772 research outputs found

    Measuring single cell divisions in human tissues from multi-region sequencing data

    Get PDF
    Both normal tissue development and cancer growth are driven by a branching process of cell division and mutation accumulation that leads to intra-tissue genetic heterogeneity. However, quantifying somatic evolution in humans remains challenging. Here, we show that multi-sample genomic data from a single time point of normal and cancer tissues contains information on single-cell divisions. We present a new theoretical framework that, applied to whole-genome sequencing data of healthy tissue and cancer, allows inferring the mutation rate and the cell survival/death rate per division. On average, we found that cells accumulate 1.14 mutations per cell division in healthy haematopoiesis and 1.37 mutations per division in brain development. In both tissues, cell survival was maximal during early development. Analysis of 131 biopsies from 16 tumours showed 4 to 100 times increased mutation rates compared to healthy development and substantial inter-patient variation of cell survival/death rates

    CD8+ cell somatic mutations in multiple sclerosis patients and controls-Enrichment of mutations in STAT3 and other genes implicated in hematological malignancies

    Get PDF
    Funding Information: This study has been financially supported by research grants from the Helsinki University Hospital, University of Helsinki, the Multiple Sclerosis Foundation of Finland, the Finnish Cultural Foundation, Biogen Finland, Sanofi- Genzyme, Roche and Novartis. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Publisher Copyright: © 2021 Valori et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Somatic mutations have a central role in cancer but their role in other diseases such as common autoimmune disorders is not clear. Previously we and others have demonstrated that especially CD8+ T cells in blood can harbor persistent somatic mutations in some patients with multiple sclerosis (MS) and rheumatoid arthritis. Here we concentrated on CD8+ cells in more detail and tested (i) how commonly somatic mutations are detectable, (ii) does the overall mutation load differ between MS patients and controls, and (iii) do the somatic mutations accumulate non-randomly in certain genes? We separated peripheral blood CD8+ cells from newly diagnosed relapsing MS patients (n = 21) as well as matched controls (n = 21) and performed next-generation sequencing of the CD8+ cells' DNA, limiting our search to a custom panel of 2524 immunity and cancer related genes, which enabled us to obtain a median sequencing depth of over 2000x. We discovered nonsynonymous somatic mutations in all MS patients' and controls' CD8+ cell DNA samples, with no significant difference in number between the groups (p = 0.60), at a median allelic fraction of 0.5% (range 0.2- 8.6%). The mutations showed statistically significant clustering especially to the STAT3 gene, and also enrichment to the SMARCA2, DNMT3A, SOCS1 and PPP3CA genes. Known activating STAT3 mutations were found both in MS patients and controls and overall 1/5 of the mutations were previously described cancer mutations. The detected clustering suggests a selection advantage of the mutated CD8+ clones and calls for further research on possible phenotypic effects.Peer reviewe

    Detection of somatic variants from genomic data and their role in neurodegenerative diseases

    Get PDF
    [eng] Somatic mutations are those that arise after the zygote is formed and are therefore inherited by a fraction of the cells of an individual. Their relevance in certain skin diseases has been known for almost half a decade and cancer, the most common disease caused by somatic mutations, has been extensively studied. Yet, their prevalence in healthy individuals as well as their putative role in other human disorders such as neurodegenerative diseases are still unanswered questions. Furthermore, accurate detection of somatic variants from bulk sequencing data still poses a technical challenge. This work focuses on detecting and circumventing the biases that hinder their identification. Using this knowledge, we identified somatic point mutations in the exomes of five different tissues from sporadic Parkinson disease patients. We also assessed the detection of somatic copy number variants from array CGH data using two tissues from Alzheimer disease patients. Finally, we participated in the identification of somatic variants in an extensive genomic dataset from a neurotypical individual.[spa] Las mutaciones somáticas son aquellas que surgen tras la formación del cigoto y son, por tanto, heredadas por una fracción de las células de un individuo. Su importancia en algunas enfermedades cutáneas se conoce desde hace casi medio siglo. El cáncer, la enfermedad más común causada por mutaciones somáticas, se ha estudiado extensamente. Sin embargo, su prevalencia en individuos sanos, así como su potencial relevancia en otras afecciones humanas, como las enfermedades neurodegenerativas, son cuestiones todavía por resolver. Asimismo, detectar variantes somáticas con precisión en datos de secuenciación de muestras homogeneizadas sigue siendo complejo técnicamente. Este trabajo se centra en la detección y resolución de los sesgos que dificultan su identificación. Aplicando este conocimiento, identificamos mutaciones somáticas de una sola base en datos de secuenciación del exoma de cinco tejidos diferentes de pacientes de la enfermedad de Parkinson. También evaluamos la detección de variantes de número de copia somáticas en datos de array CGH de dos tejidos de pacientes de Alzheimer. Finalmente, participamos en la identificación de variantes somáticas en un amplio conjunto de datos genómicos de un individuo neurotípico

    Hepatocytes undergo punctuated expansion dynamics from a periportal stem cell niche in normal human liver

    Get PDF
    Background & Aims: While normal human liver is thought to be generally quiescent, clonal hepatocyte expansions have been observed, though neither their cellular source nor their expansion dynamics have been determined. Knowing the hepatocyte cell of origin, and their subsequent dynamics and trajectory within the human liver will provide an important basis to understand disease-associated dysregulation. Methods: Herein, we use in vivo lineage tracing and methylation sequence analysis to demonstrate normal human hepatocyte ancestry. We exploit next-generation mitochondrial sequencing to determine hepatocyte clonal expansion dynamics across spatially distinct areas of laser-captured, microdissected, clones, in tandem with computational modelling in morphologically normal human liver. Results: Hepatocyte clones and rare SOX9+ hepatocyte progenitors commonly associate with portal tracts and we present evidence that clones can lineage-trace with cholangiocytes, indicating the presence of a bipotential common ancestor at this niche. Within clones, we demonstrate methylation CpG sequence diversity patterns indicative of periportal not pericentral ancestral origins, indicating a portal to central vein expansion trajectory. Using spatial analysis of mitochondrial DNA variants by next-generation sequencing coupled with mathematical modelling and Bayesian inference across the portal-central axis, we demonstrate that patterns of mitochondrial DNA variants reveal large numbers of spatially restricted mutations in conjunction with limited numbers of clonal mutations. Conclusions: These datasets support the existence of a periportal progenitor niche and indicate that clonal patches exhibit punctuated but slow growth, then quiesce, likely due to acute environmental stimuli. These findings crucially contribute to our understanding of hepatocyte dynamics in the normal human liver. Impact and implications: The liver is mainly composed of hepatocytes, but we know little regarding the source of these cells or how they multiply over time within the disease-free human liver. In this study, we determine a source of new hepatocytes by combining many different lab-based methods and computational predictions to show that hepatocytes share a common cell of origin with bile ducts. Both our experimental and computational data also demonstrate hepatocyte clones are likely to expand in slow waves across the liver in a specific trajectory, but often lie dormant for many years. These data show for the first time the expansion dynamics of hepatocytes in normal liver and their cell of origin enabling the accurate measurment of changes to their dynamics that may lead to liver disease. These findings are important for researchers determining cancer risk in human liver

    The clinical manifestations and molecular mechanisms of mitrochondrial neuro-opthalmological disorders

    Get PDF
    Autosomal dominant optic atrophy (DOA) classically presents with bilateral, symmetric visual failure in early childhood, with the pathological hallmark being the selective loss of retinal ganglion cells (RGCs). In the first population-based epidemiological study of DOA, we were able to estimate its minimum prevalence at 1 in 35,000 in the North of England. In independent case series from Northern Europe and North America, the majority of families with DOA harboured pathogenic OPA1 mutations (50.0-57.6%), and large-scale OPA1 rearrangements were present in only a small subgroup (11.1-12.9%). We also confirmed that OPA3 mutations were very rare in non-syndromal DOA cases. Visual deterioration was observed in over half (54.2-67.4%) of all patients during long term follow-up, and the rate of visual decline varied markedly both between and within families. In a large multi-centre study of 104 OPA1-positive patients from 45 independent families, we established that additional neuromuscular complications are common in OPA1 disease, affecting up to 20% of all mutational carriers. Bilateral sensorineural deafness beginning in late childhood and early adulthood was a prominent manifestation, followed by a combination of ataxia, myopathy, peripheral neuropathy and chronic progressive external ophthalmoplegia (CPEO) from the third decade of life onwards. We also identified novel clinical presentations with spastic paraparesis mimicking hereditary spastic paraplegia, and a multiple sclerosis-like illness. Patients with these syndromal disease variants (DOA+) had a worse visual prognosis, and this was associated with a more pronounced reduction in retinal nerve fibre layer thickness compared to patients with pure DOA. Interestingly, there was a two- to three-fold increased risk of developing DOA+ features with missense OPA1 mutations and those located within the GTPase domain.EThOS - Electronic Theses Online ServiceMedical Research Council (UK)GBUnited Kingdo

    On measuring selection in cancer from subclonal mutation frequencies

    Get PDF
    Recently available cancer sequencing data have revealed a complex view of the cancer genome containing a multitude of mutations, including drivers responsible for cancer progression and neutral passengers. Measuring selection in cancer and distinguishing drivers from passengers have important implications for development of novel treatment strategies. It has recently been argued that a third of cancers are evolving neutrally, as their mutational frequency spectrum follows a 1/f power law expected from neutral evolution in a particular intermediate frequency range. We study a stochastic model of cancer evolution and derive a formula for the probability distribution of the cancer cell frequency of a subclonal driver, demonstrating that driver frequency is biased towards 0 and 1. We show that it is difficult to capture a driver mutation at an intermediate frequency, and thus the calling of neutrality due to a lack of such driver will significantly overestimate the number of neutrally evolving tumors. Our approach provides quantification of the validity of the 1/f statistic across the entire range of relevant parameter values. We also show that our conclusions remain valid for non-exponential models: spatial 3d model and sigmoidal growth, relevant for early- and late stages of cancer growth

    Development of computational tools for variant calling in single-cell RNAseq

    Get PDF
    Single-cell sequencing technologies have unsurprisingly become a favourable choice for studying key biological questions about cell heterogeneity, rare cell types or lineages. It is only cell-level resolution that allows for an accurate analysis of internal cell processes such as mutagenesis. Eventually, single-cell RNAseq could provide an explanation of mechanisms that lead to the ultimate transformation of healthy tissues into cancerous lesions. One of the main interests of my lab is Barrett’s oesophagus. It is a highly clonal disease and a likely cancer precursor. We decided to take advantage of the single-cell RNAseq technology in order to attempt to identify the tissue of origin of the disease which, despite years of research, still remains unknown. However, the range of methods for identification of mutations in single cells is very limited. In order to address that, we developed our own single-cell RNAseq variant caller. We validated it on a publicly available breast cancer dataset by achieving a reasonable intersection of our results with the output of commonly used bulk tools. Furthermore, we showed that our caller was capable of identifying expected data characteristics such as known breast cancer signatures and mutations in breast cancer genes. We then applied our method to the Barrett’s dataset to investigate connections of Barrett’s with surrounding tissues. Contrary to the previous transcriptomic analysis conducted on the same dataset and indicating a Barrett’s-oesophagus connection, our results revealed a more likely link of Barrett’s with the stomach
    • …
    corecore