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Abstract

This paper solves two open problems about the decidability of the vec-
tor reachability problem over a finitely generated semigroup of matrices from
SL(2,Z) and the point to point reachability (over rational numbers) for frac-
tional linear transformations, where associated matrices are from SL(2,Z). The
approach to solving reachability problems is based on the characterization of
reachability paths between points which is followed by the translation of nu-
merical problems on matrices into computational and combinatorial problems
on words and formal languages. We will also use this technique to prove that a
special case of the scalar reachability problem is decidable.
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1. Introduction

Decision problems on matrices were intensively studied from 1947 when A.
Markov showed the connection between classical computations and problems
for matrix semigroups [1]. Moreover matrix products play an essential role
in the representation of various computational processes, i.e., linear recurrent5

sequences [2, 3, 4], arithmetic circuits [5], hybrid and dynamical systems [6, 7],
probabilistic and quantum automata [8], stochastic games, broadcast protocols
[9], optical systems, etc. New algorithms for solving reachability problems in
matrix semigroups can be incorporated into software verification tools and used
for analysis of mathematical models in physics, chemistry, biology, ecology, and10

economics.
However, many computational problems for matrix semigroups are inher-

ently difficult to solve even when the problems are considered in dimension
two, and most of these problems become undecidable in general starting from
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dimension three or four. Examples of such problems are the Membership prob-15

lem (including the special cases of the Mortality and Identity problems), vector
reachability, scalar reachability, freeness problem and the emptiness problem of
matrix semigroups intersection [10]. All above problems are tightly connected,
including three central problems:

• The membership problem: Let S = 〈G〉 be a semigroup generated20

by a finite set G of n× n matrices. Determine whether a given matrix
M belongs to S, that is, determine whether there exists a sequence of
matrices M1,M2, . . . ,Mk in G such that M = M1 ·M2 · . . . ·Mk

• The vector reachability problem: Let x and y be two vectors and
S be a given finitely generated semigroup of n× n matrices. Determine25

whether there is a matrix M ∈ S such that Mx = y.

• The scalar reachability problem: Let x and y be two vectors, λ be a
scalar, and S be a given finitely generated semigroup of n× n matrices.
Determine whether there is a matrix M ∈ S such that x>My = λ.

The vector reachability problem can be seen as a parameterized version30

of the membership problem, where some elements of a matrix M are either
independent variables or variables linked by some equations. In contrast to the
original membership problem, where all values of M are constants, in vector
reachability we may have an infinite set of matrices that can transform a vector
x to y. Thus the decidability results for the membership cannot be directly35

applied to the vector reachability problem.
The scalar reachability can be viewed as a vector to hyperplane reachability

problem. Indeed, we can rewrite the equation x>My = λ as a system of two
equations: My = z and x>z = λ. So, the question becomes if there is a matrix
M ∈ S that maps a given vector y to a vector z that lies on a hyperplane40

x>z = λ. Because there are infinitely many vectors on a hyperplane, decidability
of the scalar reachability problem does not follow directly from the decidability
of the vector reachability problem.

Most of the problems such as membership, vector reachability and freeness
are undecidable for 3× 3 integer matrices. The undecidability proofs in matrix45

semigroups are mainly based on various techniques and methods of embedding
universal computations into three and four dimensional matrices and their prod-
ucts. The case of dimension two is the most intriguing one since there is some
evidence that if these problems are undecidable, then this cannot be proved us-
ing a construction similar to the one used for dimensions 3 and 4. In particular,50

there is no injective semigroup morphism from pairs of words over any finite
alphabet (with at least two elements) into complex 2 × 2 matrices [11], which
means that the coding of independent pairs of words in 2× 2 complex matrices
is impossible and the exact encoding of the Post Correspondence Problem or a
computation of a Turing Machine cannot be used directly for proving undecid-55

ability in 2×2 matrix semigroups over Z, Q or C. The only undecidability result
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in dimension two for the vector reachability and the membership problems has
been shown in the case of 2× 2 matrices over quaternions [12].

The main hypothesis is that problems for 2× 2 matrix semigroups over inte-
gers, rationals or complex numbers could be decidable, but not much is known60

about the status of these problems. There was some progress on the Member-
ship problem, which was shown to be decidable in SL(2,Z), and the Identity
problem, which was shown to be decidable in Z2×2 [13]. Later the decidability of
the Freeness problem (that is, to decide whether each element can be expressed
uniquely as a product of generating matrices) was shown for SL(2,Z) [14] and65

for upper-triangular 2 × 2 matrices with rational entries when the products
are restricted to certain bounded languages [15]. The Mortality, Identity and
Vector Reachability problems were shown to be at least NP-hard for SL(2,Z)
[16, 10], but for the modular group the Membership was shown to be decidable
in polynomial time by Gurevich and Schupp [17].70

Recently, the Membership problem for nonsingular matrices from Z2×2 was
proven to be decidable [18]. Furthermore, it was shown that the following
problems in SL(2,Z) are NP-complete: Identity, Membership [19] and Non-
Freeness [19, 20].

The algorithmic properties of SL(2,Z) are important in the context of many75

fundamental problems in hyperbolic geometry [21, 22, 23], dynamical systems
[24], Lorenz/modular knots [25], braid groups [26], particle physics, high energy
physics [27], M/string theories [28], ray tracing analysis, music theory [29] and
can lead to further decidability results in Z2×2 using matrix presentation in the
Smith normal form.80

This paper solves two open problems about the decidability of the vector
reachability problem for finitely generated semigroups of matrices from SL(2,Z)
and the point to point reachability (over rational numbers) for fractional linear

transformations fM (x) = ax+b
cx+d , where the associated matrix M =

[
a b
c d

]
be-

longs to SL(2,Z). The approach to solving these reachability problems for 2×285

matrix semigroups is based on the analysis of reachability paths between vec-
tors or points. This analysis is then used to translate the numerical reachability
problems into computational problems on words and regular languages. We also
present several extensions of our main results, give a geometric interpretation
of reachability paths, and use this technique to solve a special case of the scalar90

reachability problem.
The decidability proof of the vector reachability problem in dimension two

presented in this paper is the first nontrivial new result for solving vector reach-
ability problems since 1996 when it was shown that the problem is decidable
for any commutative matrix semigroup in any dimension [30] and for a special95

case of non-commuting matrices [31]. On the other hand, in the general case
of non-commuting matrices the problem is known to be undecidable already for
integer matrices in dimension three [32].
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2. Preliminaries

The integers and rationals are denoted by Z and Q, respectively, and SL(2,Z)100

is a group of 2×2 integer matrices with determinant 1. The notation a | b means
that a divides b, and a - b means that a does not divide b, when a and b are
integer numbers.

Definition 1. With each matrix M =

[
a b
c d

]
∈ SL(2,Z) we associate a frac-

tional linear map (also called Möbius transformation) fM : Q → Q defined105

as

fM (x) =
ax+ b

cx+ d
.

This definition can be extended to f : Q∪{∞} → Q∪{∞} in a natural way by
setting fM (∞) = a

c if c 6= 0, fM (∞) =∞ if c = 0, and fM (x) =∞ if cx+d = 0.
Note that we have fM1

◦ fM2
= fM1M2

for any matrices M1 and M2.

Let M1, . . . ,Mn be a finite collection of matrices. Then 〈M1, . . . ,Mn〉 de-110

notes the multiplicative semigroup (including the identity matrix) generated by
M1, . . . ,Mn.

Definition 2. The vector reachability problem (VRP) in SL(2,Z) is defined
as follows: Given two vectors x and y with integer coefficients and a finite
collection of matrices M1, . . . ,Mn from SL(2,Z), decide whether there exists a115

matrix M ∈ 〈M1, . . . ,Mn〉 such that Mx = y.

Definition 3. The reachability problem by fractional linear transformations
(FLT) in SL(2,Z) is defined as follows: Given two rational numbers x and y
and a finite collection of matrices M1, . . . ,Mn from SL(2,Z), decide whether
there exists a matrix M ∈ 〈M1, . . . ,Mn〉 such that fM (x) = y.120

3. Overview of the main results

The main result of our paper is that the vector reachability problem and
the reachability problem by fractional linear transformations for SL(2,Z) are
decidable (Theorem 16). Both proofs follow the same pattern. We will use the
fact that any matrix M from SL(2,Z) can be expressed as product of matrices125

S =

[
0 −1
1 0

]
and R =

[
0 −1
1 1

]
. So we can represent any M ∈ SL(2,Z) by a

word w in the alphabet Σ = {S,R}.
The main idea of the proof is to show that the solution set of the equation

Mx = y has the form {
B

[
1 1
0 1

]t
C : t ∈ Z

}
,

where B and C are some matrices from SL(2,Z) that can be computed in130

PTIME from x, y (Theorem 10). Similarly, the solution set of the equation
fM (x) = y can be presented as a union of two sets of such form (Theorem 12).
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After translating matrices into words, these sets become regular languages. On
the other hand, the language that corresponds to the semigroup 〈M1, . . . ,Mn〉
is also regular. Indeed, if Mi corresponds to the word wi, then the semigroup135

〈M1, . . . ,Mn〉 translates into the language (w1 + · · ·+ wn)
∗
. The last step of

the proof is to show that the emptiness problem of the intersection of two such
languages is decidable (Proposition 15).

Here is a more detailed description of our proofs. Let M =

[
a b
c d

]
, x =

[
x1

x2

]
and y =

[
y1

y2

]
. To show that the equation Mx = y defines a regular language we

must solve the following system of three equations in four unknown variables:

x1a+ x2b = y1 x1c+ x2d = y2 ad− bc = 1

Choosing b as a free parameter, we can reduce it to the following system of
linear congruence equations:

x2b ≡ y1 (mod x1)

y2b ≡ −x1 (mod y1)

x2y2b ≡ y1y2 − x1x2 (mod x1y1)

By Lemma 6 from Section 4, the above system either has no solutions or it has
a solution of the form b = b1t + b2, where t ∈ Z, and hence all coefficients of140

the matrix M are linear functions of t. In Proposition 9 we will show that such
matrices can be written in the form

M = B

[
1 k
0 1

]t
C,

where B, C are some matrices from SL(2,Z), k is a fixed integer number and
t ∈ Z is a free parameter. After that it is not hard to see that such solution
translates into a regular language.145

We will use a similar approach to prove that the equation fM (x) = y also
defines a regular language. In fact, we will do it by showing that the solution set
of fM (x) = y is equal to the union of the solution sets of the equations Mx = y
and Mx = −y for suitable vectors x and y.

The final step is to show that there is an algorithm that decides whether the150

intersection of two regular subsets of SL(2,Z) is empty or not. Our idea relies
on the fact that the intersection of two regular languages is regular, and that
the emptiness problem for regular languages is decidable. The problem here is
that we cannot apply these facts directly because for each matrix M ∈ SL(2,Z)
there are infinitely many words w ∈ {S,R}∗ that correspond to M , and only155

some of them may appear in the given language. However there is only one
reduced word that corresponds to M , that is, the word that does not have a
substring of the form SS or RRR. So, our solution is to take any automaton A
and turn it into a new automaton Ã that accepts the same language as A plus
all reduced words w that correspond to non-reduced words w′ accepted by A.160
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The construction of the automaton Ã was inspired by a similar construction
from [13]. Note that in SL(2,Z) we have an equality S2 = R3 = −I. Thus

to construct Ã we add to A a new ε-transition from a state q1 to a state q2 if
there is a run of A from q1 to q2 labelled by SS or RRR. We will apply this
procedure iteratively until no new ε-transitions can be added. However we need165

to keep track of sign changes when we add new ε-transitions. To achieve this
we will use signed automata, which are slight modifications of the usual finite
automata but they take into account such sign changes.

Now to solve the emptiness problem for the intersection of two regular sub-
sets of SL(2,Z), which are defined by regular languages L1 and L2, we take the170

signed automata A1 and A2 that accept L1 and L2, respectively, and construct
new automata Ã1 and Ã2 as described above. After that we can check whether
L(Ã1) ∩ L(Ã2) 6= ∅.

In the end of Section 5 we will show how to extend these decidability results
to arbitrary regular subsets of SL(2,Z), i.e., subsets that are defined by finite175

automata. Using this technique we will show how to algorithmically solve the
equation

Mx1
1 · · ·M

xk

k x = Ny1

1 · · ·N
yl

l y,

where x,y are given vectors from Z×Z, the matrices M1, . . . ,Mk and N1, . . . , Nl

are from SL(2,Z), and x1, . . . , xk and y1, . . . , yl are unknown non-negative in-
tegers.180

Furthermore, in Section 6 we will consider geometric properties of the solu-
tions of the equations Mx = y and fM (x) = y and show how to apply them to
prove that a special case of the scalar reachability problem is decidable.

4. Characterization of the matrices that satisfy the equations Mx = y
and fM(x) = y185

The characterization of the solution set of the equation Mx = y given in
Theorem 10 will follow from Propositions 7 and 9. First, we prove one simple
lemma which we will use several times in our arguments.

Lemma 4. Let x =

[
x1

x2

]
and y =

[
y1

y2

]
be vectors from Z × Z and M be a

matrix from SL(2,Z) such that Mx = y. Then gcd(x1, x2) = gcd(y1, y2).190

Proof. Take any k ∈ Z such that k | x1, x2 and let M =

[
a b
c d

]
. Then from

Mx = y we have y1 = ax1 + bx2 and y2 = cx1 + dx2. Thus k | y1, y2. Now
since M ∈ SL(2,Z), M−1 is also in SL(2,Z), and Mx = y is equivalent to
M−1y = x. So, if k ∈ Z is any number such that k | y1, y2, then k | x1, x2.
Therefore, gcd(x1, x2) = gcd(y1, y2).195

For the proof of Proposition 7 we will need the following two lemmas.
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Lemma 5. Consider a linear congruence equation

ax ≡ b (mod n).

If gcd(a, n) - b, then the equation has no solution. If gcd(a, n) | b, then all
solutions of the equation can be written in the form x ≡ c (mod n

gcd(a,n) ) for

some c. Moreover, there is a polynomial time algorithm that determines whether200

such an equation has a solution and if so, finds it.

Proof. Given a and n, using Euclidean algorithm we can find in polynomial time
d = gcd(a, n) and integer numbers u and v such that d = ua + vn. Equation
ax ≡ b (mod n) can be written as ax = b+ kn, where k ∈ Z. It is clear that if
d - b, then there is no solution. Otherwise, let b = b′d, a = a′d, and n = n′d.205

Then our equation is equivalent to a′x ≡ b′ (mod n′). Furthermore, we have
ua′ + vn′ = 1 and hence ua′ ≡ 1 (mod n′). Thus

x ≡ (ua′)x ≡ u(a′x) ≡ ub′ (mod n′).

Note that all these computations can be done in polynomial time.

Lemma 6. Consider a system of two linear congruence equations

a1x ≡ b1 (mod n1)

a2x ≡ b2 (mod n2)
(1)

Then either such system has no solution, or all its solutions are of the form210

x ≡ c (mod n) for some c and n | n1n2. Moreover, there is a polynomial time
algorithm that determines whether (1) has a solution and if so, finds it.

Proof. Using the algorithm of Lemma 5, we can solve each equation separately.
If one of them does not have a solution, then the system (1) also has no solution.
Suppose the first and second equation have the solutions215

x ≡ c1 (mod n′1) and x ≡ c2 (mod n′2),

respectively, which can be found in PTIME. Note that n′i | ni for i = 1, 2.
Let n = lcm(n′1, n

′
2). We can rewrite the solutions as

x ≡ c1, c1 + n′1, c1 + 2n′1, . . . , c1 + (n′′2 − 1)n′1 (mod n),

x ≡ c2, c2 + n′2, c2 + 2n′2, . . . , c2 + (n′′1 − 1)n′2 (mod n),

where n′′1 = n/n′2 and n′′2 = n/n′1. Let

A1 = {c1, c1 + n′1, c1 + 2n′1, . . . , c1 + (n′′2 − 1)n′1},
A2 = {c2, c2 + n′2, c2 + 2n′2, . . . , c2 + (n′′1 − 1)n′2}.

Note that A1∩A2 contains at most one element. Indeed, if c, c′ ∈ A1∩A2, then
n′1 | c− c′ and n′2 | c− c′. Hence n = lcm(n′1, n

′
2) | c− c′. Since |c− c′| < n, we220

have c = c′.
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Now if A1∩A2 is empty, then (1) has no solution. If A1∩A2 = {c}, then the
solution of (1) is x ≡ c (mod n). To find this solution in PTIME, observe the
following. The equations x ≡ c1 (mod n′1) and x ≡ c2 (mod n′2) are equivalent
to x = c1 + kn′1 and x = c2 + ln′2, respectively, where k, l ∈ Z. To find the225

intersection of these solutions we set c1 + kn′1 = c2 + ln′2, which is equivalent
to c1 − c2 = ln′2 − kn′1. Using Euclidean algorithm, we can find in PTIME
d = gcd(n′1, n

′
2) and integer numbers u, v such that

d = un′1 + vn′2. (2)

Obviously, if d - c1 − c2, then there is no solution. So suppose c1 − c2 = hd, for
some h ∈ Z. Multiplying (2) by h we obtain230

c1 − c2 = hd = (hu)n′1 + (hv)n′2 or c1 − (hu)n′1 = c2 + (hv)n′2.

Let c be the number in the set {0, . . . , n− 1} such that

c ≡ c1 − (hu)n′1 = c2 + (hv)n′2 (mod n).

Then x ≡ c (mod n) is the desired solution. It is not hard to see that the above
algorithm runs in polynomial time.

Proposition 7. Let x =

[
x1

x2

]
and y =

[
y1

y2

]
be two vectors from Z×Z, such that

x is not equal to the zero vector 0, and consider the matrix equation Mx = y,235

where M is an unknown matrix from SL(2,Z). Then either this equation does
not have a solution or all its solutions are given by

M = tA1 +A2,

where t is any integer number, A1, A2 are some matrices from Z2×2 such that
A1 is a nonzero matrix. Moreover, there is a polynomial time algorithm that
determines whether such an equation has a solution and if so, finds it.240

Proof. Let M =

[
a b
c d

]
be a matrix that satisfies the equations Mx = y and

det(M) = 1. So we have the following system of equations:

x1a+ x2b = y1

x1c+ x2d = y2

ad− bc = 1

(3)

Recall that by assumption x 6= 0. Without loss of generality, suppose that
x1 6= 0. In this case we have

a =
y1 − x2b

x1
and c =

y2 − x2d

x1
.

Substituting these values for a and c into the equation ad− bc = 1, we obtain245

(y1 − x2b)d− (y2 − x2d)b = x1
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or, equivalently, y1d − y2b = x1. If y1 = y2 = 0, then there is no solution
because by assumption x1 6= 0. Again, without loss of generality, assume that

y1 6= 0. Hence d =
x1 + y2b

y1
. If we choose b as a free parameter, then the

general solution of the system of equations (3) will be:

a =
y1 − x2b

x1
, d =

x1 + y2b

y1
,

c =
y2 − x2

x1+y2b
y1

x1
=
y1y2 − x1x2 − x2y2b

x1y1
.

We are interested only in integer solutions, that is, when a, c, and b are in Z,
which means that b must satisfy the following congruences:

x2b ≡ y1 (mod x1)

y2b ≡ −x1 (mod y1)

x2y2b ≡ y1y2 − x1x2 (mod x1y1)

Applying the algorithm from Lemma 6 two times, we can determine in PTIME250

whether the above system has a solution or not. If the solution exists, the
algorithm outputs it in the form b ≡ b2 (mod b1), where b1 | x1y1.

So, the coefficient b is of the form b = b1t + b2, where t ∈ Z. Substituting
this expression for b in the formulas for a, c, and d we obtain:

a =
y1 − x2b2 − x2b1t

x1
= a1t+ a2, d =

x1 + y2b2 + y2b1t

y1
= d1t+ d2,

c =
y1y2 − x1x2 − x2y2b2 − x2y2b1t

x1y1
= c1t+ c2,

where ai, ci, and di, for i = 1, 2, are some constants which are necessarily in Z255

because if we let t = 0 or t = 1 in the above expressions they must evaluate to
integer numbers. Therefore, the solution to the system of equations (3) can be
written as:

M =

[
a1t+ a2 b1t+ b2
c1t+ c2 d1t+ d2

]
= t

[
a1 b1
c1 d1

]
+

[
a2 b2
c2 d2

]
,

where t is any integer number. To complete the proof we set A1 =

[
a1 b1
c1 d1

]
and A2 =

[
a2 b2
c2 d2

]
. Note that A1 is a nonzero matrix since at least one of its260

coefficients, namely b1, is not equal to zero. Furthermore, the above algorithm
runs in polynomial time because the only nontrivial step is to solve the system
of linear congruence equations, which according to Lemma 6 can be done in
PTIME.

For the next proposition we will need the following theorem about the Smith265

normal form of a matrix.
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Theorem 8 (Smith normal form [33]). For any nonzero matrix A ∈ Z2×2, there
are matrices B,C from SL(2,Z) such that

A = B

[
t1 0
0 t2

]
C

for some t1, t2 ∈ Z such that t1 6= 0 and t1 | t2. Moreover, B, C, t1, t2 can be
computed in polynomial time.270

Proposition 9. Let A1 and A2 be matrices from Z2×2 such that A1 is a nonzero
matrix and, for every t ∈ Z, we have tA1 + A2 ∈ SL(2,Z). Then there are
matrices B and C from SL(2,Z) and k ∈ Z such that

tA1 +A2 = BT ktC for every t ∈ Z,

where T =

[
1 1
0 1

]
∈ SL(2,Z). Moreover, B, C, and k can be computed in

polynomial time.275

Proof. Let A1 =

[
a1 b1
c1 d1

]
and A2 =

[
a2 b2
c2 d2

]
. By the assumption, for every

t ∈ Z, we have

∣∣∣∣a1t+ a2 b1t+ b2
c1t+ c2 d1t+ d2

∣∣∣∣ = 1. That is

(a1t+ a2)(d1t+ d2)− (b1t+ b2)(c1t+ c2) = 1 or

(a1d1 − b1c1)t2 + (a1d2 + a2d1 − b1c2 − b2c1)t+ a2d2 − b2c2 = 1 for all t ∈ Z.

Therefore, a1d1 − b1c1 = 0, a1d2 + a2d1 − b1c2 − b2c1 = 0, and a2d2 − b2c2 = 1.
In particular, det(A1) = 0 and det(A2) = 1.

By Theorem 8, there are matrices F and G from SL(2,Z) such that

A1 = F

[
k 0
0 l

]
G

for some k, l ∈ Z such that k | l. Since det(A1) = 0 we have that kl = 0.
However if k = 0 and l = 0, then A1 is equal to the zero matrix, contrary to the280

assumption. Hence we must have that k 6= 0 and l = 0.

Now F−1(tA1 + A2)G−1 =

[
kt+ a b
c d

]
, for some a, b, c, d ∈ Z. Note that

since det(F ) = det(G) = det(tA1 +A2) = 1, we have∣∣∣∣kt+ a b
c d

∣∣∣∣ = dkt+ ad− bc = 1 for every t ∈ Z.

Hence dk = 0 and so d = 0. Substituting d = 0 in the above equation, we
obtain bc = −1. Since b and c are integers, there are only two possibilities:285

b = 1, c = −1, or b = −1, c = 1. So the above matrix actually looks like

F−1(tA1 +A2)G−1 =

[
kt+ a ∓1
±1 0

]
.
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Therefore,
T−c(kt+a)F−1(tA1 +A2)G−1 = D,

where c = ±1 and D =

[
0 ∓1
±1 0

]
∈ SL(2,Z). Hence

tA1 +A2 = FT (ck)tT caDG.

Note that F and T caDG are in SL(2,Z). This completes the proof. The bound
on complexity follows from the fact that F and G can be computed in PTIME290

by Theorem 8.

As a corollary of Propositions 7 and 9 we obtain the following theorem.

Theorem 10. Let x =

[
x1

x2

]
and y =

[
y1

y2

]
be vectors from Z × Z such that

x 6= 0, and consider the matrix equation Mx = y, where M is an unknown
matrix from SL(2,Z). Then either this equation does not have a solution or all295

its solutions are given by the following formula

M = B

[
1 k
0 1

]t
C, where t ∈ Z.

In the above expression B and C are some matrices from SL(2,Z), and k is an
integer number. Moreover, there is a polynomial time algorithm that determines
whether such an equation has a solution and if so, finds the suitable matrices
B, C and the integer k.300

In Section 6 we will give a geometric interpretation of reachability paths
(Figure 2 and Proposition 18), using which we can prove the following corollary.1

Corollary 11. The value of the parameter k in Theorem 10 is equal to 1.

Proof. Our proof relies on Proposition 18 from Section 6. We need to show that

{BT ktC : t ∈ Z} = {BT tC : t ∈ Z}.

Note that the inclusion {BT ktC : t ∈ Z} ⊆ {BT tC : t ∈ Z} is obvious. On the305

other hand, by Proposition 18, the vectors u = Cx and v = B−1y are equal to

each other and have the form

[
d
0

]
. Since T =

[
1 1
0 1

]
, it is easy to check that

Tu = u = v. From this we can conclude that T tu = v and hence

BT tCx = y for any t ∈ Z.

1Even though we use Corollary 11 in the proofs of Theorem 12 and Proposition 20, it is
not essential there for proving decidability. Namely, all references to Corollary 11 in these
proofs can be replaced by references to Theorem 10, at the same time replacing T with Tk

where appropriate.
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In other words, matrices of the form BT tC transform x to y. However, in
Theorem 10 we proved that all such matrices belong to the set {BT ktC : t ∈ Z}.310

Therefore, we obtain the inclusion {BT tC : t ∈ Z} ⊆ {BT ktC : t ∈ Z}, and this
proves the corollary.

Theorem 10 provides us with a characterization of the matrices M ∈ SL(2,Z)
that map vector x to vector y. This characterization will be used later to
prove the decidability of the vector reachability problem. We now give a similar315

characterization of the matrices M ∈ SL(2,Z) for which the fractional linear
transformation fM maps a number x to number y. In fact, we will do this by
reducing the problem to finding the solutions of the equation Mx = y which
we discussed above.

Theorem 12. Let x and y be rational numbers and let F(x, y) be the following320

set of matrices from SL(2,Z):

F(x, y) = {M ∈ SL(2,Z) : fM (x) = y}.

Then F(x, y) = F1(x, y) ∪ F2(x, y), where each Fi(x, y) is either empty or has
the form

Fi(x, y) = {BiT
tCi : t ∈ Z},

where Bi and Ci are some matrices from SL(2,Z). Moreover, there is a polyno-
mial time algorithm that determines whether each Fi(x, y) is empty or not and325

in the latter case finds corresponding matrices Bi and Ci.

Proof. Let us write the numbers x and y as x = x1

x2
and y = y1

y2
, where we

assume that gcd(x1, x2) = gcd(y1, y2) = 1. Consider the equation fM (x) = y,

where M =

[
a b
c d

]
is an unknown matrix from SL(2,Z). We can rewrite it as

ax1

x2
+ b

cx1

x2
+ d

=
y1

y2
or

ax1 + bx2

cx1 + dx2
=
y1

y2
. (4)

Consider the vectors x =

[
x1

x2

]
, y =

[
y1

y2

]
, and z =

[
z1

z2

]
, where z is the vector330

with coordinates z1 = ax1 + bx2 and z2 = cx1 + dx2. So we have that z = Mx.
In this notation Equation (4) is equivalent to the fact that vector z = Mx
belongs to the set {ky : k ∈ Z}.

Recall that gcd(x1, x2) = 1 and hence, by Lemma 4, we also have that
gcd(z1, z2) = 1. Thus if z = ky for some k ∈ Z, then we must have that
k = ±1. In other words, we showed that Equation (4) is equivalent to two
matrix equations: Mx = y and Mx = −y. So we have that

F(x, y) = F1(x, y) ∪ F2(x, y), where

F1(x, y) = {M ∈ SL(2,Z) : Mx = y} and

F2(x, y) = {M ∈ SL(2,Z) : Mx = −y}.
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Note that x 6= 0 because x2 6= 0. Hence by Theorem 10 and Corollary 11, each
Fi(x, y) is either empty or has the form Fi(x, y) = {BiT

tCi : t ∈ Z} for some335

Bi and Ci from SL(2,Z) which can be computed in polynomial time.

5. Decidability of VRP and FLT

We now prove that the intersection emptiness problem of two regular subsets
in SL(2,Z) is decidable (Proposition 15). Then in the proof of Theorem 16 we
will show that the solution sets of the equations Mx = y and fM (x) = y are340

regular subsets of SL(2,Z). Using these results and the fact that the semigroups
in SL(2,Z) are also regular subsets, we will conclude that the vector reachability
problem and the reachability problem by fractional linear transformations in
SL(2,Z) are decidable.

Consider an alphabet Σ = {S,R} consisting of two symbols S and R and345

define the mapping ϕ : Σ→ SL(2,Z) as follows:

ϕ(S) =

[
0 −1
1 0

]
and ϕ(R) =

[
0 −1
1 1

]
.

We can extend this mapping to the morphism ϕ : Σ∗ → SL(2,Z) in a natural
way. The matrices ϕ(S) and ϕ(R) are in fact generators of SL(2,Z), so ϕ is
surjective. We call a word w ∈ Σ∗ reduced if it does not have substrings of the
form SS or RRR. In our proof we will make use of the following well-known350

fact.

Theorem 13 ([34, 35, 36]). For every M ∈ SL(2,Z), there exists a unique
reduced word w ∈ Σ∗ such that either M = ϕ(w) or M = −ϕ(w).

Definition 14. A signed automaton A = (Σ, Q, I,∆, F+, F−) is a nondeter-
ministic finite automaton whose final states are divided into two (not necessarily355

disjoint) subsets F+ and F−.
A signed language accepted by a signed automaton A is a pair L(A) =

(L(A)+, L(A)−), where L(A)+ and L(A)− consists of the words w ∈ Σ∗ for
which there is a run of A that ends in the set F+ or F−, respectively. Note
that we do not assume that L(A)+ and L(A)− are disjoint.360

Let L = (L+, L−) be a signed language, then we define a regular subset of
SL(2,Z) corresponding to this language as

ϕ(L) = {ϕ(w) : w ∈ L+} ∪ {−ϕ(w) : w ∈ L−}.

The following proposition is an important ingredient of our main results.

Proposition 15. There is an algorithm that for any given regular signed lan-
guages L1 and L2 over the alphabet Σ, decides whether ϕ(L1) ∩ ϕ(L2) is empty365

or not.

Proof. We will describe a construction that turns any signed automaton A over
Σ into a new signed automaton Ã such that

13



• ϕ(L(Ã)) = ϕ(L(A)) and

• for every M ∈ ϕ(L(Ã)), there is a reduced word w such that M = ϕ(w)370

or M = −ϕ(w) and w ∈ L(Ã)+ or w ∈ L(Ã)−, respectively.

Suppose A = (Σ, Q, I,∆, F+, F−), then define the automaton Ã as follows:

Ã = (Σ, Q̃, Ĩ, ∆̃, F̃+, F̃−), where

• Q̃ = Q× {+,−},

• Ĩ = I × {+},375

• F̃+ = {(q,+) : q ∈ F+} ∪ {(q,−) : q ∈ F−},

• F̃− = {(q,+) : q ∈ F−} ∪ {(q,−) : q ∈ F+},

To define ∆̃, we first set ∆̃ = ∅. Then for each transition (q1, X, q2) ∈ ∆, we add

the following two transition into ∆̃: ((q1,+), X, (q2,+)) and ((q1,−), X, (q2,−)).

Furthermore, we iteratively add new ε-transitions to ∆̃ as follows: if there380

is a run of Ã from (q1, s1) to (q2, s2) labelled by SS or RRR, then we add an
ε-transition from (q1, s1) to (q2, s̄2), where s̄2 is the sign opposite to s2. For
instance, if there is a run from (q1,+) to (q2,+) labelled by RRR, then we add
an ε-transition from (q1,+) to (q2,−) (see Figure 1 for an illustration). We
continue this process until no new ε-transitions can be added.

A:

Ã:

q0 q1 q2 q3 q4

F+

q5

F−

R R R S R

q0+ q1+ q2+ q3+ q4+

F+

q5+

F−

q0− q1− q2− q3− q4−

F−

q5−

F+

R R R S R

R R R S R

ε

ε

Figure 1: An example of an automaton A (above) and its corresponding automaton Ã (below).
The final states from F+ and F− are marked by the labels F+ and F−, respectively.

385

Note that in SL(2,Z) we have ϕ(S)2 = ϕ(R)3 = −I, and this is reflected in
the change of sign of the end state of a new ε-transition. It is not hard to see
that Ã is indeed the desired automaton.

Let A1 and A2 be two finite signed automata such that L(A1) = L1 and
L(A2) = L2. To check whether ϕ(L1) ∩ ϕ(L2) is empty or not, we take the390
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automata A1 and A2 and construct the new automata Ã1 and Ã2 as described
above.

We now prove that

ϕ(L1) ∩ ϕ(L2) 6= ∅ iff L(Ã1)+ ∩ L(Ã2)+ 6= ∅ or L(Ã1)− ∩ L(Ã2)− 6= ∅.

Indeed, suppose that M ∈ ϕ(L1) ∩ ϕ(L2). By the above construction we have

ϕ(L(Ãi)) = ϕ(Li), for i = 1, 2, and there is a unique reduced word w ∈ Σ∗ such395

that M = ϕ(w) or M = −ϕ(w) and w ∈ L(Ãi)
+ or w ∈ L(Ãi)

−, respectively,

for both i = 1, 2. In the fist case we have w ∈ L(Ã1)+ ∩ L(Ã2)+ and in the

second case w ∈ L(Ã1)− ∩ L(Ã2)−. The implication in the other direction is
trivial.

To complete the proof we note that the intersection of regular languages is400

again regular, and the emptiness problem for regular languages is decidable.

We are now ready to prove our main results.

Theorem 16. The vector reachability problem (VRP) and the reachability prob-
lem by fractional linear transformations (FLT) in SL(2,Z) are decidable.

Proof. Suppose M1, . . . ,Mn is a given finite collection of matrices from SL(2,Z).405

Let w1, . . . , wn ∈ Σ∗ be some words, not necessarily reduced, such that Mi =
ϕ(wi), for i = 1, . . . , n. Define the language Lsemigr that corresponds to the
semigroup 〈M1, . . . ,Mn〉 as Lsemigr = (w1 + w2 + · · ·+ wn)

∗
.

Recall that in the vector reachability problem we are given two vectors x
and y from Z×Z, and we ask if there is a matrix M ∈ 〈M1, . . . ,Mn〉 such that410

Mx = y. We want to construct a regular language Lvrp
x,y that corresponds to

these matrices.
If x = 0 and y 6= 0, then we set Lvrp

x,y = ∅ because in this case the equation
Mx = y does not have a solution. On the other hand, if x = 0 and y = 0, then
we set Lvrp

x,y = {S,R}∗ because any matrix M ∈ SL(2,Z) satisfies the equation415

M0 = 0.
Now assume that x 6= 0. Then by Theorem 10, the matrix equation Mx = y

either has no solution, or its solution has the form {BT tC : t ∈ Z}, where

T =

[
1 1
0 1

]
, and B and C are some matrices from SL(2,Z). Moreover, B and

C can be computed from x and y in PTIME. In the case when Mx = y has no420

solution, we set Lvrp
x,y = ∅. If the solution set in non-empty, then we can rewrite

it as
{BT tC : t ∈ Z} = {BT tC : t ≥ 0} ∪ {BT−tC : t ≥ 0}.

Let u and v be words from Σ∗ such that B = ϕ(u) and C = ϕ(v). It is easy to
check that T = ϕ(S3R) and T−1 = ϕ(R5S). Hence

Lvrp
x,y = u(S3R)

∗
v + u(R5S)

∗
v

is a regular language that describes the solutions of the equation Mx = y in425

SL(2,Z).
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In a similar way we can construct a regular language Lflt
x,y that corresponds

to the reachability problem by fractional linear transformations from x to y. By
Theorem 12, the set F(x, y) of matrices from SL(2,Z) that satisfy the equation
fM (x) = y is equal to F(x, y) = F1(x, y)∪F2(x, y), where each Fi(x, y) is either430

empty or has the form Fi(x, y) = {BiT
tCi : t ∈ Z}, where T is as above, and Bi

and Ci are some matrices from SL(2,Z). All these matrices can be computed
in PTIME from x and y.

We define Lflt
x,y as the union Lflt

x,y = L1 ∪L2 of two regular languages L1 and
L2. If Fi(x, y) is empty, then we set Li = ∅. Otherwise, let ui and vi be words435

from Σ∗ such that Bi = ϕ(ui) and Ci = ϕ(vi). Then we can define Li as

Li = ui(S
3R)

∗
vi + ui(R

5S)
∗
vi.

Thus we defined a regular language Lflt
x,y that corresponds the solution set of

the equation fM (x) = y in SL(2,Z).
We remind that in Proposition 15 we work with signed languages. Therefore,

in what follows we convert every regular language L that we have constructed440

so far into a corresponding signed language (L, ∅).
Finally, the vector reachability problem for x and y has a solution if and

only if
ϕ
(
(Lvrp

x,y, ∅)
)
∩ ϕ
(
(Lsemigr , ∅)

)
6= ∅.

Similarly, the reachability problem by fractional linear transformations for x
and y has a solution if and only if445

ϕ
(
(Lflt

x,y, ∅)
)
∩ ϕ
(
(Lsemigr , ∅)

)
6= ∅.

By Proposition 15 these questions are algorithmically decidable.

Remark 1. In the definition of the vector reachability problem we consider
vectors x and y only with integer coeffitients. However, the above theorem still
holds if we allow x and y to have rational coeffitients. Indeed, the equation
Mx = y is equivalent to M(λx) = λy for any λ 6= 0. So if we multiply the450

equation Mx = y by the greatest common devisor of all coefficients, we can
transform it to an equivalent equation with integer coefficients.

Remark 2. A characterization of the matrices M from SL(2,Z) that satisfy
the equation Mx = y, which is given in Theorem 10, can be computed in
polynomial time. However the overall complexity of the algorithm is EXPTIME455

if the entries of the matrices are given in binary presentation. This is due to
the fact that a reduced word w that corresponds to a given matrix M , i.e., such
that M = ±ϕ(w), has length exponential in the binary presentation of M . So
computing symbolic presentations of given matrices and constructing automata
for the languages Lsemigr , Lvrp

x,y and Lflt
x,y takes exponential time. The next460

steps of the algorithm take only polynomial time in the size of these automata.
However the PTIME algorithm for computing all mappings from x to y could be
combined with the result of Gurevich and Schupp [17] to produce a polynomial
time algorithm for the vector reachability problem over the modular group.
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In the rest of this section we will give some generalizations of the above465

theorem.
Consider a semigroup generated by matrices M1, . . . ,Mn from SL(2,Z). As

we showed above, this semigroup can be described by a regular language which
we called Lsemigr . It’s not hard to see that the proof of Theorem 16 remains
valid if we replace Lsemigr by any other regular language, that is, a language470

defined by a finite automaton or a labelled transition system.

Proposition 17. Suppose that we are given a finite collection of matrices
M1, . . . ,Mn from SL(2,Z) and a regular language L ⊆ {1, . . . , n}∗. Consider
the following generalized reachability problems:

• Generalized vector reachability problem. Given two vectors x and475

y with integer coefficients, decide whether there exists a word i1 . . . ik from
the language L such that Mi1 · · ·Mikx = y.

• Generalized reachability problem by fractional linear transfor-
mations. Given two rational numbers x and y, decide whether there
exists a word i1 . . . ik from L such that fMi1

···Mik
(x) = y.480

Then the above generalized reachability problems are decidable.

Proof. The proof of this proposition is similar to the proof of Theorem 16.
Namely, it follows from the fact that a regular language L defines a regular
subset in SL(2,Z) and Proposition 15, where we proved that the emptiness
problem for the intersection of two regular subsets in SL(2,Z) is decidable.485

As an application of Proposition 17 let us consider the follow matrix equation

Mx1
1 · · ·M

xk

k x = Ny1

1 · · ·N
yl

l y, (5)

where x1, . . . , xk and y1, . . . , yl are non-negative integers. In [30] it was proved
that if M1, . . . ,Mk and N1, . . . , Nl are commuting n × n matrices over alge-
braic numbers and x,y are vectors with algebraic coefficients, then it is decid-490

able in polynomial time whether Equation (5) has a solution. On the other
hand, in [37] it was shown that there is no algorithm for solving the equation
Mx1

1 · · ·M
xk

k = Z, where M1, . . . ,Mk are integer n×n matrices and Z is the zero
matrix. Using the construction of Kronecker (or tensor) product of matrices, it
is possible to show that the above-mentioned result implies that Equation (5)495

is algorithmically undecidable in general for non-commuting integer matrices
M1, . . . ,Mk and N1, . . . , Nl.

However using Proposition 17 we can algorithmically solve Equation (5) in
the case when M1, . . . ,Mk and N1, . . . , Nl are matrices from SL(2,Z) and the
vectors x,y have integer coefficients. Indeed, since the matrices from SL(2,Z)500

are invertible, we can rewrite (5) as

(N−1
l )

yl · · · (N−1
1 )

y1
Mx1

1 · · ·M
xk

k x = y.
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It is not hard to see that

{(N−1
l )

yl · · · (N−1
1 )

y1
Mx1

1 · · ·M
xk

k : x1, . . . , xk, y1, . . . , yl ∈ N ∪ {0} }

is a regular subset of SL(2,Z). Hence this problem is decidable. Using the same
idea we can algorithmically solve Equation (5) also in the case when x1, . . . , xk
and y1, . . . , yl are arbitrary integers and the matrices are from SL(2,Z).505

6. Geometric properties and the scalar reachability problem

In this section we will discuss a geometric interpretation of both reachability
problems (Figure 2), which we will use later to prove that a special case of the
scalar reachability problem is decidable (Proposition 20).

Proposition 18. By Theorem 10, the set of matrices M from SL(2,Z) that510

transform a vector x =

[
x1

x2

]
to a vector y =

[
y1

y2

]
has the form

F = {BT ktC : t ∈ Z}.

Consider the equation BT ktCx = y and let us make the following change of
variables: u = Cx and v = B−1y:

x
C−−→ u

Tkt

−−−→ v
B−−→ y.

Then u = v =

[
d
0

]
, where |d| = gcd(x1, x2) = gcd(y1, y2).

Proof. In the new notations, the equation BT ktCx = y can be written as515

T ktu = v, and this equality holds for any t ∈ Z. Now let u =

[
u1

u2

]
and

v =

[
v1

v2

]
. Hence we have

[
1 kt
0 1

] [
u1

u2

]
=

[
v1

v2

]
, which is equivalent to u2 = v2

and u1 + ktu2 = v1, for any t ∈ Z. So, we must have u2 = v2 = 0 and hence
u1 = v1.

Therefore, the vectors u and v have the form u = v =

[
d
0

]
for some d ∈ Z.520

Moreover, since u = Cx, we obtain from Lemma 4 that |d| = gcd(x1, x2) =
gcd(y1, y2).

Using the above proposition, we can give the following geometric interpre-
tation of the transformation BT tCx = y: first, we apply C to x and arrive at

u =

[
d
0

]
, then we loop at u for t many times using T , and finally apply B to525

move from u to y (see Figure 2 on the left).
Similarly, we have the following geometric interpretation of the fractional

linear transformation y = fBT tC(x) = fB ◦ fT t ◦ fC(x): first it maps x to ∞
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x

y

(d, 0) C

B

T t

∞
x y

fT t

fC

fB

Figure 2: Geometric interpretation of the linear transformation y = BT tCx (left) and of the
fractional linear transformation y = fBT tC(x) (right).

using fC , then loops at ∞ for t many times using fT , and finally maps ∞ to y
using fB (see Figure 2 on the right).530

We now show how to apply the geometric interpretation of the vector reach-
ability problem to solve a special case of the scalar reachability problem.

Definition 19. The scalar reachability problem in SL(2,Z) is stated as follows:

Let [z1, z2] and

[
x1

x2

]
be vectors from Z × Z and let λ be an integer number.

We are also given a finite collection of matrices M1, . . . ,Mn from SL(2,Z). The535

question is to decide whether there exists a matrix M ∈ 〈M1, . . . ,Mn〉 which

satisfies the equation [z1, z2]M

[
x1

x2

]
= λ.

We will consider a special case of this problem when z2 = 1 and λ = 1.
Our proof relies on the characterization from Theorem 10 and Corollary 11
and on Proposition 15 in which we showed that the emptiness problem for the540

intersection of two regular subsets in SL(2,Z) is decidable.

Proposition 20. Suppose that the above equation has the form

[a, 1]M

[
x1

x2

]
= 1, (6)

where a, x1 and x2 are some integer numbers. Then this special case of the
scalar reachability problem is decidable.

Proof. The general idea of the proof is the same as in Theorem 16, that is,545

we will show that the set of matrices M ∈ SL(2,Z) that satisfy Equation (6)
can be described by a regular language. First, let us consider a geometric
interpretation of this problem. We can rewrite Equation (6) as a system of two

equations: M

[
x1

x2

]
=

[
y1

y2

]
and ay1 + y2 = 1. So, M satisfies Equation (6) if

and only if it maps a fixed vector x =

[
x1

x2

]
to some vector y =

[
y1

y2

]
that lies550

on the line L described by the equation ay1 + y2 = 1. In other words, we have a
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vector to line reachability problem for the line L that is defined by the equation
ay1 + y2 = 1.

Note that if a vector y lies of the line ay1 + y2 = 1, then gcd(y1, y2) = 1.
Hence by Lemma 4, Equation (6) has a solution only if gcd(x1, x2) = 1. So,555

from now on we assume that gcd(x1, x2) = 1.
By Corollary 11, any M ∈ SL(2,Z) that maps x to a vector y on the line L

has the form M = BT tC, where B and C are some matrices from SL(2,Z) and
t ∈ Z. Geometrically, the transformation y = BT tCx goes via the point (1, 0)
as shown in Figure 3.560

Note that the matrices B and C above depend on the vector y as a param-
eter. Here we prove a useful lemma which will imply that we can choose only

one matrix C that maps x to

[
1
0

]
independently of the vector y.

Lemma 21. Let x =

[
x1

x2

]
and y =

[
y1

y2

]
be any vectors from Z × Z such

that gcd(x1, x2) = gcd(y1, y2) = d. Let d1 and d2 be any integer numbers with565

|d1| = |d2| = d and let A1, B1 and A2, B2 by any matrices from SL(2,Z) such

that Bix =

[
di
0

]
and Ai

[
di
0

]
= y, for i = 1, 2. Then

{A1T
tB1 : t ∈ Z} = {A2T

tB2 : t ∈ Z}.

In other words, the following diagrams define the same set of matrices that map
x to y.

x
[
d1
0

]
y

B1 A1

T t

x
[
d2
0

]
y

B2 A2

T t

570

Proof. For i = 1, 2, define Fi = {AiT
tBi : t ∈ Z}. We need to show that

F1 = F2. Suppose that M ∈ F1, that is, M = A1T
t1B1 for some t1 ∈ Z. We

want to show that M ∈ F2, that is, M = A2T
t2B2 for some t2 ∈ Z. First, let

us write M as
M = A2(A−1

2 A1)T t1(B1B
−1
2 )B2.

Note that575

A−1
2 A1

[
d1

0

]
=

[
d2

0

]
and B1B

−1
2

[
d2

0

]
=

[
d1

0

]
.

Suppose A−1
2 A1 =

[
a1 a2

a3 a4

]
and B1B

−1
2 =

[
b1 b2
b3 b4

]
. Then we have a1d1 = d2,

a3d1 = 0 and b1d2 = d1, b3d2 = 0. Hence a3 = b3 = 0.
Now we need to consider two cases: (1) d1 = d2 and (2) d1 = −d2. In the

first case a1 = b1 = 1 and in the second case a1 = b1 = −1. Note that A−1
2 A1
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and B1B
−1
2 are matrices from SL(2,Z). Therefore, in the first case we must580

have that

A−1
2 A1 =

[
1 a2

0 1

]
and B1B

−1
2 =

[
1 b2
0 1

]
and in the second case we must have that

A−1
2 A1 =

[
−1 a2

0 −1

]
and B1B

−1
2 =

[
−1 b2
0 −1

]
.

So, in the first case we obtain

M = A2T
a2T t1T b2B2 = A2T

a2+t1+b2B2,

and in the second case we have

M = A2(−T−a2)T t1(−T−b2)B2 = A2T
−a2+t1−b2B2.

Hence in both cases M is in F2. Similarly, we can show that if M ∈ F2, then585

M ∈ F1.

By Lemma 21, we can choose any matrix C from SL(2,Z) that maps a

vector x to the vector

[
1
0

]
, and for each y on the line L we can choose any

matrix By that maps

[
1
0

]
to the vector y. Then the solution of Equation (6)

will be described by the following set590

F = {ByT
tC : y ∈ L and t ∈ Z}.

Figure 3 gives geometric interpretation of this solution.

x

y

(1, 0)
L

C
By

T t

Figure 3: Geometric interpretation of the scalar reachability problem.

We need to choose By in such a way that the set F becomes regular. If

y =

[
y1

y2

]
is a vector on the line L, then we have ay1 +y2 = 1. As one can check,

if we let By =

[
y1 −1

−ay1 + 1 a

]
then By ∈ SL(2,Z) and By

[
1
0

]
= y.
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Since every entry of By is a linear function of y1, we obtain by Proposition 9595

that By = AT ky1D, where A and D are some matrices from SL(2,Z) and k is
some integer number (in fact, one can show that k = 1). Finally, we can write
all solutions of Equation (6) as

F = {AT ky1DT tC : y1 ∈ Z and t ∈ Z}.

This is clearly a regular set and, therefore, the scalar reachability problem is
decidable.600
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