

Technische Universität Ilmenau
Institut für Mathematik

Preprint No. M 18/11

An algorithmic approach to
multiobjective optimization with
decision uncertainty

Gabriele Eichfelder, Julia Niebling, Stefan
Rocktäschel

07. November 2018

Impressum:
Hrsg.: Leiter des Instituts für Mathematik

Weimarer Straße 25
98693 Ilmenau

Tel.: +49 3677 69-3621
Fax: +49 3677 69-3270
http://www.tu-ilmenau.de/math/

URN: urn:nbn:de:gbv:ilm1-2018200159

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224742621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

An Algorithmic Approach to Multiobjective
Optimization with Decision Uncertainty

Gabriele Eichfelder∗, Julia Niebling‖, Stefan Rocktäschel∗∗

November 7, 2018

Abstract

In real life applications optimization problems with more than one objective
function are often of interest. Next to handling multiple objective functions, another
challenge is to deal with uncertainties concerning the realization of the decision
variables. One approach to handle these uncertainties is to consider the objectives
as set-valued functions. Hence, the image of one variable is a whole set, which
includes all possible outcomes of this variable. We choose a robust approach and
thus these sets have to be compared using the so called upper-type less order relation.

We propose a numerical method to calculate a covering of the set of optimal so-
lutions of such an uncertain multiobjective optimization problem. We use a branch-
and-bound approach and lower and upper bound sets for being able to compare the
arising sets. The calculation of these lower and upper bound sets uses techniques
known from global optimization as convex underestimators as well as techniques
used in convex multiobjective optimization as outer approximation techniques. We
also give first numerical results for this algorithm.

Key Words: Multiobjective Optimization, Decision Uncertainty, Branch-and-Bound Al-
gorithm

Mathematics subject classifications (MSC 2000): 90C29, 90C26, 58C06, 90C31

1 Introduction

In multiobjective optimization one considers optimization problems with more than one
objective function. This is already a challenge. Dealing with multiobjective optimization
for real life problems can lead to an additional difficulty. Often, the calculated solutions

∗Institute for Mathematics, Technische Universität Ilmenau, Po 10 05 65, D-98684 Ilmenau, Germany,
gabriele.eichfelder@tu-ilmenau.de
‖Institute for Mathematics, Technische Universität Ilmenau, Po 10 05 65, D-98684 Ilmenau, Germany,

julia.niebling@tu-ilmenau.de
∗∗Institute for Mathematics, Technische Universität Ilmenau, Po 10 05 65, D-98684 Ilmenau, Germany,

stefan.rocktaeschel@tu-ilmenau.de

1

cannot be used precisely, because they can only be realized within a certain accuracy. This
is for instance the case, when a magnet system for a measurement technique for electrically
conducting fluids should be constructed, see [10]. There, the optimal direction of the
magnetization of each magnet and the optimal magnetization have to be determined such
that the so called Lorentz force is maximized and the weight of the system is minimized.
In practice an (optimally) chosen magnetic direction cannot be realized in any arbitrary
accuracy, as magnets can only be produced within some tolerance. Therefore, decision
uncertainty has to be taken into account. Another example is the growing media mixing
problem for a plant nursery, see [10, 21, 20], where a mixture of peat and compost for the
growing media has to be determined, which can also not be mixed exactly by workers.

Also in case of such uncertainties in the realization of variables, the actual realized
solutions should lead to near-optimal values. This kind of uncertainty in optimization
is called decision uncertainty, which should be distinguished from parameter uncertainty,
because the inaccuracies are caused by the decision variables, [10]. Parameter uncertainty
was considered in several works, for example in [3] in the single-objective case or in [11,
12, 23] for the multiobjective case.

Decision uncertainty for single-objective optimization problems has been handled with
minmax robustness under different names likes ’robust optimization with implementation
error’, e.g. in [4], or robust regularization, e.g. in [24]. In multiobjective optimization
there are also different approaches to treat uncertainties, for example sensitivity analysis,
[2], or evaluating the mean or integral of each objective over the set of possible values of
a solution, [7], or adding a robustness measure as a new objective function, [32]. We want
to follow the so-called worst-case robustness approach as it was done in [10], see also [19].

In the worst case approach one considers all possible outcomes, which leads to sets
which have to be compared. In the single-objective case these sets are just intervals,
which can be compared much easier numerically. In case of a multiobjective optimization
problem with m objectives we have to compare subsets in Rm. This means we have to
solve a specific set-valued optimization problem with a certain set-order relation to handle
the uncertainties.

In set-valued optimization different possibilities to compare sets are discussed in the
literature. In case of the worst-case approach we have to use the upper-type less order
relation, see for instance [22, 16]. When comparing whole sets one also speaks of the set
approach in set-valued optimization. So far there exists only a limited number of nu-
merical algorithms to solve such set optimization problems. For unconstrained set-valued
optimization and a similar order relation Löhne and Schrage introduced an algorithm in
[26], which is applicable for linear problems only. Jahn presented some derivative-free
algorithms, see [15] to find one single solution of the whole set of optimal solutions in case
the sets which have to be compared are convex. Köbis and Köbis extended the method
from [15] to the nonconvex case, i.e. when the sets are nonconvex sets, see [18]. How-
ever, all methods aim at finding one single minimal solution only. In [13] for the first
time a method for nonconvex sets is presented, which uses discretization to compare sets
and which can find many minimal solutions, but still not all. The procedure was paral-
lelized and implemented on a CPU and GPU. As set-valued optimization problems have
in general infinitely many optimal solutions, a representation of the whole set of optimal
solutions is of interest.

2

In [10], see also [21, 20], for some specific multiobjective decision uncertain optimization
problems solution approaches or characterizations of the optimal solution set have been
provided. But they are all for specific cases only, as for linear or for monotone objective
functions.

In this paper we suggest a numerical approach for smooth multiobjective optimization
problems with decision uncertainty with the worst case approach under quite general as-
sumptions. Solving such problems is the same as solving a specific set-valued optimization
problem where the image sets are nonconvex. Thus, our approach also gives new ideas
for developing algorithms for solving set optimization problems with the set approach,
even in case the sets which have to be compared are nonconvex. The proposed algorithm
determines a covering of the set of optimal solutions, i.e. a subset of the feasible set which
contains all optimal solutions.

Thereby, we use the branch-and-bound concept to partition the feasible set and to
detect regions of the feasible set which do not contain optimal solutions quickly. We have to
assume that the feasible set is a subset of a box which is defined by convex constraints, and
that the set of uncertainties is convex as well, to be able to solve the arising subproblems
numerically. However, we do not need any assumptions on the convexity of the objective
functions. As we are using techniques from global optimization, these functions are allowed
to be nonconvex.

The paper is structured as follows: In Section 2 the preliminaries for multiobjective
optimization and decision uncertainty can be found. Additionally, the relations to set
optimization are shown. The main ideas for our algorithm are explained in Section 3. In
particular, we mention the concept of convex underestimators and concave overestimators.
Both concepts are essential to find lower and upper bound sets. The description how those
bound sets can be determined can be found in Section 3.2 and 3.3. The whole branch-
and-bound algorithm as well as some numerical results are presented in Section 4. We end
with a conclusion and an outlook in Section 5.

2 Multiobjective optimization with decision uncer-

tainty

We are starting by introducing the multiobjective optimization problem for a nonempty
feasible set Ω ⊆ Rn and twice continuously differentiable functions fj : Ω → R, j =
1, . . . ,m:

min
x∈Ω

f(x). (P)

Without any uncertainties one says that a point x∗ ∈ Ω is efficient for (P), if there is
no x ∈ Ω with f(x) 6= f(x∗) and f(x) ≤ f(x∗). Here, we use for two vectors a, b ∈ Rm

the notation a ≤ b :⇔ aj ≤ bj for all j = 1, . . . ,m. If x∗ is efficient for (P), then we call
y∗ := f(x∗) to be a nondominated point of (P).

Next, we introduce the relevant notions from multiobjective optimization with decision
uncertainty before we shortly point out the relations to the more general class of set
optimization problems.

3

2.1 Decision uncertainty

As described in the introduction it is possible that the realization of the decision variable
x is associated with uncertainties. These uncertainties will be modeled by a convex and
compact set Z ⊆ Rn with 0 ∈ Z. Hence, instead of x it might happen that x+ z for some
z ∈ Z is realized due to the uncertainties. We follow the notation as introduced in [10].

In view of robustness, only feasible points x ∈ Ω which are feasible for any uncertainty
z ∈ Z are of interest. This reduces the feasible set to the set of decision robust feasible
points defined by

S := {x ∈ Ω | x+ z ∈ Ω for all z ∈ Z}.

It is a well known challenge in robust optimization to calculate S from Ω and Z, also in
the single-objective case. In this work, we assume that S is known and nonempty and we
only concentrate on those challenges which are due to the multiple objectives.

Moreover, we assume that S is convex and that there exists a box X which contains
S. A set X ⊆ Rn is called a box (or hyper rectangle) if X = {x ∈ Rn | xi ≤ x ≤ x, i =
1, . . . , n} with two points x, x ∈ Rn with x ≤ x. The set of all n-dimensional real boxes
will be denoted by IRn. These requirements are due to the fact that we will have to solve
single-objective subproblems with a convex objective function over the set S. For being
able to solve those problems globally and efficiently we need the assumption of convexity
of S. As our algorithm works with a subdivision in the pre-image space we also need the
structure of the box.

For defining decision robust efficient solutions we have to take for each x all possible
realizations of x into account, i.e., the set {x + z | z ∈ Z}. As we are interested in the
values of the objective functions we thus have to compare the sets

fZ(x) := {f(x+ z) ∈ Rm | z ∈ Z} for all x ∈ S

which defines a set-valued map fZ : S ⇒ Rm.
In case the functions fi are linear, then we have fZ(x) = {f(x)}+{f(z) ∈ Rm | z ∈ Z}.

This simplifies the problem significantly, see [10, Theorem 23] or [9]. In case the functions
fi and the set Z are convex, the sets fZ(x) for x ∈ S do not have be convex, as the
following example shows:

Example 2.1 Let f1, f2 : R2 → R with f1(x) = x1, f2(x) = x2
1 + x2

2 and Z = [−0.1, 0.1]×
[0, 0.1] be given. Then for x = 0 the set

fZ(0) = {f(0 + z) | z ∈ Z} =

{(
z1

z2
1 + z2

2

)
∈ R2 | z ∈ Z

}
contains the points y1 = (−0.1, 0.02) and y2 = (0.1, 0.02) but not the point 0.5y1 + 0.5y2 =
(0, 0.02). This is because f(0 + z) = (0, 0.02) holds only for z = (0,−

√
0.02) or z =

(0,
√

0.02). But in both cases it is z /∈ Z. Hence, the set fZ(0) is not convex.

Motivated by the definition of optimality for single-objective decision uncertain opti-
mization as well as by the definition of optimality in parameter uncertain multiobjective
optimization, the following optimality concept for the problem (P) w.r.t. uncertainty given
by the set Z was introduced in [10]:

4

Definition 2.2 A point x∗ ∈ S is called a decision robust strictly efficient solution of (P)
w.r.t. Z if there is no x ∈ S \ {x∗} with the property

fZ(x) ⊆ fZ(x∗)− Rm
+ .

We illustrate this definition with the following example:

Example 2.3 Assume S = {x1, x2} and Z as well as f : S → R2 are in such a way that
the sets fZ(x1) and fZ(x2) look as in Figures 1 and 2, respectively. Then for the situation
in Figure 1, only x1 is a decision robust strictly efficient solution w.r.t. Z, while for Figure
2 both points, i.e. x1 and x2, are decision robust strictly efficient solutions.

fZ(x2)

fZ(x2)− Rm
+

fZ(x1)

Figure 1: Example 2.3, first case

fZ(x2)

fZ(x2)− Rm
+

fZ(x1)

Figure 2: Example 2.3, second case

As one can see from the definition, one has to be able to verify whether it holds
A ⊆ B − Rm

+ for two sets A,B ⊆ Rm numerically. In case of polyhedral sets this can be
done by using a finite number of support functionals, see [15]. In case of arbitrary closed
convex sets one might need an infinite number of such linear functionals. Additionally,
one has to solve a minimizing problem for each of these functionals and for each of the
sets to decide whether the subset condition holds. This is based on the equivalence

A ⊆ B − Rm
+ ⇔ ∀ ` ∈ Rm

+ : sup
a∈A

`Ta ≤ sup
b∈B

`T b

which was formulated in a more general setting in [14, Theorem 2.1].

2.2 Relation to set optimization

In set optimization one studies set-valued optimization problems. Closely related to deter-
mining decision robust strictly efficient solutions is solving the following set optimization
problem:

min
x∈S

fZ(x) = {f(x+ z) | z ∈ Z}. (SOP)

There are different approaches to define optimal solutions for problems like (SOP). For
an introduction to set optimization see the book [17]. In case of the set approach, see [16],
one uses order relations to compare the sets which are the images of the objective function.
As we are minimizing in our multiobjective optimization problem, the ’maximal elements’
of a set are in some sense the worst elements which fits to our worst-case approach.
Comparing the ’maximal elements’ of a set corresponds to the upper-less order relation,
which we introduce next.

5

Definition 2.4 [16] Let A,B ⊆ Rm be two nonempty sets. The upper-type (u-type) less
order relation 4u is defined by:

A 4u B ⇔ A ⊆ B − Rm
+ .

For nonempty sets A,B ⊆ Rm we have

A 4u B ⇔ ∀a ∈ A ∃b ∈ B : a ≤ b.

Moreover, the order relation is reflexive and transitive, but it is in general not anti-
symmetric. However, it holds

A 4u B and B 4u A⇔ A− Rm
+ = B − Rm

+ .

Now we can state the definition of an optimal solution of a set-valued optimization
problem as in (SOP). For this we use a definition which was formulated in [29]:

Definition 2.5 Let a nonempty set X ⊆ Rn and a set-valued map H : X ⇒ Rm be given
with H(x) 6= ∅ for all x ∈ X. A point x∗ ∈ X is called a strictly optimal solution of the
set optimization problem

min
x∈X

H(x)

w.r.t. 4u if there exists no x ∈ X \ {x∗} with H(x) 4u H(x∗).

In our case we have the special set-valued map described by fZ : S ⇒ Rm with fZ(x) =
{f(x + z) | z ∈ Z}. Obviously, a point x∗ ∈ S is a decision robust strictly efficient
solution of (P) w.r.t. Z if and only if x∗ ∈ S is a strictly optimal solution of the set
optimization problem (SOP). Hence, we present in this paper an algorithm to calculate a
covering of the set of strictly optimal solutions of a specific set optimization problem. Thus,
these techniques can also be used to develop algorithms for more general set optimization
problems.

A basic technique of our algorithm will be a branch-and-bound approach. For the
bounding step lower and upper bounds will be important. The next definition clarifies
these terms.

Definition 2.6 Let A ⊆ Rm be a nonempty set.

• A set U ⊆ Rm is called an upper bound set/upper bound for A if A 4u U .

• A set L ⊆ Rm is called a lower bound set/lower bound for A if L 4u A.

3 Algorithmic approach

Our algorithm uses the concept of a branch-and-bound method. The branching will be
in the pre-image space Rn. We have assumed that there is a box X which contains the
convex feasible set S. This is for instance the case when S is given by convex inequality
constraints and by lower and upper bounds for each variable. We start with the box X
and partition it along the longest edge into two subboxes, see for instance [28] for a more

6

detailed description. On each subbox X∗ we test whether a sufficient criteria is satisfied
that X∗∩S does not contain a decision robust strictly efficient solution of (P) w.r.t. Z. In
case such a criteria is satisfied then we do not consider this subbox and the feasible points
X∗ ∩ S anymore. Otherwise, we partition the box until all boxes are either discarded or
smaller than a predefined value.

For such a branch-and-bound scheme a good criteria for discarding a box is essential.
These criteria are in general based on lower bounds obtained on the subboxes and on upper
bounds obtained within the procedure. This is a widely used approach in single-objective
global (i.e. nonconvex) optimization. There, the upper bounds are function values of
feasible solutions and the lower bounds are bounds for all possible values of the objective
over a subbox which are determined by interval arithmetic or by other underestimation
methods. Hence, just scalars have to be compared. In our setting, already a ’function
value’ fZ(x) for some feasible x is a whole set. As these lower and upper bounds have to be
compared frequently within such an algorithm, we will present a way to avoid to compare
sets as fZ(x) for some x directly and will present replacements (i.e. sufficient conditions)
with points and sets which have a very simple structure. To distinguish between upper and
lower bound sets in our article the corresponding variables x, z and subboxes or subsets
of X and Z are indicated with ·̃ or ·∗, respectively. This means that an upper bound set
is computed with respect to a fixed point x̃ ∈ X̃ and a lower bound set is determined for
all sets fZ(x∗) = {f(x+ z) | x ∈ X∗, z ∈ Z} with x∗ ∈ X∗.

As the objective functions fi and also the sets fZ(x) are not necessarily convex, we
will use the concept of convex relaxations for being able to formulate such replacements
and a numerically tractable sufficient condition finally.

3.1 Convex underestimators and concave overestimators

As shown with Example 2.1, the sets fZ(x) for x ∈ S may be nonconvex, even in case
the functions fi : S → R are convex. For that reason we will make use of the concept of
convex underestimators and concave overestimators, respectively, depending on whether
we aim at lower or at upper bounds. Let X ⊆ Rn be a box and h : X → R a function.
Then a convex underestimator of h on X is a function h : X → R which is convex and
with h(x) ≤ h(x) for all x ∈ X. A simple way to construct such convex underestimators
is explained next and is known in the literature as αBB method.

Let the box be defined by X = [x, x] ∈ IRn. Then we obtain a convex underestimator
of a smooth function h by

h(x) := h(x) +
αh
2

(x− x)T (x− x),

where αh ≥ max{0,−minx∈X λmin,h(x)}. Here, λmin,h(x) denotes the smallest eigenvalue
of the Hessian Hh(x) of h in x, [27]. A lower bound for λmin,h(x) over X can easily be
calculated with the help of interval arithmetic, see [27]. In our algorithm we use the Matlab
toolbox Intlab [30] for these calculations. See also [31] for improved lower bounds. There
are also other possibilities for the calculation of convex underestimators. For example
in [1] special convex underestimators for bilinear, trilinear, fractional, fractional trilinear
or univariate concave functions were defined. Here, we restrict ourselves to the above

7

proposed convex underestimator. The theoretical results remain true in case the above
underestimators are replaced by tighter ones. Another important benefit is stated in the
following remark, where ω(X) denotes the box width of X, i.e. ω(X) := ‖x− x‖2.

Remark 3.1 [1] For all αh ≥ 0 the maximal pointwise difference between h and h is
αh

2
ω(X)2, i.e. max

x∈X
|h(x)− h(x)| = αh

2
ω(X)2.

In nonconvex optimization one uses the minimum value of h over X∩S as a lower bound
for the values of h on X∩S. The minimum value can be calculated by standard techniques
from convex optimization in case the set S is convex. We use convex underestimators to
be able to numerically calculate the elements of sets L ⊆ Rm such that

L ⊆ fZ(x)− Rm
+ ⇔ L 4u fZ(x)

holds for all x ∈ X∗ ∩ S for some subbox X∗ of X.
Also concave overestimators of a function h on X are of interest, i.e. concave functions

h : X → R with h(x) ≥ h(x) for all x ∈ X. If we calculate a convex underestimator of the
function −h as described above, i.e.

−h(x) := −h(x) +
α−h

2
(x− x)T (x− x),

where α−h ≥ max{0,−minx∈X λmin,−h(x)}, then h := −(−h) is such a concave overesti-
mator of h on X. We use such concave overestimators to be able to numerically calculate
sets U ⊆ Rm such that

fZ(x̃) ⊆ U − Rm
+ ⇔ fZ(x̃) 4u U

holds for some given x̃ ∈ S. The advantage is that while it might be numerically difficult
to compare the lower bound L of all sets fZ(x) for all x ∈ X∗ ∩ S with fZ(x̃), it might be
much easier to compare L with U . Note that we have

U ⊆ L− Rm
+ ⇒ fZ(x̃) ⊆ fZ(x)− Rm

+ for all x ∈ X∗ ∩ S.

When we use the set order relation as defined in Definition 2.4 we can write this
equivalently as

U 4u L ⇒ fZ(x̃) 4u U 4u L 4u fZ(x) for all x ∈ X∗ ∩ S
⇒ fZ(x̃) 4u fZ(x) for all x ∈ X∗ ∩ S. (1)

The implication holds as 4u is a transitive set order relation. Thus, in case x̃ ∈ S \X∗,
we can discard the subbox X∗ as it does not contain any decision robust strictly efficient
solution of (P) w.r.t. Z.

3.2 Upper bound sets

First, we want to calculate a set U with fZ(x̃) 4u U , i.e. to a given box X̃ we fix one point
x̃ ∈ X̃ ∩ S. Hence U has to be only an upper bound for one image of the set-valued map
fZ . To begin with, we explain how we can construct such a set U which is a singleton.

8

Then we describe how this upper bound can be improved by using outer approximations
as known from convex multiobjective optimization.

A simple upper bound for a set is the so called anti-ideal point. For the set fZ(x̃) =
{f(x̃+ z) | z ∈ Z} this is the point a defined by

aj := max
y∈fZ(x̃)

yj = max
z∈Z

fj(x̃+ z) for all j = 1, . . . ,m.

Hence, the anti-ideal point can easily be determined if fj is a concave function for j =
1, . . . ,m, as Z is assumed to be a convex and compact set and the functions fj are twice
continuously differentiable. One can apply any solution method from single-objective
constrained optimization as for instance an SQP method.

In case fj is not concave such a local solution method as SQP might only deliver a
locally maximal solution and not a globally maximal one. In that case we use the concave
overestimators which were introduced in Subsection 3.1. The result is summarized in the
next lemma. This lemma needs a box Ẑ with Z ⊆ Ẑ, but recall that Z was assumed to
be a compact convex set and thus such a set Ẑ can easily be calculated. The reason for
the assumption of a box is that we can only determine concave overestimators over boxes
as explained in Subsection 3.1. With Remark 3.1 it follows that a small box Ẑ leads to a
tighter concave overestimator. Therefore, Ẑ should be chosen as small as possible.

Lemma 3.2 Let Ẑ ∈ IRn be a box with Z ⊆ Ẑ and let x̃ ∈ S be given. Let f j be the

concave overestimator of fj on the box {x̃}+ Ẑ for all j = 1, . . . ,m. The singleton set U
with

U := {p̄} with p̄ := (max
z∈Z

f 1(x̃+ z), . . . ,max
z∈Z

fm(x̃+ z))T (2)

is an upper bound set for fZ(x̃), i.e. fZ(x̃) 4u U .

Proof. To show fZ(x̃) 4u U it has to hold fZ(x̃) ⊆ U − Rm
+ . Let w ∈ fZ(x̃) be arbitrary

chosen, i.e. there is a z ∈ Z with w = f(x̃+ z). As f j is a concave overestimator of fj on

{x̃}+ Ẑ and z ∈ Z ⊆ Z̃ we obtain for every j = 1, . . . ,m:

wj = fj(x̃+ z) ≤ f j(x̃+ z) ≤ max
z∈Z

f j(x̃+ z).

Therefore w ∈ U − Rm
+ .

The optimization problems in (2) have a convex and compact feasible set and twice
continuously differentiable concave objective functions, which are maximized. Thus they
can be solved for instance with an SQP method. Lemma 3.2 uses that it holds for the set

fZ(x̃) := {(f 1(x̃+ z), . . . , fm(x̃+ z))T | z ∈ Z}

that fZ(x̃) ⊆ fZ(x̃)−Rm
+ and that fZ(x̃)−Rm

+ is a convex set. Thus, the anti-ideal point of

fZ(x̃) can be calculated by known local methods for single-objective optimization. Figure
3 shows the idea on how to obtain the upper bound set U .

This rough upper bound can be improved by using outer approximation techniques
from convex multiobjective optimization. These can be applied as the set fZ(x̃) − Rm

+ is
a convex set. The algorithm which we are using is called Benson’s outer approximation

9

fZ(x̃)

fZ(x̃)− Rm
+

U

Figure 3: The set fZ(x̃) and its singleton upper bound set U according to Lemma 3.2.

algorithm and was introduced for linear multiobjective optimization in [5] and extended
to the convex case in [8] and then also in [25]. The idea of Benson’s outer approximation
algorithm is to construct supporting hyperplanes of the set fZ(x̃)−Rm

+ . One step depends
on one fixed point p̄, which can for instance be the anti-ideal point. Within Benson’s outer
approximation algorithm one solves a single-objective convex optimization problem of the
following type:

min
(z,t)∈Rn×R

t s.t. z ∈ Z, p̄− te ≤ f(x̃+ z). (Px̃,p̄)

With e ∈ Rm we denote the m-dimensional all-one vector (1, . . . , 1)T ∈ Rm.
Let (z̃, t̃) be an optimal solution of (Px̃,p̄) and let λ̃ ≥ 0 be a Lagrange multiplier to

the constraint p̄− te ≤ f(x̃+ z). Then

{y ∈ Rm | λ̃Ty = λ̃T (p̄− t̃e)}

describes a supporting hyperplane of fZ(x̃). In case no Lagrange multiplier is available, a
single-objective linear optimization problem can be solved to calculate a normal vector λ̃
of the supporting hyperplane, see [8].

Note that already the anti-ideal point of fZ(x̃) gives m supporting hyperplanes of fZ(x̃)
by

{y ∈ Rm | yj = max
z∈Z

f j(x̃+ z)}

for every j = 1, . . . ,m. Several such supporting hyperplanes can be constructed to various
points p̄ with the help of (Px̃,p̄). In our numerical experiments we limited ourselves to the
hyperplane which we obtain for p̄ as the anti-ideal point of fZ(x̃) and to those which we
obtain directly from the anti-ideal point of fZ(x̃).

The construction of such supporting hyperplanes is explained in detail in [8, 25]. This
technique is also used for solving nonconvex multiobjective optimization problems in [28].
In that paper one can also find more details on the construction of improved bounds by
using Benson’s outer approximation technique. Adding more hyperplanes to get a better
outer approximation is possible, but then even more single-objective convex optimization
problems have to be solved. Moreover, the calculation of the intersection of these hyper-
planes gets more challenging. Also steering the calculation of the hyperplanes within the
algorithm by an adaptive choice of the points p̄ in (Px̃,p̄) is an interesting approach for
further improvements of the proposed algorithmic approach. Such an approach was for
instance followed in [28] for nonconvex multiobjective optimization problems.

The next lemma gives a summary of the construction of our upper bound set, which
is also illustrated with Figure 4.

10

Lemma 3.3 Let Ẑ ∈ IRn be a box with Z ⊆ Ẑ and let x̃ ∈ S be given. Let f j be the

concave overestimator of fj on the box {x̃} + Ẑ for all j = 1, . . . ,m, and let p̄ ∈ Rm be
the anti-ideal point of the concave overestimator f on {x̃}+Z, see Lemma 3.2. Moreover,
denote the minimal solution of (Px̃,p̄) by (z̃, t̃) and a Lagrange multiplier to the constraint
p̄− te ≤ f(x̃+ z) by λ̃. Then the set U with

U := {y ∈ Rm | yj ≤ pj, j = 1, . . . ,m, λ̃Ty = λ̃T (p̄− t̃e)} (3)

is an upper bound set for fZ(x̃), i.e. fZ(x̃) 4u U .

Proof. We denote the hyperplane to which λ̃ ≥ 0 is the normal vector by

U∗ := {y ∈ Rm | λ̃Ty = λ̃T (p̄− t̃e)}.

As (z̃, t̃) is feasible for (Px̃,p̄) and by the definition of p̄ we get for each j = 1, . . . ,m:

t̃ ≥ p̄j − f j(x̃+ z̃) ≥ 0.

As a consequence, we have p̄ − t̃e ∈ U . In particular, p̄ − t̃e ∈ U∗ holds and thus
p̄ ∈ U∗ + Rm

+ .
Next, we want to show that fZ(x̃) ⊆ U∗ − Rm

+ . This follows from [25] as (Px̃,p̄)
is the same optimization problem which is solved to obtain a supporting hyperplane of
−fZ(x̃) + Rm

+ with the ideal point −p̄ (see Subsection 3.3 for more details on the ideal

point). There, U∗ is by construction a supporting hyperplane of −fZ(x̃) +Rm
+ . To receive

a supporting hyperplane of fZ(x̃)−Rm
+ the hyperplane has to be moved to p̄− t̃e. Hence,

U∗ is a supporting hyperplane of fZ(x̃) − Rm
+ . As f j is a concave overestimator of fj on

the box {x̃}+ Ẑ for all j = 1, . . . ,m, it follows:

fZ(x̃) ⊆ fZ(x̃)− Rm
+ ⊆ U∗ − Rm

+ .

Now, let w ∈ fZ(x̃) be arbitrarily chosen. Then

w ∈ U∗ − Rm
+ = {y ∈ Rm | λ̃Ty ≤ λ̃T (p̄− t̃e)}

and p̄ ∈ U∗ + Rm
+ = {y ∈ Rm | λ̃Ty ≥ λ̃T (p̄− t̃e)}. Thus, there exists some µ ∈ [0, 1] with

y := µp̄+ (1− µ)w ∈ U∗. By Lemma 3.2 we have w ≤ p̄. Therefore,

w ≤ w + µ(p̄− w) = y = µp̄+ (1− µ)w ≤ p̄

and w ≤ y with y ∈ U∗ ∩ ({p̄} − Rm
+) = U. Hence, we derive fZ(x̃) ⊆ U − Rm

+ .

3.3 Lower bound sets

For a subbox X∗ of X we denote the feasible set of X∗ by

S∗ := X∗ ∩ S.

11

fZ(x̃)

fZ(x̃)− Rm
+

U

Figure 4: The set fZ(x̃) and its upper bound set U according to Lemma 3.3.

For applying the implication (1) we propose a method to determine a lower bound L with
a simple structure and with

L 4u fZ(x) for all x ∈ S∗ ⇔ L ⊆ fZ(x)− Rm
+ for all x ∈ S∗.

Similarly to the anti-ideal point from Lemma 3.2 we can use here the concept of the
ideal point of a set. While one could use the ideal point of the set

{f(x+ z) ∈ Rm | x ∈ S∗, z ∈ Z},

already the ideal point of any set

f(S∗ + z∗) := {f(x+ z∗) ∈ Rm | x ∈ S∗}

for any z∗ ∈ Z delivers a lower bound:

Lemma 3.4 Let z∗ ∈ Z, X∗ be a subbox of X, and let a ∈ Rm be defined by

aj := min{fj(x+ z∗) ∈ R | x ∈ S∗}, j = 1, . . . ,m. (4)

Then the set L := {a} is a lower bound set of fZ(x) for all x ∈ S∗.

Proof. Let x ∈ S∗ be arbitrarily chosen. We have to show that a ∈ fZ(x) − Rm
+ . As

aj ≤ fj(x+ z∗) for all j = 1, . . . ,m, we have that a ∈ {f(x+ z∗)}−Rm
+ ⊆ fZ(x)−Rm

+ .

In case the functions fj, j = 1, . . . ,m are convex, the single-objective optimization
problems in (4) can be solved by any local solution method as an SQP method. Oth-
erwise, convex underestimators, see Subsection 3.1, can be used. Let f be the convex
underestimator of f on the box X∗ (componentwise). Then we can choose one or several
points z∗ and determine the ideal point of the set

f(S∗ + z∗) := {f(x+ z∗) ∈ Rm | x ∈ S∗}

for each chosen z∗. As each ideal point gives a lower bound set of the sets fZ(x) for all
x ∈ S∗, also the set of all ideal points to the various points z∗ is a lower bound set of
fZ(x) for all x ∈ S∗:

Lemma 3.5 Let X∗ be a subbox of X and let f be the componentwise convex underesti-
mator of f on X∗. Let Z∗ = {z1, . . . , zp} ⊆ Z and for k = 1, . . . , p determine the ideal
point ak of f(S∗ + zk), i.e. calculate

ak := (min
x∈S∗

f1(x+ zk), . . . ,min
x∈S∗

fm(x+ zk))T

12

Then it holds:
L := {a1, . . . , ap} 4u fZ(x) for all x ∈ S∗,

i.e. L is a lower bound set for all sets fZ(x) with x ∈ S∗.

Proof. We have to show that for any k ∈ {1, . . . , p} we have ak ∈ fZ(x∗) − Rm
+ for all

x∗ ∈ S∗. Thus let k ∈ {1, . . . , p} and x∗ ∈ S∗ be arbitrarily chosen. As

aj
k = min

x∈S∗
fj(x+ zk) ≤ fj(x

∗ + zk) ≤ fj(x
∗ + zk)

for all j = 1, . . . ,m, we have that ak ∈ {f(x∗ + zk)} − Rm
+ ⊆ fZ(x∗)− Rm

+ .

A visualization of this lemma can be found in Figure 5. The set fZ(S∗) is defined by
{fZ(x+ z) | x ∈ S∗, z ∈ Z}. Note that in our algorithm the case of no uncertainty should
be considered during the calculation of L. This means we require 0 ∈ Z∗.

For the algorithm a large p, i.e. many elements {z1, . . . , zp}, improves the lower bound
set. On the other hand, a large p implies that we have to solve on each subbox a large
number of convex single-objective optimization problems to determine the ideal points ak,
k = 1, . . . , p. We explore this issue in Subsection 4.2.

fZ(S∗)

a1

a2

a3

A1

A2

A3

L

Figure 5: The set fZ(S∗), the sets Ak := f(S∗ + zk), k = 1, 2, 3 and its lower bound set
L = {a1, a2, a3} according to Lemma 3.5.

3.4 Discarding Test

The main idea of our discarding test is the implication given in (1) together with the way
in which we construct the sets L and U . We summarize our discarding test in the next
theorem:

Theorem 3.6 Let X∗ be a subbox of X, x̃ ∈ S with x̃ 6∈ X∗, and let the set U be defined
as in Lemma 3.3 and L as in Lemma 3.5. If U 4u L, the subbox X∗ can be discarded, i.e.
X∗ ∩ S does not contain any decision robust strictly efficient solution of (P) w.r.t. Z.

Proof. With U as in Lemma 3.3 and with L as in Lemma 3.5 we obtain

fZ(x̃) 4u U 4u L 4u fZ(x) for all x ∈ S∗,

i.e. no x ∈ S∗ can be a strictly optimal solution of the set optimization problem minx∈S fZ(x)
and therefore no x ∈ S can be decision robust strictly efficient for (P) w.r.t. Z.

13

For numerical reasons it is not only important that the sets L and U can easily be
calculated. Thereby, we assume that convex single-objective optimization problems can
easily be solved, as any locally optimal solution is already a globally optimal solution. It
is also important that the sets L and U have a simple structure such that they can easily
be compared w.r.t. the upper-type less order relation. In case L and U are finite sets this
can be done with a pairwise comparison. In case U is not finite, i.e. not just the anti-ideal
point, but m = 2, then U is just a line segment and U 4u L can still easily be checked. For
m ≥ 3 such comparisons get already more complicated in case U is not finite, as it is then
a subset of a hyperplane. This is even more the case if several points p̄ are used in (Px̃,p̄) to
construct improved outer approximations, as it was done in [28]. In that case the concept
of local upper bounds is helpful which is used and explained in detail in [28]. As this is
an implementation issue and does not add insights to the main idea of the discarding test
above, we limit ourselves here to cases which can easily be implemented.

4 The algorithm and numerical results

In this section, we derive our algorithm based on the proposed discarding test in Theorem
3.6. We also illustrate and discuss the algorithm on several test instances.

4.1 The branch-and-bound algorithm

As already mentioned, the base of our algorithm is a branch-and-bound approach in which
we partition the box X into subboxes. Then we try to discard subboxes which do not
contain decision robust strictly efficient solutions.

14

Algorithm 1 Algorithm for Multiobjective Optimizations Problems with Decision Un-
certainty

INPUT: X ∈ IRn with S ⊆ X, Ẑ ∈ IRn with Z ⊆ Ẑ, f ∈ C2(Rn,Rm), Z∗ =
{z1, . . . , zp}

OUTPUT: LS,final
1: LW ← {X},LS ← ∅,LS,final ← ∅
2: if mid(X) ∈ S then
3: x̃← mid(X)
4: Compute U with fZ(x̃) 4u U , see Lemmas 3.2 and 3.3
5: Store U in LU
6: else LU ← ∅
7: end if
8: while LW 6= ∅ do
9: Select a box X∗ from LW and delete it from LW

10: Bisect X∗ perpendicularly to a direction of maximum width → X1, X2

11: for l = 1, 2 do
12: if X l ∩ S = ∅ then Discard X l

13: else
14: Compute L such that L 4u fZ(x) for all x ∈ X l ∩ S, see Lemma 3.5 and

obtain an x̃ ∈ X l ∩ S
15: if there is an U ∈ LU with U 4u L then Discard X l

16: else
17: Compute U with fZ(x̃) 4u U , see Lemmas 3.2 and 3.3
18: Store U in LU and update LU
19: if ω(X l) < δ then Store X l with L in LS
20: else Store X l in LW
21: end if
22: end if
23: end if
24: end for
25: end while
26: while LS 6= ∅ do
27: Select a box X∗ with its lower bound L from LS and delete it from LS
28: if there is a U ∈ LU with U 4u L then Discard X l

29: else Store X l in LS,final
30: end if
31: end while

We are working with three lists. The list LW is the working list which collects those
boxes which are still of interest. The upper bound sets for some feasible points x̃ ∈ S are
collected in the list LU . The list LS collects those boxes which deliver a first cover of the
set of decision robust strictly efficient solutions. In the second while-loop from line 26 we
check again if boxes from LS can be discarded now, because the set of upper bound sets
LU changes during the main while-loop (lines 8 to 25). The final solution list is denoted

15

by LS,final.
For computing upper bound sets feasible points x̃ ∈ S∗ of a current considered box

X∗ are required. To reduce the numerical effort, the midpoints of the boxes can be used,
i.e. x̃ := mid(X∗) as far as x̃ ∈ S. Another possibility to obtain feasible points is the
following: in line 14, see also Lemma 3.5, for each z ∈ Z∗ and for each objective function
fj an optimization problem is solved with feasible set S∗. The minimal solutions can thus
be used as feasible points for computing upper bound sets.

To get only one upper bound set per considered box and to make numerical experiments
comparable, we use the minimal solution of the first (underestimated) objective function
without uncertainties, i.e. with z∗ = 0.

After adding a new upper bound set to LU an update procedure is applied in line 18: If
there is a set U ′ ∈ LU with U ′ 4u U for some U ∈ LU , all those dominated U are removed
from LU . Moreover, U ′ is not stored in LU if U 4u U ′ for one U ∈ LU . This reduces the
amount of comparisons for checking the conditions in lines 15 and 28.

We stop the algorithm when all boxes are either discarded or put into the solution list,
i.e. in case the working list is empty. We put a box X∗ to the solution list if its box width
is small enough, i.e. for given δ > 0 it holds: ω(X∗) < δ.

Theorem 4.1 Let LS,final be the output of the algorithm on page 15 and XE the set of
decision robust strictly efficient solutions of (P) w.r.t. Z. Then the following holds:

(i) XE ⊆
⋃

X∈LS,final

X ⊆
⋃

X∈LS
X

(ii) For every box X∗ ∈ LS,final it holds: ω(X∗) < δ

Moreover, the algorithm terminates after finitely many subdivisions in line 10.

Proof. Property (i) holds because of Theorem 3.6. In line 19 only boxes X∗ with ω(X∗) < δ
are stored in the solution list LS. The final elimination in the second while-loop of the
algorithm just discards some boxes from LS, but the box width of the boxes does not
change. This proves (ii).

The boxes are bisected perpendicularly to a direction of maximum width. Boxes are
either discarded or partitioned until the subboxes have a width smaller than δ. Hence,
even if no box is discarded, all subboxes have a width smaller than δ after a finite number
of subdivisions.

We would like to mention that our algorithm does not guarantee to find anything like
almost decision robust strictly efficient solutions or that with decreasing δ the covering of
XE gets arbitrarily close. For being able to show something like that we would need lower
and upper bound sets which get closer to the sets which are compared for smaller boxes.
With Remark 3.1 it follows that for smaller boxes X∗ the lower bounds for f(S∗ + z∗)
for one z∗ ∈ Z∗ are indeed tighter than for larger boxes. For an upper bound set U one
has to calculate concave overestimators f j for each fj on the box {x̃}+ Ẑ. However, the

distance between f j and fj does not decrease, when the boxes X∗ become smaller, as it

only depends on the size of Ẑ (and the non-concavity of fj).

16

4.2 Numerical results

The proposed algorithm has been implemented in Matlab R2018a and uses the toolbox
Intlab [30] for interval arithmetic. All experiments have been done on a computer with
Intel(R) Core(TM) i5-7400T CPU and 16Gbytes RAM on operating system Windows
10 Enterprise.

As just recently the notion of decision robust strictly efficient solutions has been intro-
duced in multiobjective optimization, there are no test instances from the literature so far.
Here, we have introduced some test instances where it is possible to calculate the decision
robust strictly efficient solution sets also analytically. This allows to verify our results.
We will also discuss the impact of various parameters of the algorithm as for instance the
choice and the number p of elements of the set Z∗ which are used to calculate the lower
bounds in Lemma 3.5.

For all instances we used δ = 0.05. In Tables 1, 2 and 3 the number of subdivisions
in line 10, the time and the number of boxes in the final solution list are given for each
test instance. Also, visualizations of the partitions of the initial box X after the execution
of the algorithm are presented. The light gray boxes are the discarded boxes. All boxes
from the final solution list LS,final are dark gray. In case of convex constraints, boxes can
be discarded because of infeasibility. These boxes are white in the figures.

Moreover, we have compared the impact of using upper bounds based on the anti-ideal
point only as in Lemma 3.2 and based on an improved outer approximations as defined in
Lemma 3.3.

Test instance 4.1 This convex test function is inspired by [6]:

f(x) =

(
x2

1 + x2
2

(x1 − 5)2 + (x2 − 5)2

)
with S = X = [−5, 5]× [−5, 5] and Ẑ = Z = [−0.3, 0.1]× [−0.3, 0.1].

The set of decision robust strictly efficient solutions is a line segment:

L = {λ(0.1, 0.1)T + (1− λ)(5, 5)T | λ ∈ [0, 1]}.

The sets Z0 to Z3 are chosen as

Z0 = {0},
Z1 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.3, 0.1}} ∪ {0},
Z2 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.3,−0.1, 0.1}} ∪ {0} and

Z3 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.3,−0.2,−0.1, 0, 0.1}}.

The results of the algorithm are shown in Figure 6 and Table 1.

In Table 1 and Figure 6 it can be seen, that choosing a larger set Z∗ and computing the
lower bound set U by an improved outer approximation leads to better results. However,
the improvement from the case Z∗ = Z1 to Z∗ = Z2 or Z∗ = Z3 is not as significant as
the one from Z∗ = Z0 to Z∗ = Z1. The best choice for Z∗ depends on how tight the
covering of the set of decision robust strictly efficient solutions should be. Note that the
point x̄ = 0 is not a decision robust strictly efficient solution while x̄ is an efficient solution
of the corresponding multiobjective optimization problem without uncertainties.

17

Table 1: Results for Test instance 4.1.

U by anti-ideal points U by improved outer approx.
Z∗ |Z∗| # subdiv. t [s] |LS,final| # subdiv. t [s] |LS,final|
Z0 1 12213 2.1643e+03 11354 12213 3.0841e+03 11354
Z1 5 9594 2.9426e+03 8776 7615 2.9225e+03 6686
Z2 10 9593 4.4985e+03 8776 6714 3.6236e+03 5570
Z3 25 9593 9.2048e+03 8776 6175 6.3523e+03 4704

(a) Z∗ = Z0, upper bounds by Lemma 3.2 or
by Lemma 3.3.

(b) Z∗ = Z3, upper bounds by Lemma 3.3.

Figure 6: Partition of the feasible set of Test instance 4.1 after the algorithm.

Test instance 4.2 This test instance consists of a nonconvex objective function and a
circular decision uncertainty set Z:

f(x) =

(
x2

1 − x2
2

x1/x2

)
with S = X = [−1, 2]× [1, 2] and Z = {(z1, z2) ∈ R2 | z2

1 + z2
2 ≤ 0.01}.

A box Ẑ which contains Z is Ẑ = [−0.1, 0.1]× [−0.1, 0.1].
The sets Z0 and Z1 are chosen as

Z0 = {0},
Z1 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.1,−0.05, 0, 0.05, 0.1}} ∩ Z.

For the results of the algorithm see Figure 7 and Table 2.

Test instance 4.3

f(x) =

(
x2

1

x2
2

)
with S :=

{(
x1, x2

)
∈ R2

∣∣∣∣ x2
1 + x2

2 ≤ 0.5
x1 − x2 ≤ 0.5

}
∩ [−1, 1]× [−1, 1]

and Ẑ = Z = [−0.1, 0.3]× [−0.1, 0.3]

18

Table 2: Results for Test instance 4.2.

U by anti-ideal points U by improved outer approx.
Z∗ |Z∗| # subdiv. t [s] |LS,final| # subdiv. t [s] |LS,final|
Z0 1 454 90 359 454 160 359
Z1 13 317 198 224 264 201 154

(a) Z∗ = Z1, upper bounds by Lemma 3.2. (b) Z∗ = Z1, upper bounds by Lemma 3.3.

Figure 7: Partition of the feasible set of Test instance 4.2 after the algorithm.

The set of the decision robust strictly efficient solutions is

L = {(−0.1,−0.1)T}.

The sets Z0 to Z3 are chosen as

Z0 = {0},
Z1 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.1, 0.3}} ∪ {0},
Z2 = {(z1, z2) ∈ R2 | z1, z2 ∈ {0, 0.1, 0.2}} and

Z3 = {(z1, z2) ∈ R2 | z1, z2 ∈ {−0.1, 0, 0.1, 0.2, 0.3}}.

Note that Z1 consists of the vertices of Z (and 0) while Z2 contains some interior
points of Z only. The result of the algorithm is shown in Figure 8 and Table 3.

Table 3: Results for Test instance 4.3.

U by anti-ideal points U by improved outer approx.
Z∗ |Z∗| # subdiv. t [s] |LS,final| # subdiv. t [s] |LS,final|
Z0 1 1309 174 1171 1309 264 1171
Z1 5 623 183 453 623 226 453
Z2 9 1011 475 857 1011 553 857
Z3 25 623 694 453 623 737 453

19

(a) Z∗ = Z0, upper bounds by Lemma 3.2 or
by Lemma 3.3.

(b) Z∗ = Z1, Z∗ = Z2 or Z∗ = Z3, upper
bounds by Lemma 3.2 or by Lemma 3.3.

Figure 8: Partition of the feasible set of Test instance 4.3 after the algorithm.

The results for this test instance, see Table 3, show that the upper bound sets which
are obtained from the improved outer approximations do not lead to any improvements.
The number of subdivision and boxes in the solution list LS,final are the same, which is
caused by the simplicity of the objective functions. The computational time is even higher
if the upper bound sets are obtained by outer approximations, because more optimization
problems have to be solved.

It can be seen that choosing a set Z∗ with multiple points improves the results. If the
vertices of Z are included in Z∗, i.e in case of Z1 and Z3, we obtain the smallest amount
of subdivisions and boxes in the solution list. The reason for this is the simple structure
of the objective functions again. Therefore for this example, the best choice for Z∗ is Z1

and it is sufficient to use the anti-ideal point of the concave overestimators only. Another
thing is that the covering of the decision robust strictly efficient solution (−0.1,−0.1)T is
cross shaped and lies more symmetrically around the real decision robust solution set in
case Z∗ 6= {0}.

In all additional numerical experiments similar results were observed. To summarize,
choosing a set Z∗ with more than one element is a better choice than Z∗ = {0}. On
the other side, the cardinality of Z∗ does not have to be very large. For simple objective
functions the set with some characteristic points at the boundary of Z, e.g. the vertices
of Ẑ and 0, leads to the overall best results. In general, using outer approximations to
obtain upper bound sets improves the results.

5 Conclusions and Outlook

In this work we proposed a branch-and-bound based algorithm for multiobjective optimiza-
tion problems with decision uncertainty. In case the objective functions are not linear, we
need to work with convex underestimators or concave overestimators, or even with both,
to make the subproblems numerically tractable. The computational experiments showed
that the algorithm is indeed able to discard areas which do not contain any decision ro-

20

bust strictly efficient solution. Nevertheless, the remaining parts of the feasible set can
still be large and then other (local) algorithms could be applied afterwards for more exact
solutions. Moreover, the results can be improved, i.e. the covering can be tightened by
improving the outer approximation used in Lemma 3.3 with techniques from [8] and [25].

We have assumed that the set Z is convex. An adaption also to nonconvex sets is
possible. One can replace the set Z within the optimization problems in Subsection 3.2
by the convex hull of Z or by a box, which contains Z. In case Z is a finite (and small)
set the problems can also be solved directly by enumeration.

The proposed techniques have been developed for a set optimization problem with a
very specific structure and with the upper-type less order relation. It is also of interest, and
possible, to adapt the methods for other set order relations and to more general set-valued
optimization problems.

6 Acknowledgments

The second author thanks the Carl-Zeiss-Stiftung and the DFG-founded Research Train-
ing Group 1567 ”Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing” for
financial support. The work of the third author is funded by the Deutsche Forschungsge-
meinschaft under grant No. EI 821/4.

References

[1] C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier. A Global Optimization
Method, αBB, for General Twice-Differentiable Constrained NLPs: I - Theoretical
Advances. Computers & Chemical Engineering, 22(9):1137–1158, 1998.

[2] C. Barrico and C.H. Antunes. Robustness analysis in multi-objective optimization us-
ing a degree of robustness concept. In IEEE Congress on Evolutionary Computation.
CEC 2006, pages 1887 –1892. IEEE Computer Society, 2006.

[3] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
University Press, 2009.

[4] A. Ben-Tal and A. Nemirovski. Robust optimization – methodology and applications.
Math. Program., 92(3):453–480, 2002.

[5] H.P. Benson. An outer approximation algorithm for generating all efficient extreme
points in the outcome set of a multiple objective linear programming problem. J.
Global Optim., 13(1):1–24, 1998.

[6] T.T. Binh and U. Korn. MOBES: A Multiobjective Evolution Strategy for Con-
strained Optimization Problems. In Proceedings of the 3rd International Conference
on Genetic Algorithms, pages 176–182, 1999.

[7] K. Deb and H. Gupta. Introducing robustness in multi-objective optimization. Evol.
Comput., 14(4):463–494, 2006.

21

[8] M. Ehrgott, L. Shao, and A. Schöbel. An approximation algorithm for convex multi-
objective programming problems. J. Global Optim., 50(3):397–416, 2011.

[9] G. Eichfelder and T. Gerlach. On classes of set optimization problems which are
reducible to vector optimization problems and its impact on numerical test instances.
Preprint-Series of the Institute for Mathematics, Technische Universität Ilmenau,
Germany, 2018.

[10] G. Eichfelder, C. Krüger, and A. Schöbel. Decision uncertainty in multiobjective
optimization. J. Global Optim., 69(2):485–510, 2017.

[11] J. Fliege and R. Werner. Robust multiobjective optimization & applications in port-
folio optimization. European J. Oper. Res., 2013.

[12] M. A. Goberna, V. Jeyakumar, G. Li, and J. Vicente-Pérez. Robust solutions of
multiobjective linear semi-infinite programs under constraint data uncertainty. SIAM
J. Optim., 24(3):1402–1419, 2014.

[13] J. Jahn. A derivative-free rooted tree method in nonconvex set optimization. to
appear.

[14] J. Jahn. Vectorization in set optimization. J. Optim. Theory Appl., 167(3):783–795,
2013.

[15] J. Jahn. A derivative-free descent method in set optimization. Comput. Optim. Appl.,
60(2):393–411, 2015.

[16] J. Jahn and T.X.D. Ha. New order relations in set optimization. J. Optim. Theory
Appl., 148:209–236, 2011.

[17] A.A. Khan, C. Tammer, and C. Zălinescu. Set-valued Optimization. Springer, 2015.

[18] E. Köbis and M.A. Köbis. Treatment of set order relations by means of a nonlin-
ear scalarization functional: a full characterization. Optimization, 65(10):1805–1827,
2016.

[19] C. Krüger. On Minmax Robustness for Multiobjective Optimization with Decision or
Parameter Uncertainty. PhD thesis, Georg-August Universität Göttingen, 2018.

[20] C. Krüger. Peat and pots: Analysis of robust solutions for a biobjective problem in
agriculture. Preprint-Reihe, Institut für Numerische und Angewandte Mathematik,
Georg-August Universität Göttingen, 2018.

[21] C. Krüger, F. Castellani, J. Geldermann, and A. Schöbel. Peat and Pots: An appli-
cation of robust multiobjective optimization to a mixing problem in agriculture. to
appear.

[22] D. Kuroiwa. The natural criteria in set-valued optimization. RIMS Kokyuroku,
1031:85–90, 1998.

22

[23] D. Kuroiwa and G. M. Lee. On robust multiobjective optimization. Vietnam J.
Math., 40(2&3):305–317, 2012.

[24] A.S. Lewis and C.H.J. Pang. Lipschitz behavior of the robust regularization. SIAM
J. Control Optim., 48(5):3080–3105, 2009.

[25] A. Löhne, B. Rudloff, and F. Ulus. Primal and dual approximation algorithms for
convex vector optimization problems. J. Global Optim., 60(4):713–736, 2014.

[26] A. Löhne and C. Schrage. An algorithm to solve polyhedral convex set optimization
problems. Optimization, 62(1):131–141, 2013.

[27] C. D. Maranas and C. A. Floudas. Global minimum potential energy conformations
of small molecules. J. Global Optim., 4(2):135–170, 1994.

[28] J. Niebling and G. Eichfelder. A Branch-and-Bound based Algorithm for Noncon-
vex Multiobjective Optimization. Preprint-Series of the Institute for Mathematics,
Technische Universität Ilmenau, Germany, 2018.

[29] L. Rodŕıguez-Maŕın and M. Sama. (Λ, C)-contingent derivatives of set-valued maps.
J. Math. Anal. Appl., 335(2):974–989, 2007.

[30] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Develop-
ments in Reliable Computing, pages 77–104. Kluwer Academic Publishers, 1999.

[31] M. Schulze Darup and M. Mönnigmann. Improved Automatic Computation of Hes-
sian Matrix Spectral Bounds. SIAM J. Sci. Comput., 38(4):A2068–A2090, 2016.

[32] Y. Zhou-Kangas, K. Miettinen, and K. K. Sindhya. Solving multiobjective optimiza-
tion problems with decision uncertainty: an interactive approach. Journal of Business
Economics, 2018.

23

