in case of Z∗ = Z0. In all other cases, x̄ = 0 does not belong to a box of the solution
lists. For Z∗ = Z3, this can be seen in Figure 7.5.

Test instance T.30This test instance consists of a nonconvex objective function and
a circular decision uncertainty set Z :

f(x) =

x2
1 − x2

2

x1/x2


with S = X = [−1, 2]× [1, 2] and Z = {(z1, z2) ∈ R2 | z21 + z22 ≤ 0.01}.

A box Ẑ which contains Z is Ẑ = [−0.1, 0.1]× [−0.1, 0.1].

The sets Z0 and Z1 are chosen as

Z0 = {0},
Z1 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.1,−0.05, 0, 0.05, 0.1}} ∩ Z.

For the results of MOPDUBB on Test instance T.30, see Figure 7.6 and Table 7.1, second
part.

In Figure 7.6 it can be seen that choosing a smaller δ leads to a tightening of the cover-
ing of the decision robust strictly efficient solutions. However, all quantities increase
because more boxes have to be bisected until the termination rule is fulfilled.

Test instance T.31

f(x) =

x2
1

x2
2


with S =

(x1, x2

)
∈ R2

∣∣∣∣∣∣ x
2
1 + x2

2 ≤ 0.5

x1 − x2 ≤ 0.5

 ∩ [−1, 1]× [−1, 1]

and Ẑ = Z = [−0.1, 0.3]× [−0.1, 0.3]

The set of the decision robust strictly efficient solutions is

L = {(−0.1,−0.1)T}.

7.3 The Algorithm and Numerical Results 157

a: Z∗ = Z1, upper bounds by anti-ideal point,
δ = 0.05.

b: Z∗ = Z1, upper bounds by improved outer
approximation, δ = 0.05.

c: Z∗ = Z1, upper bounds by anti-ideal point,
δ = 0.01.

d: Z∗ = Z1, upper bounds by improved outer
approximation, δ = 0.01

Figure 7.6. Partition of the feasible set of Test instance T.30 after MOPDUBB.

158 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

The sets Z0 to Z3 are chosen as

Z0 = {0},
Z1 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.1, 0.3}} ∪ {0},
Z2 = {(z1, z2) ∈ R2 | z1, z2 ∈ {0, 0.1, 0.2}} and
Z3 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.1, 0, 0.1, 0.2, 0.3}}.

Note that Z1 consists of the vertices of Z (and 0) while Z2 only contains some interior
points of Z . The results of MOPDUBB are shown in Figure 7.7 and Table 7.1, third part.

a: Z∗ = Z0, upper bounds by anti-ideal point
or by improved outer approximation,
δ = 0.05.

b: Z∗ = Z1 or Z∗ = Z3, upper bounds by
anti-ideal point or by improved outer
approximation, δ = 0.05.

c: Z∗ = Z0, upper bounds by anti-ideal point
or by improved outer approximation„
δ = 0.01.

d: Z∗ = Z1 or Z∗ = Z3, upper bounds by
anti-ideal point or by improved outer
approximation, δ = 0.01.

Figure 7.7. Partition of the feasible set of Test instance T.31 after MOPDUBB.

7.3 The Algorithm and Numerical Results 159

Table
7.1.ResultsforTestinstancesT.29

to
T.31,fordifferentvaluesof

δ

.

U
by

anti-idealpoints
U

by
im

proved
outerapproxim

ation
δ

Z
∗
|Z

∗|
#
subdiv.

t
[s]

|L
S
,final |

#
O
P
(U

+
L)

#
subdiv.

t
[s]

|L
S
,final |

#
O
P
(U

+
L)

0.05

Z
0

1
12213

2.4e+03
11354

47146
+
48852

12213
3.1e+03

11354
70719

+
48852

Z
1

5
9594

3.0e+03
8776

36746
+
191860

7615
2.8e+03

6686
42945

+152300
Z

2
10

9593
4.5e+03

8776
36744

+
383680

6714
3.5e+03

5570
36936

+
268560

Z
3

25
9584

8.8e+03
8776

36726
+
958300

6175
6.0e+03

4704
32739

+
617500

0.05

Z
0

1
454

100
359

1630
+
1816

454
154

359
2445

+
1816

Z
1

13
317

194
224

1086
+
16484

264
192

154
1263

+
13728

0.01

Z
0

1
10242

2.3e+03
9583

39768
+
40968

10242
3.8e+03

9583
59652

+
40968

Z
1

13
5833

3.6e+03
5142

22092
+
303316

3215
2.4e+03

2319
16872

+
167180

0.05

Z
0

1
1309

206
1171

4804
+
5236

1309
265

1171
7206

+
5236

Z
1

5
623

191
453

2090
+
12124

623
218

453
3135

+
12124

Z
2

9
1011

472
857

3614
+
35212

1011
519

857
5421

+
35212

Z
3

25
623

678
453

2090
+
60284

623
706

453
3135

+
60284

0.01

Z
0

1
17834

3.0e+03
17096

69208
+
71336

17834
3.9e+03

17096
103812

+
71336

Z
1

5
6873

2.0e+03
6354

26204
+
136372

6873
2.4e+03

6354
39306

+
136372

Z
2

9
13108

5.7e+03
12404

50536
+
467456

13108
6.5e+03

12404
75804

+
467456

Z
3

25
6873

6.6e+03
6354

26204
+
680772

6873
7.1e+03

6354
39306

+
680772

160 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

The results for this test instance, see Table 7.1, third part, show that the upper bound
sets which are obtained from the improved outer approximations do not lead to any
improvements. The number of subdivisions and boxes in the solution list LS,final are
the same. We suppose that this is caused by the convex objective functions, which are
symmetric and do not depend on the same variables. The computational time is even
higher if the upper bound sets are obtained by outer approximations, because more
optimization problems have to be solved.

It can be seen that choosing a set Z∗ with multiple points improves the results. If
the vertices of Z are included in Z∗, i. e., in case of Z1 and Z3, we obtain the small-
est amount of subdivisions and boxes in the solution list. The reason for this is the
symmetry of the convex objective functions again. Therefore, for this example, the
best choice for Z∗ is Z1, and it is sufficient to use the anti-ideal point of the concave
overestimators only. Another thing is that the covering of the decision robust strictly
efficient solution (−0.1,−0.1)T is cross shaped and lies more symmetrically around
the real decision robust solution set in case of Z∗ 6= {0}.

The influence of δ to the covering of the decision robust strictly efficient points is not
that noticeable. This clarifies that with decreasing δ we cannot expect to obtain an
arbitrary tight covering of the set XE , as remarked below Theorem 7.13.

In all additional numerical experiments similar results have been observed. To summa-
rize, choosing a set Z∗ with more than one element is a better choice than Z∗ = {0}.
On the other hand, the cardinality of Z∗ does not have to be very large. For simple
(i. e., convex, concave, symmetric, independent,…) objective functions the set with
some characteristic points at the boundary of Z , e. g. the vertices of Ẑ and 0, leads
to overall best results. In general, using outer approximations to obtain upper bound
sets improves the results.

7.4 Conclusions

In this chapter, we proposed a B&B algorithm for multiobjective optimization prob-
lems with decision uncertainty, which was also published in [ENR19]. In case of non-
linear objective functions we need to work with convex underestimators or concave

7.4 Conclusions 161

overestimators, or even with both, to make the subproblems numerically tractable.
The computational experiments showed that the algorithm is indeed able to discard
areas which do not contain any decision robust strictly efficient solution. Neverthe-
less, the remaining parts of the feasible set can still be large and then other (local)
algorithms could be applied afterwards for more exact solutions. Moreover, the re-
sults can be improved, i. e., the covering can be tightened by improving the outer
approximation used in Lemma 7.9 with techniques from Section 3.3.

We have assumed that the set Z is convex. An adaption also to nonconvex sets is
possible. One can replace the set Z within the optimization problems in Section 7.2.2
by the convex hull of Z , or by a box which contains Z . If Z is a finite (and small) set,
the problems can also be solved directly by enumeration.

In addition to the proposed procedure, it might be possible to improve the bounding
procedure by using local upper bounds (see Section 3.4) for the comparison step of a
lower bound setL and the non-singleton upper bounds inLU . Until now, this compar-
ison is only implemented for biobjective problems and it uses geometrical properties.
For higher dimensions, “local-upper bound like” points w. r. t. the lower bound set L
should be used to check whether U 4u L holds for one U ∈ LU . For that, a simi-
lar problem to (Pp̄,M) can be solved for some of the “local-upper bound like” points.
Then we obtain new hyperplanes for the upper bound U if a “local-upper bound like”
point can be separated from fZ(x̃). Thus, the upper bound set improves adaptively if
necessary.

The techniques proposed for MOPDUBB have been developed for a set optimization
problem with a very specific structure and with the upper-type less order relation.
It is also of interest, and we believe it is possible, to adapt the methods for other
set order relations and more general set-valued optimization problems. For exam-
ple, the new methods can easily be adapted for the lower-type less order relation 4l

(A 4l B ⇔ B ⊆ A+ Rm
+). This is also related to an optimistic approach to uncertain

multiobjective optimization, see Section 3.2 in [Ide+14].

To handle other and more general set-valued optimization problems, we have to en-
sure a certain structure of the set-valued objective function, i. e., convex underestima-
tors or concave overestimators should be computable. This is the case for a set-valued
map given by fZ(x) := {f(x, z) | z ∈ Z}, where f : Rn × Rn → Rm. A special case

162 7 Solving Multiobjective Optimization Problems with Decision Uncertainty

of this is, for instance, fZ(x) := {f(x+ g(z)) | z ∈ Z}, where g : Rn → Rn is a twice
continuously differentiable function.

7.4 Conclusions 163

A Appendix

Test Instances of Section 5.3

In this appendix, all test instances of Section 5.3 are listed which were not already
given in a previous section. All optimization problems aim to minimize the objective
f = (f1, . . . , fm)

T on the feasible set described by a box X and convex constraints
g = (g1, . . . , gp)

T .

Test instance T.4 [DTLZ1] The dimensions of the preimage space n ∈ N and the
image space m ∈ N can be arbitrarily chosen. It holds m ≤ n, k := n−m+ 1.

f1(x) = 1
2
(1 + h(x))

∏m−1
i=1 xi

fj(x) = 1
2
(1 + h(x))

∏m−j
i=1 xi · (1− xm−j+1) for j = 2, . . . ,m

with h(x) = 100 (k +
∑n

i=m(xi − 0.5)2 − cos(20π(xi − 0.5)))

X = [0, 1]n

Test instance T.5 [DTLZ2] The dimensions of the preimage space n ∈ N and the
image space m ∈ N can be arbitrarily chosen. It holds m ≤ n.

f1(x) = (1 + h(x))
∏m−1

i=1 cos(0.5πxi)

fj(x) = (1 + h(x))
∏m−j

i=1 cos(0.5πxi) · sin(0.5πxm−j+1)

for j = 2, . . . ,m

with h(x) =
∑n

i=m(xi − 0.5)2

X = [0, 1]n

A Appendix I

Test instance T.6 [DTLZ3] The same like Test instance T.5 except h(x) is chosen
from Test instance T.4. The dimensions of the preimage space n ∈ N and the image
spacem ∈ N can be arbitrarily chosen. It holds m ≤ n, k := n−m+ 1.

f1(x) = (1 + h(x))
∏m−1

i=1 cos(0.5πxi)

fj(x) = (1 + h(x))
∏m−j

i=1 cos(0.5πxi) · sin(0.5πxm−j+1)

for j = 2, . . . ,m

with h(x) = 100 (k +
∑n

i=m(xi − 0.5)2 − cos(20π(xi − 0.5)))

X = [0, 1]n

Test instance T.7 [DTLZ4]The same like Test instance T.5 except all xi are replaced
by xα

i . The dimensions of the preimage space n ∈ N and the image space m ∈ N can
be arbitrarily chosen. It holds m ≤ n.

f1(x) = (1 + h(x))
∏m−1

i=1 cos(0.5πxα
i)

fj(x) = (1 + h(x))
∏m−j

i=1 cos(0.5πxα
i) · sin(0.5πxα

m−j+1)

for j = 2, . . . ,m

with h(x) =
∑n

i=m(x
α
i − 0.5)2

α = 100

X = [0, 1]n

II A Appendix

Test instance T.8 [DTLZ5] The same like Test instance T.5 except all 0.5πxi, i =

1, . . . ,m− 1 are replaced by θi. The dimensions of the preimage space n ∈ N and the
image space m ∈ N can be arbitrarily chosen. It holds m ≤ n.

f1(x) = (1 + h(x)) cos(0.5πx1)
∏m−1

i=2 cos(θi)

fj(x) = (1 + h(x)) cos(0.5πx1)
∏m−j

i=1 cos(θi) · sin(θm−j+1)

for j = 2, . . . ,m− 1

fm(x) = (1 + h(x)) sin(0.5πx1)

with h(x) =
∑n

i=m(xi − 0.5)2

θi = 1
4
π 1+2h(x)xi

1+h(x)
for i = 2, . . . ,m− 1

X = [0, 1]n

Test instance T.9 [DTLZ6]The same like Test instance T.8 except h(x) is
∑n

i=m x0.1
i .

The dimensions of the preimage space n ∈ N and the image space m ∈ N can be
arbitrarily chosen. It holds m ≤ n.

f1(x) = (1 + h(x)) cos(0.5πx1)
∏m−1

i=2 cos(θi)

fj(x) = (1 + h(x)) cos(0.5πx1)
∏m−j

i=1 cos(θi) · sin(θm−j+1)

for j = 2, . . . ,m− 1

fm(x) = (1 + h(x)) sin(0.5πx1)

with h(x) =
∑n

i=m x0.1
i

θi = 1
4
π 1+2h(x)xi

1+h(x)
for i = 2, . . . ,m− 1

X = [0, 1]n

III

Test instance T.10 [DTLZ7] The dimensions of the preimage space n ∈ N and the
image space m ∈ N can be arbitrarily chosen. It holds m ≤ n, k := n−m+ 1.

fj(x) = xj for j = 1, . . . ,m− 1

fm(x) = (1 + h1(x))h2(x, h1)

with h1(x) = 1 + 9
k

∑n
i=m xi

h2(x, h1) = m−
∑m−1

i=1
xi

1+h1(x)
(1 + sin(3πxi))

X = [0, 1]n

Test instance T.11 [ZDT1]The dimension of the preimage space n ∈ N can be arbi-
trarily chosen.

f1(x) = x1

f2(x) = h1(x)h2(x, h1)

with h1(x) = 1 + 9
n−1

∑n
i=2 xi

h2(x, h1) = 1−
√

x1

h1(x)

X = [0, 1]n

Test instanceT.12 [ZDT2]Thesame like Test instance T.11 excepth2(x, h1) is 1−
(

x1

h1(x)

)2
.

The dimension of the preimage space n ∈ N can be arbitrarily chosen.

f1(x) = x1

f2(x) = h1(x)h2(x, h1)

with h1(x) = 1 + 9
n−1

∑n
i=2 xi

h2(x, h1) = 1−
(

x1

h1(x)

)2
X = [0, 1]n

IV A Appendix

Test instance T.13 [ZDT4]The dimension of the preimage space n ∈ N can be arbi-
trarily chosen.

f1(x) = x1

f2(x) = h1(x)h2(x, h1)

with h1(x) = 1 + 10(n− 1)
∑n

i=2+(x2
i − 10 cos(4πxi))

h2(x, h1) = 1−
√

x1

h1(x)

X = [0, 1]× [−5, 5]n−1

Test instance T.14 [Deb41Con]The constraint given by g is added by the author.

f1(x) = x1

f2(x) = 1
x1

(
2− exp

(
−
(
x2−0.2
0.004

)2)− 0.8 exp
(
−
(
x2−0.6
0.4

)2))
with g(x) = (x1 − 0.5)2 + (x2 − 0.3)2 − 0.09

X = [0.1, 1]× [0, 1]

Test instance T.15 [Deb513]

f1(x) = x1

f2(x) = h1(x)h2(x, h1)

with h1(x) = 1 + 10x2

h2(x, h1) = 1−
(

x1

h1(x)

)α
− x1

h1(x)
sin(2πqx1)

q = 4

α = 2

X = [0.1, 1]× [0, 1]

V

Test instance T.16 [Deb521a]Originally, this instance has a feasible set describes by
[0, 1]2. Then the second objective function is not differentiable in x2 = 0 and MOPBB

could not be applied. For that reason, the feasible region was changed by the author.
This affects also the efficient and nondominated set.

f1(x) = x1

f2(x) = h1(x)h2(x, h1)

with h1(x) = 1 + xγ
2

h2(x, h1) = 1−
(

x1

h1(x)

)2
γ = 0.25

X = [0, 1]× [0.001, 1]

Test instance T.17 [Deb521b] In contrast to [Deb521a] the second objective of this
instance is differentiable in x2 = 0.

f1(x) = x1

f2(x) = h1(x)h2(x, h1)

with h1(x) = 1 + xγ
2

h2(x, h1) = 1−
(

x1

h1(x)

)2
γ = 1

X = [0, 1]2

Test instance T.18 [Viennet] This instance is the unconstrained version of Test in-
stance T.3

f1(x) = 0.5(x2
1 + x2

2)
2 + sin(x1

1 + x2
2)

f2(x) = (3x1−2x2+4)2

8
+ (x1−x2+1)2

27
+ 15

f3(x) = 1
x2
1−x2

2−1
− 1.1 exp(−x2

1 − x2
2)

with X = [−3, 3]2

VI A Appendix

Test instance T.19 [SRN]

f1(x) = (x1 − 2)2 + (x2 − 1)2 + 2

f2(x) = 9x1 − (x2 − 1)2

with g1(x) = x2
1 + x2

2 − 255

g2(x) = x1 − 3x2 + 10

X = [−20, 20]2

Test instance T.20 [Pol]

f1(x) = 1 + (A1−B1(x))2 + (A2−B2(x))2

f2(x) = (x1 + 3)2 + (x2) + 1)2

with A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)

A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)

B1(x) = 0.5 sin(x1)− 2 cos(x1) + sin(x2)− 1.5 cos(x2)

B2(x) = 1.5 sin(x1)− cos(x1) + 2 sin(x2)− 0.5 cos(x2)

X = [−20, 20]2

Test instance T.21 [Far1]

f1(x) = −2 exp(15(−(x1 − 0.1)2 − x2
2))− exp(20(−(x1 − 0.6)2 − (x2 − 0.6)2))

+ exp(20(−(x1 + 0.6)2 − (x2 − 0.6)2))

+ exp(20(−(x1 − 0.6)2 − (x2 + 0.6)2))

+ exp(20(−(x1 + 0.6)2 − (x2 + 0.6)2));

f2(x) = 2 exp(20(−x2
1 − x2

2)) + exp(20(−(x1 − 0.4)2 − (x2 − 0.6)2))

− exp(20(−(x1 + 0.5)2 − (x2 − 0.7)2))

− exp(20(−(x1 − 0.5)2 − (x2 + 0.7)2))

+ exp(20(−(x1 + 0.4)2 − (x2 + 0.8)2))

with X = [−1, 1]2

VII

Test instance T.22 [KW2]

f1(x) = −(3(1− x1)
2 exp(−x2

1 − (x2 + 1)2)

−10(x1/5− x3
1 − x5

2) exp(−x2
1 − x2

2)

−3 exp(−(x1 + 2)2 − x2
2) + 0.5(2x1 + x2))

f2(x) = −(3(1 + x2)
2 exp(−x2

2 − (1− x1)
2)

−10(−x2/5 + x3
2 + x5

1) exp(−x2
2 − x2

1)

−3 exp(−(2− x2)
2 − x2

1))

with X = [−3, 3]2

VIII A Appendix

List of Nomenclature

anti-ideal point LetS ⊆ Rn and f : Rn → Rm. The anti-ideal point a = (a1, . . . , am)
T

of f on S is defined by: aj = maxx∈S fj(x) for all j = 1, . . . ,m.

box A set X ⊆ Rn is called n-dimensional box if there are two vectors x, x ∈ Rn

with x ≤ x such that X = [x, x] := {x ∈ Rn | x ≤ x ≤ x}.

cone A set K ⊆ Rm is a cone if for all k ∈ K and λ > 0 holds that λk ∈ K . A con-
vex cone K is solid if it has a non-empty interior and pointed if K ∩ (−K) = {0}
holds. A polyhedral cone K can be given by a matrix Z ∈ Rm×m′ such that
K = {y ∈ Rm | ZTy ≥ 0}.

convex underestimator Let a function h : Rn → R on a box X = [x, x] ∈ IRn be
given. A convex underestimator for h on X is a convex function ĥ : X → R with
ĥ(x) ≤ h(x) for all x ∈ X .

elementary function unary function like
√
·, sin, cos, arctan, ln, exp, | · |

external stability [SNT85] For a given multiobjective optimization problem with
objective function f : Rn → Rm, feasible set M and an ordering cone K ⊆ Rm, a
set Y ⊆ f(M) is said to be externally stable if for each y ∈ f(M) \ Y there exists
some ŷ ∈ Y such that y ∈ ŷ +K .
Let K be a pointed closed convex cone, f(M) be a nonempty K-compact set (for
all y ∈ f(M), the set ({y} − cl(K)) ∩ f(M) is compact) and XE be the efficient
set. Then f(XE) is externally stable, i.e., f(M) ⊆ f(XE) +K .

factorable function A function h : Rn → R is factorable if it can be formulated as a
concatenation of basic arithmetic operations (+,−, ·, /) and elementary functions

feasible For a given optimization problem min{f(x) | x ∈ S} a feasible point is a
point which belongs to S. The set S is the feasible set.

A Appendix IX

Fritz-John condition [Mie12] A point (x∗, λ∗, µ∗) ∈ Rn+m+p is a Fritz-John point
for the multiobjective optimization problem (MOP), if the following (Fritz-John)
conditions are satisfied:

(i)
∑n

i=1 λ
∗∇fi(x∗) +

∑p
k=1 µ

∗
kgk(x

∗) = 0,
(ii)

∑p
k=1 µ

∗
kgk(x

∗) = 0,
(iii) g(x∗) ≤ 0,
(iv) λ∗, µ∗ ≥ 0 and (λ∗, µ∗) 6= 0.

hyperplane An set H ⊆ Rm is a hyperplane if there are λ, ȳ ∈ Rm such that
H = {y ∈ Rm | λTy = λT ȳ}. The vector λ is the normal vector of H and ȳ is a
support vector of H .

ideal point Let S ⊆ Rn and f : Rn → Rm. The ideal point a = (a1, . . . , am)
T of f

on S is defined by: aj = minx∈S fj(x) for all j = 1, . . . ,m.

Karush-Kuhn-Tucker condition [Ehr05] A point (x∗, µ∗) ∈ Rn+p is a Karush-Kuhn-
Tucker point for the single objective optimization problem minh(x) s. t. g(x) ≤ 0,

if the following (Karush-Kuhn-Tucker) conditions are satisfied:

(i) ∇h(x∗) +
∑p

k=1 µ
∗
kgk(x

∗) = 0,
(ii)

∑p
k=1 µ

∗
kgk(x

∗) = 0,
(iii) g(x∗) ≤ 0,
(iv) µ∗ ≥ 0.

[Mie12] A point (x∗, λ∗, µ∗) ∈ Rn+m+p is a Karush-Kuhn-Tucker point for the mul-
tiobjective optimization problem (MOP), if the following (Karush-Kuhn-Tucker)
conditions are satisfied:

(i)
∑n

i=1 λ
∗∇fi(x∗) +

∑p
k=1 µ

∗
kgk(x

∗) = 0,
(ii)

∑p
k=1 µ

∗
kgk(x

∗) = 0,
(iii) g(x∗) ≤ 0,
(iv) λ∗, µ∗ ≥ 0 and (λ∗, µ∗) 6= 0,
(v) λ∗ 6= 0.

X A Appendix

mean value theorem Let h : Rn → R be differentiable on the open set S ⊆ Rn.
Moreover, let x1, x2 ∈ S with λx1 + (1 − λ)x2 ∈ S for all λ ∈ [0, 1]. Then exists
an λ ∈ (0, 1) with ξ := λx1 + (1− λ)x2 ∈ S such that

f(x2)− f(x1) = ∇f(ξ)T (x2 − x1).

ordering cone An ordering cone is a convex cone K 6= {0} which defines a partial
order on Rm by: y1 ≤K y2 ⇔ y2− y1 ∈ K . The natural ordering cone in Rm is Rm

+ .

polyhedral convex set [Roc70] A polyhedral convex set inRm is a set which can be
expressed as the intersection of some finite collection of closed half-spaces.

real linear space [Jah11] A real linear space S is equipped with an addition opera-
tion +: S × S → S and a scalar multiplication · : R × S → S satisfying the fol-
lowing axioms:

(i) (x+ y) + z = x+ (y + z) for all x, y, z ∈ S

(ii) x+ y = y + x for all x, y ∈ S

(iii) there is an element 0S ∈ S with x+ 0S = x for all x ∈ S

(iv) for every x ∈ S there is a y ∈ S with x+ y = 0S

(v) λ(x+ y) = λx+ λy for all x, y ∈ S and λ ∈ R

(vi) (λ+ µ)x = λx+ µx for all x ∈ S and λ, µ ∈ R

(vii) λ(µx) = (λµ)x for all x ∈ S and λ, µ ∈ R

(viii) 1x = x for all x ∈ S

regularity conditions/constraint qualifications (CQ) conditions on a set which
is usually a feasible set, given by equality and inequality constraints, of an opti-
mization problem. Usual constraint qualifications, see [Kla09] for more details:

• Abadie-CQ
• Mangasarian-Fromovitz-CQ
• Linear Independence CQ
• Slater’s condition for convex optimizations problems

XI

subbox A box X̃ is a subbox of a box X if X̃ ⊆ X holds. In particular boxes which
are obtained by iterative subdivisions of X are subboxes of X .

supporting hyperplane A hyperplane Hλ,ȳ ⊆ Rm with normal vector λ and sup-
port vector ȳ is a supporting hyperplane of a set S ∈ Rm if it holds that λT s ≥ λT ȳ

for all s ∈ S and ȳ ∈ bdS.

XII A Appendix

List of Abbreviations

B&B branch-and-bound

CPU central processing unit

GPU graphics processing unit

LFV Lorentz force velocimetry

MOMICP multiobjective mixed integer convex optimization problem

MOMIX branch-and-bound based algorithm for multiobjective optimization
mixed integer problems

MOPBB branch-and-bound based algorithm for multiobjective optimization
problems

MOPDUBB branch-and-bound based algorithm for multiobjective optimization
problems with decision uncertainty

MultiGLODS Multiobjective Global and Local Optimization using Direct Search

NSGA Nondominated Sorting Genetic Algorithm

SQP sequential quadratic programming

s. t. subject to

w. r. t. with respect to

A Appendix XIII

List of Symbols

N set of natural numbers without 0

Z set of integer numbers

R set of real numbers

Rm set of vectors of m real numbers, y = (x1, . . . , ym)
T ∈ Rm ⇔ yj ∈ R

for all j = 1, . . . ,m

Rm
+ Rm

+ := {y ∈ Rm | yj ≥ 0 for all j = 1, . . . ,m}

y1 6= y2 ⇔ y1j 6= y2j for at least one j = 1, . . . ,m

y1 ≤ y2 ⇔ y2 − y1 ∈ Rm
+ ⇔ y1j ≥ y2j for all j = 1, . . . ,m

y1 < y2 ⇔ y2 − y1 ∈ int(Rm
+)⇔ y1j < y2j for all j = 1, . . . ,m

y1 � y2 ⇔ y1 ≤ y2 and y1 6= y2

y1 � y2 ⇔ y1j > y2j for at least one j = 1, . . . ,m

b·c round down to the nearest integer number, bxc = max{c ∈ Z | c ≤ x}

d·e round up to the nearest integer number, dxe = min{c ∈ Z | x ≤ c}

[·] round to the nearest integer number, [x] =
{
dxe if x+ 0.5 ≥ dxe

bxc otherwise
Ck(Rn,Rm) space of all k-times continuously differentiable functions, i.e.,

f ∈ Ck(Rn,Rm) ⇔ fj is k-times continuously differentiable for all
j = 1, . . . ,m

IRn set of all n-dimensional boxes

‖x‖ the Euclidean norm of a vector x ∈ Rn: ‖x‖ :=
√∑n

i=1 x
2
i

‖x‖1 l1 norm or sum norm of a vector x ∈ Rn: ‖x‖1 :=
∑n

i=1 |xi|

int(S) the interior of the set S

bd(S) the boundary of the set S

XIV A Appendix

cl(S) the closure of the set S: cl(S) := S ∪ bd(S)

e them-dimensional all-ones vector e = (1, . . . , 1)T

uj the j-th unit vector of Rm: uj
i =

{
0 i 6= j

1 i = j

0 the zero element of a real linear space

f : X → Y function f with domain X and image space Y

x 7→ f(x) f maps the value f(x) to every x of the domain of f

f1, . . . , fm objective functions of (P)

g1, . . . , gp constraint functions of (MOP)

M feasible set of (P)

XE efficient set of (P)
∂
∂xi

h(x) partial derivative of the function h : Rn → R in direction of xi of h at
the point x

∇h(x) gradient of the function h : Rn → R at the point x:
∇h(x) = (∂

∂x1
h(x), . . . , ∂

∂xn
h(x))T .

Hh(x) Hessian of the function h : Rn → R at the point x

λmin(x) smallest eigenvalue of Hessian of a function h : Rn → R at the point x.
As the function h is not a part of this term, the underlying function is
always mentioned in the text.

ω(X) box width of a box X = [x, x]: ω(X) := ‖x− x‖

XV

List of Tables

5.1 Results for Test instance T.1 with δ = 0.1. 78
5.2 Overview about chosen test instances. 90
5.3 Settings for the DTLZ-instances which are scalable in n andm with a

known nondominated set. 93
5.4 Settings for the instances with a known nondominated set, m = 2. 93
5.5 Results for the DTLZ-instances (1-5) which are scalable in n andm. 95
5.6 Results for the DTLZ-instances (6,7) which are scalable in n andm. 96
5.7 Results for the instances with known nondominated set, m = 2. . 97
5.8 Results for the instances which are not scalable and with analytically

unknown nondominated set. 98

6.1 Numerical results for Test instances T.24 to T.26. 128

7.1 Results for Test instances T.29 to T.31, for different values of δ . . 160

XVI List of Tables

List of Figures

2.1 Image set of a biobjective optimization problem. 15

3.1 Visualization of Benson’s outer approximation algorithm. 30
3.2 Stable setN and local upper bound set L,m = 2, cf. [KLV15, Fig. 1] 36

4.1 Example for LPNS, m = 2. 43
4.2 Upper image set fα(M∗) + Rm

+ for m = 2, LPNS and an ideal point a
of fα. 44

4.3 Possible cuts to obtain a tighter set LB with f(M∗) ⊆ LB + Rm
+ ,

m = 2. 46
4.4 Possible situations during a discarding test applied to box X∗. • -

LPNS ; × - LLUB . 50
4.5 The set T , which depends on ε

2
; m = 2. 61

4.6 Monotonicity test, cf. [FT09]. 67
4.7 Dominance decomposition of a box in the image space, cf. [Mar+16]. 68
4.8 Bisection and trisection of a box, solid points are the end points of the

original diagonal, circles show the points which have to be computed
to get new end points of diagonals, cf. [ŽŽ16]. 69

5.1 Test instance T.1 with n = 3, δ = 0.1 79
5.2 Test instance T.1 with n = 2, ε = 0.05 and δ = 0.1 80
5.3 Test instance T.2 with ε = 0.01 and δ = 0.01 81
5.4 Test instance T.3 with ε = 0.1 and δ = 0.1 83
5.5 Sketch of the problem geometry, taken from [BTE18]. 84
5.6 Graphical results for 3 dipoles on a circle around a cylinder. . . . 85
5.7 Computation of the hypervolume for m = 2 by adding the volume of

each rectangle. rp is the reference point. 88
5.8 Globally vs. locally nondominated sets of DTLZ6. 102

List of Figures XVII

5.9 Globally vs. locally nondominated sets of ZDT4 with n = 3. . . . 103
5.10 Globally vs. locally nondominated sets of Deb41. 103
5.11 Globally vs. locally nondominated sets of Deb521a. 104

6.1 Image set of a biobjective instance of (MOMIC). 107
6.2 Image set of a biobjective purely integer instance of (MOMIC). . 108
6.3 Discarding a box X̃ by Theorem 6.1 and Corollary 6.2. 112
6.4 Illustration of our lower bounding procedure on a biobjective purely

integer convex programming instance. 117
6.5 Results for Test instance T.23 obtained by applying MOMIX with dif-

ferent branching rules. 125
6.6 Results for Test instances T.24 and T.25 obtained by applying MOMIX. 127
6.7 The set LPNS of Test instance T.26 for |I| = 1, n − |I| = 2 and the

boundary of the set from Theorem 6.8, Lδ = 0.1
√
2. Right picture

shows a detail of the left one. 129
6.8 The set LPNS for Test instance T.27 from two different perspectives. 130
6.9 The set LPNS of Test instance T.28 obtained by MOMIXlight. 132

7.1 Illustration for Example 7.3. 138
7.2 The set fZ(x̃) and its singleton upper bound setU according to Lemma

7.8. 145
7.3 The set fZ(x̃) and its upper bound set U according to Lemma 7.9. 147
7.4 The set fZ(S∗), the sets Ak = {f(x + zk) | x ∈ S∗}, k = 1, 2, 3 and

the lower bound set L = {a1, a2, a3} according to Lemma 7.11. . . 150
7.5 Partition of the feasible set of Test instance T.29 after MOPDUBB. . 156
7.6 Partition of the feasible set of Test instance T.30 after MOPDUBB. . 158
7.7 Partition of the feasible set of Test instance T.31 after MOPDUBB. . 159

XVIII List of Figures

List of Algorithms

1 Update procedure of an upper bound set, cf. [KLV15, Algorithm 3] 37
2 Basic B&B algorithm . 40
3 Updating procedure for LPNS . 43
4 Discarding test . 49
5 Discarding test with static lists LPNS,LLUB 51
6 MOPBB: Algorithm to find an (ε, δ)-efficient set of (MOP) 55
7 MOMIX: A (MOMIC) Solver . 110
8 Lower bounding procedure . 118
9 MOPDUBB: Algorithm for multiobjective optimization problems with

Decision Uncertainty . 152

List of Algorithms XIX

Bibliography

Primary Sources

[Adj+98] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. “A Global Op-
timization Method, αBB, for General Twice-Differentiable Constrained
NLPs: I - Theoretical Advances.” In: Computers and Chemical Engineering
22.9 (1998), pp. 1137–1158 (cit. on pp. 5, 22 sq., 39, 72).

[ACA19] I. Araya, J. Campusano, and D. Aliquintui. “Nonlinear biobjective op-
timization: improvements to interval branch & bound algorithms.” In:
Journal of Global Optimization 75.1 (2019), pp. 91–110 (cit. on pp. 5, 39,
66, 69).

[Aud+18] C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon. Perfor-
mance indicators in multiobjective optimization. Tech. rep. G-2018-90. Les
Cahiers du GERAD, 2018. uRl: http://www.optimization-online.org/DB_
FILE/2018/10/6887.pdf (cit. on p. 87).

[Aud+00] Ch. Audet, P. Hansen, B. Jaumard, and G. Savard. “A branch and cut algo-
rithm for nonconvex quadratically constrained quadratic programming.”
In:Mathematical Programming 87.1 (2000), pp. 131–152 (cit. on pp. 5, 39).

[BA06] C. Barrico and C.H. Antunes. “Robustness Analysis in Multi-Objective
Optimization Using a Degree of Robustness Concept.” In: IEEE Congress
on Evolutionary Computation. CEC 2006. IEEE Computer Society, 2006,
pp. 1887–1892 (cit. on p. 8).

XX Bibliography

http://www.optimization-online.org/DB_FILE/2018/10/6887.pdf
http://www.optimization-online.org/DB_FILE/2018/10/6887.pdf

[Bel+13] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Maha-
jan. “Mixed-integer nonlinear optimization.” In:Acta Numerica 22 (2013),
pp. 1–131 (cit. on p. 106).

[BGN09] A. Ben-Tal, L. El Ghaoui, andA. Nemirovski. Robust Optimization. Prince-
ton University Press, 2009 (cit. on p. 8).

[BN02] A. Ben-Tal and A. Nemirovski. “Robust optimization – methodology and
applications.” In: Mathematical Programming 92.3 (2002), pp. 453–480
(cit. on p. 8).

[Ben98a] H. P. Benson. “An outer approximation algorithm for generating all ef-
ficient extreme points in the outcome set of a multiple objective linear
programming problem.” In: Journal of Global Optimization 13.1 (1998),
pp. 1–24 (cit. on pp. 4, 26 sq., 45).

[Ben98b] H. P. Benson. “Further Analysis of an Outcome Set-Based Algorithm
for Multiple-Objective Linear Programming.” In: Journal of Optimization
Theory and Applications 97.1 (1998), pp. 1–10 (cit. on p. 26).

[BK97] T. T. Binh and U. Korn. “MOBES: A multiobjective evolution strategy
for constrained optimization problems.” In: The Third International Con-
ference on Genetic Algorithms (Mendel 97). Vol. 25. 1997, p. 27 (cit. on
p. 155).

[BTE18] T. Boeck, D. Terzijska, and G. Eichfelder. “Maximum electromagnetic
drag configurations for a translating conducting cylinder with distant
magnetic dipoles.” In: Journal of Engineering Mathematics 108.1 (2018),
pp. 123–141 (cit. on pp. 82, 84).

[BCS15] N. Boland, H. Charkhgard, and M. Savelsbergh. “A criterion space search
algorithm for biobjective integer programming:The balanced boxmethod.”
In: INFORMS Journal on Computing 27.4 (2015), pp. 735–754 (cit. on p. 6).

[BCS16] N. Boland, H. Charkhgard, and M. Savelsbergh. “The L-shape search
method for triobjective integer programming.” In: Mathematical Pro-
gramming Computation 8.2 (2016), pp. 217–251 (cit. on p. 6).

Primary Sources XXI

[BCS17a] N. Boland, H. Charkhgard, and M. Savelsbergh. “A new method for op-
timizing a linear function over the efficient set of a multiobjective inte-
ger program.” In: European Journal of Operational Research 260.3 (2017),
pp. 904–919 (cit. on p. 6).

[BCS17b] N. Boland, H. Charkhgard, andM. Savelsbergh. “TheQuadrant Shrinking
Method: A simple and efficient algorithm for solving tri-objective integer
programs.” In: European Journal of Operational Research 260.3 (2017),
pp. 873–885 (cit. on p. 6).

[Bol+12] N. L. Boland, A. C. Eberhard, F. Engineer, and A. Tsoukalas. “A new
approach to the feasibility pump in mixed integer programming.” In:
SIAM Journal on Optimization 22.3 (2012), pp. 831–861 (cit. on p. 110).

[Bon+09] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. “A feasibility pump
for mixed integer nonlinear programs.” In: Mathematical Programming
119.2 (2009), pp. 331–352 (cit. on p. 110).

[Bra11] L. Bradstreet. “The hypervolume indicator for multi-objective optimisa-
tion: calculation and use.” PhD thesis. University of Western Australia
Perth, 2011 (cit. on p. 87).

[BFM98] D. Bremner, K. Fukuda, and A. Marzetta. “Primal—dual methods for ver-
tex and facet enumeration.” In: Discrete & Computational Geometry 20.3
(1998), pp. 333–357 (cit. on p. 28).

[BKR17] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi. “A new scalarization tech-
nique and new algorithms to generate Pareto fronts.” In: SIAM Journal
on Optimization 27.2 (2017), pp. 1010–1034 (cit. on p. 7).

[BKR19] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi. “Algorithms for Generating
Pareto Fronts ofMulti-objective Integer andMixed-Integer Programming
Problems.” arXiv:1903.07041v1. 2019 (cit. on p. 7).

[CD17] V. Cacchiani and C. D’Ambrosio. “A branch-and-bound based heuristic
algorithm for convex multi-objective MINLPs.” In: European Journal of
Operational Research 260.3 (2017), pp. 920–933 (cit. on p. 7).

XXII Bibliography

[Cam+18] E. F. Campana, M. Diez, G. Liuzzi, S. Lucidi, R. Pellegrini, V. Piccialli, F.
Rinaldi, and A. Serani. “A Multi-objective DIRECT algorithm for ship
hull optimization.” In: Computational Optimization and Applications 71.1
(2018), pp. 53–72 (cit. on pp. 5, 39).

[CGC00] L. G. Casado, I. García, and T. Csendes. “A New Multisection Technique
in Interval Methods for Global Optimization.” In: Computing 65.3 (2000-
12), pp. 263–269 (cit. on p. 69).

[CCC00a] M. Csaba Markót, T. Csendes, and A. E. Csallner. “Multisection in Inter-
val Branch-and-Bound Methods for Global Optimization II. Numerical
Tests.” In: Journal of Global Optimization 16.3 (2000-03), pp. 219–228 (cit.
on p. 69).

[CCC00b] A. E. Csallner, T. Csendes, and M. Csaba Markót. “Multisection in Inter-
val Branch-and-Bound Methods for Global Optimization – I. Theoretical
Results.” In: Journal of Global Optimization 16.4 (2000-04), pp. 371–392
(cit. on p. 69).

[CM18] A. L. Custódio and J. F. A. Madeira. “MultiGLODS: Global and Local
Multiobjective Optimization Using Direct Search.” In: Journal of Global
Optimization 72.2 (2018), pp. 323–345 (cit. on pp. 4, 73).

[DLR13] M. De Santis, S. Lucidi, and F. Rinaldi. “A new class of functions for
measuring solution integrality in the Feasibility Pump approach.” In:
SIAM Journal on Optimization 23.3 (2013), pp. 1575–1606 (cit. on p. 110).

[Deb99] K. Deb. “Multi-objective Genetic Algorithms: Problem Difficulties and
Construction of Test Problems.” In: Evolutionary Computation 7.3 (1999),
pp. 205–230 (cit. on pp. 4, 79, 90).

[Deb01] K. Deb.Multi-objective optimization using evolutionary algorithms. Vol. 16.
John Wiley & Sons, 2001 (cit. on pp. 4, 73, 86, 90, 92).

[DG01] K. Deb and T. Goel. “Controlled elitist non-dominated sorting genetic
algorithms for better convergence.” In: International conference on evo-
lutionary multi-criterion optimization. Springer. 2001, pp. 67–81 (cit. on
p. 86).

Primary Sources XXIII

[DG06] K. Deb and H. Gupta. “Introducing Robustness in Multi-Objective Opti-
mization.” In: Evolutionary Computation 14.4 (2006), pp. 463–494 (cit. on
p. 8).

[DJ12] K. Deb and H. Jain. “Handling many-objective problems using an im-
proved NSGA-II procedure.” In: 2012 IEEE Congress on Evolutionary Com-
putation. IEEE. 2012, pp. 1–8 (cit. on p. 72).

[Deb+02a] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II.” In: IEEE Transactions on Evolu-
tionary Computation 6.2 (2002), pp. 181–197 (cit. on pp. 4, 73).

[Deb+02b] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. “Scalable multi-objective
optimization test problems.” In: Proceedings of the 2002 Congress on Evo-
lutionary Computation. CEC’02 (Cat. No. 02TH8600). Vol. 1. 2002, pp. 825–
830 (cit. on pp. 89 sq.).

[Dür01] M. Dür. “Dual bounding procedures lead to convergent branch–and–
bound algorithms.” In: Mathematical Programming 91.1 (2001), pp. 117–
125 (cit. on pp. 5, 39).

[Ehr05] M. Ehrgott. Multicriteria Optimization. New York: Springer, 2005 (cit. on
pp. 3, 11–14, 27, X).

[EG07] M. Ehrgott and X. Gandibleux. “Bound sets for biobjective combinatorial
optimization problems.” In: Computers & Operations Research 34 (2007),
pp. 2674–2694 (cit. on p. 6).

[ELS12] M. Ehrgott, A. Löhne, and L. Shao. “A dual variant of Benson’s ”outer
approximation algorithm” for multiple objective linear programming.”
In: Journal of Global Optimization 52.4 (2012), pp. 757–778 (cit. on p. 26).

[ESS11] M. Ehrgott, L. Shao, and A. Schöbel. “An approximation algorithm for
convex multi-objective programming problems.” In: Journal of Global
Optimization 50.3 (2011), pp. 397–416 (cit. on pp. 26 sq., 45, 48, 115, 145).

[Ehr+09] M. Ehrgott, C. Waters, R. Kasimbeyli, and O. Ustun. “Multiobjective
programming and multiattribute utility functions in portfolio optimiza-

XXIV Bibliography

tion.” In: INFOR Information Systems and Operational Research 47.1 (2009),
pp. 31–42 (cit. on p. 105).

[Eic08] G. Eichfelder. Adaptive Scalarization Methods in Multiobjective Optimiza-
tion. New York: Springer, 2008 (cit. on p. 3).

[EG19] G. Eichfelder and T. Gerlach. “On classes of set optimization problems
which are reducible to vector optimization problems and its impact on
numerical test instances.” In: Variational Analysis and Set Optimization.
Ed. by A. Khan, E. Köbis, and C. Tammer. CRC Press (Taylor & Francis
Group), 2019. Chap. 10, pp. 265–290 (cit. on p. 136).

[EKS17] G. Eichfelder, C. Krüger, and A. Schöbel. “Decision uncertainty in mul-
tiobjective optimization.” In: Journal of Global Optimization 69.2 (2017),
pp. 485–510 (cit. on pp. 7 sqq., 136 sqq.).

[EP13] Y. G. Evtushenko and M. A. Posypkin. “Nonuniform covering method
as applied to multicriteria optimization problems with guaranteed ac-
curacy.” In: Computational Mathematics and Mathematical Physics 53.2
(2013), pp. 144–157 (cit. on pp. 5, 66).

[EP14] Y. G. Evtushenko and M. A. Posypkin. “A deterministic algorithm for
global multi-objective optimization.” In: Optimization Methods and Soft-
ware 29.5 (2014), pp. 1005–1019 (cit. on pp. 5, 17, 66).

[Far02] M. Farina. “A neural network based generalized response surface mul-
tiobjective evolutionary algorithm.” In: Proceedings of the 2002 Congress
on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600). Vol. 1. 2002,
pp. 956–961 (cit. on pp. 90 sq.).

[FT09] J. Fernández and B. Tóth. “Obtaining the efficient set of nonlinear biob-
jective optimization problems via interval branch-and-bound methods.”
In: Computational Optimization and Applications 42.3 (2009), pp. 393–419
(cit. on pp. 5, 17, 39, 41, 44, 49, 52 sq., 66 sqq., 75).

[FGL05] M. Fischetti, F. Glover, and A. Lodi. “The feasibility pump.” In: Mathe-
matical Programming 104.1 (2005), pp. 91–104 (cit. on p. 109).

Primary Sources XXV

[FV16] J. Fliege and A. I. F. Vaz. “A method for constrained multiobjective op-
timization based on SQP techniques.” In: SIAM Journal on Optimization
26.4 (2016), pp. 2091–2119 (cit. on p. 3).

[FW14] J. Fliege and R. Werner. “Robust multiobjective optimization & appli-
cations in portfolio optimization.” In: European Journal of Operational
Research 234.2 (2014), pp. 422–433 (cit. on p. 8).

[FF95] C. Fonseca and P. Fleming. “Multiobjective genetic algorithms made
easy: selection sharing and mating restriction.” In: Proceedings of the 1st
International Conference on Genetic Algorithms in Engineering Systems:
Innovations and Applications. IEEE Press. Piscataway, NJ, 1995, pp. 45–
52 (cit. on pp. 4, 78, 90).

[Gei+17] B. Geißler, A. Morsi, L. Schewe, and M. Schmidt. “Penalty alternating
direction methods for mixed-integer optimization: A new view on fea-
sibility pumps.” In: SIAM Journal on Optimization 27.3 (2017), pp. 1611–
1636 (cit. on p. 110).

[GW90] C. Gerth and P. Weidner. “Nonconvex separation theorems and some
applications in vector optimization.” In: Journal of Optimization Theory
and Applications 67.2 (1990), pp. 297–320 (cit. on p. 29).

[Gle+18] A. Gleixner, M. Bastubbe, L. Eifler, T. Gally, G. Gamrath, R. L. Gottwald, G.
Hendel, C. Hojny, T. Koch, M. E. Lübbecke, S. J. Maher, M. Miltenberger,
B. Müller, M. E. Pfetsch, C. Puchert, D. Rehfeldt, F. Schlösser, C. Schubert,
F. Serrano, Y. Shinano, J. M. Viernickel, M. Walter, F. Wegscheider, J. T.
Witt, and J. Witzig. The SCIP Optimization Suite 6.0. ZIB-Report 18-26.
Zuse Institute Berlin, 2018-07 (cit. on p. 122).

[Gob+14] M. A. Goberna, V. Jeyakumar, G. Li, and J. Vicente-Pérez. “Robust Solu-
tions of MultiObjective Linear Semi-Infinite Programs under Constraint
Data Uncertainty.” In: SIAM Journal onOptimization 24.3 (2014), pp. 1402–
1419 (cit. on p. 8).

XXVI Bibliography

[GDC14] A. Goldsztejn, F. Domes, and B. Chevalier. “First order rejection tests for
multiple-objective optimization.” In: Journal of Global Optimization 58.4
(2014), pp. 653–672 (cit. on pp. 67 sq.).

[GLW07] O. Günlük, J. Lee, and R. Weismantel. “MINLP strengthening for separa-
ble convex quadratic transportation-cost UFL.” In: IBM Research Report
(2007), pp. 1–16 (cit. on p. 105).

[Gur18] LLCGurobi Optimization. Gurobi Optimizer ReferenceManual. 2018. uRl:
http://www.gurobi.com (cit. on pp. 122, 131).

[GJN06] C. Gutiérrez, B. Jiménez, and V. Novo. “A Unified Approach and Op-
timality Conditions for Approximate Solutions of Vector Optimization
Problems.” In: SIAM Journal on Optimization 17.3 (2006), pp. 688–710
(cit. on p. 16).

[HP09] W.W. Hager and D. T. Phan. “An ellipsoidal branch and bound algorithm
for global optimization.” In: SIAM Journal on Optimization 20.2 (2009),
pp. 740–758 (cit. on pp. 5, 39).

[HLR14] A. H. Hamel, A. Löhne, and B. Rudloff. “Benson type algorithms for linear
vector optimization and applications.” In: Journal of Global Optimization
59.4 (2014), pp. 811–836 (cit. on p. 26).

[Han+14] Y.-Y. Han, D. Gong, X.-Y. Sun, andQ.-K. Pan. “An improvedNSGA-II algo-
rithm for multi-objective lot-streaming flow shop scheduling problem.”
In: International Journal of Production Research 52.8 (2014), pp. 2211–2231
(cit. on p. 72).

[Han92] E. Hansen. Global Optimzation Using Interval Analysis. Dekker, 1992 (cit.
on pp. 19, 21).

[HT10] E. M. T. Hendrix and B. G. Tóth. Introduction to Nonlinear and Global
Optimization. New York: Springer, 2010 (cit. on p. 4).

[Hub+06] S. Huband, P. Hingston, L. Barone, and L.While. “A review of multiobjec-
tive test problems and a scalable test problem toolkit.” In: IEEE Transac-
tions on Evolutionary Computation 10.5 (2006), pp. 477–506 (cit. on p. 91).

Primary Sources XXVII

http://www.gurobi.com

[Ide+14] Jonas Ide, Elisabeth Köbis, Daishi Kuroiwa, Anita Schöbel, and Christiane
Tammer. “The relationship between multi-objective robustness concepts
and set-valued optimization.” In: Fixed Point Theory and Applications
2014.1 (2014), p. 83 (cit. on p. 162).

[Jah06] J. Jahn. “Multiobjective search algorithm with subdivision technique.”
In: Computational Optimization and Applications 35.2 (2006), pp. 161–175
(cit. on p. 4).

[Jah11] J. Jahn. Vector Optimization - Theory, Applications, and Extensions. New
York: Springer, 2011 (cit. on pp. 3, XI).

[Jah13] J. Jahn. “Vectorization in Set Optimization.” In: Journal of Optimization
Theory and Applications 167.3 (2013), pp. 783–795 (cit. on pp. 12, 138).

[Jah15] J. Jahn. “A derivative-free descent method in set optimization.” In: Com-
putational Optimization and Applications 60.2 (2015), pp. 393–411 (cit. on
pp. 8 sq., 138).

[Jah18] J. Jahn. “A derivative-free rooted tree method in nonconvex set opti-
mization.” In: Pure and Applied Functional Analysis 3 (2018), pp. 603–623
(cit. on p. 9).

[JH11] J. Jahn and T. X. D. Ha. “New order relations in set optimization.” In:
Journal of Optimization Theory and Applications 148 (2011), pp. 209–236
(cit. on pp. 8, 139).

[JPS93] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. “Lipschitzian optimiza-
tion without the Lipschitz constant.” In: Journal of Optimization Theory
and Applications 79.1 (1993), pp. 157–181 (cit. on p. 5).

[KTZ15] A. A. Khan, C. Tammer, andC. Zălinescu. Set-valuedOptimization. Springer,
2015 (cit. on p. 139).

[KW05] I. Y. Kim and O. L. de Weck. “Adaptive weighted-sum method for bi-
objective optimization: Pareto front generation.” In: Structural and mul-
tidisciplinary optimization 29.2 (2005), pp. 149–158 (cit. on p. 90).

XXVIII Bibliography

[KSS15] P. Kirst, O. Stein, and P. Steuermann. “Deterministic upper bounds for
spatial branch-and-bound methods in global minimization with noncon-
vex constraints.” In: TOP 23.2 (2015), pp. 591–616 (cit. on pp. 4, 39, 75).

[Kla17] K. Klamroth. Personal communication. 2017 (cit. on p. 35).

[KLV15] K. Klamroth, R. Lacour, and D. Vanderpooten. “On the representation of
the search region in multi-objective optimization.” In: European Journal
of Operational Research 245.3 (2015), pp. 767–778 (cit. on pp. 34–39, XIX).

[Kla09] Diethard Klatte. “First order constraint qualifications.” In: Encyclopedia
of Optimization (2009), pp. 1055–1060 (cit. on p. XI).

[KK16] E. Köbis and M.A. Köbis. “Treatment of set order relations by means of a
nonlinear scalarization functional: a full characterization.” In: Optimiza-
tion 65.10 (2016), pp. 1805–1827 (cit. on p. 9).

[Krü18a] C. Krüger. “OnMinmax Robustness forMultiobjective Optimizationwith
Decision or Parameter Uncertainty.” PhD thesis. Georg-August Univer-
sität Göttingen, 2018 (cit. on p. 8).

[Krü18b] C. Krüger. “Peat and pots: Analysis of robust solutions for a biobjective
problem in agriculture.” In: Preprint-Reihe, Institut für Numerische und
Angewandte Mathematik, Georg-August Universität Göttingen (2018) (cit.
on pp. 8 sq.).

[Krü+18] C. Krüger, F. Castellani, J. Geldermann, and A. Schöbel. “Peat and pots:
An application of robustmultiobjective optimization to amixing problem
in agriculture.” In: Computers and Electronics in Agriculture 154 (2018),
pp. 265–275 (cit. on pp. 8 sq.).

[Kur98] D. Kuroiwa. “The natural criteria in set-valued optimization.” In: RIMS
Kokyuroku 1031 (1998), pp. 85–90 (cit. on p. 8).

[KL12] D. Kuroiwa and G. M. Lee. “On Robust Multiobjective Optimization.” In:
Vietnam Journal of Mathematics 40.2&3 (2012), pp. 305–317 (cit. on p. 8).

[Kut79] S. S. Kutateladze. “Convex ε-programming.” In: Soviet Mathematics -
Doklady 20 (1979), pp. 391–393 (cit. on p. 16).

Primary Sources XXIX

[LS13a] D. Lera and Y. D. Sergeyev. “Acceleration of univariate global opti-
mization algorithms working with Lipschitz functions and Lipschitz first
derivatives.” In: SIAM Journal on Optimization 23.1 (2013), pp. 508–529
(cit. on p. 5).

[LP09] A. S. Lewis and C. H. J. Pang. “Lipschitz Behavior of the Robust Reg-
ularization.” In: SIAM Journal on Control and Optimization 48.5 (2009),
pp. 3080–3105 (cit. on p. 8).

[LS13b] M. Locatelli and F. Schoen. Global Optimization: Theory, Algorithms, and
Applications. Philadelphia: SIAM, 2013. PA (cit. on p. 5).

[LRU14] A. Löhne, B. Rudloff, and F. Ulus. “Primal and dual approximation algo-
rithms for convex vector optimization problems.” In: Journal of Global
Optimization 60.4 (2014), pp. 713–736 (cit. on pp. 4, 26, 115, 147).

[LS13c] A. Löhne and C. Schrage. “An algorithm to solve polyhedral convex set
optimization problems.” In: Optimization 62.1 (2013), pp. 131–141 (cit. on
p. 8).

[LW17] A. Löhne and B. Weißing. “The vector linear program solver Bensolve
– notes on theoretical background.” In: European Journal of Operational
Research 260.3 (2017), pp. 807–813 (cit. on p. 28).

[Lor84] P. Loridan. “ε-solutions in vector minimization problems.” In: Journal
of Optimization Theory and Applications 43.2 (1984), pp. 265–276 (cit. on
p. 16).

[MF94] C. D. Maranas and C. A. Floudas. “Global minimum potential energy
conformations of small molecules.” In: Journal of Global Optimization 4.2
(1994), pp. 135–170 (cit. on pp. 5, 22, 24, 42, 142).

[Mar+16] B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann. “Constraint
propagation using dominance in interval Branch & Bound for non-
linear biobjective optimization.” In: European Journal of Operational Re-
search 260.3 (2016), pp. 934–948 (cit. on pp. 5, 39, 66, 68 sqq.).

XXX Bibliography

[MAT18a] MATLAB. 9.4.0.813654 (R2018a). Natick, Massachusetts: The MathWorks
Inc., 2018 (cit. on pp. 77, 91, 122).

[MAT18b] MATLAB. Global Optimization Toolbox. Natick,Massachusetts:TheMath-
Works Inc., 2018 (cit. on pp. 74, 86).

[MAT18c] MATLAB. Optimization Toolbox. Natick, Massachusetts:TheMathWorks
Inc., 2018 (cit. on p. 77).

[Mav09] G. Mavrotas. “Effective implementation of the ε-constraint method in
multi-objective mathematical programming problems.” In:Applied Math-
ematics and Computation 213.2 (2009), pp. 455–465 (cit. on p. 6).

[MD98] G. Mavrotas and D. Diakoulaki. “A branch and bound algorithm for
mixed zero-one multiple objective linear programming.” In: European
Journal of Operational Research 107.3 (1998), pp. 530–541 (cit. on p. 6).

[MD05] G. Mavrotas and D. Diakoulaki. “Multi-criteria branch and bound: A
vector maximization algorithm for mixed 0-1 multiple objective linear
programming.” In: Applied Mathematics and Computation 171.1 (2005),
pp. 53–71 (cit. on p. 6).

[McC76] G. P. McCormick. “Computability of global solutions to factorable non-
convex programs: Part I — Convex underestimating problems.” In:Math-
ematical Programming 10.1 (1976), pp. 147–175 (cit. on p. 20).

[Mie12] K. Miettinen. Nonlinear multiobjective optimization. Vol. 12. Springer
Science & Business Media, 2012 (cit. on p. X).

[Moo66] R. E. Moore. Interval analysis. Vol. 4. Prentice-Hall Englewood Cliffs, NJ,
1966 (cit. on pp. 19, 21).

[MKC09] R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to interval anal-
ysis. Vol. 110. Siam, 2009 (cit. on pp. 19 sqq.).

[MGS09] D. Mueller-Gritschneder, H. Graeb, and U. Schlichtmann. “A successive
approach to compute the bounded Pareto front of practicalmultiobjective
optimization problems.” In: SIAM Journal on Optimization 20.2 (2009),
pp. 915–934 (cit. on p. 3).

Primary Sources XXXI

[Neu90] A. Neumaier. Interval methods for systems of equations. Cambridge: Cam-
bridge University Press, 1990 (cit. on pp. 19 sqq., 52).

[PŽŽ17] P. M. Pardalos, A. Žilinskas, and J. Žilinskas. Non-Convex Multi-Objective
Optimization. New York: Springer, 2017 (cit. on p. 5).

[PY14] Y. Peng and L. Yu. “Multiple criteria decision making in emergency man-
agement.” In: Computers & Operations Research 42 (2014), pp. 1–2 (cit. on
p. 105).

[PMC96] C. Poloni, G. Mosetti, and S. Contessi. “Multi objective optimization by
GAs: Application to system and component design.” In: ECCOMAS’96:
Computational Methods in Applied Sciences’ 96. 1996, pp. 1–7 (cit. on
p. 90).

[Roc70] R. T. Rockafellar. Convex analysis. Princeton university press, 1970 (cit.
on pp. 27, XI).

[Roc16] S. Rocktäschel. “Ein Algorithmus zur Bestimmung einer Lösungsüber-
deckung spezieller mengenwertiger Optimierungsprobleme.” Bachelor’s
Thesis. Institute for Mathematics, Technische Universität Ilmenau, Ger-
many, 2016-10-18 (cit. on p. 10).

[Roc18] S. Rocktäschel. “A BB algorithm for multiobjective mixed-integer con-
vex optimization.” Master’sThesis. Institute forMathematics, Technische
Universität Ilmenau, German, 2018-09-03 (cit. on pp. 10, 106).

[RS07] L. Rodrıǵuez-Marıń and M. Sama. “(Λ, C)-contingent derivatives of set-
valuedmaps.” In: Journal of Mathematical Analysis and Applications 335.2
(2007), pp. 974–989 (cit. on p. 139).

[Rum99] S. M. Rump. “INTLAB - INTerval LABoratory.” In: Developments in Reli-
able Computing. Ed. by Tibor Csendes. http://www.ti3.tuhh.de/rump/.
Dordrecht: Kluwer Academic Publishers, 1999, pp. 77–104 (cit. on pp. 21,
24, 77, 155).

[SNT85] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Opti-
mization. New York: Academic Press, 1985 (cit. on pp. 62, IX).

XXXII Bibliography

http://www.ti3.tuhh.de/rump/

[SKW02] B. Schandl, K. Klamroth, and M. M. Wiecek. “Norm-based approxima-
tion in multicriteria programming.” In: Computers & Mathematics with
Applications 44.7 (2002), pp. 925–942 (cit. on p. 4).

[Sch12] D. Scholz. Deterministic Global Optimization: Geometric Branch-and-bound
Methods and their Applications. New York: Springer, 2012 (cit. on pp. 5 sq.,
16, 39, 65 sqq., 70 sq., 75).

[Sch95] J. R. Schott. “Fault tolerant design using single and multicriteria genetic
algorithm optimization.” MA thesis. Massachusetts Institute of Technol-
ogy, 1995 (cit. on p. 88).

[SM16] M. Schulze Darup and M. Mönnigmann. “Improved Automatic Compu-
tation of Hessian Matrix Spectral Bounds.” In: SIAM Journal on Scientific
Computing 38.4 (2016), A2068–A2090 (cit. on p. 23).

[Sha17] N. Shafiei. “Benson’s algorithm for nonconvex multiobjective problems
via nonsmooth Wolfe duality.” In: Bulletin of the Iranian Mathematical
Society 43.5 (2017), pp. 975–994 (cit. on p. 26).

[SS08] F. Sourd and O. Spanjaard. “A Multiobjective Branch-and-Bound Frame-
work: Application to the Biobjective Spanning Tree Problem.” In: IN-
FORMS Journal on Computing 20.3 (2008), pp. 472–484 (cit. on p. 6).

[Ste17] Oliver Stein. Grundzüge der Globalen Optimierung. Springer-Verlag, 2017
(cit. on p. 20).

[TH88] H. Tuy and R. Horst. “Convergence and restart in branch-and-bound
algorithms for global optimization. Application to concave minimization
and d.c. optimization problems.” In: Mathematical Programming 41.1-3
(1988), pp. 161–183 (cit. on pp. 5, 39).

[Van99] D. A. Van Veldhuizen. “Multiobjective evolutionary algorithms: classifi-
cations, analyses, and new innovations.” PhD thesis. School of Engineer-
ing of the Air Force Institute of Technology, 1999 (cit. on p. 89).

Primary Sources XXXIII

[VFM96] R. Viennet, C. Fonteix, and I. Marc. “Multicriteria optimization using a
genetic algorithm for determining a Pareto set.” In: International Journal
of Systems Science 27.2 (1996), pp. 255–260 (cit. on pp. 4, 82, 90).

[Wan+08] L. Wang, H. Ishida, T. Hiroyasu, and M. Miki. “Examination of multi-
objective optimization method for global search using DIRECT and GA.”
In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation
(IEEE World Congress on Computational Intelligence). Piscataway. 2008,
pp. 2446–2451. NJ (cit. on pp. 5, 39).

[XMP10] P. Xidonas, G. Mavrotas, and J. Psarras. “Equity portfolio construction
and selection usingmultiobjective mathematical programming.” In: Jour-
nal of Global Optimization 47.2 (2010), pp. 185–209 (cit. on p. 105).

[ZMK19] Y. Zhou-Kangas, K. Miettinen, and K. K. Sindhya. “Solving multiobjec-
tive optimization problems with decision uncertainty: an interactive ap-
proach.” In: Journal of Business Economics 89.1 (2019), pp. 25–51 (cit. on
p. 8).

[ŽŽ16] A. Žilinskas and J. Žilinskas. “Adaptation of a one-step worst-case opti-
mal univariate algorithm of bi-objective Lipschitz optimization to mul-
tidimensional problems.” In: Communications in Nonlinear Science and
Numerical Simulation 21.1-3 (2016), pp. 89–98 (cit. on pp. 5, 39, 66, 69,
75).

[ZDT00] E. Zitzler, K. Deb, and L. Thiele. “Comparison of multiobjective evolu-
tionary algorithms: Empirical results.” In: Evolutionary computation 8.2
(2000), pp. 173–195 (cit. on p. 90).

XXXIV Bibliography

Publications and Preprints

In relation to the work on this thesis, the following publications were published in
international journals and conference proceedings or are available as preprints. They
are sorted in descending chronological order.

[ENR19] G. Eichfelder, J. Niebling, and S. Rocktäschel. “An Algorithmic Approach
to Multiobjective Optimization with Decision Uncertainty.” In: Journal
of Global Optimization (2019-07-27). doi: 10.1007/s10898-019-00815-9
(cit. on pp. 10, 135, 161).

[DeS+19] M. De Santis, G. Eichfelder, J. Niebling, and S. Rocktäschel. “Solving Mul-
tiobjective Mixed Integer Convex Optimization Problems.” In: Preprint-
Series of the Institute forMathematics, Technische Universität Ilmenau, Ger-
many (2019-05). uRl: http://www.optimization-online.org/DB_HTML/
2019/05/7229.html (cit. on pp. 10, 132).

[NE19] J. Niebling and G. Eichfelder. “A Branch-and-Bound-based Algorithm for
Nonconvex Multiobjective Optimization.” In: SIAM Journal on Optimiza-
tion 29.1 (2019-03), pp. 794–821 (cit. on pp. 9, 35, 42).

[EKN19] G. Eichfelder, K. Klamroth, and J. Niebling. “Using a B&BAlgorithm from
Multiobjective Optimization to Solve Constrained Optimization Prob-
lems.” In: AIP Conference Proceedings. Vol. 2070. 2019-02, p. 020028.

[NE16] J. Niebling and G. Eichfelder. “A Branch-and-Bound-Algorithm for Bi-
Objective Problems.” In: Proceedings of the XIII Global OptimizationWork-
shop GOW’16. Braga, Portugal, 2016-09, pp. 57–60.

Publications and Preprints XXXV

https://doi.org/10.1007/s10898-019-00815-9
http://www.optimization-online.org/DB_HTML/2019/05/7229.html
http://www.optimization-online.org/DB_HTML/2019/05/7229.html

	Cover Page
	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	1.1 Organization of this Thesis
	1.2 Literature Review
	1.2.1 General Multiobjective Optimization with Continuous Variables
	1.2.2 Multiobjective Mixed Integer Nonlinear Optimization
	1.2.3 Dealing with Uncertainties

	1.3 Main Contribution of this Thesis

	2 Basics of Multiobjective Optimization
	2.1 Order Relations
	2.2 The Multiobjective Optimization Problem
	2.3 Optimality Notions in Multiobjective Optimization
	2.4 Approximate Solutions of Multiobjective Problems

	3 Optimization Tools Utilized for the New Algorithms
	3.1 Interval Arithmetic
	3.2 Convex Underestimators
	3.3 Benson's Outer Approximation Algorithm
	3.4 Local Upper Bounds
	3.5 A Basic Branch-and-Bound Method

	4 A Global Solution Method for Multiobjective Nonconvex Optimization
	4.1 Discarding Test and Termination Procedure
	4.1.1 Computing Lower and Upper Bounds
	4.1.2 The Discarding Test Procedure
	4.1.3 Some Notes on the Termination Procedure

	4.2 Selection and Bisection Rules
	4.3 The Complete Algorithm
	4.4 Convergence Results
	4.4.1 Termination
	4.4.2 Correctness

	4.5 Discussion of Related Procedures
	4.5.1 B&B Algorithms
	4.5.2 Heuristic Algorithms

	4.6 Conclusions

	5 Numerical Results for MOPBB
	5.1 Numerical Results for some Test Instances
	5.2 Application in Lorentz Force Velocimetry
	5.3 Numerical Comparison with NSGA-II
	5.3.1 Performance Indicators
	5.3.2 New Test Instances and Settings
	5.3.3 Results

	6 Solving Multiobjective Mixed Integer Convex Optimization Problems
	6.1 Definitions and Notations for MOMICPs
	6.2 An Outer Approximation Based B&B Algorithm for MOMICPs
	6.2.1 Computation of Upper Bounds
	6.2.2 Determining Lower Bounds and Pruning Nodes
	6.2.3 Correctness of MOMIX

	6.3 Numerical Results
	6.3.1 Branching Rules
	6.3.2 Results on Scalable Instances
	6.3.3 Results on a Triobjective Instance
	6.3.4 Results on a Non-Quadratic Convex Instance

	6.4 Conclusions

	7 Solving Multiobjective Optimization Problems with Decision Uncertainty
	7.1 Specific Preliminaries for Multiobjective Optimization with Decision Uncertainty
	7.1.1 Decision Uncertainty
	7.1.2 Relation to Set Optimization

	7.2 Algorithmic Approach
	7.2.1 Concave Overestimators
	7.2.2 Upper Bound Sets
	7.2.3 Lower Bound Sets
	7.2.4 Discarding Test

	7.3 The Algorithm and Numerical Results
	7.3.1 The B&B Algorithm
	7.3.2 Numerical Results

	7.4 Conclusions

	A Appendix
	List of Nomenclature
	List of Abbreviations
	List of Symbols
	List of Tables
	List of Figures
	List of Algorithms
	Bibliography

