753 research outputs found

    Vector Reachability Problem in SL(2,Z)\mathrm{SL}(2,\mathbb{Z})

    Get PDF
    The decision problems on matrices were intensively studied for many decades as matrix products play an essential role in the representation of various computational processes. However, many computational problems for matrix semigroups are inherently difficult to solve even for problems in low dimensions and most matrix semigroup problems become undecidable in general starting from dimension three or four. This paper solves two open problems about the decidability of the vector reachability problem over a finitely generated semigroup of matrices from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}) and the point to point reachability (over rational numbers) for fractional linear transformations, where associated matrices are from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}). The approach to solving reachability problems is based on the characterization of reachability paths between points which is followed by the translation of numerical problems on matrices into computational and combinatorial problems on words and formal languages. We also give a geometric interpretation of reachability paths and extend the decidability results to matrix products represented by arbitrary labelled directed graphs. Finally, we will use this technique to prove that a special case of the scalar reachability problem is decidable

    Vector Reachability Problem in SL(2,Z)

    Get PDF
    This paper solves three open problems about the decidability of the vector and scalar reachability problems and the point to point reachability by fractional linear transformations over finitely generated semigroups of matrices from . Our approach to solving these problems is based on the characterization of reachability paths between vectors or points, which is then used to translate the numerical problems on matrices into computational problems on words and regular languages. We will also give geometric interpretations of these results

    Vector Ambiguity and Freeness Problems in SL (2, ℤ).

    Get PDF
    We study the vector ambiguity problem and the vector freeness problem in SL(2,Z). Given a finitely generated n×n matrix semigroup S and an n-dimensional vector x, the vector ambiguity problem is to decide whether for every target vector y=Mx, where M∈S, M is unique. We also consider the vector freeness problem which is to show that every matrix M which is transforming x to Mx has a unique factorization with respect to the generator of S. We show that both problems are NP-complete in SL(2,Z), which is the set of 2×2 integer matrices with determinant 1. Moreover, we generalize the vector ambiguity problem and extend to the finite and k-vector ambiguity problems where we consider the degree of vector ambiguity of matrix semigroups

    The Identity Problem in the special affine group of Z2\mathbb{Z}^2

    Full text link
    We consider semigroup algorithmic problems in the Special Affine group SA(2,Z)=Z2⋊SL(2,Z)\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z}), which is the group of affine transformations of the lattice Z2\mathbb{Z}^2 that preserve orientation. Our paper focuses on two decision problems introduced by Choffrut and Karhum\"{a}ki (2005): the Identity Problem (does a semigroup contain a neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of SA(2,Z)\mathsf{SA}(2, \mathbb{Z}). We show that both problems are decidable and NP-complete. Since SL(2,Z)≤SA(2,Z)≤SL(3,Z)\mathsf{SL}(2, \mathbb{Z}) \leq \mathsf{SA}(2, \mathbb{Z}) \leq \mathsf{SL}(3, \mathbb{Z}), our result extends that of Bell, Hirvensalo and Potapov (SODA 2017) on the NP-completeness of both problems in SL(2,Z)\mathsf{SL}(2, \mathbb{Z}), and contributes a first step towards the open problems in SL(3,Z)\mathsf{SL}(3, \mathbb{Z}).Comment: 17 pages, 10 figure

    On Affine Reachability Problems

    Get PDF
    We analyze affine reachability problems in dimensions 1 and 2. We show that the reachability problem for 1-register machines over the integers with affine updates is PSPACE-hard, hence PSPACE-complete, strengthening a result by Finkel et al. that required polynomial updates. Building on recent results on two-dimensional integer matrices, we prove NP-completeness of the mortality problem for 2-dimensional integer matrices with determinants +1 and 0. Motivated by tight connections with 1-dimensional affine reachability problems without control states, we also study the complexity of a number of reachability problems in finitely generated semigroups of 2-dimensional upper-triangular integer matrices

    Decidability of the Membership Problem for 2×22\times 2 integer matrices

    Get PDF
    The main result of this paper is the decidability of the membership problem for 2×22\times 2 nonsingular integer matrices. Namely, we will construct the first algorithm that for any nonsingular 2×22\times 2 integer matrices M1,…,MnM_1,\dots,M_n and MM decides whether MM belongs to the semigroup generated by {M1,…,Mn}\{M_1,\dots,M_n\}. Our algorithm relies on a translation of the numerical problem on matrices into combinatorial problems on words. It also makes use of some algebraical properties of well-known subgroups of GL(2,Z)\mathrm{GL}(2,\mathbb{Z}) and various new techniques and constructions that help to limit an infinite number of possibilities by reducing them to the membership problem for regular languages

    On Reachability Problems for Low-Dimensional Matrix Semigroup

    Get PDF
    We consider the Membership and the Half-Space Reachability problems for matrices in dimensions two and three. Our first main result is that the Membership Problem is decidable for finitely generated sub-semigroups of the Heisenberg group over rational numbers. Furthermore, we prove two decidability results for the Half-Space Reachability Problem. Namely, we show that this problem is decidable for sub-semigroups of GL(2,Z) and of the Heisenberg group over rational numbers

    Guaranteed Control of Sampled Switched Systems using Semi-Lagrangian Schemes and One-Sided Lipschitz Constants

    Full text link
    In this paper, we propose a new method for ensuring formally that a controlled trajectory stay inside a given safety set S for a given duration T. Using a finite gridding X of S, we first synthesize, for a subset of initial nodes x of X , an admissible control for which the Euler-based approximate trajectories lie in S at t ∈\in [0,T]. We then give sufficient conditions which ensure that the exact trajectories, under the same control, also lie in S for t ∈\in [0,T], when starting at initial points 'close' to nodes x. The statement of such conditions relies on results giving estimates of the deviation of Euler-based approximate trajectories, using one-sided Lipschitz constants. We illustrate the interest of the method on several examples, including a stochastic one

    The Significance of the CC-Numerical Range and the Local CC-Numerical Range in Quantum Control and Quantum Information

    Full text link
    This paper shows how C-numerical-range related new strucures may arise from practical problems in quantum control--and vice versa, how an understanding of these structures helps to tackle hot topics in quantum information. We start out with an overview on the role of C-numerical ranges in current research problems in quantum theory: the quantum mechanical task of maximising the projection of a point on the unitary orbit of an initial state onto a target state C relates to the C-numerical radius of A via maximising the trace function |\tr \{C^\dagger UAU^\dagger\}|. In quantum control of n qubits one may be interested (i) in having U\in SU(2^n) for the entire dynamics, or (ii) in restricting the dynamics to {\em local} operations on each qubit, i.e. to the n-fold tensor product SU(2)\otimes SU(2)\otimes >...\otimes SU(2). Interestingly, the latter then leads to a novel entity, the {\em local} C-numerical range W_{\rm loc}(C,A), whose intricate geometry is neither star-shaped nor simply connected in contrast to the conventional C-numerical range. This is shown in the accompanying paper (math-ph/0702005). We present novel applications of the C-numerical range in quantum control assisted by gradient flows on the local unitary group: (1) they serve as powerful tools for deciding whether a quantum interaction can be inverted in time (in a sense generalising Hahn's famous spin echo); (2) they allow for optimising witnesses of quantum entanglement. We conclude by relating the relative C-numerical range to problems of constrained quantum optimisation, for which we also give Lagrange-type gradient flow algorithms.Comment: update relating to math-ph/070200
    • …
    corecore