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Abstract

The human body is made up of trillions of cells which cooperate to reproduce their genetic
material. While all the cells are a part of a whole, each is also an individual and will selfishly
give rise to a clonal expansion of cells within a tissue given the chance, even to the detriment
of the organism. This thesis discusses the evolutionary forces acting on cells within the body,
specifically on epithelial cells in the colon and skin.
After a general introduction of the evolutionary forces acting on normal cells and the methods
used to study them, Chapter 2 focuses specifically on genetic drift within the colon, where
clones expand through the process of crypt fission. I apply a statistical framework called
Approximate Bayesian Computation to estimate the crypt fission rate in the normal colon
and in individuals with Familial adenomatous polyposis (FAP). I estimate the rate of crypt
fission to be one every 27 years in the normal colon and one every 13 years in (FAP).
In Chapter 3, I describe somatic evolution in the colon under conditions of chronic inflam-
mation. I used whole-genome sequencing of individual colonic crypts from patients with
inflammatory bowel disease (IBD) to show that the IBD-colon is characterized by a higher
mutation burden and larger clonal expansions than the healthy colon. I also show that muta-
tions in immune-related genes, including PIGR, ZC3H12A and genes in the interleuking 17
and toll-like receptor pathways, are under positive selection in the colons of IBD patients
and may contribute to the disease pathogenesis.
In Chapter 4, I focus on the skin. I performed whole-exome sequencing of microbiopsies of
epidermis from patients with psoriasis, a second chronic inflammatory disease. In contrast to
IBD, I did not find increased mutation burden and clonal spread in psoriasis, except when
the skin had been treated with psoralens + UVA (PUVA) phototreatment. The selection
landscape of psoriatic skin resembles that of normal skin, and mutations in NOTCH1, FAT1,
TP53, PPM1D and NOTCH2 are positively selected. ZFP36L2 was the only gene found to
be enriched in mutations that has not been previously reported in normal skin, but it is as yet
uncertain if selection of ZFP36L2 mutant cells is a feature specific to psoriatic skin or not.
Finally, Chapter 5 discusses my findings in the broader context of cancer and complex-trait
genomics. I discuss how a causal relationship between somatic evolution and non-neoplastic
diseases may be established and the different ways somatic evolution may affect disease
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progression for good or ill. I further discuss how to design a study to search for germline
determinants of somatic evolution and the need for developing methods to enable such studies
to be conducted at scale.
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Chapter 1

Introduction

Figure 1.7 and parts of the text in this chapter (section 1.3 in particular) have been previously
published in Trends In Genetics in an article titled “Somatic mutations provide important
and unique insights into the biology of complex diseases” by myself and Carl Anderson.

1.1 The evolving body

In 1859, Charles Darwin published his theory of evolution and origin of species by means
of natural selection. Darwin presented three postulates from which evolution by natural
selection is a logical outcome. The postulates are (1) Individuals in a population are variable;
(2) This variation is at least partially heritable; (3) Individuals who carry favorable variations
are more likely to raise viable offspring than those who don’t (Darwin, 1876). Darwin sought
to explain species evolution but as I will discuss, his work also applies on a smaller scale, to
the evolution of cells within a body.

A human is a partnership of about 37 trillion cells (Bianconi et al., 2013), all derived
from one, which come together to cooperatively reproduce their genetic material. Although
originating from a single progenitor, the individual cells that make up this system are not
genetically identical. As a cell divides to produce two daughter cells, each daughter accrues
a small number of mutations which distinguish it both from her mother and sister. These
variations are passed on to subsequent generations as more mutations are introduced in each
round of replication. A group of cells that have separated late from their mutual ancestor and
have many more mutations in common than are unique to each are often referred to as a clone.

An organism can sustain a finite number of cells, which introduces a struggle for space
and existence within the body, homologous to that between individuals of a species living

https://www.sciencedirect.com/science/article/pii/S0168952521001682
https://www.sciencedirect.com/science/article/pii/S0168952521001682
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in a finite environment. Competition between cells is a zero-sum game and (with the
exception of neoplastic growth) expansion of a clone derived from one cell results in the
reduction or elimination of competitor clones. Darwin’s postulates for evolution of species
in an environment by natural selection therefore also apply to cell types in a body since
(1) Individual cells are variable; (2) much of this variation is the result of heritable genetic
variation; and (3) cells that reproduce the most are those carrying favourable mutations.

1.2 Evolutionary forces

In classic evolutionary theory, species evolution is shaped by four evolutionary forces which
affect allele frequencies in populations of individuals. These are mutations, natural selection,
genetic drift and gene flow. As the cells of the body don’t exchange genetic material, gene
flow does not influence the evolution of somatic cells (ignoring the edge cases of gene therapy,
viral insertions and organ donation). What follows is a brief description of how each of the
remaining three evolutionary forces affects somatic cells.

1.2.1 Mutagenesis

Inherited changes to the base composition of a cell are the substrate of evolution. This section
will describe somatic mutagenesis, processes by which mutations accumulate in somatic cells.
I will use the term ‘somatic mutations’ to describe everything from a single-base substitution
change to whole-genome amplification, although different types of somatic mutations have
different causal mechanisms which need to be considered in turn. While a comprehensive
description of all mutagenic mechanisms affecting somatic cells is beyond the scope of this
thesis, I discuss some examples of endogenous and exogenous mutational mechanisms of
particular relevance to my own work. I also highlight the important interplay between the
damaging agents themselves and the DNA repair and replication pathways that are called
upon by the cell to resolve the damage.

Mutagens are often very base- and sequence- specific and this specificity means that each
mutational process leaves a characteristic imprint on the genome of the affected cell. This
pattern is termed a mutational signature, and can serve as a physiological documentation of
the biological history of the cell, capturing both the mutagens that have affected the genome
and quantifying the exposure to each (Alexandrov et al., 2015, 2020, 2013a,b; Nik-Zainal
et al., 2012).
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To define mutational signatures, mutations are assigned to mutually exclusive classes. For
example, single base substitutions are commonly classified according to the base substitution
C>A, C>G, C>T, T>A, T>C, T>G (all substitutions are referred to by the pyrimidine of
the mutated base pair) and the bases 5’ and 3’ of the mutated base, yielding a total of 96
classes. The standard way of plotting a signature is with a bar-plot which has the mutation
classes on the x-axis and the frequency of each mutation type on the y-axis. A number of
mutational signatures have been described as part of the Catalogue of Somatic Mutations in
Cancer (COSMIC) and the Pan-Cancer Analyses of Whole Genomes (PCAWG) efforts to
sequence and characterize the genomes of different cancer types (Alexandrov et al., 2020,
2013a). As I describe some important mutagenic processes, I will also often mention their
corresponding signatures. Methods for mutation calling are described in section 1.4.2 and
methods for signature extraction in section 1.4.3.

Substitutions and indels

Endogenous mutagenic processes

Base substitutions can result from mutational processes that are either endogenous or exoge-
nous to the cell. Let us start by discussing endogenous factors. The DNA sequence may be
altered as a result of direct chemical changes. For example, an important endogenous muta-
tion process is deamination, which occurs spontaneously across all DNA bases that contain
primary amine groups. In particular, 5-methylcytosines at CpG sites are prone to hydrolytic
deamination, which gives rise to C>T mutations at a rate which correlates closely with the
rate of cell division (Alexandrov et al., 2015). This is the process which produces COSMIC
and PCAWG single base substitution signature 1 (SBS1 or signature 1 for simplicity, Figure
1.1).

Chemical changes may also be catalyzed by enzymatic activity in the cell. The best
characterized example of this is perhaps the catalyzation of cytosine deamination to uracil by
apolipoprotein B mRNA editing enzyme (APOBEC). This family of enzymes, which fulfills
diverse physiological functions in the cell, including restriction of retroviruses and mobile
retroelements, have been shown in vitro and in vivo to have a preference for TpCpN motifs in
stretches of single-stranded DNA (Nik-Zainal et al., 2012; Suspène et al., 2011). This gives
rise to mostly C>T and C>G mutations which make up COSMIC signatures 2 and 13 (Figure
1.2). What determines which type of mutation occurs is unknown, but one might speculate
that subtly different repair mechanisms may play a role.
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Fig. 1.1 Deamination at CpG sites. A) 5-methylcytosine undergoes spontaneous deam-
ination of the primary amine group to yield thymine. B) Single base substitution
signature 1 (SBS1) which is thought to be the result of this process. Figure from
https://cancer.sanger.ac.uk/signatures/, accessed in March 2020.

Endogenous mutational processes also include DNA replication errors. The two primary
polymerases responsible for replication of the genome are polymerases ε and θ which syn-
thesise the leading and the lagging strand, respectively. Although the error rate of these
enzymes is low, estimated at 1 error every 10 million nucleotides after accounting for intrinsic
proofreading capacity (Shevelev and Hübscher, 2002), the size of the genome is such that
some mistakes are inevitably made. Additionally, somatic and germline mutations in these
proteins can increase the rate of mutagenesis by orders of magnitude. A well established
example is the mutation profile seen in some hypermutated colorectal carcinomas that carry
polymerase ε mutations. These are characterized by a very large number of C>A and C>T
mutations at TpCpG and TpCpT sites and which constitute mutational signatures 10a and
10b (Alexandrov et al., 2013a) (Figure 1.3).

Polymerase errors during normal DNA synthesis can cause somatic indels as well as
substitutions. Areas consisting of long stretches of homopolymers are particularly prone to
errors caused by polymerase slippage and COSMIC indel signatures 1 and 2 are attributed
to slippage of the nascent and the template strands respectively (Figure 1.4). They exhibit
clock-like properties and high correlations with substitution signature 1 (Alexandrov et al.,
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Fig. 1.2 APOBEC catalyzed mutagenesis. A) APOBEC catalyzes the deamination of
cytosine to uracil. B and C) Single-base substitution signatures 2 and 13. Characterized
by cytosine deamination at TpC sites and attributed to the apolipoprotein B mRNA editing
enzyme (APOBEC) family of proteins. Figures from https://cancer.sanger.ac.uk/signatures/,
accessed in March 2020.



6 Introduction

Fig. 1.3 Single base substitution signatures 10a and 10b. Both are associated with muta-
tions in DNA polymerase ε . Figures from https://cancer.sanger.ac.uk/signatures/, accessed in
March 2020.

2020).

Fig. 1.4 Indel signatures 1 and 2. Both are attributed to DNA polymerase slippage during
replication of homopolymer regions of the nascent and template strands, respectively. Figures
from https://cancer.sanger.ac.uk/signatures/, accessed in March 2020.
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Exogenous mutational processes

Many external physical and chemical factors are mutagenic to the cell. Among the physical
factors, the one most important to this work is doubtless ultraviolet (UV) light. UV rays cause
the formation of covalent bonds between neighboring pyrimidines resulting in pyrimidine
dimers, pyrimidine photoproducts or cyclobutane pyrimidine dimers, which halt the replica-
tion machinery until repaired by transcription-coupled nucleotide excision repair (TC-NER)
(see below). The reliance on TC-NER to correct damaged bases results in considerably more
mutations occurring on the non-transcribed strand than on the transcribed (Alexandrov et al.,
2020). Mechanistic studies in cell lines, bacteria and rodents have shown that different UV
wavelengths are associated with different types of mutations (Pfeifer et al., 2005). UVA
(320-400 nm) is thought to cause mainly C>T and C>A substitutions and small tandem
base deletions following oxidative damage. UVA is not absorbed by the DNA itself but
the damage is done by other molecules which absorb the energy and may form radicals,
including reactive oxygen species. The higher energy wavelengths, UVB (280–320 nm) and
UVC (200–280 nm), are absorbed by the DNA itself and frequently cause the formation
of photoproducts like cyclobutane pyrimidine dimers and (6-4) pyrimidone photoproducts
(6-4 PPs). Other photoproducts like purine dimers and pyrimidine mono-adducts can also be
formed in small quantities (Pfeifer et al., 2005).

A handful of mutational signatures of UV-light exposure have been extracted, reflecting
the complexity of this mutagen. The signatures capture different types of single base substi-
tutions, deletions at tandem pyrimidines and double-base substitutions at pyrimidine sites
(Figure 1.5).

Exogenous mutagens of chemical origin include such well known agents as tobacco
smoke and aflatoxin. However, drugs taken for treatment of cancer and complex diseases
can affect the mutation burdens in recipients (Pich et al., 2019). This thesis focuses on non-
neoplastic tissue and the patient cohorts used include only the rare cancer survivor. However,
some of the treatments prescribed for the two chronic inflammatory diseases which will
feature in this work, inflammatory bowel disease and psoriasis, have mutagenic effects. For
example, COSMIC single base substitution signature 32 has been attributed to azathioprine
treatment (Inman et al., 2018) for immunosuppression but azathioprine and other thiopurines
are also used as immunosuppressants for the treatment of IBD. Psoralens are phototherapeutic
agents used in the treatment of psoriasis and although a psoralen signature is not described in
COSMIC, they are known to lead to pyrimidine mutations at TpA motifs (Esposito et al.,
1988; Papadopoulo et al., 1993; Yang et al., 1994; Zhen et al., 1986).



8 Introduction

Fig. 1.5 Mutations associated with ultraviolet light. A) UV light causes the formation
of bonds between carbons 5 and 6 of adjacent thymines to form a cyclobutane pyrimidine
dimer. B) and C) The two most prominent single base substitution signatures associated with
UV-light exposure. D) An indel signature characterized by single base deletions at tandem
thymine sites and associated with UV light exposure. E) A double base substitution signature
characterized by substitution of tandem cytosines and associated with UV light exposure.
Figures B) - E) from https://cancer.sanger.ac.uk/signatures/, accessed in March 2020.
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Fig. 1.6 Single base substitution signature 32. The proposed aetiology of
this signature is azathioprine treatment for immunosuppression. Figure from
https://cancer.sanger.ac.uk/signatures/, accessed in March 2020.

DNA repair pathways

An observed mutational pattern is the combined effect of a mutagen and the DNA repair
mechanism the cell employs to fix the damage (Volkova et al., 2020). Defects in the repair
machinery itself lead to distinct mutation patterns. Germline variants in BRCA1/2 for
example, leave the cell unable to repair double strand breaks via homologous repair. Instead,
breaks are fixed by non-homologous end joining which results in numerous substitutions and
indels (Powell and Kachnic, 2003), and increased cancer risk in breast and ovarian tissue
in particular. More relevant to the tissues studied herein, mutations in the mismatch repair
pathway are observed in a fraction of colorectal carcinomas and are often associated with
hypermutator phenotypes and as many as seven distinct mutational signatures (Alexandrov
et al., 2020). The mutation spectrum of mismatch repair deficiency in all likelihood depends
on an interaction between the specific repair defect and the mutagens the cell is exposed to.
Finally, one mechanism of lesion detection is when RNA polymerase II is arrested during
transcription of a gene. This invokes transcription-coupled repair (TCR), a sub pathway of
nucleotide excision repair (NER) and results in the transcriptional strand biases observed for
several of the COSMIC and PCAWG signatures like single base substitution signatures 4, 7,
16 and 24 (Alexandrov et al., 2020, 2013a).

Genome wide patterns of mutagenesis

In addition to sequence context, more “higher level” variables also affect the chances of a
mutation occurring. Mutation rate negatively correlates with the expression level of genes
(Lawrence et al., 2013) and with chromatin accessibility and modification (Polak et al., 2015).
Furthermore, regions of the chromosomes that are replicated late in S-phase show a marked
increase of somatic mutations, possibly due to these regions lagging in single-stranded
form as the dNTP pool is exhausted (Polak et al., 2015; Stamatoyannopoulos et al., 2009).
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Together, expression levels, chromatin accessibility and replication timing have been shown
to explain up to 86% of the variance in substitution rates along cancer genomes (Polak et al.,
2015), which has important implications for driver identification, as discussed in section 1.4.5.

Finally, cancer mutations due to exogenous mutagens tend to show pronounced strand
asymmetries. In large regions of the genome, sometimes entire chromosomes, mutagens
have only affected one strand. This phenomenon, termed lesion segregation, results from
a combination of segregation of unrepaired lesions during mitosis and selection (Aitken
et al., 2020). Mutagens generate DNA lesions on both strands, but these are not immediately
repaired and may be passed on through several cell divisions. Each strand segregates to a
different daughter cell so that each has its own set of lesions derived from the mutagen. If
the different sets of mutations confer on each daughter cell different “fitness” (for example
if one of the cells now has a driver mutation) the fitter daughter dominates in subsequent
expansions, which gives rise to the observed strand asymmetry (Aitken et al., 2020).

Structural variants

I will use the term structural variation to describe large scale deletions, translocations, inver-
sions and amplifications affecting parts of chromosomes, whole chromosomes or multiple
chromosomes. I will also use it to describe somatic retrotranspositions and viral insertion
events. These events occur through a multitude of mechanisms, including chromosome seg-
regation errors following erroneous repair of double strand breaks, breakage-fusion-bridge
cycles and genome doubling (Ghezraoui et al., 2014; Ly et al., 2019). While mutations often
accumulate gradually over time, sometimes catastrophic mutational events, termed chromoth-
ripsis, are observed that cause a huge number of rearrangements and copy number variations
in a single replication cycle. These events are pervasive across cancers (Cortés-Ciriano et al.,
2020) but rare in non-neoplastic tissue, although they have been reported in the liver (Brunner
et al., 2019).

In the PCAWG analysis of 2,658 cancers across 38 tumour types, the authors divided the
structural variants into mutually exclusive categories by variant type, size, replication timing
and whether or not they were found within fragile sites of the genome. Although this relies
on arbitrary cut-offs, 16 mutational signatures of structural variants could be identified (Li
et al., 2020b). As structural variants are rare in non-neoplastic tissues, I do not consider these
signatures further in the work presented in this thesis.
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1.2.2 Natural selection

Most adult tissues are maintained by a population of stem cells which undergo stochastic
divisions in such a way that on average, the number of active stem cells remains constant
(Klein and Simons, 2011). The fixed size of an adult tissue shapes differences in evolutionary
dynamics between cancer and non-neoplastic tissue. In the latter, clones derived from single
stem cells compete for space in a zero-sum game where the expansion and proliferation of a
particular clone is compensated for by the loss of others. In the following sections, I describe
how genetic changes affect the evolutionary dynamics of somatic cells.

Positive and negative selection

Species evolution, including human evolution, has been dominated by negative selection.
Evolution of somatic cells within the body however, is dominated by positive selection,
suggesting that a majority of the genes in the genome are dispensable for any given cell type
(Martincorena et al., 2017). A commonly used method to detect selection in sequencing
datasets is to look at the ratio of the mutation rate of non-synonymous (dN) and synonymous
mutations (dS). The synonymous mutations are assumed to be selectively neutral to the cell
but if some of the non-synonymous mutations found in a gene are under positive selection,
this will result in dN/dS >1 for that gene. Similarly, dN/dS <1 for a gene indicates negative
selection of mutations in the gene. dN/dS ratios and a software implementation for their
study in somatic cells are further described in section 1.4.5.

While dN/dS ratios are useful for identifying genes and pathways in which mutations
confer advantage to the carrier, they are not properties of individual mutations and do not
directly translate into the selection coefficients often used in evolutionary genetics. Williams
et al showed how dN/dS ratios can be combined with clone size information to derive a
selection coefficient for each mutation (and thus estimate the distribution of fitness effects
for the gene) (Williams et al., 2020).

Drivers and passengers

Somatic mutations may be classified as driver mutations or passenger mutations. A driver
mutation, or driver, may be defined as any mutation that confers upon a cell a selective
advantage within a population of cells. In contrast, passenger mutations are those which
are selectively neutral to the cell. In the classical model of cancer development, normal
cells gradually accumulate driver mutations over a person’s lifetime, ultimately resulting in
cancer formation (Fearon and Vogelstein, 1990). Drivers are thus often acquired years or
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decades before cancer diagnosis (Gerstung et al., 2020). However, the vast majority of the
somatic mutations found in a cell are generally passengers. A recent large scale analysis
of multiple solid tumour types found 4.6 drivers per tumour on average, among thousands
of passengers (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020).
The driver landscape of normal tissues varies markedly by tissues. In some, for example,
oesophagus and endometrium, 70-100% of cells in middle aged individuals carry one or more
driver mutations (Martincorena et al., 2018; Moore et al., 2020), while in other tissues, like
colon, liver and prostate, this fraction is <5% (Brunner et al., 2019; Grossmann et al., 2021;
Lee-Six et al., 2019). The fitness of a mutant clone is only defined relative to its neighbours
in the tissue and there is mounting evidence that in tissues where a very large fraction of
cells carry drivers, like the oesophagus, initial exponential growth of a driver-carrying clone
is followed by reversion to near neutral drift as cells collide with others of similar ‘fitness’
(Colom et al., 2020; Martincorena et al., 2015). The mutational and selection landscape of
normal tissues is further discussed in section 1.3 below.

Driver mutations are commonly loss of function (LoF) mutations in tumour suppressor
genes or gain of function mutation in oncogenes. Gain of function (GoF) mutations include
structural variants giving rise to fusion genes, enhancer hijacking and oncogene amplification
(Li et al., 2020b; Rodriguez-Martin et al., 2020), but also point mutations. Single nucleotide
changes that are GoF often disrupt ubiquitin sites and prevent or reduce ubiquitin-mediated
proteolysis (Martínez-Jiménez et al., 2020), but they can also directly change the function
of the protein. A classic example is the KRAS G12 site, which is frequently mutated in
multiple cancer types, including cancers of the pancreas, colon and small intestine (Forbes
et al., 2017). The KRAS protein switches between inactive and active states via binding to
guanosine diphosphate (GDP) and guanosine triphosphate (GTP), respectively. Mutations of
the G12 site disrupt the hydrolysis of GTP, causing the protein to be perpetually “stuck” in
the active state, signalling to the cell to continue dividing (Liu et al., 2019).

Large-scale analyses of whole genomes have failed to identify many driver mutations
outside coding regions (Rheinbay et al., 2020). The most notable class of non-coding drivers
are mutations in the promoter of the TERT gene, which encodes the catalytic subunit of
telomerase. Such mutations are frequently found across a range of cancers and are thought to
recruit transcription factors to the promoter that normally don’t regulate TERT expression,
but once recruited increase the expression of the gene (Bell et al., 2016). Rheinbay et al argue
the paucity of other non-coding drivers is a result of differential fitness effects of coding and
non-coding mutations and suggest that point mutations rarely assert sufficient effect on the
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function of regulatory elements to be selected for. However, the Genotype-Tissue expression
project identified a large number of germline variants which alter the expression of the gene
by a standard deviation or more (Chiang et al., 2017) and I personally remain uncertain as
to whether I believe the paucity of non-coding drivers isn’t simply due to them being more
difficult to detect than coding drivers.

Some drivers start off as passengers and only become drivers once the selection landscape
is changed. This can, for example, happen as a result of cancer treatment, where a mutation
which otherwise is neutral may allow the cell to escape the effects of therapy and cause a
relapse of the cancer (Pich et al., 2021; Wong et al., 2014). One can also imagine an alteration
of the selective landscape of a tissue by disease as well as therapy, as will be discussed in
later chapters.

1.2.3 Genetic drift

The third evolutionary force operating on normal cells is genetic drift. The impact of genetic
drift depends largely on the cellular structure of the tissue. In the skin, where many stem
cells line a two dimensional basal layer (see Chapter 4.1.2), some clones will grow with age
as others are lost simply through neutral drift. However, the chances that a single cell takes
over a larger patch of tissue by drift alone are small.

In the colon, a small number of stem cells reside at the bottom of structures called colonic
crypts. Drift influences the spread of these stem cells in two ways: Firstly, cycles of neutral
sweeps repeatedly occur with the progeny of a single stem cell taking over the entire crypt,
thus creating a clonal unit of cells (Lopez-Garcia et al., 2010; Snippert et al., 2010). Secondly,
the crypts undergo a process called crypt fission and “divide” to populate the gut. Both of
these processes are further described in the Introduction of Chapter 2, where I discuss the
crypt structure and dynamics of the normal colon.

1.3 Somatic evolution in normal tissues

The major challenge to the study of somatic evolution in solid tissues in the non-neoplastic
state is usually the highly-polyclonal structure of the tissue. This means that when whole
tissue biopsies are sequenced, nearly all somatic mutations are present in such a small fraction
of cells that they are indistinguishable from sequencing errors. Early studies would seek to
overcome this by sequencing to very high depth and such studies are still being published.
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However, during my PhD I have witnessed (and contributed to) a large increase in studies
that use more sophisticated methods that allow more insights to be gained. Three methods in
particular stand out (Figure 1.7). The first involves the expansion of single cells in culture
followed by sequencing. This method has for example been used to study somatic mutations
in healthy and diseased colon (Blokzijl et al., 2016; Nanki et al., 2020), in fibroblasts and
melanocytes from skin (Abyzov et al., 2017; Tang et al., 2020), hematopoietic stem cells
(Lee-Six et al., 2018), skeletal muscle (Franco et al., 2018) and in the bronchial epithelium
of the lung (Yoshida et al., 2020). This method has the advantages that samples have high
clonality and cells found to carry mutations of interest are not all destroyed but can be
subjected to experimental functional assays. Disadvantages include that culturing cells can
be labour intensive and difficult and many cell types cannot be expanded in culture using
existing methods. Furthermore, the spatial information between stem cells is lost as the tissue
is disassociated. Finally, culturing can affect the mutational landscape of the cells, both
because selective forces may operate in the culture that favour the expansion of cells carrying
specific mutations and because cells accrue mutations during culturing (Kucab et al., 2019).

The second method, laser capture microdissection (LCM), is the one I have used in the
work presented in this thesis. This involves using a combination of a laser and a microscope
to dissect small populations (often 100-2000) cells, usually comprising some distinct mor-
phological features. It has the advantage that the spatial relationships between the groups
are known, which can inform about clonal spread over millimeters or centimeters as well as
on locally active mutational processes. The method relies on the ability to identify at least
semi-clonal populations of a few hundred cells in the tissue and is not feasible for highly
polyclonal tissues like muscle or brain (Ellis et al., 2021). LCM has been employed at the
Sanger to establish the mutational landscape of tissues like colon (Lee-Six et al., 2019),
endometrium (Moore et al., 2020), liver (Brunner et al., 2019), urothelium (Lawson et al.,
2020), prostate (Grossmann et al., 2021) and more. The small number of cells dissected
means that sequencing must be performed on very little input material. The strategy used at
the Sanger institute to obtain good sequencing libraries from low DNA inputs is discussed in
section 1.4.1.

The third method is single cell sequencing. Mutation calling from single cells is attractive
because it would allow mutation calling even in highly polyclonal tissues like the brain
and would enable us to study the differences between the mutation profiles of stem cells
and their differentiated progeny. Methods have been developed to call mutations both from
scDNA and scRNA datasets (Dong et al., 2017; Luquette et al., 2019; Vu et al., 2019) but
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all suffer from significant limitations, the most significant of which are associated with
the need for exponential amplification like multiple displacement amplification (MDA) in
single cell sequencing. This process is associated with a high rate of artificial chimeric DNA
molecules which result in a very high fraction of false positive mutation calls (Dong et al.,
2017; Luquette et al., 2019). Early studies estimated that the number of false positive calls
was an order of magnitude greater than the number of true positives (Zong et al., 2012).
Methods have since been developed to improve the quality of the data by various means
but the false positive rate remains high. Like when cells are expanded in culture, single cell
sequencing also loses information about spatial distribution and histopathological features of
the cells.

During my PhD, the somatic mutation landscapes of many diverse tissues have been
established and the effects of some environmental exposures and diseases have been charac-
terized. I describe the findings for normal colon and skin in some detail in the introductions
to Chapters 3 and 4 but otherwise, general insights from these studies can be summarized as
follows:

• Mutation burden varies substantially by tissue but generally increases linearly with age
across tissues. Mutation burden is not necessarily linked with the mitotic activity of
the tissue. For example, hematopoietic stem cells accumulate about 14 mutations per
year (Lee-Six et al., 2018) while non-dividing cortical neurons accrue 17 mutations
per year (Abascal et al., 2021).

• There is within patient and between patient variation in mutation burden which is as
yet unexplained. Adjacent cells can be differentially affected by external mutagens like
tobacco smoke (Yoshida et al., 2020) but also endogenous mutagens like APOBEC
activation (Lawson et al., 2020).

• Excluding hypermutators, many tissues show a similar burden of substitutions to
cancers of those tissues. However, structural variants and chromosomal abnormalities
are rare in normal tissues compared with cancers, but can increase in frequency in
diseased states like cirrhosis (Brunner et al., 2019).

• The cancer driver frequency varies markedly by tissue type, from less than 1% of cells
in the colon and prostate (Grossmann et al., 2021; Lee-Six et al., 2019) to essentially
every cell in the oesophagus and endometrium of individuals over 50 years of age
(Martincorena et al., 2018; Moore et al., 2020).

• Some genes are found to be mutated more often in normal tissue than in cancers and
vice versa. For example, NOTCH1 mutations seem to be more common in normal
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Fig. 1.7 Methods for the study of somatic mutations. (A) Expansion of single cells in
culture followed by sequencing. (B) Laser capture microdissection of tissue sections can
isolate clonal or semi-clonal populations of cells that can be sequenced. (C) Single cell DNA
sequencing after dissociation and sorting. Figure created with BioRender.com.
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oesophagus than in oesophageal cancers (Martincorena et al., 2018; Yokoyama et al.,
2019) while only the subset of urothelial cancer genes that are classified as chromatin
remodelers are found to be mutated in the normal urothelium (Lawson et al., 2020),
with mutations in other genes likely responsible for malignant transformation.

• Although clones carrying cancer-driver mutations are common in some tissues, the
average number of driver mutations per cell in normal tissues is typically lower than
that in cancer cells. Normal cells typically carry 0-2 drivers while the median number of
cancer drivers in cancers is 4.6 (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium, 2020).

• Parallel evolution of clones carrying distinct mutations in the same genes is common
in normal tissues. Selection pressures seem to vary, with mutations in different genes
favored in different individuals (Lawson et al., 2020).

1.4 Methods background

1.4.1 Laser capture microdissection and low-input DNA sequencing

The ability to create sequencing libraries from microdissections of a few hundred cells is a
cornerstone of all the work presented in this thesis. The LCM workflow starts with tissue
fixation. Some histology fixatives, like formalin, cause the formation of cross-links and
DNA adducts that have a detrimental effect on the quantity of extracted DNA and cause
sequencing errors. The LCM workflow therefore employs alcohol-based fixatives, with
ethanol, methanol and commercial preparations like PAXGene Tissue FIX and RNA-Later
buffer all having shown good results.

Tissues can either be embedded in paraffin or frozen before sectioning. Histological
sections made for pathological assessments are often sectioned at 4 micrometers, but to
increase the DNA yield from each section, I have used 10-20 micrometer thick sections
in the work presented in this thesis. Furthermore, I often repeatedly cut the same crypt or
histological feature, visible in serial tissue sections, in the hopes of increasing DNA yield.
This practice is referred to as z-stacking.

After dissection, DNA is extracted using the commercially available Arcturus PicoPure
DNA Extraction Kit. The DNA purification is modified in such a way that quantification is
omitted (as this would result in loss of DNA) and SPRI beads are integrated into the library
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construction workflow to avoid losing DNA to imperfect elution. Rather than using acoustic
shearing for fragmentation, the low-input DNA pipeline uses enzymatic fragmentation, as
this has been found to result in >10-fold improvement in library yield (Ellis et al., 2021).
As in "standard" library preparation, the fragmented DNA is end-repaired, dA-tailed and
ligated to adapter sequences. It is then indexed by six cycles of PCR amplification. While
whole genome amplification is associated with high error rates in single cell experiments, as
described above in section 1.3, the increased input material of the LCM approach compared
with single cell sequencing allows for fewer cycles of PCR, which reduces the effect of
variable amplification.

1.4.2 Mutation calling

CaveMan

To call somatic substitutions in samples of colon and skin, I used the CaveMan algorithm.
This is an expectation-maximisation algorithm for genotype probabilities. The process can
be divided into four steps (not counting post hoc filtering at the end). The steps are split,
mstep, merge, and estep (Jones et al., 2016).

The split step involves dividing the genome up into regions to optimize memory and job
scheduling time. The precise number of regions varies with coverage of the sample. The
second step, mstep, iterates through the positions in a region, pre-calculating parameters
that will be used in the Bayesian estimation of genotype probabilities in later steps. These
include base quality of the reads, documenting the reference base, called base, read position,
mapping quality of reads and the mapping strand. These individual region profiles are merged
in the merge step. Finally, the estep uses these metrics, as well as the sequence data itself, to
assign each putative mutation site a genotype probability using an expectation maximization
algorithm.

The distribution of the observed reads is determined by the unobserved genotype. The
likelihood of the data can be estimated in a mixture model as

Pr(Xi,n) = ∑γ (Pr(Xi,n|τn = γ)×Pr(τn = γ))

Where Xi,n is the genotype i at position n and γ is an element from the set of possible
genotypes for the nth base (defined from the reference base and the copy number estimate of



1.4 Methods background 19

the sample and the normal and depending on whether or not the site is a known germline
polymorphic site (in dbSNP)). The E-step of the algorithm estimates the genotype probabili-
ties for all sites sequenced using the parameters calculated in the mstep described above and
first assuming that all bases are the reference genotype. The M-step of the EM algorithm
in turn updates the mutation rate and SNP rate estimates to iteratively update the base call
probabilities. In this way, somatic probabilities are assigned to each base position and a muta-
tion is reported if the base probability exceeds 0.8 for somatic genotypes or 0.95 for germline.

Finally, sites are filtered to remove false positives while retaining true somatic mutations.
The mutation list is compared against a panel of 75 unrelated normal samples. This is to
remove both common polymorphisms and recurrent errors resulting from misalignment and
sequencing artifacts. Two further filters are typically applied to remove mapping artefacts.
The median alignment score of reads supporting a mutation is required to be at least 140 and
fewer than half of the reads supporting a mutation should be clipped.

Pindel

To call deletions and insertions in samples of colon and skin, I used a slightly modified
version of the PIndel algorithm (Raine et al., 2015; Ye et al., 2009). Pindel can detect large
deletion events and small-to-moderate size insertions (size of insertions depends on the length
of the reads). It requires paired-end libraries and it works only with those read pairs for
which one member has mapped to a unique position in the reference and the other hasn’t
mapped at all, or maps with the inclusion of an indel.

An anchor point at the 3’ end of the mapped read is defined, which restricts the search
space for both deletions and insertions to a small area 3’ of the read. To identify deletions,
Pindel splits the un-mapped mate in two and uses a pattern growth algorithm to search for the
maximum unique substring of that read (from the 3’ end). The deletion is presumed to occur
at the end of this substring and Pindel next tries to map the remainder of the read within the
range of read length + Max_deletion_size (parameter given by the user). If the read can be
completely reconstructed by the two substrings and more than one read supports the event, a
deletion is called (Ye et al., 2009).

Deletions can thus in principle be quite long but the length of insertions that can be
detected is capped by the length of the reads. The algorithm for insertions works much
the same as the approach used for deletions except now the un-mapped read is split into
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three with the middle part representing the insertion. Pindel searches the area <2*insert
size (average distance between the mates) from the anchor point for the maximum substring
matching the 3’ end of the read, then does the same for the 5’ end assuming that the middle
section corresponds to the insertion (Ye et al., 2009).

cgpPindel is an adaptation of Pindel used at the Sanger institute that has been optimized
for detection of somatic variants and that has a higher tolerance of indels in mapped reads (as
reads have grown longer since the initial release of Pindel). It includes a filtering step where
calls are compared against a normal panel to capture recurrent sequencing and mapping
artifacts and implements a local realignment of reads overlapping indel calls to correct
mapping errors that may be caused by the indel (Raine et al., 2015).

1.4.3 Mutational signature extraction

The mutational profile of a sample is the result of exposure to different mutagens, replication
error and defective repair which each leave a characteristic fingerprint, a signature, on the
genome (see section 1.2.1). Signatures can be defined as discrete probability distributions
over a set of categorical mutation classes which are mixed in sample-specific ratios to create
the observed profile. Formally, a mutation can be represented as a letter from a K-letter
alphabet, Ξ , and a signature as a K-element vector, P1 = [p1

1, p2
1, ..., pk

1], where pk
1 is the

probability that the signature P1 causes a mutation of type Ξ[k] (Alexandrov et al., 2013b).
For example, most studies define Ξ as the trinucleotide context, yielding K=96 (section 1.2.1).

The original approach for signature extraction is to use non-negative matrix factorization
(NMF) (Alexandrov et al., 2013b; Nik-Zainal et al., 2012). The method seeks to solve
M ≈ R×E, where M is a K ×N matrix containing non-negative mutation counts for K
mutational classes and N samples, R is a K ×P matrix, where K is the number of mutational
classes and P is the number of signatures, and E is a P×N exposure matrix containing
non-negative values between 0 and 1. A problem arises when we wish to allow for the
possibility of signatures not present in the reference set of signatures to be extracted and so
P is not known. Alexandrov et al apply Monte Carlo bootstrap resampling of the mutation
matrix and calculate the NMF solutions at a range of values for P. They return the consensus
solution with stability across bootstraps and minimal reconstruction error by the Frobenius
norm (Alexandrov et al., 2013a,b). This is the method implemented in the commonly used
SigProfiler software (Alexandrov et al., 2020).
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A second approach for signature extraction that has become widely used is based on
Hierarchical Dirichlet Processes (HDP) implemented in the R-package hdp (Roberts, 2018).
This is a non-parametric Bayesian approach to carry out mutational signature extraction.
Dirichlet processes are probability distributions used in Bayesian inference methods to deter-
mine how likely it is that a set of random variables follow a particular probability distribution
(in this case, how likely it is that a set of somatic mutations is drawn from a particular set of
mutational signatures). A Dirichlet process (DP) is defined by a base distribution, H, and a
concentration parameter, α . In a similar way a normal distribution draws numbers around
its mean, a DP draws an infinite sample of distributions around its base distribution with
increasingly small weights (Teh et al., 2006).

In hdp, the data is organized into a tree structure. The top node of the tree is the base
distribution, which in this case is the uniform probability over the infinite set of all possible
signatures. Its daughter node represents the distribution of signatures in the whole dataset
and lower level nodes represent the signature distribution in some grouping of the samples,
for example by disease and patient, if there are multiple samples from the same patient. A
DP is associated with each node and the draw from the DP at a given node serves as a base
measure for its children so at each level of the tree, a more discrete probability density is
outputted (Roberts, 2018).

To estimate the signature identity and exposure at each level of the tree, hdp implements
a Markov chain Monte Carlo (MCMC) algorithm for inferring the posterior distribution of
signatures under the DP mixtures. All mutations are initially assigned to random clusters
and then a Gibbs sampler cycles through each mutation in turn, probabilistically moving the
mutation to a cluster with one of the following: 1) a cluster with a high proportion of that
same mutation class across all samples. 2) a cluster with a high proportion of mutations in
that sample or its parent node. 3) the mutation gets assigned to a new cluster all by itself.
Posterior samples are taken at regular intervals in the MCMC chain that give snapshots of
possible cluster allocations (Roberts, 2018; Teh et al., 2006).

HDP has the advantage over NMF based methods that it can simultaneously quantify
exposure from known signatures and discover any new signatures that may be present. It can
model relationships between samples and sample groups to identify shared signatures, while
also providing a quantification of the differences between them (Roberts, 2018).
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Regardless of the choice of method, mutational signatures are typically extracted for
single base substitutions, double base substitutions and indels separately, even if the same
mutational process may generate all three types in different mixtures (for example, a defective
homologous recombination due to a BRCA1/2 mutation will result in the accumulation of
both indels and substitutions). There is in principle no reason why mutational signatures
couldn’t be defined using multiple mutation classes which would make them more reflective
of the mutagenic process they represent. In practice however, there are usually so many
more single base substitutions than there are mutations of the other classes that these come
to dominate in the signature extraction by existing methods. Other challenges to signature
extraction include resolving the difficulty posed by relatively flat or uniform signatures.
These are often more difficult to accurately extract and distinguish from each other than
are signatures defined by distinct mutational classes. Finally, each signature in COSMIC or
PCAWG is represented as a single reference. However, the effects of different mutational
processes likely vary slightly between tissues and individuals.

1.4.4 Phylogenetic tree building

Phylogenetic trees display evolutionary relationships between biological entities. Several
methods exist for building phylogenetic trees, one of which is the method of maximum
parsimony. This method assumes the most plausible tree is the one requiring the fewest
mutation events to explain. A complication of maximum parsimony is that finding the most
parsimonious tree in the space of all possible trees is an NP-hard problem (it can’t be solved
in polynomial time) so for a large number of taxa, computing the parsimony score for every
possible tree becomes computationally prohibitive. Furthermore, the tree space may contain
a number of equally most-parsimonious trees.

In the work presented in this thesis, I used the MPBoot software for phylogenetic infer-
ence (Hoang et al., 2018b). MPBoot uses a method called parsimony ratchet to carry out
a heuristic search of the tree space and progressively approach the best tree (Nixon, 1999).
While methods for maximum parsimony often employ bootstrap to assess the robustness
of branches, MPBoot implements ultrafast bootstrap approximation, greatly reducing the
computational time needed to derive a consensus tree (Hoang et al., 2018a).

It is worth concluding this section with a comment on the great robustness of phylogenetic
trees constructed from somatic cells, which are free from some of the limitations that may
affect, for example, studies of species comparison. Firstly, in contrast to species evolution,
the ancestral state of somatic cells is known. This is the germline, and knowing it makes
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rooting the tree trivial. Secondly, the mutation rate of somatic cells is typically so low that
the chances of recurrent mutations at the same site or of a mutation reverting back to the
ancestral state are miniscule.

1.4.5 Selection analyses

The selection analyses in this thesis were carried out using dNdScv, a software for quantifying
selection in cancer and somatic evolution (Martincorena et al., 2017). dNdScv builds on
methods with a long history of use in species evolution but introduces some modifications
tailored to the study of somatic cells.

dN/dS is the ratio between the rate of non-synonymous substitutions per non-synonymous
site and the rate of synonymous substitutions per synonymous site. dNdScv implements
a group of maximum likelihood methods for quantifying this ratio after accounting for
sequence composition, trinucleotide mutation rates and variable mutation rates across the
genome. Synonymous mutations are modelled as a Poisson process, for example:

nC>T,s ∼ Poisson(λ = t × rC>T ×LC>T,s)

Represents the number of synonymous C>T mutations in the dataset, where t is the
mutation rate per site, rC>T is the relative mutation rate of C>T mutations and LC>T,s

accounts for the sequence composition, it is the number of C-sites where a C>T mutation
would result in synonymous amino acid substitution of the protein. Non-synonymous
mutations are modelled in the same way, but with an additional parameter, ω , reflecting the
effect of selection on the mutation count. For example, missense mutations at C>T sites are
modelled as:

nC>T,m ∼ Poisson(λ = t × rC>T ×LC>T,m,ωm)

Where ωm represents the dN/dS ratio after correcting for mutation rate and sequence
composition and a maximum likelihood estimate for it can be derived by Poisson regression.

The parameters above may be further refined. For example, there is not one site-wise
mutation rate parameter, r, for each of the 6 mutation classes, but rather the model uses
192 rates. Genomes of somatic cells show a strong context dependence, particularly for the
bases immediately 3’ and 5’ of the mutated base (see section 1.2.1 on mutations and section
1.4.3 on mutational signatures). The substitution rate model incorporates the 96 mutation
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classes of a trinucleotide model and also accounting for transcriptional strand asymmetry,
this number becomes 192.

The parameter t, the mutation rate per site, can also be further refined. Mutation rates are
known to vary depending on the expression levels of genes, replication time and chromatin
state of the region. dNdScv models t as following a Gamma distribution. The number of
synonymous substitutions is modelled as a negative binomial distribution which allows the
background mutation rate of each gene to be modelled combining local information like the
size and sequence composition of the gene as well as more global information on mutation
rates across genes. dNdScv uses as covariates the first 20 principal components of 169
chromatin marks from the ROADMAP project (Roadmap Epigenomics Consortium et al.,
2015).

A similar strategy is used to incorporate indels in the selection model. Since there are no
synonymous indels, the expected rate of indels per gene is modeled using a negative binomial
regression model accounting for the length of the gene and the same epigenomic covariates
as described above. As a default, a list of known cancer genes are excluded to avoid them
inflating the background model. The P-value for the indel regression is then combined with
that from the substitution model using Fisher’s method.



Chapter 2

Estimating the crypt fission rate of the
normal colon

In this chapter, I describe my work to use approximate Bayesian computation to estimate
the crypt fission rate in the normal human colon and in the colons of patients with Familial
adenomatous polyposis. The methods described herein and Figure 2.5 have been previously
published as part of the manuscript “The landscape of somatic mutations in normal colorectal
epithelial cells”, Lee-Six et al. 2019. Nature. My contribution to that project was limited to
estimating the crypt fission rate as described below.

2.1 Chapter Introduction

2.1.1 Colonic crypts

Intestinal stem cells

The epithelial sheet lining the human colon is made up of a single layer of columnar epithelial
cells and organized into millions of colonic crypts, finger-like invaginations into the lamina
propria below. A small number of stem cells (commonly known as crypt base columnar cells
(CBCs)) reside at the bottom of the crypt. The CBCs are defined by expression of LGR5
Barker et al. (2007) and an average of 5-10 LGR5+ stem cells are thought to exist at the
bottom of every crypt (Nicholson et al., 2018; Stamp et al., 2018).

Stem cell identity (stemness, the ability to self renew while generating differentiated
daughter cells) is not fixed but is a state that can be lost and gained by cell removal from the
stem cell niche and re-entry by partially differentiated cells (Gehart and Clevers, 2019). The

https://www.nature.com/articles/s41586-019-1672-7
https://www.nature.com/articles/s41586-019-1672-7
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CBCs are interspersed with deep crypt secretory (DCS) cells and stemness depends on direct
contact between a CBC and a DCS, which provides the CBC with WNT ligands, epidermal
growth factors and Notch stimuli required for its maintenance, as Paneth cells do in the small
intestine (Gehart and Clevers, 2019; Sasaki et al., 2016). In addition to the CBCs, so-called
+4 cells have also been reported to contribute to the stem cell dynamics of the crypt. The
term +4 refers to the cell position just above the uppermost DCS cell, one cell up from the
edge of the stem cell zone of the crypt, and four cells up from the crypt base. These partially
differentiated cells may in some cases descend back into contact with DCS cells and re-gain
stem-cell properties, although it remains debated whether this primarily happens following
epithelial regeneration after injury or if the +4 cells also contribute to the stem cell pool
under crypt homeostasis (Gehart and Clevers, 2019).

Stem cell competition in the niche

Dividing stem cells at the base of crypts stochastically have one of three fates: They can pro-
duce two daughter stem cells, one stem cell and one differentiated cell or two differentiated
cells. On average each division results in one stem cell and one differentiated cell. When a
cell divides symmetrically to produce two differentiated cells, that clone becomes effectively
extinct and is replaced by another cell symmetrically dividing to produce two stem cells.
Over time, the crypt drifts towards clonality as the progeny of a single stem cell take over the
crypt (Lopez-Garcia et al., 2010; Snippert et al., 2010), such that all somatic mutations found
in the ancestor cell become fixed in the crypt. These neutral sweeps of the stem cell niche
occur many times over a typical lifetime and have been estimated to occur at a rate of one
sweep every 6.3 years, on average (Nicholson et al., 2018).

Although stem cell division is stochastic it may become biased if cells acquire driver
mutations. Vermeulen et al quantified the selective advantage of cells carrying known key
drivers in the stem cell population and estimated that in the mouse colon, KrasG12D mutants
have an 80% chance of replacing a wild-type neighbour while APC+/− cells have a 62%
chance (Vermeulen et al., 2013). This type of biasing of stem cell fate is an important
mechanism through which drivers rise to high frequency in many tissues. The study also
highlights that although cells carrying drivers have an advantage over wild type cells, they
can nevertheless be lost by random drift. Vermeulen et al also described how the advantage
of mutant cells may be altered in disease. They showed that the probability that a TP53R172H

mutant cell takes over a crypt is increased in a mouse model of colitis (Vermeulen et al.,
2013).
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Crypt fission and fusion

Stem cell clones may further expand beyond individual crypts, through a process known as
crypt fission. Here, bifurcation of the crypt starts at the base and proceeds in a zipper-like
manner towards the crypt opening at the intestinal lumen. Crypt fission occurs rapidly
neonatally as the colon elongates, and continues to be observed at low rates during adulthood
(Greaves et al., 2006; Nicholson et al., 2018). The opposite process, that of crypt fusion, has
also been reported, first in mice (Bruens et al., 2017) and subsequently in humans (Baker
et al., 2019).

Colorectal tumorigenesis occurs as a consequence of changes that disrupt normal crypt
dynamics. The crypt fission rate of the normal mucosa (CFR) is an important parameter for
our understanding of stem cell dynamics of the colon and, by extension, the origins of col-
orectal cancers. Most efforts to date to estimate the crypt fission rate have used histochemical
staining for particular somatic mutations, often those causing loss of cytochrome c oxidase
activity (Baker et al., 2014, 2019; Greaves et al., 2006). Estimates of the fission rate vary
substantially, from one crypt fission every 13.5 years (Totafurno et al., 1987), to one every
36 years (Baker et al., 2014), to one every 91 years (Baker et al., 2019) and one every 139
years (Nicholson et al., 2018). My gut feeling is that this variation is mostly due to technical
reasons. Early estimates of the crypt fission rate were based on simply counting the number
of crypts within histological sections that were bifurcating and comparing that number with
the total number of crypts. This depends on the bifurcation occurring “in plane” of the histo-
logical section and more importantly, does not take into account the more recently discovered
phenomenon of crypt fusion (Baker et al., 2019). If all bifurcating crypts are assumed to be
undergoing fission then the fission rate estimate would be inflated in such an analysis. Later
studies used histological staining of tissue sections to track mutations in particular genes, for
example the mitochondrial gene cytochrome c oxidase (Baker et al., 2019) or genes subject
to X-inactivation (Nicholson et al., 2018). Unpublished work done in the Campbell lab in the
Sanger Institute indicates that mitochondrial mutations are unreliable markers for lineage
tracing. Somatic mutations in mitochondrial genomes are likely heteroplasmic and are not
necessarily passed on during cell division, which would deflate crypt fission estimates based
on this marker. The work described herein is to my knowledge the only estimate of the crypt
fission rate based on whole genome sequencing data.
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2.1.2 Familial adenomatous polyposis

Familial adenomatous polyposis (FAP) is an autosomal dominant syndrome caused by
a germline loss-of-function variant in the APC gene. Afflicted individuals develop tens
to thousands of colorectal adenomatous polyps, some of which inevitably develop into
adenocarcinomas if left untreated. FAP adenomas grow by rapid crypt fission, most often
driven by a somatic loss of the remaining wild-type APC allele (Li et al., 2020a). Overall,
the crypt fission rate has been shown to be increased in the colons of FAP patients (Wasan
et al., 1998), but as previous studies have not genotyped the crypts, it is not clear whether this
increase is driven by crypts in the process of transformation or if APC heterozygous crypts
also undergo fission at a different rate than wild-type.

2.1.3 Approximate Bayesian computation

Approximate Bayesian computation (ABC) is a statistical framework used to estimate the
posterior distribution of model parameters when the likelihood function cannot be inferred
analytically. Its use is well established in complex models in population genetics (Beaumont
et al., 2002) and cancer biology. For example, it has recently been used for the estimation of
the population size of the blood stem-cell pool (Lee-Six et al., 2018), to propose an intro-
gression of archaic humans into Asia and Oceania (Mondal et al., 2019) and the inference of
parameters of colorectal cancer evolution (Hu et al., 2019; Sottoriva et al., 2015).

ABC aims to approximate the posterior distributions of the parameters in question by
simulating a large number of datasets with different parameter values. Informative summary
statistics are computed for the simulated data and compared with the same summary statistics
calculated for the observed data. Simulations yielding summary statistics close to those
calculated for the observed data are retained and used to estimate the parameter values. A
regression step is sometimes performed to give additional weight to values that minimize the
distance between simulated and observed data (Bertorelle et al., 2010).

Formally, let M be a model used to create data, D, which is determined by a vector
of parameters, θ . Denote the prior density by p(θ). We wish to estimate the posterior
distribution of the parameters, calculated by Bayes rule as:

π(θ |D) = c× fm(D|θ)×π(θ)

where fm(D|θ) is the likelihood of the data and c is a normalizing constant. The problem
facing us is that the likelihood function cannot be calculated analytically and so we seek to
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empirically reconstruct the posterior distribution through simulation.

Let s be a vector of summary statistics and let ε be a distance cut-off. We carry out a large
number of simulations and each time dist(s,sobs)< ε , we write the parameters of that simu-
lation to a list P = {θ1, ...,θN}.The distance function dist() can for example be the Euclidean
distance between the two vectors. In the limit ε− > 0, then π(θ |dist(s,sobs)) = π(θ |D).
Note however, that the smaller ε is set, the larger number of simulations will be required since
the condition dist(s,sobs) < ε is rarely satisfied, especially when the number of summary
statistics is large (Bertorelle et al., 2010).

One way to speed up the calculations and reduce the number of simulations needed is to
incorporate a regression step. ε is relaxed so a larger fraction of simulations is retained in the
first step. The most intuitive method is then to perform a local linear weighted regression
between the vector of summary statistics and the retained parameters, assigning to each point
a weight inversely proportional to the distance from the observed statistics. The intercept
of the line is the best estimate of the parameter. Alternative regression approaches are the
general linear model proposed by Leuenberger and Wegmann (Leuenberger and Wegmann,
2010) and non-linear machine learning approaches as suggested by Blum and Francois (Blum
and François, 2010).

2.2 Chapter aims

In this chapter I describe my efforts to use approximate Bayesian computation to estimate
the crypt fission rate in normal colon. I then use the same framework to estimate the crypt
fission rate in an independent dataset consisting of APC heterozygous crypts dissected from
FAP patients and compare the crypt fission rate between the two cohorts.

2.3 Methods

2.3.1 Input data

As a part of a study of the mutation landscape of the normal colon (Lee-Six et al., 2019),
I used ABC to estimate the crypt fission rate of the normal colon. In this study, 571 mi-
crodissected crypts from 42 individuals were whole genome sequenced, of which 449 had
>10X coverage and were considered in this analysis. The median sequencing depth of
the crypts was 16.3X. The lead author of the study, Henry Lee-Six, called and filtered the
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mutation calls, constructed phylogenetic trees for each individual and extracted mutational
signatures for each branch of each tree with contributions from other authors as described in
the ‘Author contributions’ statement of the original publication. Henry Lee-Six also reviewed
microscopic images of the tissue sections to establish spatial relationship matrices for each
biopsy. The physical distance between any pair of crypts was established in the unit of
crypts separating the pair. Due to varying quality of the tissue sections and the microscopic
images, not all sequenced crypts could be included and some biopsies contained cliques
of crypts where the distances between crypts in a clique could be established but not the
distance between the different cliques. In such instances, the cliques of crypts were treated
as independent biopsies and any potential coalescent events linking crypts from different
cliques were ignored (this is unlikely to bias the analysis, since crypts from different cliques
are usually quite distant in the tissue and so are unlikely to be linked by a recent coalescent
event). The final input data for the normal colon cohort included pairwise distances from 324
crypts dissected from 102 independent “biopsies” from 36 donors (Figure 2.1).

To estimate the crypt fission rate in patients with FAP, I used a dataset generated by Dr.
Philip Robinson, a clinical PhD student at the Sanger institute. This dataset consisted of 87
crypts dissected from 28 biopsies from 14 donors. Of these 12 biopsies were collected from a
single donor (Figure 2.2). Philip Robinson called and filtered the mutation calls, constructed
phylogenetic trees and extracted mutational signatures for this data. He also provided a
spatial relationship matrix for each biopsy. At the time of writing, Philip Robinson is working
on a study of the somatic evolution landscape in FAP that includes samples from normal
segments of colon, polyps and carcinomas. I used only the crypts dissected from normal
colon and all crypts were confirmed to be APC heterozygous (that is, they had one defective
copy due to a germline variant and had not acquired a mutation of the second allele).

2.3.2 Simulating the colon

To estimate the crypt fission rate, I simulated clonal spread in each biopsy assuming different
values of the crypt fission parameter. The epithelial sheet is essentially a two-dimensional
structure, bent in space to form the crypts, and I simulated each biopsy independently as a
two dimensional n×n grid of cells, with each cell of the grid representing a crypt (Figure 2.3).
Clones could not expand beyond the edges of the grid, and to allow clones sufficient space to
spread in every direction while also keeping the simulation from getting prohibitively large,
n was set to equal three times the largest distance seen between any two crypts from that
biopsy (Figure 2.1D).
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Fig. 2.1 An overview of the input data used in the simulations of the normal colon. A)
The age distribution of the sample donors. B) The number of biopsies (or independent
cliques of crypts, see the main text) from each sample donor. C) The distribution of pairwise
distances between crypts within the same biopsy. Most coalescent events are observed
between crypts close together in space. D) The largest distance between crypts in a biopsy.
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Fig. 2.2 An overview of the input data used in the simulations of the FAP cohort. A)
The age distribution of the sample donors. B) The number of biopsies from each sample
donor. C) The distribution of pairwise distances between crypts within the same biopsy. D)
The largest distance between crypts in a biopsy.
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I simulated each biopsy thousands of times assuming different values of the crypt fis-
sion rate parameter. I drew a crypt fission rate for each simulation from a uniform prior
between zero and 0.25 fissions per crypt per year (or 1 fission per crypt every 4 years, this
being considerably higher than any previous estimate of the crypt fission rate). The term
‘simulation’ here refers to a simulation of all the biopsies in the observed dataset using the
same value for the crypt fission rate parameter. Starting from time zero, I drew the time
until the next crypt fission event from an exponential distribution with the rate parameter
determined by the fission rate for that simulation. At each event, a cell in the grid (but not at
the edge) was randomly chosen to die and be replaced by one of its eight neighbours, chosen
at random (Figure 2.3). The latter cell is considered having undergone fission. This process
was repeated until the total time passed exceeded the age of the patient from which the biopsy
was drawn, allowing clones to spread in the grid (Figure 2.4A). I next sampled the grid in
a way that preserved the spatial relationships between the crypts in the observed data and
identified the timing of the coalescent events linking the sampled cells (Figure 2.4B and C).

As described above, ABC uses vectors of summary statistics to compare simulations with
observed data. In this case, the summary statistics were the numbers of coalescent events
linking the sampled crypts in the simulated data vs the observed data. The coalescent events
were grouped into 10-year intervals from birth to 80 years of age (Figure 2.4D) and counted
for each biopsy and summed across all biopsies to derive a summary statistics vector for
that simulation. To time the coalescent events in the observed data, I used the number of
mutations on each edge of the phylogenetic trees that were assigned to substitution signature
1. As stated in Chapter 1, signature 1 represents a clock-like mutational process (Alexandrov
et al., 2015) and the timing of the coalescent events could be estimated given the location of
the biopsy and the mutation rate of signature 1 in different sectors of the colon (16.8, 16.1,
12.8 and 12.7 mutations per year in the right, transverse and left side of the colon and the
ileum, respectively, as estimated in Lee-Six et al).

One cannot simply count the coalescent events of each tree, since a full binary tree with
n leafs always has 2n-1 nodes. Instead, I ignored events occurring earlier than 4 years in
molecular time in both the observed data and the simulated data to avoid counting events
occurring as part of embryogenesis or the neonatal expansion of the colon. The choice of a
4 year cutoff was empirically chosen. The goal was to remove the many coalescent events
clustered right at the base of the trees in the observed data and setting the cutoff at 4 years
(or 51-67 SBS1 mutations in molecular time, depending on the location of the biopsy in the
colon) seemed to accomplish this.
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Fig. 2.3 Simulation of clonal dynamics of the colon. The time until the next crypt fission
is drawn from an exponential distribution with the rate parameter determined by the crypt
fission rate (CFR) for that simulation. A random crypt (red circle) is chosen to die and be
replaced by one of its neighbours (red crypt). This process is repeated and clones, represented
in red, blue and yellow, emerge in the grid. In one instance, a crypt of the yellow clone is
replaced by its neighbour.
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Fig. 2.4 Sampling the grid at the end of an ABC simulation. A) When the sampled time
exceeds the age of the patient, the simulation is halted. B) The grid is sampled in a way that
preserves the distances between the crypts in the original biopsy (in silico dissection). The
dashed circles in the figure denote dissected crypts. C) A phylogenetic tree for the “dissected”
crypts is constructed and the time of coalescent events is noted. D) A vector containing
counts of coalescent events in 10 year intervals is constructed by aggregating counts across
all 102 biopsies.
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2.3.3 Estimating the posterior distribution

To estimate the posterior distribution of the crypt fission rate, I calculated the Euclidean
distance between the summary statistics vectors generated for the observed data on one hand
and simulations on the other. Rather than using a simple rejection algorithm, I employed the
regression-based correction method proposed by Blum and François (Blum and François,
2010) and implemented in the ‘abc’ package in R (Csilléry et al., 2012). This is a neural
network approach designed to reduce the dimensionality of large summary statistic vectors.
It fits a nonlinear conditional heteroscedastic regression of the crypt fission rate on the
summary statistics and then uses importance sampling to improve the estimation further
(Blum and François, 2010). I chose the neural network regression over, say, a general linear
model (Leuenberger and Wegmann, 2010), to account for potential non-linearity and uneven
variance across the summary statistics dimensions. The summary statistic vectors count
coalescent events occurring in 10-year intervals from birth to 80 years of age. As many
patients were younger than that at the time of sampling, they don’t contribute any counts to
the late time intervals, resulting in unequal variance across summary statistic dimensions.

I first set a rejection threshold such that the 5% of simulations with Euclidean distances
closest to the observed data were retained (Figure 2.5B). The crypt fission rates of the
accepted simulations give an estimate of the posterior distribution of the crypt fission rate
parameter, but the estimate can be improved by applying a neural net regression which uses
the following equation in the vicinity of the observed data (S(y0)):

θi = m(S(yi))+ εi

where θi is the crypt fission rate of simulation i, S(yi) is the summary statistics for
simulation, m() is the regression function and εi represents centred random variables with
equal variance. The adjusted crypt fission rate, θ ′

i , is obtained as follows:

θ ′
i = m′(S(y0))+

σ(S(y0))
σ(S(yi))

× ε ′i

where m’() is the estimated conditional mean and ε ′ is the residual of the regression
(which is adjusted for heteroscedasticity in the equation).
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2.4 Results

Under the model described above, I estimated the crypt fission rate in the normal human
colon to be 0.037 (0.021 – 0.063, 95% credibility interval) crypt fissions per crypt per year.
This corresponds to one fission per crypt every 27 years on average (Figure 2.5C).

Fig. 2.5 Approximate Bayesian computation of the crypt fission rate in the human
colon. A) The prior distribution of the crypt fission rate used to simulate many biopsies
of the colon. The unit for the crypt fission rate is fissions per crypt per year. B) The crypt
fission rates of the 5% of simulations that produced summary statistics most similar to
those calculated for the observed data. C) The posterior distribution of the crypt fission
rate parameter estimated by neural network regression on the simulations in B. The 95%
credibility interval is 0.021-0.063 fissions per crypt per year.

In contrast, I estimated the crypt fission rate in the FAP sample to be 0.076 (0.034-0.146)
fissions per crypt per year, corresponding to one fission every 13.2 years (Figure 2.6C).
This estimate falls outside the 95% credibility interval for the normal colon (that is to say,
97.5% of the posterior distribution for the normal colon is smaller than the estimate for FAP),
indicating that the fission rate is likely higher in FAP than in the control cohort. I compare
the two posterior distributions in Figure 2.7. The larger variance of the posterior distribution
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for the FAP cohort compared with the normal cohort is a consequence of the smaller sample
size of the input data.

Fig. 2.6 Approximate Bayesian computation of the crypt fission rate in the FAP cohort.
A) The prior distribution of the crypt fission rate used to simulate 87 colonic biopsies. The
unit for the crypt fission rate is fissions per crypt per year. B) The crypt fission rates of the
5% of simulations that produced summary statistics most similar to those calculated for the
observed data. C) The posterior distribution of the crypt fission rate parameter estimated by
neural network regression on the simulations in B. The 95% credibility interval is 0.034-0.146
fissions per crypt per year.

2.5 Discussion

In this chapter, I have described my work to use approximate Bayesian computation to
estimate the crypt fission rate in the normal human colon and in colons of patients with FAP.
Knowing the fission rate in the normal colon establishes a baseline to which other conditions
may be compared. For example, I have presented evidence that the crypt fission rate is
accelerated in FAP, even in the absence of a second APC hit.

The use of whole genome sequencing frees this analysis from some of the limitations that
may have affected previous estimates (as described above) but there are still some limitations
and assumptions this analysis makes that need to be considered. One of the main difficulties
is the low number of coalescent events in both of the observed data sets, which reduces the
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Fig. 2.7 A comparison of the ABC posterior distributions for the normal and the FAP
cohort.

power to accurately estimate the crypt fission rates.

The greatest limitation of the work presented in this chapter is likely that I did not carry
out any formal comparison of my model with alternative models, for example one where
crypts have six neighbours rather than eight or one where a crypt death causes a distant crypt
to fission, rather than a neighbour of the dead crypt, or where the probability of a fission is af-
fected by the crypt having recently undergone a previous fission. This was due to the massive
computational resources needed to carry out the simulations, which prohibited multiple exe-
cutions. Although I did not model crypt fusion specially, the simulation does allow for fusion.

The model used makes the following four assumptions:

1. The crypt fission rate is constant after four years of life and is the same in all sectors of
the colon and the ileum and does not vary between individuals.

2. The number of crypts is constant after four years of life.

3. The effect of selection is negligible in the colon.

4. The mutation burden of substitution signature 1 in each sector of the colon is fixed
through life.

Some elongation of the colon may occur between the age of four and adulthood, causing
violations of assumptions 1 and 2. If assumption 1 is violated, the crypt fission rate estimate



40 Estimating the crypt fission rate of the normal colon

should be interpreted as the average rate over the period, colon locations and individuals.
The effect of violating assumption 2 will be most pronounced over large distances, as extra
crypts are spread along the length of the colon. Since the biopsies used in this study are only
a few millimeters across, the effect of violating assumption 2 should be modest.

The model does allow for crypt fusion. Following fusion of crypts A and B, the progeny
of one of the stem cells from A and B takes over the new crypt. If that cell originates from A,
the fusion event corresponds to the death of crypt B in the model.

The number of crypts is not constant in the colons of FAP patients but grows with time
and this manifests as a large number of polyps. It is possible that prior to polyp formation,
the density of crypts is locally increased. However, a second driver mutation, especially a
mutation of the remaining wild-type APC allele appears to be the driving force for polyp
formation. By excluding all such crypts from this analysis, I hope the effects of violating
assumption 2 is minimal.

In Lee-Six et al, the paper in which the crypt fission rate estimate for the normal colon
was reported, we also report that driver mutations are very rare in the colon compared with
other normal tissues (Lee-Six et al., 2019; Martincorena et al., 2018; Moore et al., 2020).
Fewer than 5% of crypts carry a putative driver mutation and even then, the effect of a lone
driver on the crypt fission rate is uncertain. I therefore think assumption 3 is reasonable in
this setting. In the FAP dataset, all crypts carry a germline APC variant. This does not violate
assumption 4 as the fitness of all crypts should be equal. Crypts carrying other drivers, and a
second APC mutation in particular, have an obviously accelerated crypt fission rate which
results in the formation of polyps but these were excluded as described previously.

Assumption number 4 should also hold true. Signature 1 has been shown to have
clock-like properties across a range of cancers and normal tissues (Alexandrov et al., 2015),
including colon (Blokzijl et al., 2016; Lee-Six et al., 2019). Signature 1 mutation rate is used
to place the coalescent events in 10-year bins. Even if assumption 4 were violated under
some conditions, many coalescent events in the observed data would likely still be placed in
the right 10-year bin, unless the violation was very severe.

Since the work on the crypt fission rate in normal colon was published, Kakiuchi et al
have published their own estimate of the crypt fission rate from whole-exome sequencing
groups of crypts isolated from three individuals (Kakiuchi et al., 2020) (This study is further
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discussed in the discussion of Chapter 3). They suggest one fission occurs every 7.4 years up
until the age of 20 and one fission occurs every 242 years thereafter. This estimate of crypt
fission rate in adulthood is much lower than any previously published estimate. It is derived
from the simple equation:

Fissionrate = (Nbranchpoint/Ncrypt)/Ya f ter20

Where Nbranchpoint is the number of coalescence events observed after 20 years of age
(estimated from the mutation rate), Ncrypt is the total number of crypts in the tree and Ya f ter20

is the age of the patient minus twenty years.
This formula for the crypt fission rate is in my opinion flawed because it makes the

implicit assumption that all pairwise comparisons of crypts sampled from a biopsy are
equally likely to uncover a coalescent event linking the two crypts. This assumption biases
the estimate of the crypt fission rate downwards. In reality, late-occurring (after 4 years or
20, it makes no matter) coalescent events are most likely to link two adjacent crypts and the
probability of observing an event decreases with distance between two crypts of a pair at a
rate which is proportional to the crypt fission rate itself. My approach of using ABC controls
for this without making any assumptions about the rate at which the probability of observing
a crypt fission event drops with distance. The simulations should mirror the observed data in
this regard.

The above assumptions may be more severely violated in diseases such as IBD. The
cycles of crypt death and healing that characterize the disease may drastically affect the
microenvironment of crypts in affected regions. The decrease in crypt density associated
with a disease flare is followed by rapid fission as the damage is repaired. These cycles
may also be associated with a distinct selection landscape and may for instance allow crypts
carrying driver mutations to rapidly expand in the colon. Finally, increased cell proliferation
may be associated with increased burden of mutational signature 1 after disease onset. While
I describe in the next chapter the somatic evolution landscape of IBD-affected colon, I did
not formally estimate the crypt fission rate.





Chapter 3

Somatic evolution in the non-neoplastic
IBD affected colon

The work presented in this chapter was published in the manuscript “Somatic evolution
in non-neoplastic IBD-affected colon”, Olafsson et al. 2020. Cell. I contributed to the
design of the project, carried out all histological processing of the samples (apart from
sectioning of the tissue, which was done by Yvette Hooks) and carried out all the laser capture
microdissectioning. I further called the mutations and carried out all bioinformatic analyses
except for those where I have explicitly highlighted the contributions of my colleagues in
the main text. I interpreted the results together with my supervisors, Drs Carl Anderson and
Peter Campbell, and wrote the paper. While all authors contributed to the final text of the
manuscript on which this chapter is based, the text of the chapter is mine.

3.1 Chapter introduction

Many human diseases are associated with increased risk of cancer. Chronic diseases often
have profound consequences on the cellular constitution of affected tissues and this can affect
the evolution of cells in many different ways. For example, mutagen exposure and mutation
rate may be altered as a result of inflammation, different cell turnover and/or medication and
lifestyle factors associated with the disease. Genetic drift may be accelerated by faster cell
division and the selection forces operating within a tissue may be changed, making mutations
that were neutral under normal conditions advantageous in disease conditions.

Methodological difficulties have until recently limited the study of the changes to the
somatic evolutionary landscape that accompany a disease to studies of cancers or premalig-

https://www.sciencedirect.com/science/article/pii/S0092867420308138
https://www.sciencedirect.com/science/article/pii/S0092867420308138
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nant structures like polyps or precancerous fields, from which a comparatively clonal sample
may be obtained. In most cases, the early changes to the somatic evolutionary landscape that
accompany the disease and pre-date these structures remain poorly understood. Furthermore,
to detect changes to the evolutionary landscape that don’t increase cancer risk, or that may
even be protective against cancer, we need to study non-neoplastic tissues.

The study of somatic evolution in complex diseases is not only motivated by a need to
understand cancer risk. Somatic mutations may contribute to complex disease pathogenesis,
affect the disease progression and/or drug response. In this chapter, I will describe somatic
evolution in inflammatory bowel disease (IBD) affected colonic mucosal tissue and compare
the IBD affected colon to normal colon. While much of the focus of the project was to
understand the differences in somatic evolution that lead to increased cancer risk among IBD
patients, I also found some exciting evidence that somatic mutations may directly contribute
to disease pathogenesis.

3.1.1 Inflammatory bowel disease

Inflammatory bowel disease is a chronic inflammatory disease of the gastrointestinal tract
that has two main subtypes, Crohn’s disease (CD) and Ulcerative colitis (UC). The disease is
thought to arise as a result of an inappropriate immune response against the resident micro-
biota and other incompletely understood environmental triggers in genetically predisposed
individuals.

Together, CD and UC affect over 2.5 million people of European ancestry and their
incidences in developing nations seem to be on the rise (Molodecky et al., 2012; Ng et al.,
2017). Both UC and CD are characterized by abdominal cramps, diarrhea and rectal bleeding.
Both occur in flares and both are most often diagnosed in early adolescence. They are
distinguished by disease location and continuity. UC affects only the large intestine, usually
spreading continuously from the left side of the colon, with no healthy regions separat-
ing inflamed areas. In contrast, CD may affect any part of the gastrointestinal tract, from
mouth to anus, and causes patches of inflamed regions with healthy, un-inflamed regions
in between. Importantly, flares tend to re-occur in the same region of the colon both in CD
and UC, suggesting that some permanent alterations of the gut biology may play a causal role.

The causes of IBD have not been fully deciphered. The rising incidence in developing
nations suggests that various components of modern ’Western’ lifestyle contribute to disease
pathogenesis. There is evidence linking early life exposure to antibiotics, diet, smoking
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and availability of vitamin D with IBD onset (reviewed in (Ananthakrishnan et al., 2017)).
The microbiome is altered in IBD, especially in CD patients who have increased abundance
of Bacteroidetes and Proteobacteria and decreased abundance of Firmicutes, but a causal
relationship has not yet been established.

Germline genetic factors also play an important role in IBD pathogenesis. Genome wide
association studies (GWAS) have identified over 240 statistically independent associations
between single nucleotide polymorphisms (SNPs) and disease risk (de Lange et al., 2017;
Goyette et al., 2015). GWAS has implicated multiple biological pathways in the pathogen-
esis of IBD. These include innate and adaptive immune regulation, microbial defense and
autophagy, but also intestinal permeability. Sequence variants in or near GNA12, CDH1,
MUC19 and PTPN2, for example, are hypothesized to contribute to variation in epithelial
barrier integrity and intestinal permeability.

Although generally considered a complex disease with a complex genetic architecture,
IBD-like phenotypes can also develop as a result of a single or a few very rare, highly
penetrant mutations (Uhlig, 2013; Uhlig et al., 2014). Loss of function variants in 67 genes
are thought to cause monogenic disease, with varying levels of evidence.

3.1.2 Colitis-associated colorectal cancers

IBD patients are at increased risk of developing colorectal cancers (CRCs). Cancer risk is
associated with the duration, extent and severity of disease, but on average CRC risk of IBD
patients has been estimated to be 1.7 fold that of the general population (Adami et al., 2016;
Beaugerie and Itzkowitz, 2015; Lutgens et al., 2013). The overall cancer risk is higher in UC
than in CD. However, this may be due to CD commonly affecting the small bowel, where the
cancer rate is much lower than in the large bowel in the general population. The CRC risk is
likely similar after correction for the extent of colonic involvement (Gillen et al., 1994). In
the work presented in this chapter I tested for differences between CD and UC at every level
of analysis but found no significant differences in somatic evolution between the two types
of IBD. Most of the analysis is therefore presented as comparison between the combined
cohort of IBD patients and controls.

As a result of the increased cancer risk, IBD patients require regular endoscopic screening
and may undergo prophylactic colectomy to mitigate this risk (Adami et al., 2016; Beaugerie
and Itzkowitz, 2015). The clinical presentation of colitis-associated cancers differs from that
of sporadic cancers. Patients with colitis develop cancers at a younger age, the lesions are
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more likely to be synchronous and to have mucinous or signet ring cell histology (Choi et al.,
2017). Colitis-associated CRCs frequently grow from a precancerous field, where a mutant
clone (often carrying a TP53 mutation) has taken over a large section of the colon (Galandiuk
et al., 2012; Leedham et al., 2009) (reviewed in (Choi et al. 2017)).

Colitis associated cancers also differ from sporadic cancers on the molecular level. Whole-
exome sequencing studies have suggested that there may be differences in the frequencies
with which key genes are mutated. In particular TP53 may be more often mutated and KRAS
and APC more seldom mutated (Baker et al., 2018; Din et al., 2018; Robles et al., 2016;
Yaeger et al., 2016).

3.1.3 Somatic evolution in the normal colon

Before describing somatic evolution in the IBD-affected colon, I will in this section give a
brief overview of the somatic evolution landscape of the normal colon. This is mostly based
on ‘The landscape of somatic mutation in normal colorectal epithelial cells’ by Lee-six et
al mentioned in Chapter 2. I used part of this data as control cohort in my work on IBD, as
described in the methods section.

Mutation burden and mutational signatures

Lee-Six et al estimated the mutation burden of the colon to be 43.6 mutations per crypt per
year of life (Lee-Six et al., 2019). This is comparable with the earlier work of Blokzijl et al,
who estimated a mutation rate of 40 mutations per crypt per year (Blokzijl et al., 2016).

Three single base substitution signatures, SBS1, SBS5 and SBS18 were found in over
85% of crypts, as were the indel signatures ID1, ID2 and ID5. The mutation burden of all
of these signatures showed a linear relationship with age and all showed the same pattern
of the highest mutation burden being found in the right side of the colon, then the trans-
verse and lowest in the left side of the colon. Rarer mutational signatures were found more
sporadically and included the previously described SBS2 and SBS13, which are attributed
to active APOBEC (as described in section 1.2.1) and were found in only two crypts from
different individuals. Additionally, Lee-Six et al described four substitution base signatures
and two indel signatures that had not been previously identified in studies of cancer genomes.
These are termed SBSA, SBSB, SBSC, SBSD and IDA and IDB. Since being reported by
Lee-Six et al, SBSA and IDA (which are highly correlated) have been shown to be caused by
Escherichia coli bacteria carrying the pathogenicity island pks (Pleguezuelos-Manzano et al.,
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2020). This island encodes enzymes that synthesize the genotoxic compound colibactin.
SBSA is now referred to as COSMIC signature 88.

SBSB and IDB are also highly correlated and likely result from the same underlying
mutational process. The etiologies of SBSB, SBSC and IDB are unknown but SBSD was
only found in one patient with a history of treatment with multiple chemotherapeutic agents
for the treatment of lymphoma and likely represents the effect of the treatment.

Clonal structure and driver mutation landscape

The analysis of Lee-Six et al showed that crypt fissions occur rarely in the normal colon (see
Chapter 2). The most recent common ancestor of most crypts dissected from an individual
therefore exists very early in molecular time, and has often existed during the neonatal
expansion of the colon.

When compared with other epithelial tissues like the skin, endometrium or oesophagus,
the colon is comparatively devoid of drivers. Using an admittedly conservative driver
definition, Lee-Six et al estimated that only about 1% of crypts carry driver mutations. Two
recessive tumour suppressors, AXIN2 and STAG2, were found to be recurrently affected by
truncating mutations and nine further mutations occurring in canonical driver hotspots of
other known cancer genes were identified.

3.2 Chapter aims

In this chapter, I explore the changes to the somatic evolution landscape of the colon that are
associated with IBD. I describe the microdissection and sequencing of colonic crypts from
IBD patients and compare those with crypts sequenced as part of the project on the normal
colon described above (Lee-Six et al., 2019). I compare IBD affected mucosa to normal
colon in terms of the mutation burden, mutational signature exposure, clonal structure of the
tissue and driver mutation landscape.

3.3 Methods

3.3.1 Human tissue attainment and processing

Colonic pinch-biopsies were donated by 49 IBD patients undergoing regular surveillance of
their disease at Addenbrooke’s hospital, Cambridge (Figure 3.2 and Table 3.1). All samples
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were obtained with informed consent of the donor and the study was approved by the National
Health Service (NHS) Research Ethics Committee (Cambridge South, REC ID 17/EE/0338)
and by the Wellcome Sanger Institute Human Materials and Data Management Committee
(approval number 17/113).

All donors are of white-European ancestries. The time between clinical diagnosis and
date of biopsy was used to define the disease duration of a given individual. I further added six
months to this number for all patients because symptoms often precede diagnosis by several
months, and to avoid setting the disease duration to zero for patients who donated samples at
the time of diagnosis. Dr. Tim Raine estimated the time of purine treatment by consulting
electronic health records from NHS databases. He further annotated the biopsies as never,
previously or actively inflamed using all available clinical data and NHS histopathology
archives. The biopsy images (or an image of a second biopsy from the same site of the
colon) were reviewed by Monika Tripathy, histopathologist. Despite these efforts, there
remained some uncertainty about the past-inflammation status of biopsies annotated as never
inflamed. Gaps may inevitably exist when patients have suffered from a disease for decades
and samples appearing healthy at the time of sampling may have been affected in the past. In
particular, there was uncertainty regarding the past inflammation histories of biopsies P29B1,
P35B1 and P41B1. None of the patients had colorectal cancer, adenoma or dysplasia.

Biopsies from patients 1-26 were embedded in optimal cutting temperature (OCT) com-
pound and sectioned, stained and fixed as previously described (Lee-Six et al., 2019). None
of the samples were fixed in formalin. Subsequent biopsies were embedded in paraffin
because this better preserved the morphology of the tissue. Yvette Hooks sectioned the
biopsies (10-20 µm) and fixed the sections to 4 µm PEN membrane slides (11600288, Leica).
I stained the sections with hematoxylin and eosin and dissected individual crypts using
laser capture microdissection microscopy (LMD7000, Leica). I lyzed the cells using ARC-
TURUS PicoPure DNA extraction kit (Applied Biosystems) according to the manufacturer’s
instructions. DNA libraries were prepared by the Sanger Institute Core Pipelines team using
a previously optimized method for obtaining DNA from low input material (Ellis et al., 2021).

The control cohort was obtained from our previous publication on somatic mutations in
the normal colon described in Chapter 2 and in the introduction to this chapter (Lee-Six et al.,
2019). It consists of seven deceased organ donors, 31 individuals who underwent colonoscopy
following a positive faecal occult blood test in a screening programme (16 of which were
not found to have an adenoma or a carcinoma and 15 of which had colorectal carcinoma,
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Table 3.1 Clinical characteristics of the IBD patients

Patient-ID Sex Age Disease Disease Duration Years on purine Years of smoking

patient1 F 59 CD 13 4 NA
patient2 M 38 CD 11 5 NA
patient3 F 27 UC 0.5 0 NA
patient4 F 26 CD 3 0.5 NA
patient8 F 25 UC 1.5 0 NA
patient9 F 49 UC 5 4 NA

patient10 F 51 UC 15 0 0
patient11 M 80 CD 5 0 0
patient12 M 31 UC 13 10 0
patient13 M 31 UC 3 4 NA
patient14 F 35 CD 18 1 0
patient15 M 58 UC 21 0 0
patient16 M 62 UC 4 2 0
patient17 M 44 UC 18 1 12
patient18 F 45 CD 14 8 8
patient19 M 42 CD 13 2 0
patient22 F 58 UC 28 0 0
patient24 M 38 CD 20 0 0
patient25 F 77 UC 19 0 0
patient26 M 70 UC 7 7 10
patient28 F 40 UC 3 0 0
patient29 M 48 UC 5 0 0
patient30 F 40 CD 10 0 0
patient31 M 37 UC 2 1 0
patient33 F 31 CD 20 2 0
patient34 M 22 UC 4 3 0
patient35 M 66 UC 25 7 45
patient36 F 61 UC 27 20 30
patient37 F 37 CD 25 0 0
patient38 F 40 UC 4 5 20
patient40 M 58 CD 40 7 0
patient41 M 42 CD 19 NA 0
patient42 F 31 UC New diagnosis 0 NA
patient43 F 36 CD 0.67 0 NA
patient44 F 29 CD 3 1 6
patient45 F 52 CD 24 10 0
patient46 M 38 UC 21 0 0
patient47 M 46 CD 0.16 NA NA
patient48 F 40 CD 14 1.5 0
patient49 M 33 UC 5 4 9
patient50 F 36 UC 4 5 3
patient51 M 61 UC 16 16 30
patient52 F 69 UC 30 0 NA
patient53 M 61 UC 6 0 30
patient54 F 50 UC 8 0 20
patient59 F 50 UC 5 0 0
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Fig. 3.1 Overview of the experimental procedure. Pinch biopsies were taken at the time
of colonoscopy. These were embedded, either in OCT or paraffin blocks and the blocks
sectioned. Histological sections were fixed to membrane slides and stained using hematoxylin
and eosin. Laser capture microscopy was used to isolate crypts for whole genome sequencing.

although the biopsies used were distant from these lesions) and three paediatric patients who
underwent colonoscopy to exclude IBD and who were found to have a histologically and
macroscopically normal mucosa (Figure 3.2). I excluded one subject from the control cohort
who had undergone chemotherapy and was a clear outlier in terms of mutation burden and
showed an abnormal mutation profile.

Fig. 3.2 Cohort characteristics. A) Age distribution by disease status. B) Disease duration
distribution by IBD subtype. C) The sex distribution of the participants by disease status.
CD: Crohn’s disease. UC: Ulcerative colitis.
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3.3.2 DNA sequencing

Samples from patient 1 through 19 were whole genome sequenced on Illumina XTEN ma-
chines using 150bp long paired-end reads by the Sanger Institute Core Sequencing team.
Samples from other patients were whole genome sequenced on Illumina Htp NovaSeq 6000
machines using 150bp, paired end reads except for patients 60-62, which were whole exome
sequenced on the same platform using the Human All Exon V5 bait set. Reads were aligned
to the human reference genome (NCBI build37) using BWA-MEM by the Sanger Institute
Core Informatics team. There was no difference in mutation burden between samples se-
quenced on different platforms (P>0.05, likelihood ratio test of linear mixed-effect models,
as described below).

We multiplexed samples aiming to achieve a coverage of 15X. In reality, the median-
median coverage was 18.2X as described below. We opted for 15X coverage after observing
that the sensitivity of calling germline singletons at this depth exceeded 90% in other projects
taking place in the lab. We hypothesized that the sensitivity when calling heterozygous
somatic mutations in clonal colonic crypts would be similar. As described below, this proved
to be the case.
Given the choice of sequencing one crypt at 30X or two crypts at 15X each, the latter strategy
is preferable. Imagine the crypts have 2000 true somatic mutations on average and that
the sensitivity is 90% at 15X but 99% at 30X. Splitting the sequencing resources between
two crypts will result in the identification of 3600 somatic mutations compared with 1980
identified by sequencing one crypt. This increases the power for mutation signature extraction
and driver discovery. Additionally, by sequencing more crypts we observe more coalescent
events which gives a more complete picture of the clonal composition of the tissue.

3.3.3 Mutation calling and filtering

Substitutions

Base substitution calling was carried out in four steps: Discovery, filtering of the discovery
set, genotyping and filtering of the genotypes. Mutations were first called using the Can-
cer Variants through Expectation Maximisation (CaVEMan) algorithm (Jones et al., 2016).
CaVEMan is a Bayesian variant caller described in section 1.4.2. CaVEMan copy number
options were set to major copy number 10 and minor copy number 2 for normal clones. Out
of concern for field cancerization effect, patients 1 through 26, and patients from which only
a few crypts were sequenced, were analysed using a matched normal sample dissected from
non-epithelial tissue from one of the biopsies. As it became apparent that clones did not
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stretch between biopsies, I stopped sequencing non-epithelial tissue control samples from
patients if crypts were dissected from multiple biopsies.

The substitution calls were next filtered to remove mapping artefacts, common single nu-
cleotide polymorphisms and calls associated with the formation of cruciform DNA structures
during library preparation. The samples were compared against a ‘normal panel’ consisting
of 75 unrelated normal samples to remove common SNPs and recurrent sequencing errors.
I further removed mutations if the median alignment score of supporting reads was lower
than 140 or if >50% of the reads supporting the mutations were clipped. The enzymatic
fragmentation-based LCM workflow commonly results in errors within inverted repeats of
the genome that are capable of forming cruciform DNA (Ellis et al., 2021). These erroneous
variants tend to be in close proximity with other erroneous variants within the same read
and the reads containing them have very similar alignment start positions. I applied a script
written by Mathijs Sanders designed to remove these calls. It uses as features for filtering the
variant position within the read, the standard deviation of the position of the variant relative
to the alignment start site, and the median absolute deviation of the same (Ellis et al., 2021).

All sites where a somatic mutation was called in any crypt from a given patient were
subsequently genotyped in all other samples from that patient by constructing read pileups
and counting the number of mutant and wild-type reads. Only reads with a mapping quality
of 30 or higher, and bases with a base quality of 30 or higher, were counted.

When matched normal samples were unavailable for the calling (see above), a large
number of (rare) germline variants remained post filtering. I removed those by applying
a script written by Tim Coorens to carry out an exact binomial test on the variant allele
frequency (VAF) of each mutation across samples. True heterozygous germline variants
should be present at a VAF of 0.5 in all samples from an individual. Across all samples from
a given individual, I aggregated variant and read counts at sites where a single nucleotide
variant was called in at least one sample. I then used a one-sided exact binomial test to
distinguish germline variants from somatic variants. The null hypothesis was that germline
variants were drawn from a binomial distribution with a probability of success of 0.5, or
0.95 for the sex chromosomes in men. The alternative hypothesis was that these variants
were drawn from distributions with a lower probability of success. The resulting p-values
were corrected for multiple testing using the Benjamini-Hochberg method. A variant was
classified as somatic if q < 10−3 , or q < 10−2 if fewer than five crypts had been dissected
for the patient. For variants classified as somatic, I fitted a beta-binomial distribution to the
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number of variant supporting reads and total number of reads across crypts from the same
patient. For every mutation, I determined the maximum likelihood overdispersion parameter
(ρ) in a grid-based way (ranging the value of ρ from 10−6 to 10−0.05). A low overdispersion
captures artefactual variants because they appear to be randomly distributed across samples
and can be modelled as being drawn from a binomial distribution. In contrast, true somatic
variants will be present at a VAF close to 0.5 in some, but not in all crypt genomes, and are
thus best represented by a beta-binomial with a high overdispersion. To distinguish artefacts
from true variants, I used ρ = 0.1 as a threshold, below which variants were considered
artefacts. The code for this filtering approach was similarly provided by Tim Coorens and is
an adaptation of the Shearwater variant caller (Gerstung et al., 2014). Finally, I filtered out
variants that were supported by fewer than three reads or where the sequencing depth was
less than five

Indels

Short deletions and insertions were called using the Pindel algorithm (Ye et al., 2009). Further
description of Pindel can be found in section 1.4.2. I applied the same restrictions on median
VAF and read counts as for substitutions, and germline indel calls were filtered using the
same binomial filters as described above.

Structural variants

Copy number variants were called using the BRASS algorithm. When a matched normal
sample was not available for a patient, I used a clonally unrelated sample from the same
individual to filter germline variants. All variants passing filters were manually reviewed
in a genome browser. For discovery of deletions at fragile sites of the genome, I manually
reviewed the three regions in all the genomes.

Somatic retrotranspostions were called by Hyunchul Jung using the TraFic algorithm
(Rodriguez-Martin et al., 2020). Somatic events supported by read clusters without exact
breakpoints were also included. To further identify somatic transduction events, translocation
calls (i.e., read clusters) related with known L1 germline sources (Rodriguez-Martin et al.,
2020) from the BRASS algorithm were manually examined by Hyunchul Jung, as were all
somatic retrotransposition events. Chromosome aneuploidies and deletions or duplications
affecting large areas of chromosomes or whole chromosome arms were called using the
ASCAT algorithm (Raine et al., 2016; Van Loo et al., 2010).
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3.3.4 Sensitivity analysis

To estimate sensitivity I dissected and sequenced five crypts twice. Assuming the same sensi-
tivity in both samples, a maximum likelihood estimate for the sensitivity when mutations not
present in either sample go unobserved is:

S = 2×n2
n1+2×n2

Where n2 is the number of mutations called in both samples and n1 is the sum of muta-
tions called in only one sample. As sensitivity depends on coverage, which is uneven for the
members of a pair, this estimate should be considered to be a lower bound.

I compared the sensitivity estimates for the five biological duplicates with internal
sensitivity estimation for CaveMan carried out by Tim Coorens (Figure 3.3). This used 170
samples from the same individual sequenced to varying depths and, to remove the effect of
clonality of the sample, estimated the sensitivity for calling heterozygous germline variants
in these samples. The colonic crypts are expected to have slightly lower sensitivity than this
estimate for the following reasons:

1. The curve assumes perfect clonality (median VAF of 0.5), but the median-median VAF
in the IBD and control cohorts is 0.44.

2. The curve doesn’t capture indels, for which sensitivity is expected to be slightly lower
than for substitutions.

3. To increase specificity, I had required a coverage of 5 and at least 3 reads supporting
the mutation, while standard for CaVEMan is coverage of 4 and 2 mutant reads.

3.3.5 Constructing phylogenetic trees

I used the MPBoot software (Hoang et al., 2018a,b) to create a phylogenetic tree for each
patient. MPBoot is further described in section 1.4.4. I assigned mutations to branches using
a maximum likelihood approach implemented in a script originally written by Nick Williams.
I removed mutations which didn’t adhere to the tree structure (P<0.01, maximum likelihood
estimation).
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3.3.6 Mutation rate comparisons between IBD patients and controls.

Any test for a difference in mutation burden between cohorts must take into account all
factors, biological and technical, which correlate with disease and/or affect mutation calling
sensitivity. For our comparison of IBD and normal, I fitted linear mixed effects models taking
the following factors into account:

1. Age is the most important predictor of mutation burden and the age distribution of the
two cohorts is different. I included a fixed effect for age in the models to account for
this.

2. Mutation burden differs for different sectors of the colon (Lee-Six et al., 2019). The
IBD cohort is enriched with samples from the left side, as this is the area predominantly
affected in UC patients. I included a fixed effect for location within the colon to account
for this.

3. Mutation counts are non-independent. I included in the models random effects for
patient and for biopsy, with the random effect for biopsy nested within that for the
patient.

4. Most embryonic mutations will be filtered as germline so at birth the mutation count is
near zero. Therefore, I did not include a random intercept in the models but constrained
the intercept to zero. The biological interpretation of this is that there are no somatic
mutations present at time zero (birth).

5. The between-patient variance is likely greater in the IBD cohort as patients vary in the
duration, extent and severity of their disease. The within-patient variance is also likely
greater in the IBD cohort as biopsies taken from different sites of the colon vary in
their disease exposure, number and duration of flares etc. To model this, I constructed
a general positive-definite variance-covariance matrix for the random effects of patient
and biopsy by cohort.

6. Any difference in the clonality of the colon between IBD patients and controls will
affect the relative sensitivity to detect somatic mutations. To account for this, I adjusted
the branch lengths of the phylogenetic trees and used the adjusted mutation counts
as the response variable in the models. Mutations with low variant allele frequencies
(VAFs) will be missed at low coverage. Therefore, for each crypt, I first fitted a
truncated binomial distribution to the VAF distribution of the crypt to estimate the true
underlying median VAF (this is different from 0.5 because recent mutations may not yet
have been fixed in the stem cell niche, and because of contamination of lymphocytes
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and other cells from the lamina propria, which do not carry the same somatic mutations
as the epithelial cells). I next simulated 100,000 mutation call attempts by drawing the
coverage of each call from a Poisson distribution, with the lambda set as the median
coverage of the sample, and multiplying that with the median VAF estimate from the
truncated binomial. The resulting value represents the number of reads that carry the
mutated allele. I calculated sensitivity for the sample, Ss, as the fraction of draws that
resulted in four or more mutant reads, which is the number required by CaVEMan
to call a mutation. The sensitivity of a branch with n daughter crypts, Sb, was then
calculated as:

Sb = 1− (1−Ss1)× ...∗ (1−Ssi)× ...× (1−Ssn)

The adjusted mutation count is thus the observed mutation count divided by the
sensitivity of the branch. In this way, the mutation count of clones formed of stand-
alone crypts is augmented more than that of branches with multiple daughter crypts.
Even after these steps, a significant effect of coverage remained (38 mutations per 1X
increase in coverage, P = 2.8×10−13) and a fixed effect for coverage was included in
the models.

I compared the fit of these models with and without disease duration as a fixed effect
using likelihood ratio tests. The disease durations for never inflamed regions of the colons of
IBD patients were set to zero.

As comparatively few structural variants are found in the dataset, I used Poisson regression
within a generalized linear mixed effects framework to test for differences in structural variant
number between cases and controls. I included the same random and fixed effects described
above for base substitutions and indels and compared models with and without disease
duration using likelihood ratio tests.

3.3.7 Mutational signature extraction and analyses

Refer to section 1.2.1 for a definition of mutational signatures and a discussion on the muta-
tional processes underlying them. Methods for mutational signature extraction are described
in section 1.4.3. I extracted mutational signatures using the ‘hdp’ package in R which imple-
ments a hierarchical Dirichlet process based method for signature extraction (Roberts, 2018).
This has the advantage of allowing simultaneous fitting to existing signatures and discovery
of new signatures. I pooled the control and the IBD data and extracted signatures from the
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combined dataset for indels and single base substitutions separately. I mapped mutations to
branches of a phylogenetic tree and treated each branch with more than 50 mutations as a
sample. To set known signatures as priors, I initialized the HDP process with pseudo-count
nodes where mutations were distributed by known signatures. I used signatures reported in
colorectal cancer and also included signature 32, which is attributed to azathioprine therapy
(Inman et al., 2018), and signature 35, attributed to platinum-based chemotherapy, as there
are patients in our cohort with a history of using these drugs. Using the PCAWG terminology
(Alexandrov et al., 2020), the prior signatures used were SBS1, SBS2, SBS3, SBS5, SBS13,
SBS16, SBS17a, SBS17b, SBS18, SBS25, SBS28, SBS30, SBS32, SBS35,SBS37, SBS40,
SBS41, SBS43, SBS45 and SBS49 for substitutions and ID1, ID2, ID3, ID4, ID5, ID6, ID7,
ID8, ID10 and ID14 for indels.

I used expectation maximization to deconvolute the HDP components into known
PCAWG signatures. In particular, the cosine similarity between the HDP component cor-
responding to SBS1 was <0.95 and visual inspection of the component suggested it was
contaminated by SBS5 and SBS18, which are highly correlated with SBS1. I used ex-
pectation maximization to break the component down into PCAWG signatures and then
reconstituted the components using only those PCAWG signatures that accounted for >10%
of the mutations (this was done to avoid overfitting). This helped resolve the correlation
between SBS1, SBS5 and SBS18. I merged components corresponding to SBS5 and SBS40
under the name of SBS5, as both are flat, with the mutation probability distributed near
uniformly across mutation classes, and so are difficult to distinguish. No other components
had cosine similarity <0.95 with their corresponding signatures and other PCAWG signatures
accounting for >10% of the mutations.

3.3.8 Selection analyses

To search for mutations under positive selection, I used the dNdScv method (Martincorena
et al., 2017), see section 1.4.5. I included never inflamed samples from the IBD cohort in the
analysis as some uncertainty existed regarding the annotation of a handful of never-inflamed
biopsies and I estimated that since driver mutations are quite rare in the colon, the analysis
would suffer more from potential exclusion of drivers than from inclusion of more neutral
mutations. I used the Benjamini-Hochberg method to correct for multiple testing.

To look for enrichment of mutations in pathways I defined a priori, 15 gene-sets, with
input from Drs. Carl Anderson and Tim Raine. We included all genes found to be under
selection in colorectal cancer (Priestley et al., 2019) as well as a list of genes significant
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in a pan-cancer analysis of solid tumours (Priestley et al., 2019). We also chose a set of
cellular pathways known to be important in IBD pathogenesis and epithelial homeostasis.
The Reactome database was used to define the pathways (Fabregat et al., 2018). We chose the
cytokine pathways TNF-Signaling, TNFR2, IL6, TGFb and IL17 for testing. We also defined
a combined list of cytokines which included all of the above as well as IFNg, IL10, IL20,
IL23, IL28, and IL36. We also decided to test other pathways shown by the Anderson group
and others through genome-wide association studies to be important in IBD pathogenesis
(de Lange et al., 2017). These were Toll-like receptor cascades, NOD-signaling, autophagy,
unfolded protein response and epithelial cell-cell junctions. We included the PIP3/AKT
signaling pathways as it is downstream of many of the pathways defined above and I had
discovered two large scale deletions affecting genes in this pathway before performing the
analysis. Finally, we defined a list of genes known to cause early-onset, monogenic forms of
IBD. Many of the genes defined in the literature affect myeloid cell development and cause
severe immunodeficiencies (Uhlig, 2013; Uhlig et al., 2014). We restricted our analysis to
the union of monogenic-IBD genes which either are specifically thought to affect epithelial
cells or were members of any of the pathways above.

I extracted global dN/dS values for missense and truncating variants separately and used
the Benjamini-Hochberg method to correct for multiple testing.

3.4 Results

The final dataset comprised whole genome sequence data from 446 crypts, microdissected
from endoscopic biopsies taken from 28 UC patients and 18 CD patients, as well as whole
exome sequence data from 187 crypts dissected from 2 UC patients and 1 CD patient. This
was combined with whole-genome sequence data from 412 crypts sequenced as part of the
study of the normal colon described in Chapter 2 and in the introduction to this chapter
(hereafter referred to as the control data).

The median sequencing coverage of the dissected crypts was 18.2X for the whole genome
sequenced crypts and 30.2X for the whole exome sequenced crypts from the IBD patients.
The median coverage of the crypts in the control cohort was 16.3X. The clonality of crypts
was comparable in both cohorts and the median-median VAF was identical at 0.44 (Figure
3.3 A and B). Five pairs of crypts were sequenced twice and could be used to estimate the
sensitivity of the mutation calling (Table 3.2). From this material I estimated the average
sensitivity to be 79%. However, in four out of five duplicate pairs coverage of both crypts is
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Table 3.2 Sensitivity analysis of technical duplicates.

Original crypt Coverage Duplicate Coverage Sensitivity

P12B1_16 12.2 P12B1_18 11.5 0.88
P12B2_7 11.2 P12B2_13 11.0 0.64
P12B2_8 13.7 P12B2_3 13.1 0.71
P17B2_7 13.4 P17B2_17 10.7 0.75
P44B1a_1 20.5 P44B1_1_repl 17.6 0.97

<14X, which is well below the median of the study. In the one pair where crypts had 17.6X
and 20.5X coverage, I estimated sensitivity of 97% (Table 3.2). These values were compared
against an internal validation set (see methods) and interpolation from the curve suggests
that at the median coverage for cases (18.2X) and controls (16.3X), sensitivity is 97% and
95%, respectively (Figure 3.3).

3.4.1 IBD increases the substitution and indel rate of normal colonic
epithelium.

To assess if IBD is associated with a difference in the mutation burden of the colonic epithe-
lium, I focused only on the WGS crypts from the IBD and control cohorts (only three IBD
patients underwent whole-exome sequencing). I fitted linear mixed-effects models (LMMs)
to estimate the independent effects of age, disease duration and biopsy location on mutation
burden, while controlling for the within-patient and within-biopsy correlations inherent in the
sampling strategy, as described in the methods section. I estimated the effect of IBD to be 55
substitutions per crypt per year of disease duration (35-75 95% CI, P = 3.1×10−7, LMMs
and likelihood ratio test - Figure 3.4). These mutations are in addition to the 40 (31-50,
95% CI) substitutions I estimated are accumulated on average per year of life under normal
conditions, suggesting that mutation rates are increased, on average, 2.3-fold in regions
of the IBD-affected colon. Compared to controls, patients with IBD had greater between-
patient variance in mutation burden (SD=776 versus 383 substitutions and SD=80 versus 34
indels for cases and controls, P = 4.2×10−8 and P = 1.1×10−16 respectively - LMMs and
likelihood ratio test) and greater within-patient variance (SD = 955 versus 407 substitutions
and SD = 81 and 18 indels for cases and controls, P=0.032 and P=0.0011, respectively). The
increased between-patient variance likely reflects differences in inflammation exposure not
captured by disease duration, as it doesn’t account for variable disease severity, response
to treatment etc. among patients. The increased within-patient variance probably reflects
region-to-region differences in disease severity along the colon. I similarly estimated an
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Fig. 3.3 Clonality, coverage and sensitivity of crypts and mutation calls. A) The distri-
bution of the median variant allele fraction (VAF) of mutations called in each crypt. The
median-median VAF of the two cohorts is identical (0.44). B) The distribution of the median
coverage of sequenced crypts. C) Internal analysis of CaVEMan sensitivity. The dashed
lines show interpolation of the sensitivity given the median coverage of cases (18.2X - 97%
sensitivity) and controls (16.3X - 95% sensitivity). The yellow dots represent biological
duplicates where sensitivity was estimated by dissecting and sequencing the same crypts
twice (Table 3.2). D) VAFs of variants called in crypts that were sequenced twice (referred to
as sample 1). Each dot represents a variant. The VAFs are compared against variants called
in unrelated crypts (top) and in biological duplicates (bottom, referred to as sample 2). The
high concordance between biological duplicates but not between unrelated samples suggests
high specificity.
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increase in the indel burden in IBD, with an excess of 6.8 indels per crypt per year of IBD
(5.0 - 8.7 95% CI, P = 5.7×10−11 - Figure 3.4) in addition to the estimated 1.0 (0.3-1.7 95%
CI) indel that is accumulated per crypt per year of life. As shown in Figure 3.4, a handful of
clones and patients had a much higher mutation burden than expected given their age. This is
partially driven by the effect of smoking and cancer driver status, as discussed below. The
effect of IBD on the mutation burden remains significant if crypt carrying driver mutations or
the five IBD patients with the highest mutation burdens are excluded (P=0.0014 and 0.0099
for substitutions and P = 6.8×10−6 and 1.1×10−5 for indels, respectively). There was no
significant difference in the mutation burden between UC and CD patients.

Smoking history was available for a subset of the IBD cohort (362 crypts from 35
patients), encoded as the number of years of active smoking (no estimation of pack-years
was available). In this restricted dataset, there is a significant effect of smoking duration
of 49 (18 - 81 95% CI, P=0.0024) substitutions and 5.3 (2.3 - 8.2 95% CI, P = 6.5×10−4)
indels per crypt per year of smoking. The effect of disease duration is unchanged, suggesting
the estimated effect of smoking in the model is not driven by differences in smoking habits
between cases and controls. Smoking has been reported to increase the risk of CD and be
protective for UC (Mahid et al., 2006) but I found no interaction effect between smoking and
disease type (P=0.68). Smoking status was not available for the control cohort.

3.4.2 Mutational signatures in IBD affected epithelium

The somatic mutations found in the cells of a colonic crypt reflect the mutational processes
that have acted on the stem cells and their progenitors since conception. Distinct mutational
processes each leave a characteristic pattern, a mutational signature, within the genome,
distinguished by the specific base changes and their local sequence context (Alexandrov
et al., 2020, 2013a), as discussed in section 1.2.1.

I extracted mutational signatures jointly for IBD and control crypts and discovered 12
substitution signatures (SBS) and five indel signatures (ID), all of which have been previously
observed in tissues from individuals without IBD (Figure 3.5).
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Fig. 3.4 Mutation burden in the IBD colon. Substitution (top) and indel (bottom) burden
as a function of age. Each point represents a colonic crypt and is coloured by disease status.
The line shows the effect of age on mutation burden as estimated by fitting a linear mixed
effects model, correcting for sampling location, sequencing coverage and the within-biopsy
and within-patient correlation structure, considering both IBD cases and controls. The yellow
shaded area represents the 95% confidence interval of the age effect estimate. B) Estimated
excess of substitutions (top) and indels (bottom) in crypts from IBD patients as function
of disease duration. The pink shaded area represents the 95% confidence interval of the
disease duration effect estimate. C) A comparison of the effects of age and disease duration
on the total mutation burden and on the burden of mutational signatures that associate with
IBD duration. Error bars represent the 95% confidence intervals of the estimates. IBD:
Inflammatory bowel disease. CD: Crohn’s disease. UC: Ulcerative colitis. SBS: Single base
substitution signature. ID: Indel signature.
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As expected, the HDP components showed high cosine similarities with their corre-
sponding PCAWG signatures (Figure 3.6). The lowest cosine similarity was between the
component corresponding to substitution signature 5, which is a flat and featureless signature
(meaning the probability is roughly uniformly distributed across all mutation classes) of the
type which is hardest to extract.

Fig. 3.6 Cosine similarity between HDP components and corresponding PCAWG sig-
natures.

Comparing the IBD cases and controls, I found that approximately 80% of the increase
in mutation burden in cases is explained by signatures that are also found ubiquitously in
normal colon (Blokzijl et al., 2016; Lee-Six et al., 2019) (Figure 3.4C). These are substitution
signatures 1, 5 and 18 and indel signatures 1 and 2, as defined in COSMIC, which cause
an increase of 13 (8-18 95% CI), 23 (15-30 95% CI) and 9 (6-12 95% CI) substitutions
per crypt per year of disease, respectively (P = 2.4× 10−7, 1.0× 10−7 and 3.2× 10−7),
and 4.3 (3.3-5.4 95% CI) and 1.7 (1.1-2.3, 95% CI) indels per crypt per year, respectively
(P = 4.0×10−12 and P = 9.5×10−8 , LMMs and likelihood ratio tests). Substitution sig-
natures 1 and 5 are clock-like and thought to be associated with cell proliferation, while
signature 18 has been linked with reactive oxygen species (Alexandrov et al., 2020). The
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indel signatures ID1 and ID2 are both thought to be the result of polymerase slippage during
DNA replication (Alexandrov et al., 2020).

The remaining 20% of the increase in substitution burden is a consequence of rarer
mutational processes and treatment. For example, 96 crypts had over 150 mutations attributed
to purine treatment in a subset of seven IBD patients, five of whom have a documented
history of such treatment. However, the number of mutations attributed to purine was not
associated with purine therapy duration, and some patients showed large mutation burdens
despite brief, or indeed no, documented exposure (Figure 3.7). Crypts dissected from the
same patient sometimes showed vastly different mutation burdens (Figure 3.7). The largest
range was observed for patient 40, who has a 7 year history of purine treatment. The
estimated burden of the purine signature in crypts from this patient ranged from 69 to 1005
mutations. I speculate that it may be rapidly dividing cells at the time of treatment that
are most affected by purine since the burden of the purine signature (SBS32) associates
with the number of driver mutations (see below). This interpretation is supported by recent
work on the mutational signatures of cancer therapy. Pich et al showed how 5-fluorouracil
only leaves a mutational signature on cancer cells actively dividing at the time of treatment
(Pich et al., 2021). Thiopurines, which mimic the structure of metabolic purines, would
similarly preferentially be incorporated into the DNA in cells that are actively dividing at
the time of treatment. Thiopurine use has been associated with higher overall cancer risk
in epidemiological studies, but this is mostly driven by an effect on lymphoid cancers and
possibly on urinary tract cancers, but not colorectal cancers (Adami et al., 2016; Pasternak
et al., 2013). The relationship between purines and colon cancer is complicated and requires
further study. On one hand, these results show purine-related mutations accumulating in the
crypts of a subset of patients but on the other, effective purine treatment may prevent disease
related mutagenesis.

I also observed great inter-patient variation in the mutation burden attributed to purine
treatment. For example, Figure 3.8A shows a phylogenetic tree of a patient with long term
exposure to azathioprine. The tree is overlaid with the signature exposure of each branch and
shows that this patient did not accrue any purine-related mutations. In contrast, Figure 3.8B
shows a second patient who received azathioprine for only two weeks and mercaptopurine for
two weeks and had significant adverse reactions to both drugs. This brief treatment resulted
in a median of 204 mutations (range: 120-374) attributed to purine treatment in the crypts
from this individual.

Five signatures previously discovered in the normal colon (Lee-Six et al., 2019), SBSA,
SBSB and SBSC, IDA and IDB were also present in the context of IBD. SBSA and IDA and
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Fig. 3.7 Burden of substitution signature 32 as a function of purine treatment duration.
(Upper) Purine signature burden for all patients with known duration of purine treatment.
(Lower) Patients for which any crypt carries more than 150 mutations attributed to SBS32.

Fig. 3.8 Phylogenetic trees of two patients with widespread ulcerative colitis who re-
ceived purine treatment The colours of the branches reflect the relative contribution of
each mutational signature extracted for those branches. A) The patient received azathioprine
treatment for 10 years but shows no SBS32 burden (dark blue). In contrast, the patient on the
right received azathioprine for 2 weeks and mercaptopurine for 2 weeks and had significant
adverse reactions to both drugs. SBS32 is found in most crypts from this patient. All crypts
are from biopsies of actively inflamed regions.
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SBSB and IDB are highly correlated (Figure 3.9) and likely represent the same underlying
mutational processes.

Fig. 3.9 A correlation matrix between mutational signatures identified in the IBD and
healthy colon.

SBSA and IDA are of particular interest since they have recently been shown to be caused
by the genotoxin colibactin, which is produced by bacteria harboring a polyketide synthases
(pks) pathogenicity island (Pleguezuelos-Manzano et al., 2020). pks+ E. coli have been
reported at increased frequency in IBD (Arthur et al., 2012), but I found no relationship
between SBSA or IDA burden and disease status or disease duration after correcting for
higher burden of both in the left-side of the colon (the site primarily affected in UC) (Figure
3.10).

Signatures SBSB, SBSC and SBS32 have not been reported in studies of sporadic col-
orectal cancers (Alexandrov et al., 2020), perhaps due to the comparative complexity and
diversity of cancer mutation profiles. However, SBS32 would only be expected in patients
receiving purine therapy and so would not be present in sporadic colorectal cancers. These
signatures have also not been reported in studies of colitis-associated colorectal cancers but
this is likely due to a relative lack of power due to the small number of sequenced exomes
(Baker et al., 2018; Din et al., 2018; Robles et al., 2016).

Signatures 2 and 13, which are associated with APOBEC activity, and signatures 17a
and 17b, which are of unknown aetiology, were active in a small number of crypts with high
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Fig. 3.10 Colibactin signature exposure by disease.A) A density plot showing the distribu-
tion of SBSA by disease type across all crypts. B) A density plot of crypts with more than
150 mutations attributed to SBSA.

mutation burdens. SBSB, SBSC, SBS17a/b and SBS2/SBS13 are too rare for this study to be
well-powered to detect any difference between IBD and controls or to associate these with any
clinical feature documented in our metadata. Finally, I found signature 35, associated with
platinum compound therapy, in one patient with a history of platinum treatment for squamous
cell carcinoma of the tongue. The patient received 40mg/m2 of cisplatin therapy on a weekly
basis. He completed three of six planned treatment cycles with therapy termination due
to toxicity. This relatively brief treatment resulted in a medium of 430 mutations (range
350-461) per crypt that were attributed to signature 35, equivalent to about 10 years of normal
mutagenesis.

3.4.3 IBD associates with the burden of structural variants

The burden of structural variants is modest in both datasets (Figure 3.11) but for IBD, the
occasional clone carried a large number of CNVs and retrotranspositions (Figure 3.11 A
and B). The numbers of CNVs and retrotranspositions are associated with IBD duration. I
estimated the CNV mutation rate to be 0.067 CNVs per crypt per year of disease (0.027 -
0.11 95% CI, P = 1.1×10−3, Likelihood ratio test of mixed-effects Poisson regressions) and
the retrotransposition mutation rate to be 0.065 (0.018 - 0.11, 95% CI, P = 6.9×10−3). This
corresponds to one CNV per crypt every 14.9 years of disease duration and one retrotranspo-
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sition event every 15.4 years of disease duration on average. However, a handful of clones
accumulated many structural variants (SVs), while the majority had none, suggesting that the
processes driving their acquisition may be episodic rather than continuous. This would be in
line with findings from other reports linking rapid accrual of SVs with the transition from
normal to dysplastic mucosa (Baker et al., 2018) and cancers accruing copy number gains in
a punctuated manner (Gerstung et al., 2020).

I found a higher fraction of IBD crypts carrying aneuploidies than in controls (43/419
compared with 13/412, Figure 2c). However, this was driven by large clones carrying
aneuploidies and the number of events was not significantly associated with disease duration
(P=0.38). The numbers of CNVs, retrotranspositions and aneuploidies are associated with
higher substitution burden (112 (49-175 95% CI, P = 6.4×10−4), 59 (38-81 95% CI, P =

1.5×10−7) and 199 (65-331 95% CI, P = 3.7×10−3), respectively) and retrotranspositions
and CNVs are associated with higher indel burden (11 (8-14 95% CI, P = 2.6×10−12) ,and
17 (10-24 95% CI, P = 6.7×10−6), respectively).

3.4.4 IBD creates a patchwork of millimeter-scale clones

As described in Chapter 2, colonic crypts divide by a process called crypt fission, whereby a
crypt bifurcates at the base and branching elongates in a zip-like manner towards the lumen.
I estimated the crypt fission rate as part of a study profiling the somatic mutation landscape
of the normal colon (Lee-Six et al., 2019). This is described in Chapter 2 of this thesis. I
estimated that each crypt fissions on average only once every 27 years and other sources have
estimated even lower crypt fission rates (Baker et al., 2018; Nicholson et al., 2018). I did
not apply Approximate Bayesian Computation to estimate the crypt fission rate in IBD as I
did for the normal colon in Chapter 2. This is because, in contrast to the normal colon, the
crypt fission rate is unlikely constant in IBD. Presumably, it is rapidly accelerated during a
flare up and then gradually slows down to normal levels as the patient goes into remission.
Rather than estimating the average increase over a period of temporarily increased crypt
fission, I will describe the clonal expansions which represent the permanent consequence of
the increased crypt fission in IBD.

Compared to normal colon, I found much larger clonal expansions in IBD patients,
evident of numerous crypt fission events occurring late in molecular time. I observed several
examples of individual clones spanning entire 2-3 mm endoscopic biopsies (Figure 3.12,
Figure 3.13, Figure 3.14 and Figure 3.15a). The ability to estimate clone sizes is restricted by
the small size of the biopsies, which are pinch biopsies a few millimeters across (Methods).
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Fig. 3.11 Burden of structural variants in inflammatory bowel disease affected colon
compared with IBD-unaffected colon. A) Number of copy number variants in IBD sub-
types compared with controls. B) Number of somatic retrotranspositions in IBD subtypes
compared with controls. C) Fraction of crypts with inflammation history that carry chromo-
somal aneuploidies.
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However, when the same inflamed or previously inflamed region of the colon was biopsied
more than once, on only one occasion out of 19 such biopsy pairs did I observe a clone
stretching between biopsies that were taken several millimeters apart (Figures 3.14 and 3.13),
while most biopsies contained more than one clone. To improve our ability to detect larger
clones, three patients were sampled more broadly. From each patient, nine biopsies were
taken forming a 3x3 grid with 1 cm separating biopsies. I dissected 187 crypts from these
biopsies and performed whole exome sequencing on individual crypts. Phylogenetic trees
were reconstructed based on somatic mutations identified (Figure 3.15B-D). While clonal
expansions within biopsies were common, I found clones extending between neighboring
biopsies in only one of these patients, who showed a very high degree of clonality (Figure
3.15D).

A substantial body of evidence exists documenting widespread clonal expansions giving
rise to dysplasia and ultimately to colorectal cancer in IBD (reviewed in (Choi et al., 2017)).
Colitis-associated colorectal cancers, which are enriched with synchronous lesions (Choi
et al., 2015; Lam et al., 2014), commonly grow from a background of a pre-cancerous field
which has expanded many centimeters or even the whole length of the colon (Galandiuk et al.,
2012; Leedham et al., 2009). Mutations in TP53 are thought to be especially prominent in the
growth of these clones but aneuploidies and KRAS mutations are also commonly observed
(Galandiuk et al., 2012; Holzmann et al., 1998; Leedham et al., 2009). In this material of
non-dysplastic tissue from individuals without colorectal neoplasia, I find smaller clones and
only a total of five mutations in TP53, KRAS or APC. In summary, IBD-affected regions
are generally not dominated by a single major clone, but are more accurately viewed as an
oligoclonal patchwork of clones that often grow considerably larger than in healthy colon.

Clonal spread within the tissue presumably doesn’t occur linearly with time but rather
takes place rapidly during or shortly following a flare up of the disease. Nevertheless, it
would be interesting to study clonal spread as a function of disease duration similar to how
the mutation rate is described above. Unfortunately, our sampling was too sparse to enable
such an analysis.
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Fig. 3.12 Examples of clonal expansions in three IBD patients. (Top) A phylogenetic
tree of crypts sampled from a 66 year old patient with a 25 year history of ulcerative
colitis. The accompanying biopsy image shows the crypts from the orange shaded area.
The clones highlighted in blue and orange come from the same previously inflamed site
and were millimeters apart. A large difference in the mutation burden of these clones is
driven by a local activation of signatures 17a and 17b in the orange shaded clone. (Middle)
A phylogenetic tree of crypts sampled from a 61 year old patient with a 27 year history of
ulcerative colitis. The clones highlighted in purple and yellow come from biopsies taken
millimeters apart. The accompanying biopsy image shows the crypts from the purple clone.
(Bottom) A phylogenetic tree of crypts sampled from a 37 year old patient with a 25 year
history of Crohn’s disease affecting the colon. A biopsy overlaps two clones (in blue and
green).
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Fig. 3.13 Phylogenetic trees for all ulcerative colitis patients. Mutational signatures are
overlaid on the trees and likely driver mutations are mapped to the branch in which they
occur. Crypts are labelled on the form PXBY _Z where PX is the patient number, BY the
biopsy number (with a,b and c denoting biopsies taken a few millimeters apart from the same
site) and Z is the crypt number. The colour of the labels indicates whether a crypt comes
from an inflamed, previously inflamed or never inflamed site.
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Fig. 3.14 Phylogenetic trees for all Crohn’s disease patients. Mutational signatures are
overlaid on the trees and likely driver mutations are mapped to the branch in which they
occur. Crypts are labelled on the form PXBY _Z where PX is the patient number, BY the
biopsy number (with a,b and c denoting biopsies taken a few millimeters apart from the same
site) and Z is the crypt number. The colour of the labels indicates whether a crypt comes
from an inflamed, previously inflamed or never inflamed site.
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Fig. 3.15 Clonal structure of the IBD colon. a) For pairs of crypts from the same biopsy,
the figure shows the number of mutations that are shared between a pair as a fraction of the
average mutation burden of the two crypts and this is plotted as a function of the distance
between the pair. b) A phylogenetic tree showing crypts sampled from 9 biopsies from the
sigmoid colon of a 36 year old male diagnosed with CD 19 years prior to sampling. c) A
phylogenetic tree showing crypts sampled from 9 biopsies from the rectum of a 71 year old
male diagnosed with UC 4 years prior to sampling. d) A phylogenetic tree showing crypts
sampled from 9 biopsies from the rectum of a 42 year old female diagnosed with UC 13
years prior to sampling.
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Table 3.3 Mutations occurring in canonical cancer hotspots of genes that don’t show a
significant enrichment of mutations in the IBD mucosa.

Branch-ID Gene Chr Pos Ref Alt aaChange

Patient18_2 BRAF 7 140453154 T C D594G
Patient62_93 ERBB2 17 37879658 G A R678Q
Patient37_70 ERBB3 12 56478854 G A V104M
Patient51_4 ERBB3 12 56478854 G A V104M

Patient33_31 KRAS 12 25398284 G A G12V
Patient46_40 KRAS 12 25398284 G A G12V
Patient61_33 TP53 17 7577548 C T G245S
Patient61_45 TP53 17 7577120 C T R273H

3.4.5 Distinct patterns of selection in IBD compared with normal ep-
ithelium

The recurrent cycles of inflammation and remission which characterise IBD could create an
environment in which clones containing advantageous mutations may selectively spread in
the mucosa. This advantage may manifest either through faster cell division and elevated
crypt fission rate or through increased resistance to the cytotoxic effects of inflammation.
To identify mutations which likely confer selective advantage on the cell, I searched for
mutations occurring in canonical mutation hotspots from the Cancer Genome Atlas. This
revealed a total of 10 missense mutations in KRAS, BRAF, TP53, ERBB2, ERBB3 and FBXW7
occurring at canonical hotspots (Table 3.3). Additionally, I found a heterozygous nonsense
mutation in APC and frameshift indels in known colorectal tumour suppressors; ATM, SOX9,
RNF43, SMAD2, TAF1L and ZFP36L2, of likely driver status (Table 3.4). Furthermore, two
large-scale deletions in the dataset overlap known tumour suppressors, PIK3R1 and CUX1,
and are likely drivers (Figure 3.16). These mutations, hereafter referred to as putative drivers,
are mapped to the phylogenetic trees in figures 3.13 and 3.14.

The number of putative cancer drivers found in a crypt is associated with increased
burden of both substitutions (269 substitutions per driver, 90-447 95% CI, P = 5.6×10−3)
and indels (40 indels per driver, 20-60 95% CI, P = 1.7×10−4), as well as with each of the
replication-related signatures (SBS1, SBS5, SBS18, ID1 and ID2, Table 3.5). There was also
a significant association with the purine signature (SBS32). I estimated the burden of purine
signature to be increased by 30 (14-47, 95% CI, P = 3.7×10−4, Figure 3.7) substitutions per
driver, suggesting that rapidly dividing cells may be particularly susceptible to the mutagenic
effect of purine treatment.
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Fig. 3.16 Structural variants of probable driver status. The figure compares normalized
read depths of crypts called as carriers and non carriers. A) A deletion covering five exons of
PIK3R1 found to precede a clonal expansion in biopsy 2a of patient 36 (Figure 3 of the main
text, middle panel, purple clone). B) A deletion covering three exons of CUX1 and found to
precede a clonal expansion in biopsy 2a of patient 35.

Table 3.4 Loss of function mutations in known colorectal tumour suppressors that don’t show
a significant enrichment of mutations in the IBD mucosa.

Branch-ID Gene Chr Pos Ref Alt aaChange

Patient37_5 ATM 11 108165721 AG A fs-Indel
Patient40_28 ATM 11 108214044 TA T fs-Indel
Patient37_78 RNF43 17 56435947 GC C fs-Indel
Patient60_39 RNF43 17 56435982 A AGGGCCCAT fs-Indel
Patient46_37 ZFP36L2 2 43452828 G GCGTCC fs-Indel
Patient61_21 ZFP36L2 2 43452186 T TG fs-Indel
Patient50_26 SOX9 17 70117717 A AG fs-Indel
Patient61_23 SOX9 17 70117841 GCACGTCAA GGGACGT fs-Indel
Patient51_3 TAF1L 9 32632904 C A E892*
Patient50_26 SMAD2 18 45374928 TG T fs-Indel
Patient60_6 APC 5 112174249 T A Y986*
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Table 3.5 Association between the number of putative drivers found in the crypts and the
mutation burden. P-values are calculated with a likelihood ratio test of models with and
without the driver count variable.

Response variable Effect per driver 95% CI P-value

Total substitution burden 269 (90-447) 0.0056
SBS1 107 (51-164) 0.00038
SBS5 149 (77-221) 0.00014

SBS18 56 (20-93) 0.0047
SBSA -7 (-47-33) 0.73
SBS32 30 (14-47) 3.7×10−4

Total Indel burden 40 (20-60) 0.00017
ID1 33 (21-45) 3.7×10−7

ID2 0.81 (-2.2-3.8) 0.6
IDA -1 (-7-5) 0.75
ID14 0.03 (-0.23-0.3) 0.8

To search for genes under positive selection, I used the dNdScv software, described in
section 1.4.5. dNdScv estimates the ratio of non-synonymous to synonymous mutations
(dN/dS) across all genes while correcting for regional and context-dependent variation in
mutation rates (Martincorena et al., 2017). Genes with dN/dS ratios significantly different
from 1 are considered to be under selective pressure. This analysis revealed four genes,
ARID1A, FBXW7, PIGR and ZC3H12A, to be under significant positive selection in the IBD
colon after Benjamini-Hochberg correction for multiple testing (Figure 3.17 and 3.18).

ARID1A and FBXW7 are well-established tumor suppressors and are found mutated at
similar frequencies in sporadic- and colitis-associated colorectal cancers (Baker et al., 2018;
Martincorena et al., 2017). I included mutations in ARID1A and FBXW7 in the regression of
driver count against mutation burden described above.

In several instances, distinct heterozygous mutations in the same gene were found in
different crypts from the same patient (Figures 3.13 and 3.14). For example, in one patient
suffering from pan-colitis I found a different PIGR mutation in four biopsies from the right,
transverse and left side of the colon (Figure 3.18B). As I generally sampled rather few crypts
per patient however, these few examples of parallel evolution are difficult to interpret.

I did not detect a significant signal of selection of mutation in the two genes, AXIN2 or
STAG2, reported to be under positive selection in the normal colon (Lee-Six et al., 2019) (P
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Fig. 3.17 Mutations under positive selection The plot shows the location of mutations
found in genes that are enriched for non-synonymous coding mutations.
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= 0.98 and 0.74, respectively) nor was there any evidence of selection of PIGR or ZC3H12A
mutants in the normal colon. I did not find a significant difference in the mutation burden of
any of these genes between UC and CD, although it should be noted that the power of the
Poisson analysis is lower when comparing two datasets than when one dataset is compared
against the expected distribution.

Recurrent mutations in PIGR and ZC3H12A are of particular interest since these have not
been described in cancer but have roles in immunoregulation and reflect distinct mechanisms
of positive selection in the IBD colon. PIGR encodes the poly-immunoglobulin (Ig) receptor,
which transfers polymeric immunoglobulins produced by plasma cells in the mucosal wall
across the epithelium to be secreted into the intestinal lumen (Johansen and Kaetzel, 2011).
Pigr knock-out mice exhibit decreased epithelial barrier integrity and increased susceptibility
to mucosal infections and penetration of commensal bacteria into tissues (Johansen et al.,
1999). ZC3H12A encodes an RNAse, Regnase-1 (also known as MCPIP1). It is activated in
response to TLR stimulation and degrades mRNA of many downstream immune signaling
genes (Matsushita et al., 2009), including PIGR (Nakatsuka et al., 2018), NFKBIZ (Mino
et al., 2015) and members of the IL17 pathway (Garg et al., 2015). Four of the mutations
in ZC3H12A occur in a DSGxxS motif which when phosphorylated marks the protein for
ubiquitin-mediated degradation. Mutations of the corresponding residues in mice attenuate
the phosphorylation (Iwasaki et al., 2011) and stabilize the protein so these are likely gain of
function.

I next carried out a pathway-level dN/dS analysis, searching for enrichment of missense
and truncating variants across 15 gene sets that were defined a priori because of their relevance
in either colorectal carcinogenesis or IBD pathology (Figure 3.18C, Supplementary Tables
12, 13 and 14, Methods). There was a 6.5-fold (1.8 - 23.6, 95% CI) enrichment of truncating
mutations in genes associated with colorectal cancer (q=0.011) as well as a 1.9-fold (1.3-2.8,
95% CI) enrichment in genes significant in a pan-cancer analysis of selection (Priestley et al.,
2019) (q=0.011). Interestingly, the pathway-level dNdS also revealed a 4.0-fold (1.7-9.4,
95% CI) enrichment of truncating mutations in the interleukin-17 (IL17) signaling pathway
(q=0.011) and a 3.3-fold (1.6-6.7, 95% CI) enrichment in Toll-like receptor (TLR) cascades
(q=0.011) with mutations from both UC and CD derived crypts contributing to the enrichment
(Figure 3.19).
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Fig. 3.18 Driver mutations and positive selection in IBD. A) An oncoplot showing the
distribution of potential driver mutations mapped to branches of phylogenetic trees. Each
column represents a branch of a phylogenetic tree and a mutation may be found in multiple
crypts if the branch precedes a clonal expansion. Branches without potential drivers are not
shown for simplicity. *Genes significantly enriched in non-synonymous coding mutations.
B) A phylogenetic tree of the crypts dissected from a 38 year old male suffering from
UC for 21 years. Crypts are dissected from five biopsies from three previously inflamed
sites of the colon. Crypts carrying distinct PIGR truncating mutations are found in four
of the biopsies and in all three colonic sites. C) Pathway-level dN/dS ratios for truncating
mutations in known cancer genes and cellular pathways important in IBD pathogenesis.
Error bars represent 95% confidence intervals. *Significant enrichment of mutations after
Benjamini-Hochberg correction for multiple testing (q<0.05).
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Fig. 3.19 Pathway-level dN/dS ratios for mutations in known cancer genes and cellular
pathways important in IBD pathogenesis. a) Pathway-level dN/dS for truncating muta-
tions. Same as Figure 3.18C but also showing the ratios when analysis is restricted to CD,
UC or control crypts. b) Pathway-level dN/dS for missense mutations.
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3.5 Discussion

I have used whole genome sequencing of individual colonic crypts to provide the most
accurate characterization of the somatic mutation landscape of the IBD affected colon to date.
The results suggest that somatic mutagenesis of the mucosa is accelerated 2.4-fold in disease
and that this increase is mostly driven by acceleration of common mutational processes which
are associated with cell division and metabolic stress and are ubiquitous in IBD-unaffected
colon. Metabolic stress also results in an increased burden of somatic structural variants,
which nevertheless remain rare in the IBD-affected mucosa. Structural variants are common
in colorectal cancers and thus rapid increase in structural variation may be a hallmark of
neoplastic transition, in line with previous reports (Baker et al., 2018). Increase in structural
variation from healthy tissue to non-neoplastic disease has also been observed in liver disease
(Brunner et al., 2019).

Colitis-associated colorectal cancers commonly arise from a background of large clonal
fields (Choi et al., 2017). In this sample of non-dysplastic tissue I find millimeter scale
clonal expansions, although I note that for many inflamed regions only a single small biopsy
is available which limits my ability to detect large clones. TP53 and KRAS mutations are
thought to be key events in clonal spread in the IBD mucosa but while I do observe a number
of canonical cancer driver mutations in genes including TP53 and KRAS, only ARID1A and
FBXW7 show significant evidence of positive selection.

While there is substantial overlap in the driver landscape of IBD and non-IBD colon,
important differences also exist. The findings of enrichment of mutations in PIGR, ZC3H12A
and in the IL17 and TLR pathways suggest there are distinct selection mechanisms in the
colitis-affected colon and that somatic mutations potentially play a causal role in the patho-
genesis of IBD. While this work was under peer review proceeding publication, two studies
of somatic mutations in UC patients from the Japanese population were published which
confirm the positive selection of mutations in ARID1A, FBXW7, PIGR, ZC3H12A and in
the IL17-pathway in UC mucosa (Kakiuchi et al., 2020; Nanki et al., 2020). Importantly,
this study shows that the same selective pressures are operative in mucosal tissue in both
ulcerative colitis and Crohn’s disease.

The two papers also report mutations in additional genes including NFKBIZ, IL17RA,
TRAF3IP2 and NOS2. I performed restricted-hypothesis testing of a set of 13 genes reported
in these other two papers and replicated six at q<0.05 (Table 3.6).
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Table 3.6 Restricted hypothesis testing of genes reported to be under positive selection in the
UC mucosa in Kakiuchi et al or Nanki et al. nsyn, nmis, nnon, nspl , nind: Number of mutations
annotated as synonymous, missense, nonsense, splice site and indels, respectively. qrht :
Restricted-hypothesis testing q-value (after Benjamini-Hochberg correction of P-values for
13 tests).

Gene nsyn nmis nnon nspl nind qrht

NOS2 0 1 0 0 3 0.0069
NFKBIZ 1 0 0 1 2 0.0069
BCOR 1 3 1 0 2 0.0077
RNF43 0 0 0 0 2 0.0200

HNRNPF 0 2 0 0 1 0.0210
ETV6 0 4 0 0 0 0.0407

IL17RA 1 3 0 1 0 0.0958
KRAS 0 2 0 0 0 0.0958
TP53 0 3 0 0 0 0.160

ARID1B 0 1 0 0 1 0.259
IL17RC 0 0 0 1 0 0.261

TRAF3IP2 0 0 0 0 0 0.9845
BCORL1 1 1 0 0 0 0.9845

Importantly, the enrichments of truncating mutations observed in the IL17 and TLR
pathways, which share many genes in common, are not driven by the genes discussed above
because PIGR, ZC3H12A, NFKBIZ and NOS2 are not part of these pathways (according
to Reactome), and no mutations were found in TRAF3IP2. This suggests that additional
positively selected genes related to IL17 and TLR signaling may be discovered in the IBD
colon as sample size is increased. The difference in the number of NFKBIZ mutant crypts
between the studies is noticeable. Only 3 truncating mutations in NFKBIZ, which is the
most commonly mutated gene in Kakiuchi et al (Kakiuchi et al., 2020), were found in my
dataset. This is reminiscent of a previous report of different selection of NOTCH2 mutants
in normal skin between individuals of European and South Asian ancestry (Martincorena
et al., 2015). Together with the observation that distinct mutations in the same gene are often
found in crypts from the same individual, this leads us to speculate that differences in local
environment or a person’s genetic background affects the strength of selective advantage
posed by somatic variants and studies with larger sample sizes may be able to detect those
interactions.

In their study, Nanki et al show how IL17A may be cytotoxic to epithelial cells and argue
that clones carrying IL17 pathway mutations are able to avert this cytotoxicity and thereby
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selectively expand in the inflamed environment (Nanki et al., 2020). This has implications for
the direction of effect of these mutations on IBD pathogenesis since selective pressure would
only be asserted following disease onset as Th17 cells infiltrate the tissue and secrete IL17A
in the vicinity of the epithelium. However, it could also be hypothesized that these mutations
play a causal role in the pathogenesis of IBD through an effect on dysbiosis. Indeed, the
discovery by Nanki et at (Nanki et al., 2020) that PIGR mutations do not confer upon cells sur-
vival advantage in the presence of IL17A may add weight to this hypothesis. While ZC3H12A
and NFKBIZ are involved in IL17 signaling, both are also induced downstream of TLRs (Mat-
sushita et al., 2009; Yamamoto et al., 2004) where they regulate the transcriptional changes
that follow TLR signaling. Disruption of the IL17 pathway itself may also play a causal
role in the disease as intestinal epithelial-cell specific knock-out of components of the IL17
pathway in mice results in commensal dysbiosis through down-regulation of Pigr and other
genes (Kumar et al., 2016). Thus, a positive feedback loop may be established, leading to ever
greater spread of a pathogenic clone. It is worth noting that clinical trials of anti-IL17A and
anti-IL17RA antibodies for the treatment of Crohn’s disease have been carried out but either
show no efficacy over placebo or worsen the disease (Hueber et al., 2012; Targan et al., 2016).

Our understanding of somatic evolution in normal tissues has improved greatly over the
last few years but how and if somatic evolution contributes to the pathogenesis of complex
traits other than cancer remains poorly understood. Clonal hematopoiesis has been associated
with coronary heart disease (Jaiswal et al., 2014) and our work suggests that somatic evolu-
tion in the colonic mucosa may initiate, maintain or perpetuate IBD. Large scale analyses of
cancers have started to reveal common themes of cancer evolution across tissues (Gerstung
et al., 2020) and extending this work to other tissues exposed to chronic inflammation may
similarly reveal patterns of remodeling of the selection landscapes associated with disease,
but which need not drive neoplastic growth. Comparing the evolutionary forces in the IBD
mucosa with those operating in psoriasis, celiac disease, asthma and other diseases affecting
epithelial cells is an area of special interest.

The cohort in this study is small and sampling was biased in the sense that more crypts
were often dissected from patients with long-standing disease. It would be interesting to
expand the study of the driver mutations in particular to a larger cohort. This would enable
us to associate the presence of particular drivers with clinical variables. A disadvantage of
the LCM method is that it is time consuming and doesn’t scale particularly well to hundreds
or thousands of samples. Kakiuchi et al used a clever method for isolating clusters of crypts
together. They applied an adhesive to the crypts and then loosened the epithelial cells from
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the underlying tissue by treating the tissue with EDTA. Groups of crypts would stick to the
adhesive and could be sequenced together. This is a promising method for scaling up the
sample size, especially when many crypts in the region belong to the same clone.



Chapter 4

Somatic evolution in normal and
psoriatic human skin

4.1 Chapter introduction

The work in this chapter remains unpublished. I conceived of the project, applied to the
faculty of Human Gentics for funding for the project, processed all samples as described in
the introduction to chapter 3 and performed out all statistical and bioinformatic analyses.

4.1.1 Psoriasis

Excited by the differences we observed in the somatic evolution landscape of the IBD-
affected colon compared with normal colon, I was interested in studying somatic evolution
in psoriasis. This is a second chronic inflammatory disease affecting an epithelial tissue,
this time the skin. Psoriasis is the most common autoimmune disease in the Western world,
affecting about 2-3% of adults of white European descent (Parisi et al., 2020). It has several
subtypes, the most common of which is psoriasis vulgaris, which accounts for about 90% of
cases and manifests as well-defined plaques of thickened skin with an overlying silvery scale,
most often on the knees, elbows and scalp (Greb et al., 2016; Griffiths and Barker, 2007).
All participants in the study described herein were diagnosed with this most common type of
psoriasis and I will hereafter refer to psoriasis vulgaris simply as psoriasis.

The causes of psoriasis are not fully known. Like IBD, it occurs in cycles of flares and
remission where the same anatomical location tends to be recurrently affected, suggesting
some permanent alteration of the affected region. Many risk factors, both environmental and
genetic have been identified and associated with both disease onset and severity. The genetic
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risk factor which mediates the largest risk is HLA-Cw*0602, which confers an odds-ratio
of 3-3.5 for developing the disease (Okada et al., 2014) and has been linked with earlier
onset and more severe disease (Gudjonsson et al., 2003, 2006). Close to 70 additional loci
with smaller effect sizes have been identified through GWAS (Tsoi et al., 2017). As for IBD,
some genes point towards T-cell biology and immune signaling while others, for example
SERPINB8, KLF4, KLF13 and TP63, are thought to affect epidermal differentiation (Tsoi
et al., 2017). Lifestyle and environmental factors associated with the disease most notably
include obesity, infections and trauma to the skin, such as burns or cuts (called Köbner
phenomenon) (Greb et al., 2016; Griffiths and Barker, 2007).

4.1.2 Cellular structure of the epidermis

The two main structures of the skin are the dermis and the epidermis. The lower dermis
consists mainly of fibroblasts and immune cells like macrophages and mast cells, as well as
matrix components like collagen, elastin and various extrafibrillar matrix components. The
upper epidermis, which will be the focus of this chapter, consists mainly of keratinocytes
derived from a population of stem cells that reside at the bottom of the epidermis along a
basement membrane that separates the epidermis from the dermis. As cells differentiate they
stratify vertically up to the outer layers of the epidermis. They first enter the granule layer, so
named because in this layer cells start to lose their nuclei and cytoplasmic organelles and a
large number of granules appear under the microscope. Finally, the outermost layer of the
skin is the cornified layer which consists of several layers of dead cells that have lost their
nuclei and are ultimately shed.

The epidermis is punctuated by hair follicles and sweat ducts rising from the dermis
below. Both hair follicles and sweat ducts contain their own stem cells and form distinct
proliferative compartments that do not contribute to the normal maintenance of the epidermis,
although lineage tracing experiments suggest that they can acquire an epidermal phenotype
and be called upon for wound healing (Ito et al., 2005; Lu et al., 2012).

Histologically, psoriatic skin has a distinct appearance characterized by epidermal hyper-
plasia, which drives thickening of the epidermis and elongation of epidermal rete into the
dermis below. The differentiation of keratinocytes is also altered such that the granular layer
is largely absent and the cornified layer is, as a result, formed from incompletely differenti-
ated keratinocytes, some of which retain their nuclei. This is known as parakeratosis. The
scales observed at psoriatic lesions result from the failure of the differentiated keratinocytes
to stack and adhere to one another (Lowes et al., 2007). Psoriatic skin is also characterized
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by extensive immune cell infiltration, especially into the dermis but also to a lesser extent
into the epidermis (Boehncke and Schön, 2015; Greb et al., 2016).

4.1.3 Keratinocyte cancers

Keratinocyte cancers are the most common malignant neoplasms affecting humans. They
are especially common among fair-skinned individuals who are exposed to large doses of
UV-light. Broadly, two subtypes of keratinocyte cancers exist. Basal cell carcinoma (BCC),
which originates either in basal stem cells in the interfollicular epidermis or within hair folli-
cles, (Grachtchouk et al., 2011; Peterson et al., 2015) represents three-quarters of all cases.
BCC is generally thought to have limited metastatic potential and although it represents a
large fraction of skin cancers, it results in a much lower fraction of deaths (Verkouteren et al.,
2017). BCCs are characterized by one of the highest mutation burdens seen in any cancer,
with mutation burdens estimated at 65-76 mutations per megabase, of which over 75% are the
result of UV exposure (Bonilla et al., 2016; Jayaraman et al., 2014). Uncontrolled Hedgehog
signalling, usually driven by loss of PTCH1, activation of SMO or loss-of-function mutations
in SUFU, is a well established driving mechanism of these cancers (Bonilla et al., 2016;
Jayaraman et al., 2014; Peterson et al., 2015).

The second class of keratinocyte cancers are cutaneous squamous cell carcinomas (cSCC),
which arise within the more superficially placed squamous cell layers of the epidermis. Like
BCCs, cSCCs have very high mutation burdens, 50-61 mutations per megabase, with the
majority of mutations resulting from UV exposure (Inman et al., 2018; Pickering et al.,
2014). Mutations in NOTCH1, NOTCH2, FAT1, TP53, HRAS, CDKN2A, PIK3CA and other
genes are common driver events, as are copy number changes affecting NOTCH1 (Agrawal
et al., 2011; Inman et al., 2018; Pickering et al., 2014; South et al., 2014). cSCCs most
often occur in the head and neck region, presumably because this is the area most exposed
to the mutagenic effects of UV-light. They are histologically and pathologically related to
head-and-neck squamous cell carcinomas, with both showing extremely high frequency of
mutations affecting the NOTCH signalling pathway (Loganathan et al., 2020).

Most cSCCs respond well to first-line therapy like electrodessication, cryo-surgery or
radiotherapy. Only 3-5% of tumours metastasize or recur (Veness, 2007). This is likely due to
the lesions being visible from the outset, which leads to earlier detection and treatment, rather
than intrinsic tumour factors as such. Once metastasized however, few treatment options are
available and survival is poor (Veness, 2007).
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Interestingly, immunosuppression carries a major risk for the development of keratinocyte
cancers. The incidence of BCC is tenfold in organ transplant recipients compared with the
general population and the incidence of cSCC is more than a hundredfold (Euvrard et al.,
2003; Harwood et al., 2013). These findings suggest an important role for immune surveil-
lance in skin cancer prevention and that the less extreme immunosuppression achieved in the
treatment of autoimmune diseases like psoriasis might also affect skin cancer frequencies.
Indeed, many drugs, for example mycophenolate mofetil, cyclophosphamide, cyclosporine A
and azathioprine are used to treat both transplant recipients and autoimmune diseases, and
some of these drugs are themselves mutagenic. Azathioprine, for example, leaves a distinct
mutational signature in cSCCs (Inman et al., 2018) and in the colonic mucosa of IBD patients
(as discussed in Chapter 3). This may also explain a part of the increased skin cancer risk
associated with the use of these drugs.

4.1.4 Psoriasis related cancers

Cancer is one of the serious comorbidities of psoriasis. However, whether cancer risk is
related to mechanisms involved in psoriasis itself, such as the chronic inflammation, or
is a consequence of the immunosuppressive treatment or other treatments undertaken is
not completely clear (Boehncke and Schön, 2015). Using a primary care medical records
database of patients in the UK, Chiesa-Fuxench et al estimated risk of cancers in mild and
moderate-to-severe psoriasis after correcting for comorbid, well-established risk factors for
cancer, such as smoking, drinking and obesity (Chiesa Fuxench et al., 2016). They found
that the risk of keratinocyte cancer is modestly increased in psoriasis patients compared
with the general population (adjusted hazard ratio 1.12 overall and 1.61 in patients with
moderate-to-severe disease).

Chiesa-Fuxench et al also reported that psoriasis patients are at an increased risk of lung
cancer and lymphomas. The association with lung cancer however was not apparent when
the analysis was restricted to people who had never smoked, indicating that this association
may be driven by different smoking habits between cases and controls. The largest increase
in cancer risk was seen for cutaneous T-cell lymphoma and was 3.82 overall and 9.25 in
patients with moderate-to-severe psoriasis. There was also increased risk of lymphomas
if cutaneous T-cell lymphomas were excluded (hazard ratio 1.25 overall) (Chiesa Fuxench
et al., 2016). Similar hazard ratios have been reported in other studies (Gelfand et al., 2006;
Vaengebjerg et al., 2020).
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4.1.5 Somatic evolution in normal epidermis

Mutations under selection in normal epidermis

The skin was the first normal tissue to be extensively characterized in terms of its somatic
mutation landscape. In a landmark study, Martincorena et al performed deep targeted se-
quencing of 74 cancer genes in epidermis isolated from the eyelids of four donors and showed
that over a quarter of normal skin cells harbored at least one driver mutation (Martincorena
et al., 2015). More recently, Fowler et al sequenced isolated epidermis from a range of body
sites from 35 donors (Fowler et al., 2021). Together, these studies revealed evidence of
positive selection of mutations in 14 genes, almost all of which are well recognized drivers
of cutaneous SCC. Much less overlap was observed with BCC or melanoma. The prevalence
of mutations in NOTCH1 and FAT1 matches that seen in cSCCs, suggesting that these genes
may appear recurrently mutated in these cancers simply by virtue of their colonization of
normal skin rather than them playing a direct role in malignant transformation (Fowler et al.,
2021). NOTCH1 was the most commonly mutated gene in both studies with other mutations
in genes involved in NOTCH signalling also being prevalent. These include two of the
other members of this gene family, NOTCH2 and NOTCH3, and also regulators of NOTCH
signalling like ARID2 and AJUBA. Although negative selection is rarely seen in somatic
tissues (Martincorena et al., 2017), Fowler et al found evidence of negative selection of
mutations in five genes in the skin. For one of these, PIK3CA, there was positive selection of
mutations predicted to be activating and negative selection of inactivating mutations.

Effect of UV-light on selection

The skin is the largest organ of the body and different areas are subjected to different
environmental exposures, most notably different levels of UV-radiation. Fowler et al reported
differential selection of TP53, NOTCH1 and FAT1 across different body sites with mutations
in the latter two genes being overrepresented in the leg compared with all other sites. In
contrast, mutations in TP53 and FAT1 were depleted in the head, the most sun-exposed
site of the body. Wei et al explored differences between sun-exposed (dorsal forearm) and
non-sun-exposed (buttock) skin in more detail, sequencing 100bp segments of highly mutated
genes. They found an enrichment of mutations in segments corresponding to p53 p.227-261
and NOTCH1 p.449-481 in the sun-exposed tissue compared with the non-sun-exposed tissue
and an enrichment on the gene level for mutation in TP53 in the same (Wei et al., 2021).
Wei et al also reported that six mutational hotspots were more often mutated in sun-exposed
compared with non-exposed tissue. These include TP53 R248W and G245D and NOTCH1
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P460L, P460S, S385F and E424K, but the mechanisms driving these enrichments are not
known.

Clonal dynamics in the epidermis

As described above, a single layer of basal stem cells maintains the epidermis, with differen-
tiating cells mostly stratifying vertically from their progenitor through the suprabasal layers
until they are ultimately shed. On division, a progenitor can produce two differentiating cells,
two progenitor cells or one of each. Clones expand, both through drift and selection, when a
cell produces two progenitor cells and takes over the space of another cell that has produced
two differentiating cells. Notch signalling induces differentiation via multiple mechanisms
(Nowell and Radtke, 2017) and it is likely that LoF mutations in NOTCH1, and many other
drivers, have the effect of biasing the cell fate towards more progenitor cells being produced.

In epithelial tissues with high rates of drivers, such as oesophagus and skin, clones are
initially free to rapidly expand, as the flat architecture of the tissue places little structural
limits on spread (as opposed to the organization of the colon into crypts). However, the high
density of drivers means that expanding clones soon encounter neighbouring clones that also
carry distinct mutations that render their fitness higher than the germline “wildtype”. This
reduces the comparative advantage of both clones and slows down their spread (Colom et al.,
2020; Murai et al., 2018). Remarkably, there is budding evidence that NOTCH1 mutations in
the oesophagus can impair tumour growth and that mutant clones in the normal epithelium
often outcompete and eliminate tumours in their early stages (Abby et al., 2021; Colom et al.,
2021).

4.2 Chapter aims

In this chapter I aim to compare the somatic evolution of keratinocytes in lesional and
non-lesional skin from patients with psoriasis vulgaris. I will compare the two in terms
of the mutation burden, the clonal structure of the tissue, the mutagen exposure and driver
landscape of the tissue. This study may also offer opportunities to expand our understanding
of evolution of keratinocytes in general, as it is the first to apply whole-exome sequencing to
normal cells, as opposed to deep targeted sequencing of cancer genes.
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4.3 Methods

4.3.1 Human tissue attainment and processing

Round punch biopsies, 4 mm in diameter, from lesional and non-lesional skin were donated
by psoriasis patients presenting to the Kiel University Skin Clinic between 2017 and 2019.
Biopsies were taken under sterile conditions under local anesthesia and the emerging holes
were closed with seam stitching and bandaged. All donors gave informed consent for ge-
netic research of the material and the study was approved by the research ethics committee
of Christian-Albrechts University in Kiel (A100/12), the National Health Service (NHS)
Research Ethics Committee (Yorkshire & The Humber - South Yorkshire Research Ethics
Committee, REC ID 20/YH/0244, IRAS ID 286843) and by the Wellcome Trust Sanger
Institute Human Materials and Data Management Committee (approval number 20/0085).

Biopsies were fixed in RNAlater (AM7021, ThermoFisher) upon collection following
the manufacturer’s instructions. One half of each biopsy was used in this study and one half
retained by Dr. Weidinger for use in future projects. Yvette Hooks embedded the biopsies in
paraffin, sectioned them and fixed the sections to 4 µm PEN membrane slides (11600288,
Leica). I stained the sections with hematoxylin and eosin and dissected samples from this
material using laser capture microdissection microscopy (LMD7000, Leica) (Figure 4.1B).
I lyzed the cells using ARCTURUS PicoPure DNA extraction kit (Applied Biosystems)
according to the manufacturer’s instructions.

The volume of the microbiopsies (referred to as “samples”) was determined by adding
together the size estimates of the cuts from the LCM software and multiplying this by the
thickness of the sections (10 micrometers). I commonly dissected the same histological
features from serial sections into the same well to increase the DNA-yield of the samples.
The surface area of the samples was determined by measuring the width of the samples
along the basal membrane and multiplying this with the section thickness and the number of
sections (z-stacks) separating the first and last sections dissected into the same well. When
LCM-ing, occasionally, individual dissections do not drop to the bottom of wells but either
fall outside a well or get stuck to the side of a well. Those dissections do not contribute any
DNA to the sample but are nevertheless part of the volume and surface area estimation. The
size estimates in Figure 4.1C and D should therefore be considered as upper bound estimates.
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4.3.2 Genome sequencing

403 samples from 38 individuals were whole-exome sequenced on Illumina Htp NovaSeq
6000® machines using 150bp, paired end reads and the Human All Exon V5 bait set.
The median-median sequencing depth was 66X (Figure 4.1E). Reads were aligned to the
human reference genome (build hg38) and PCR duplicates were marked by the Sanger core
informatics team.

Fig. 4.1 An overview of the samples of epidermis used in the study. A) Locations of skin
biopsies donated for this study and sex of the donors. L: Lesional; NL: Non-lesional. B)
The sample processing pipeline. 4mm punch biopsies were histologically sectioned. I used
laser capture microscopy to isolate small parts of epidermis from the histological sections.
C) The size distribution in two-dimensions if looking on the sample top-down. D) The size
distribution in three-dimensions, after taking into account the thickness of the epidermis. E)
Distribution of the median on-target coverage across all samples.

4.3.3 Mutation calling and filtering

Substitution calling was performed in much the same way as described for the IBD samples
in Chapter 3. Mutations were called by running CaVEMan (Jones et al., 2016), see section
1.4.2, against an unmatched normal with the copy number options set to 10 and 2 for the
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major and minor copy numbers, respectively. The samples were compared against a normal
panel consisting of 75 unrelated normal samples to remove common SNPs. I also removed
mutations if the reads reporting the mutations had a median alignment score lower than 140
or if >50% of the reads were clipped. I did not apply the filters described in Chapter 3 for
removing errors associated with the formation of cruciform DNA as I found they were not
needed. There are fewer inverted repeats within the exome compared with the whole genome,
alignment may be improved to hg38 compared with hg37, and the beta-binomial filters
described below do a good job capturing recurrent sequencing errors. Typically, unfiltered
“norm-seq” samples would have a signature 8-like abundance of C>A mutations but no trace
of this was seen in this exome dataset, indicating that the hairpin filters were redundant.
Indels were called using a modified version of the Pindel algorithm (Raine et al., 2015; Ye
et al., 2009), described in section 1.4.2.

I next grouped samples by patient and used the bam2R() function of the deepSNV pack-
age (Gerstung et al., 2014) to construct read pileups for all sites at which a mutation was
called in any sample from that patient. Only reads with a mapping quality of 30 or greater and
bases with a base quality of 30 or greater, were counted. To merge adjacent substitutions into
double-base-substitutions, I compared the coverage and the number of reads reporting the
alternative allele of the two adjacent sites with a Fisher’s exact test. I adjusted the P-values
for multiple testing on a per-patient basis using the Benjamini-Hochberg method and merged
substitutions with q>0.05.

I filtered germline variants not removed by the comparison with the normal panel by
applying an exact binomial test of the number of reads reporting each mutation, as described
in Chapter 3. Heterozygous germline variants are expected to be present at a VAF of 0.5 in
every sample from a patient. For each mutation, I compared the number of reads reporting
the reference and alternate alleles across all samples from that patient. I tested the hypothesis
that the read counts for the variants were drawn from a binomial distribution with a prob-
ability of success of 0.5, or 0.95 for mutations on the sex chromosomes in men. I applied
Benjamini-Hochberg correction for multiple testing and excluded mutations with q > 10−3.
I also used binomial filtering to remove erroneous mutation calls. Recurrent sequencing
artefacts will be randomly distributed across samples and can be modelled as being drawn
from a binomial distribution. In contrast, true somatic mutations will have a high VAF in
some samples whilst being completely absent from others. The latter will be best represented
by a beta-binomial with a high overdispersion. For every mutation call, I calculated the
maximum likelihood overdispersion parameter (ρ) in a grid-based way (ranging the value
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of ρ from 10−6 to 10−0.05), like described in Chapter 3. Calls with ρ < 0.1 were filtered as
likely artifactual.

After these filtering steps, I compared the mutational spectra of mutations with low VAF
(<0.05 and 0.05<VAF<0.1) with those of high VAF (>0.2). I also compared mutations with
>20 supporting reads with those with <6 supporting reads. The mutational spectra of these
classes of mutations were near-identical, indicating that further filtering based on VAF or
read depth wasn’t necessary.

4.3.4 Mutation rate estimation and comparisons between lesional and
non-lesional skin

I estimated the mutation rate per megabase by summing the numbers of single-base substi-
tutions, double-base substitutions and indels called in each sample and dividing it by the
number of bases that had a coverage of 4X or greater. To compare the mutation rates between
lesional and non-lesional skin I used linear mixed effects models. I included fixed effects
for age, anatomical location of the biopsy, coverage, and the median VAF of each sample
and random effects for patients and biopsies. I compared the fit of those models with that of
models that additionally included a fixed effect for disease duration using a likelihood ratio
test.

4.3.5 Mutational signature extraction

As in the work described in Chapter 3, mutational signatures of single base substitutions were
extracted using the hdp package in R (section 1.4.3). I used the probability distributions for
single-base-substitution signatures 1, 5, 2, 13, 7a, 7b, 7c, 7d, 17a, 17b, 18 and 38 as priors in
the hdp process. Signatures of Indels were not extracted due to low number of indels observed
and signatures of double-base substitutions were not extracted as a manual inspection of the
mutation profiles showed that essentially all mutations were CC>NN substitutions, indicative
of double-base-signature 1, attributed to UV-light.

4.3.6 Selection analyses

I used the dNdScv software (Martincorena et al., 2017) to identify genes enriched in non-
synonymous mutations, indicative of positive selection.
To estimate the fraction of cells in each individual that carry a mutation in a particular gene,
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I used the formula:

∑i VAFG, j×2×Vi
∑i Vi

where VAFG,i is the variant-allele fraction of mutations in gene G in sample i and Vi

is the volume of sample i. This makes the incorrect but simplifying assumption that there
is only one mutation per gene per sample. I also estimated the total fraction of cells in
each individual as the sum of the mutation fractions across all the genes, again making the
incorrect but simplifying assumption that no clones carry more than one driver. In the future,
I intend to apply the pigeonhole principle to determine which mutations co-occur in the same
clone and which do not. In the meantime, these estimates should be considered to be upper
limits. I used a two-sided Wilcoxon signed rank test for paired data to compare the fraction
of mutated cells between lesional and non-lesional biopsies.

4.4 Results

I used laser capture microscopy to dissect 403 samples of epidermis from lesional (N=288)
and non-lesional (N=115) skin of 38 psoriasis vulgaris patients (Figure 4.1). Most samples
covered a surface area of < 0.01 mm2 of the skin (Figure 4.1C). I called somatic mutations
as described above.

4.4.1 Psoriatic skin shows a similar clonal structure and mutation bur-
den as non-lesional skin

I found that even these small samples of skin rarely comprised fully clonal populations of
cells, with most samples containing a mixture of clones (Figures 4.2 and 4.3). Psoriasis is
characterized by hyperproliferation of keratinocytes and under such conditions of shortened
generation time, evolutionary theory would predict accelerated clonal spread driven both by
drift and selection. It was therefore surprising that the variant allele frequency did not differ
between samples taken from lesional and non-lesional skin (Figure 4.3). While adjacent
samples occasionally shared a fraction of their mutations in common, most mutations were
private to individual samples and I generally did not observe clones spreading over large
distances within biopsies either from lesional or non-lesional skin. The exception to that was
when biopsies had a history of phototreatment (see below).
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Fig. 4.2 An example showing the samples sequenced and their corresponding VAF dis-
tributions from one of the donors, a 46 year old male with a long history of psoriasis.
A) The lesional biopsy shows a thickening of both the cornified layer and the epidermis, with
rete of keratinocytes extending into the dermis below. B) The samples sequenced from the
non-lesional biopsy of this patient.
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As many of the samples are polyclonal, accurately estimating the mutation burden per cell
is challenging. However, the mutation burden per sample increased linearly with age (0.58
mutations per megabase per year (0.23-0.94 95% CI) (Figure 4.3 middle and right panels). A
few outlier samples were observed that showed extremely high mutation burden (Figure 4.3
middle). These were found to be from one of the patients with a history of phototreatment
and will be discussed in the next section. To identify factors associated with mutation burden,
I fit a linear mixed effects model that included a random effect for patient and biopsy and
fixed effects for age, anatomical site of the biopsy, coverage and median VAF. I compared
this with a model that additionally included a fixed effect for a disease duration but found
that including disease duration did not improve the fit of the model (P=0.16).

I observed a striking level of heterogeneity in mutation burden of samples dissected from
the same biopsy. The mutation rate of samples with similar coverage and median VAFs and
that were sometimes separated by less than a millimeter of tissue, could vary 2-3 fold. This
difference is driven by variation in UV-associated mutagenesis.

Fig. 4.3 Clonal composition and mutation burden of epidermal samples. Left: A
histogram showing the VAF distribution of lesional and non-lesional samples. Middle: The
raw mutation burden as a function of age, including outliers. Right: Same as the middle panel
but the y-axis is capped at 90 mutations per megabase to better highlight the relationship
between mutation burden and age.

To determine which mutagens are active in psoriatic skin, I extracted mutational signa-
tures using the hdp package, as described in the Methods. This resulted in ten signature-
components being extracted (Figure 4.4), which were compared with the COSMIC reference
signatures (Alexandrov et al., 2020). Unsurprisingly, the component that explains by far
the greatest number of mutations corresponds to reference signature SBS7b (Figure 4.4B),
which has been attributed to UV-light (Alexandrov et al., 2013b). A component correspond-
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ing to SBS7d was also extracted (Figure 4.4H), as were two components I have termed
UV-component N1 and UV-component N2 (Figure 4.4E and F). The samples from which
these components were extracted clustered by patients and, upon inspection of the mutational
profiles of affected samples, their effects were clearly visible (Figure 4.5), indicating they
represent true mutational processes. I hypothesize that these two components may reflect
individual variation in UV-response, although what might cause this variation is not clear at
this time.

The COSMIC database lists four mutational signatures as likely resulting directly from
UV-exposure, SBS7a, SBS7b, SBS7c and SBS7d. Additionally, SBS38 is only found in
melanoma samples and has been hypothesized to be the result of indirect effect of sun-
exposure (Alexandrov et al., 2020). In line with a previous study of somatic mutations in
normal epidermis (Fowler et al., 2021), I did not find evidence of SBS7a, SBS7c or SBS38 in
this dataset. These signatures may represent extraction-artifacts or processes that are specific
to melanocytes, as they are all extracted from melanomas while the PCAWG project did not
include any non-melanoma skin cancers (Alexandrov et al., 2020).

The component to which second-most mutations were attributed did not correspond to any
COSMIC signature but was characterized by a large number of T>A, T>C and T>G mutations
at TpA sites (Figure 4.4C). This is consistent with the known mutagenic effects of treatment
with psoralens and high-dose UV-A (PUVA treatment) (Esposito et al., 1988; Zhen et al.,
1986). The signature was observed in both lesional and the adjacent non-lesional skin of 7 out
of the 38 donors (Figure 4.7). Only 2 out of the 7 had documented history of PUVA treatment
in the metadata but as this is a common treatment for psoriasis and psoralens are well-known
to affect TpA sites, I nevertheless feel confident in ascribing this signature to PUVA treatment.

Additional characterization of the PUVA signature identified a large transcriptional strand
bias indicative of an important role for transcription coupled repair in repairing psoralen-
associated lesions. The untranscribed strand displayed an average of 2.6, 2.4 and 2.2-fold
enrichment of mutations over the transcribed strand for T>A, T>C and T>G mutations,
respectively (Figure 4.6A). Furthermore, I found an effect of sequence context that extends
beyond the trinucleotide spectrum, with sites that have ApT 3’ of the mutated base being
preferentially mutated (Figure 4.6B). Psoralens have chemotherapeutic properties similar
to cisplatin and mitomycin C. They function by inducing interstrand cross-links between
thymines on opposite strands at TpA sites. Interstrand cross-links are highly toxic to cells as
they prevent the separation of the two strands of DNA that is necessary both for transcription
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and replication. Their repair usually involves a double-strand break, followed by activation
of the Fanconi anemia pathway and homologous recombination. However, interstrand cross-
links associated with psoralens have been found to be preferentially removed and repaired
by a NEIL3 DNA-glycosylase-dependent unhooking mechanism that is independent of the
Fanconi anemia pathway and avoids double strand breaks (Semlow et al., 2016). In line with
this observation, PUVA treatment did not appear to affect the mutation burden of indels or
double-base-substitutions.

Samples from one patient, patient34, were clear outliers in terms of mutation burden
and mutational signature profile (Figures 4.3 and 4.7). In the most extreme sample, over
10,000 substitutions were observed in the exome (>250 mutations/Mb, 3-4 times the average
mutation burden of keratinocyte cancers), with 90% being attributable to the PUVA signature.
Clonal expansions were also associated with PUVA exposure, with the largest clones in the
dataset being found within exposed biopsies. The largest clone I observed spanned 1.2 mm
and was found in patient34 (Figure 4.6C).
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Fig. 4.4 Mutational signature components extracted by the hierarchical Dirichlet-
process algorithm. Excluding the Unassigned component in A), the components are ordered
by the number of mutations attributed to them in the dataset.
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Fig. 4.5 Individual variation in UV exposure. The top panel shows the mutational profile
of a typical sample from patient01 with a high exposure of SBS7b. The two lower panels
show mutational profiles of two samples from patient05, which is one of the patients that
shows a high burden of UV-component N2 (Figure 4.4F). A larger fraction of the mutations
are Tp[C>T]pT mutations in the two lower panels. All samples have >1200 mutations, so
this difference would be unlikely to occur due to Poisson variation alone.
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Fig. 4.6 The effects of treatment with psoralens + UV-A (PUVA) on the mutation land-
scape of the skin. A trinucleotide mutational signature of PUVA exposure showing the large
transcriptional strand bias characterizing the signature. B) Pentanucleotide mutation frequen-
cies of the peaks from (A) that are highlighted in red. NpNpTpApT are most commonly
mutated. C) The lesional biopsy from patient 34 harbours two large clones. The first includes
samples 3-5 and the second samples 5-9 from this biopsy (sample 5 is a mixture of both
clones). The second clone is the largest clone observed in the study.
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Signatures of cell-intrinsic mutational processes were observed in the data. One of the
HDP components clearly corresponds to a mixture of mutational signatures SBS1 and SBS5,
which are highly correlated and are merged into a single component by the HDP process.
Both SBS1 and SBS5 are universally found in normal tissues (Moore et al., 2021) where they
correlate closely with the age of the donor. Signatures 2 and 13 were observed in a handful of
samples (Figure 4.7), indicating that APOBEC is occasionally activated in normal skin, as it
is occasionally activated in normal colon (Lee-Six et al., 2019) and urothelium (Lawson et al.,
2020). Finally, one of the HDP components was characterized by T>G mutations (Figure
4.4I). Only 617 mutations (0.3%) were attributed to this component across the entire dataset
and although affected samples clustered by patient, as would be expected for a genuine
mutation process, the affected samples mostly have low mutation burden and relatively flat
mutational spectra. I remain uncertain as to whether this is a genuine signature or not.

In Chapter 3, I described how the burden of SBS1 and SBS5 is increased in the IBD-
affected colon. The mutational spectrum of colonic epithelium is dominated by cell-intrinsic
mutational processes. In contrast, the mutation spectrum of the skin is dominated by the
cell-extrinsic effects of UV-light, which also causes a much larger variation in the mutation
burden of the skin than in the colon. This large variation reduces the power to detect an
effect of the disease on the mutation burden. To test for an effect of disease duration on cell-
intrinsic mutational processes, I subtracted from the total substitution burden of each sample
the number of mutations attributed either to UV-light exposure or PUVA-treatment. This
reduced the median number of substitutions of each sample from 8.7 to just 0.7 mutations
per megabase. I tested for an effect of disease duration on the number of mutations attributed
to cell-intrinsic processes using the same LMM framework as described above but did not
find a significant effect of disease duration (P=0.27).

I did not formally extract double-base-substitution signatures. Manual inspection of the
raw mutation profiles showed that essentially all double-base-substitutions were CC>TT
substitutions, corresponding to the reference signature DBS1, which has been attributed to
UV-light (Alexandrov et al., 2020). As UV-exposure is not as strongly associated with the
formation of indels as substitutions, they are a smaller fraction of mutations than in the colon.
The median number of indels per sample was just 3 and I did not extract indel signatures for
this thesis chapter.
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Fig. 4.8 Mutation burden attributed to cell-intrinsic processes as a function of age.
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Table 4.1 Recurrently mutated genes in lesional and non-lesional skin from psoriasis patients.
Shown are the number of mutations in each annotation class: Synonymous (syn), missense
(mis), nonsense (non), splice site (splice) and indels or double-base-substitutions.

Gene nsyn nmis nnon nsplice nindels/DBS q

NOTCH1 4 41 10 14 18 < 2.2×10−16

FAT1 2 15 14 7 13 < 2.2×10−16

PPM1D 0 0 6 0 2 1.1×10−4

TP53 0 6 1 0 5 5.4×10−4

ZFP36L2 2 8 0 0 5 2.3×10−3

NOTCH2 2 18 2 0 9 4.0×10−3

4.4.2 Positive selection in psoriatic skin resembles that in normal skin

I used the dNdScv package to test if any genes were enriched or depleted of mutations, which
would be indicative of selection of those mutations. I found evidence of positive selection of
mutations in six genes, NOTCH1, FAT1, PPM1D, TP53, ZFP36L2 and NOTCH2 (Table 4.1).

All genes but one, ZFP36L2, have been previously described in studies of normal skin
(Fowler et al., 2021; Martincorena et al., 2015). The mutations in those genes followed the
same non-random distribution as has been previously described (Martincorena et al., 2015)
(Figure 4.9). NOTCH1 and NOTCH2 had a large number of missense mutations affecting the
extracellular epidermal growth factor–like domains, as well as many truncating mutations
scattered throughout the genes. Mutations in FAT1 did not obviously cluster but showed a
similar pattern as in a previous report (Martincorena et al., 2015). Several mutatins in known
mutation hotspots in TP53 were found, including R282W, R175H, R248Q and R248W.
There were also two nonsense mutations in TP53. Lastly, the mutations in PPM1D were all
truncating mutations in exon 6 of this gene. Nonsense mutations in this region have been
shown to result in PPM1D overexpression due to loss of a C-terminal degradation signal and
reduced proteasomal degradation (Kahn et al., 2018). This in turn can result in impaired p53
function (Kleiblova et al., 2013).

ZFP36L2 belongs to a family of zinc-finger proteins that bind to the 3’ untranslated
regions of particular mRNAs and promote their decay. While this gene is not a part of the tar-
geted panels used in previous studies of the skin, mutations in ZFP36L2 have been previously
reported to be under positive selection in the normal oesophagus, and to be more frequently
mutated in the normal tissue than in oesophageal squamous cell carcinomas (Yokoyama et
al., 2019). Together with another family member, ZFP36L1, ZFP36L2 has been reported
to down-regulate Notch1 during lymphocyte development (Hodson et al., 2010). It may
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be that it affects the evolution of epithelial cells in skin and oesophagus through an effect
on the Notch-pathway and that mutations in this gene are not specific to psoriatic skin. In
support of that hypothesis, mutations in the gene are found both in samples from lesional and
non-lesional biopsies at a similar rate (Figure 4.10).

However, the possibility that mutations in ZFP36L2 play a role in the pathogenesis of
psoriasis cannot be discarded. Mice that are full Zfp36l2 knock-outs die soon after birth
(Stumpo et al., 2009) and I am not aware that the gene has ever been conditionally knocked
out specifically in keratinocytes. However, this has been done for another member of the
family, Zfp36 itself, which encodes the endogenous antiinflammatory protein tristetraprolin.
Mice that are full Zfp36 knock-outs develop a systemic inflammatory syndrome characterized
by cachexia, myeloid hyperplasia, arthritis and progressive dermatitis (Taylor et al., 1996).
This phenotype can be rescued by administering anti-TNFa antibodies (Taylor et al., 1996),
a common treatment for psoriasis. Conditional knock-out of Zfp36 in mouse keratinocytes
leads to the spontaneous formation of psoriatic-like skin lesions and dactylitis (Andrianne
et al., 2017) while enhanced stability of the protein is protective against imiquimod-induced
dermatitis, a common experimental model of psoriasis (Patial et al., 2016). Several cytokines
key to the pathogenesis of psoriasis have been reported to be targets of ZFP36, including
TNF (Carballo et al., 1998; Taylor et al., 1996), IL-12 (Jalonen et al., 2006), IL-17 (Lee
et al., 2012), IL-23 (Qian et al., 2011), IFNg (Ogilvie et al., 2009) and more (Brooks and
Blackshear, 2013). While ZFP36L2 has been less extensively characterized than ZFP36,
the zinc-finger mRNA binding domains of the ZFP36 family members are highly conserved
and all have been shown to behave similarly in terms of RNA binding in cell-free systems.
For example, all family members can destabilize TNFa mRNA (Lai et al., 2003) and likely
the same is true of other targets. Since three of the mutations in ZFP36L2 are out-of-frame
indels and the missense variants do not cluster in any particular area of the gene (Figure
4.9), the mutations are likely loss-of-function, meaning they would be predicted to result
in increased stability of mRNAs of a wide range of pro-inflammatory cytokines within the
epidermis and thus potentially contribute to psoriasis pathogenesis. The non-lesional biopsies
are directly adjacent to lesional skin and it cannot be ruled out that those areas have been
previously affected by psoriasis. The ZFP36L2 mutations would also be predicted to increase
the stability of NOTCH1 mRNA, resulting in gain-of-function of NOTCH1. This is the
opposite direction of effect compared with mutations in NOTCH1 itself, which are probably
loss-of-function. It will be necessary to assess the frequency of ZFP36L2 mutations in skin
from healthy donors to decide which is the more likely interpretation: That mutations in
ZFP36L2 are selected because they affect Notch1 signaling in the skin in general or if they
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are selected only in psoriatic skin, where they potentially contribute to disease pathogenesis.

Fig. 4.9 Distribution of mutations in positively selected genes.
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I next estimated the fraction of cells that carry a mutation in a particular gene across all
samples from each individual (Figure 4.10A and B). As expected, the fraction of mutated
cells increases with age but no significant differences were observed between lesional and
non-lesional biopsies (Figure 4.10C, P > 0.3 for all genes. Wilcoxon signed rank test).

Fig. 4.10 Fraction of cells that carry mutations likely to be under positive selection.A)
The fraction of cells that carry non-synonymous mutations in any of the genes found to
be under positive selection. Patients are ordered by ascending age. B) Histograms of the
fractions presented in (A). C) Boxplots showing the fraction of mutated cells in lesional vs
non-lesional biopsies. D) Fraction of cells carrying a mutation in any of the six genes as a
function of age.
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4.5 Discussion and future direction

At the time of writing this thesis chapter, this project is still on-going. In addition to the
400 exomes from 38 patients presented here, a further 800 samples from 71 more patients
are in various stages of the exome-sequencing pipeline. The addition of those samples will
add greatly to our power to detect mutations under selection in particular but also to detect
additional factors that influence the mutation burden of the skin and add to our power to
extract mutational signatures.

In contrast to chapter 3, where we used whole-genome sequencing, I opted for using
whole-exome sequencing for the work presented in this chapter. The skin lacks a clear and
clonal histological feature like the crypt and more polyclonal samples require higher depth
of sequencing for calling mutations. The lower cost of exome sequencing enables us to
sequence many more samples than would have been possible had we opted for whole genome
sequencing. This choice was made to maximize our power to identify driver mutations but
comes at a cost of lower power to identify mutational signatures and greater uncertainty of
the signature exposure estimates in each sample.

That samples from lesional skin are no more clonal than samples from non-lesional
skin was surprising. Under conditions of hyperproliferation, one would expect clones to
grow larger, even in the absence of selection. One possible explanation may be that there is
greater cell movement in the lesional skin than in the non-lesional. Under normal conditions,
differentiating cells stratify vertically from the basal layer, through the suprabasal layers until
they are shed. I speculate that psoriasis may be associated with increased lateral displacement
and “mixing” of squamous cells derived from a larger population of stem cells. The fact that
putative driver mutations were not found at increased frequency in lesional skin compared
with non-lesional would also suggest that psoriasis has minimal effect on clonal spread.

I observed a high variation in mutation burden, with samples separated by 1mm differing
up to 2-3 fold in their mutation burden. This variance could not be explained by differences
in coverage or clonal composition of the samples. Fowler et al similarly found large variation
in the mutation burden of punch-biopsies 250 micrometers in diameter (Fowler et al., 2021),
indicating that this variation is likely biological, rather than technical and that similar UV
exposure can affect adjacent cells differently.

That a majority of the mutations were attributed to the mutagenic effects of UV-light
is unsurprising. Two components of the HDP extraction process did not correspond to
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any COSMIC reference signatures but likely reflect individual variation in the mutational
spectrum of UV-light. One of the limitations of both the NMF and the HDP methods for
signature extraction is that they both treat signatures of active mutational processes as static
probability distributions when in reality the same mutagen can likely result in slightly differ-
ent mutational spectrums depending on the tissue/cell type and on the germline background
of the individual. The HDP component in Figure 4.4F is characterized by a peak in T[C>T]T,
but smaller peaks also exist at G[C>T]T, C[C>T]T and A[C>T]T, indicating that the variation
is due to processing of C>T mutations when T is the 3’ base. A direction of future work is to
carry out the signature extraction with strand information. If this component shows a strong
transcription strand bias, it may be an indication that the variation in UV-related mutagenesis
has to do with repair of UV-associated lesions.

Psoralens + UVA (PUVA) treatment has been known to cause mutations at TpA sites for
decades and patients receiving this treatment are already monitored for skin cancers at the
exposed sites. Nevertheless, I believe that my characterization of the mutagenic effect of
PUVA treatment will add significantly to our understanding of this mutational process. For
example, I have demonstrated the effect of extended sequence context and the presence of a
large transcriptional strand bias. The transcriptional strand bias will likely translate into a
negative relationship between the gene-mutation burden and expression levels, although this
analysis is still pending. Unfortunately, I lack the data to establish a dose-response curve
for the relationship between PUVA treatment and mutation burden, as treatment quantity
is not recorded in the clinical metadata. To explore this signature in even greater detail, I
have submitted 16 clonally unrelated samples, which showed evidence of PUVA exposure
in the exome mutation profiles, for subsequent whole-genome sequencing. This will en-
able me to assess the effect of PUVA treatment on the burden of structural variants and the
effects of genomic features like replication timing and chromatin state on the mutation burden.

The largest clones in the dataset were found in biopsies that showed clear evidence of
PUVA exposure. There are two possible explanations for this. The first is that the high
mutation burden has resulted in the accumulation of multiple driver mutations in a single
clone, rendering it much “fitter” than its neighbours and enabling its expansion on a large
scale. The presence of the PUVA signature did not seem to be associated with a larger
fraction of cells carrying mutations in any of the genes as yet found to be under positive
selection (Figure 4.10A) but I cannot rule out the presence of other mutations that may be
selected for specifically under the conditions of PUVA treatment. The second explanation is
that it is the cytotoxicity of the phototreatment that enables clonal expansion, similar to the
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effects of inflammation in IBD. Of course, these two explanations are not mutually exclusive.

I detected positive selection of mutations in six genes. These include just 5 of the 14 genes
previously found to be under positive selection in the skin (Fowler et al., 2021), suggesting
that more genes are likely to reach significance as sample size is increased. The identification
of ZFP36L2 even at this early stage highlights the utility of WES over targeted panels. As
discussed above, it is not clear whether mutations in this gene are preferentially selected in
the skin of psoriatic individuals and determining the frequency with which it is mutated in
the skin of donors without psoriasis is a direction of future research.



Chapter 5

Discussion

In this thesis, I have described my contributions to furthering our understanding of somatic
evolution in non-neoplastic colon and skin, and the changes to the somatic evolution land-
scape of these tissues associated with IBD and psoriasis. In this final chapter, I will describe
how my results fit into the broader context of somatic evolution of cells within the entire body,
and the importance of understanding somatic evolution in common non-neoplastic diseases
in general. I shall also discuss the difficulty of assigning a causal direction for genes found to
be recurrently mutated in non-neoplastic diseases. Finally, I will give my perspective for the
future and offer thoughts on how to carry out joint study of somatic mutations and germline
variation and to scale up studies of somatic evolution in solid tissues.

Figures 5.1 and 5.2 in this chapter and parts of the text have been previously published
in Trends In Genetics in an article titled “Somatic mutations provide important and unique
insights into the biology of complex diseases” by myself and Carl Anderson.

5.1 Somatic evolution during normal aging

5.1.1 The relationship between mutagenesis and cancer risk is unclear

In this thesis I have cited multiple studies of normal tissues that have been published in
recent years. These have confirmed what had been suggested in studies of cancers, that SBS1,
SBS5 and, to a lesser extent, SBS18 represent cell intrinsic mutational processes operating
near universally across all cells of the body, even those which rarely divide post-mitotically
(Abascal et al., 2021; Franco et al., 2018). The APOBEC-associated SBS2 and SBS13 are
cell-intrinsic signatures seen more sporadically but these have still been observed across a
range of normal tissues. Signatures of exogenous exposures like alcohol, smoking, UV-light

https://www.sciencedirect.com/science/article/pii/S0168952521001682
https://www.sciencedirect.com/science/article/pii/S0168952521001682
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and mutagenic drugs have also been reported mostly in the expected tissues and there haven’t
been too many surprises from studies of normal tissues. The discovery of SBS88 in the colon
(Lee-Six et al., 2019) and its attribution to colibactin produced by pks+ E.Coli (Pleguezuelos-
Manzano et al., 2020) serves as an example of how mutational signature analyses can reveal
mutagenic mechanisms of potential importance to public health. On the whole however, I
think mutational signature analyses of normal tissues have mostly revealed what one might
have predicted from studying cancers of those tissues.

The utility of measuring the mutation burden in normal cells and attributing it to the
different mutagens that have acted on the cell is limited by our poor understanding of the
relationship between mutation burden and cancer risk. The view that cancer risk is propor-
tional to mutagenesis is overly simplistic. On one hand, many known carcinogens are clearly
mutagenic and germline variants associated with high lifetime cancer risk frequently drive
increased mutagenesis (for example germline variants in BRCA, POLE, POLD and genes
of the MMR pathway). On the other hand, it is becoming clear that cells in normal tissues
can have extremely high mutation burdens without undergoing neoplastic transformation (al-
though the number of structural variants tends to be higher in cancers). Early results from the
Mutograph project show that neither differences in mutation burden nor mutational signature
compositions can explain the varying incidence of oesophageal cancers across different parts
of the world (Moody et al., 2021). Finally, a recent study of 20 human carcinogens found
that most did not generate distinct mutational signatures or increase mutation burden (Riva
et al., 2020), challenging the classical view that carcinogens cause cancer simply through
effect on mutagenesis.

In Chapter 3, I describe how in IBD the substitution rate is increased 2.3 fold and the indel
rate is increased 7 fold compared with normal colon. The increased risk of colorectal cancer
among IBD patients is potentially due to increased mutation burden, greater opportunity for
clonal expansions following widespread cell death, changes to the selection landscape or,
as I think is most probable, some mixture of all three. It would aid in the interpretation of
these results if it were possible to deconstruct the cancer risk into its individual components.
Which is more dangerous, a single crypt with a high mutation burden or a widely expanded
clone with a lower mutation burden? The ability to deconstruct the risk would also be helpful
when trade-offs present themselves during treatment. For example, I found a mutational
signature of purine treatment in some of the IBD patients with a history of this treatment.
Even if a dose-response curve between purines and mutagenesis could be established, it
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would not be possible to determine the point at which the mutagenic effect of the treatment
offsets the reduction in cancer risk gained by bringing the disease under control.

5.1.2 Drivers do not always lead to cancer

Genes are typically linked to cancer by observing that they are mutated more often than
expected by chance (Martincorena et al., 2017). However, this in itself is not proof the
gene plays a role in malignant transformation but merely shows that the mutated clone has
been positively selected for at some point in the life of the individual. The finding that
NOTCH1, a gene previously thought to be an oesophageal cancer gene, is mutated more
often in normal oesophagus than in cancer (Martincorena et al., 2018; Yokoyama et al.,
2019) serves as the best illustration of this principle. The oesophagus undergoes extensive
remodelling with age to the point that nearly every wild-type cell in the tissue is replaced
by a NOTCH1 mutant cell but this does not seem to drive cancer development and indeed,
NOTCH1 mutations may even protect the tissue from cancer (Abby et al., 2021; Colom et al.,
2021). The observed enrichment of NOTCH1 mutations in oesophageal cancers appears to
be merely a consequence of an even higher enrichment of mutations in this gene in normal
cells and the interpretation of NOTCH1 as an oesophageal cancer gene is the result of the
field of cancer genomics historically lacking normal control samples.

A second observation worth noting is the difference in mutation frequency of known
“cancer genes” in some normal tissues. The study of normal urothelium by Lawson et al
serves as a great example of this point. Lawson et al discovered that among established
urothelial cancer genes, only a subset, primarily those involved in chromatin remodelling,
are commonly mutated in normal urothelium while genes in the RTK-Ras-PI3K and p53-Rb
pathways are rarely mutated (Lawson et al., 2020). This suggests that the chromatin remod-
elling genes dominate evolution in the urothelium under normal conditions but that mutations
in other genes may be necessary for malignant transformation. In my opinion, the growing
understanding of somatic evolution within normal tissues should bring about a change in the
way we think about driver mutations and the biological consequences of clonal expansions
within a tissue. Not all “cancer genes” may actually be cancer genes, or at least they may
drive different levels of pre-malignancy and a further sub-classification may be required for
this term to remain useful. This has implications for drug development. I speculate that
systemic targeting of mutations which are found in cancer but are also prevalent in normal
tissues is likely to be associated with more severe side effects than targeting of the mutations
which have driven the neoplastic transformation itself.
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The precise definition of a cancer gene is of course only of indirect relevance to this work,
which focuses on evolution in non-neoplastic diseases, except to highlight that rich clonal
evolution can and does take place within normal tissues and that clonal expansions are not
always associated with cancer development. This leads one to ask, could somatic mutations
and clonal expansions play a role in other, non-malignant, phenotypes?

5.2 Somatic evolution and non-neoplastic disease

The relationship between somatic evolution and non-neoplastic disease presents a chicken-
or-the-egg problem. Chronic diseases often have profound consequences on the cellular
constitution and the environment of affected tissues. The selection forces operating within a
tissue are likely changed by disease and/or the disease treatment, and mutations that were
neutral under normal conditions may become advantageous in disease conditions. Disease
can also be associated with accelerated mutagenesis, exposure to novel mutagens and affect
genetic drift by altering cell proliferation. On the other hand, it is possible that somatic
mutations may directly contribute to a disease process either by initiating, maintaining or
even potentially resolving a disease. The work presented in Chapter 3 of this thesis and other
published work suggests that further testing the hypothesis that somatic mutations play a
causal role in diseases is a reasonable thing to do. The case for cause or consequence will be
discussed in subsequent sections. It is clear, that to affect the organismal level phenotype,
mutations in specific genes must reach sufficient frequency within a tissue. This minimal
prevalence within the tissue is likely to vary between mutations, tissues and phenotypes and
possibly between individuals, who may differ in their ability to tolerate specific mutations.

5.2.1 Somatic evolution as a consequence of disease

Disease and mutagenesis

Complex diseases are sometimes associated with changes in mutation burden of the affected
tissues. I showed in Chapter 3 of this thesis how mutagenesis is accelerated in the IBD
colon compared with normal, 2.3 fold for substitutions and 7 fold for indels. An increase
in the mutation burden has also been reported in liver cirrhosis compared with normal liver
(Brunner et al., 2019) as well as a pronounced increase in the number of structural variants
and copy-number alterations in the diseased tissue. However, the same effect of accelerated
mutagenesis is not seen across all diseased conditions. In Chapter 4, I could not detect an
effect of disease duration on the mutation burden of psoriatic skin. This may indicate that the
hyperproliferation of keratinocytes, which characterizes the disease, does not translate into
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higher mutation burden.

When a disease is associated with increased mutation burden, I think it is most likely the
disease which accelerates the mutation rate, rather than the other way around. The alternative
hypothesis, which assumes that somatic mutations contribute to disease pathogenesis, is
that individuals with naturally higher rates of mutations would be at an increased risk
of developing a disease and the mutation rate would therefore appear higher in affected
individuals and have nothing to do with the disease per se. In this scenario, the same
mutations would have to be selected in both normal and diseased conditions. This may
happen in some diseases but I don’t think it is the case for IBD, where the selection forces
appear to be altered compared with normal colonic mucosa.

Disease-driven clonal expansions and changes in selection landscapes of affected tis-
sues

Diseases can be associated with differences in clonal expansions within affected tissues. I
would expect this effect to be especially pronounced for diseases that involve significant
cell death as these create the conditions for bottleneck-expansion cycles where surviving
clones rapidly expand to replace their perished neighbours within the tissue. Accelerated
clonal expansions are evident in IBD (Kakiuchi et al., 2020; Olafsson et al., 2020) and
in liver cirrhosis (Brunner et al., 2019), where clones in affected regions far exceed those
from healthy regions in size. In general, mutated cells may reach high frequency in a tissue
either through the large-scale expansion of a single clone or through parallel evolution of
multiple clones each carrying a distinct mutation in the same gene or pathway. Both modes
of expansion have been observed in IBD. Although the small size of our biopsies prevented
me from detecting very large clones in the European IBD cohort (Chapter 3), Kakiuchi et
al reported many instances of massive clones in their cohort of Japanese IBD patients, with
the largest clone covering 19 cm2 of colonic epithelium (Kakiuchi et al., 2020). Evidence of
parallel evolution was found both in my British cohort and the Japanese cohort. For example,
in one patient in the British cohort, I detected four clones from three distant sites of the colon
that each carried a distinct LoF mutation in PIGR (Figure 3.18). All three sites had a history
of inflammation.

The skin biopsies available in the psoriasis study were similarly small but it was never-
theless evident that clonal expansions on the scale of millimeters or centimeters are rare and
clones spanning entire psoriatic lesions, which can cover many square centimeters of skin,
likely do not exist or are negligibly rare. Parallel evolution however, was evident and I found
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up to 7 distinct NOTCH1 mutations within the same biopsy.

Psoriasis does not seem to drive clonal expansions in two dimensions as there are no
obvious differences in VAFs of samples of similar surface area. Clones may however expand
in the third dimension, as rete extending into the dermis have similar clonal structure as
"flat" epidermis of comparable width. Thus, we may have samples of comparable clonal
composition and covering equal surface area but the clones from the lesional biopsy have a
greater volume. It is unclear however, if this has any lasting effect on the clonal structure of
the epidermis once the disease is in remission. I could not find any evidence that a greater
fraction of cells carry putative driver mutations in lesional compared with non-lesional skin.

In contrast to IBD, the selection landscape of psoriatic skin does not seem to be charac-
terized by mutations in immune-related genes. The only gene found to be under selection
that hasn’t previously been described in studies of normal skin is ZFP36L2, and there are
reasons to believe that may be under selection in normal skin as well, as listed in Chapter 4.
In contrast to psoriasis, IBD is associated with extensive cell death. Crypt density is reduced
and ulcers may form in affected areas of the colon. Under these conditions, clones that carry
mutations that enable them to withstand the local cytotoxic forces may be able to rapidly
expand. In contrast, psoriasis is associated with hyperproliferation rather than cell death and
the affected area of the tissue becomes more, not less crowded with dividing cells. Clones
carrying potential disease specific mutations have to outcompete the clones already present
in the normal skin, which may already have a high fitness due to accumulation of mutations
in NOTCH1, FAT1 etc before the disease onset or during periods of remission. At this stage
in the analysis, psoriasis does not seem to affect the fitness landscape of the skin.

5.2.2 Somatic evolution as a pathogenic force in disease

One of the best characterized examples of somatic evolution leading to complex disease
is the relationship between clonal hematopoiesis and cardiovascular disease. Between 10
and 20% of individuals over the age of 70 harbor a mutant clone that accounts for >4% of
their blood cells, typically carrying a mutation in DNMT3A, TET2 or ASXL1 (Jaiswal et al.,
2014; Watson et al., 2020), and copy number alterations and clonal expansions without driver
mutations are also common (Loh et al., 2018; Zink et al., 2017). In addition to increased risk
of developing a hematological malignancy, clonal hematopoiesis is associated with many
cardiovascular outcomes, including ischemic stroke, atherosclerosis, myocardial infarction
and more (Jaiswal and Ebert, 2019).
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Evidence from mouse studies suggests that the relationship is a causal one. When mice
are xenografted with Tet2 mutant bone marrow and fed on a high-fat diet they are more
likely to develop atherosclerosis than control mice (Fuster et al., 2017; Jaiswal et al., 2017).
Mutations in Tet2, which encodes a chromatin modifier that represses the transcription of
pro-inflammatory molecules, result in increased expression in monocytes and macrophages
of various cytokines and chemokines including interleukin (IL) 6, IL-1b and members of the
CXC family. This drives a higher expression of endothelial adhesion molecules, leading to
increased leukocyte recruitment to the aortic site. Macrophage uptake of lipids and choles-
terol crystals ultimately leads to plaque formation and atherosclerosis (Fuster et al., 2017;
Jaiswal et al., 2017).

I described in Chapter 3 how IBD patients frequently carry somatic mutations in PIGR
and genes in toll-like receptor and interleukin-17 pathways, most notably NFKBIZ and
ZC3H12A (Kakiuchi et al., 2020; Nanki et al., 2020; Olafsson et al., 2020). These genes are
not known drivers of colorectal cancer and may in fact be negatively selected during tumour
development (Kakiuchi et al., 2020). They do, however, play a key role in maintaining
microbe-epithelial homeostasis. Knock-out studies in mice suggest that mutations in PIGR
may contribute to the deterioration of the epithelial barrier and allow microbes to penetrate
the underlying tissue (Johansen et al., 1999; Sait et al., 2007; ?). Conditional knockout of the
IL-17 pathway has similarly been shown to cause dysbiosis and promote autoimmunity in a
mouse model (Kumar et al., 2016). The mouse data is in my opinion convincing evidence
that the mutations identified may play a causal role in IBD (Figure 5.1). However, if this is
the case, many questions remain unanswered. While Nanki et al showed that mutations in the
IL-17 pathway may protect cells against cytotoxic effects mediated by IL-17A (Nanki et al.,
2020), it remains unclear what selective advantage PIGR mutations confer upon cells and
if those clones are able to expand within the colons of “IBD susceptible individuals” even
before disease onset.

The IBD cohort described in Chapter 3 is small and is biased for patients with long-
standing disease. A larger, random sample would be required to determine what fraction of
IBD patients carry mutant clones of pathogenic potential. A larger study would also likely
discover additional genes in the IL-17 pathway under positive selection, as the enrichment I
detected in this pathway was not driven by any of the genes that individually reached signifi-
cance, like NFKBIZ or ZC3H12A. Finally, a larger study would be able to look for germline
variants that affect clonal evolution in the IBD colon. Germline variants near NFKBIZ and
components of the TLR/IL-17 pathways have been associated with IBD (de Lange et al.,
2017) and variants in ZC3H12A with related autoimmune diseases (Tsoi et al., 2017) but it is
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Fig. 5.1 A causal theory for PIGR mutations in IBD.Somatic mutations in PIGR may
contribute to the pathogenesis of inflammatory bowel disease, although this has not been
confirmed. A clonal expansion of a PIGR mutant cell results in locally reduced transfer of
IgA across the epithelial membrane from its site of production in the lamina propria. This
may facilitate the breakdown of the epithelial barrier and enable resident microbes of the
colon to cross, raising an immune response. Figure created with BioRender.com.

unclear if those variants affect clonal spread or contribute to the disease process in a different
manner.

In blood, hematopoietic stem cells are able to freely mix within the tissue. In this setting,
a large fraction of the tissue frequently comes to be dominated by a single clone of cells.
In hematology, clonal hematopoiesis of indeterminate potential is clinically defined as the
state where a clonal mutation is found in at least 4% of the nucleated blood cells (Jaiswal
and Ebert, 2019). The threshold of 4% for a clinical diagnosis of clonal hematopoiesis is
arbitrarily chosen and we do not know what frequency of cells must be mutated to affect
different phenotypes. Clones in solid tissues are more spatially constrained and the idea
that a single clone could grow to cover 4% or more of a solid tissue like the colon or the
skin is neigh unthinkable. It seems much more probable that in solid tissues, mutant cells
could reach the frequency needed to affect a phenotype through parallel evolution of multiple
clones carrying distinct mutations in the same gene or set of genes, rather than through a
large-scale expansion of a single pathogenic clone.

Finally, I want to make the point that if somatic mutations play a role in common complex
diseases, they should not be seen as deterministic of the outcome. Rather, they should be
regarded as risk factors which may be orthogonal or correlated with other established risk
factors for the disease. For example, clonal hematopoiesis (i.e at least 4% of the blood being
clonally derived), is a risk factor for cardiovascular disease with a similar hazard ratio to
common clinical risk factors like high blood pressure and smoking (reviewed in (Jaiswal and
Ebert, 2019)). The same may be true for IBD and psoriasis, where the fraction of IL-17 or
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ZFP36L2 mutant cells may be associated with risk of these diseases but environmental factors
and germline background also play a role. That somatic mutations cannot be deterministic
can be demonstrated with a thought exercise. Consider the human colon, which is composed
of about 15 million colonic crypts. In Chapter 3, I estimated that each crypt accumulates 40
substitutions and 1 indel per year of life (Lee-Six et al., 2019; Olafsson et al., 2020), meaning
that by a person’s 25th birthday, 1.5×1010 substitutions and 1.5×107 indels will have been
fixed in at least one crypt in their colon. Acknowledging that somatic mutations are not
uniformly distributed across the genome, every gene should still be hit with a truncating
mutation in at least one crypt in every individual. This means that everyone carries a
truncating mutation in APC and PIGR and yet colorectal cancer and IBD are, thankfully, rare
outcomes.

5.2.3 Disease-expansion feedback loops

Until now, my discussion of the causal relationship between diseases and mutations has
assumed a single causal direction. However, it is also possible that a clone that contributes to
the disease process also has a survival advantage under the disease condition. The disease
then drives the expansion of the pathogenic clone which in turns facilitates the continua-
tion of symptoms. Heyde et al showed how atherosclerosis-associated factors increase the
proliferation of hematopoietic stem cells, driving clonal expansions both through drift and
selection (Heyde et al., 2021). The pro-inflammatory effects of some of the drivers and
elevated levels of myeloid cells then beget more atherosclerosis and so on.

A disease-expansion feedback loop may also exist in IBD. I have described above how
conditional il-17 knockout mice develop dysbiosis and autoimmunity. Nanki et al showed
how IL-17A elicits a pro-apoptotic response in organoids derived from normal colonic
mucosa but organoids that were knock-outs in any of NFKBIZ, IL17RA or TRAF3IP2, or
carried a gain of function mutation in ZC3H12A, were protected against the effect. This
suggests a model where cells carrying mutations in these or other IL-17-related genes drive
dysbiosis and inflammation. Th17 cells are recruited to the site which locally secrete IL-17A,
killing off wild-type crypts and enabling the mutant crypts, which are resistant to IL-17A, to
take their place within the tissue.

5.2.4 Somatic mutations as Nature’s gene therapy

In some cases, somatic mutations may confer upon cells resistance to the effects of disease.
The expansion of disease-resistant cells within a tissue could potentially restore some of the
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tissue function. The existence of mutations restorative to tissue function has been proposed
in chronic liver disease (Zhu et al., 2019) but remains a theoretical prediction for most other
complex diseases. However, they have been reported in several germline conditions in which
the molecular effects of pathogenic germline variants are rescued by somatic variants confer-
ring selective advantage on the revertant cells (Lai-Cheong et al., 2011). Those observations
also further underline the importance of parallel evolution. Multiple revertant clones evolving
in parallel have, for example, been reported in patients with Wiskott–Aldrich syndrome
(Boztug et al., 2008), ichthyosis (Choate et al., 2010; Gudmundsson et al., 2017) and in vari-
ous types of genodermatoses (Jonkman et al., 1997; Pasmooij et al., 2005; Suzuki et al., 2019).

Identifying and pharmacologically mimicking mutations driving the positive selection of
disease-resistant clones could restore tissue homeostasis and alleviate disease symptoms. For
such efforts to be successful it will be important to establish the causal relationship between
variant and disease, and rule out disease-expansion feedback loops where the mutations that
facilitate cell survival also contribute to the disease process.

5.3 Integrating germline and somatic variants for the study
of complex traits

Many of the studies of somatic evolution in normal tissues published to date have uncovered
a marked heterogeneity in somatic evolution between individuals. Lawson et al formally
showed that in the urothelium, individuals exhibit “driver preference” where parallel evolution
leads to a high fraction of cells carrying mutations in some driver genes but not others. For
example, Lawson et al found one patient with 35 distinct mutations in KDM6A and only two
in ARID1A while a second patient carried 20 different ARID1A mutations but only 4 KDM6A
mutations (Lawson et al., 2020). Similar, but less pronounced, examples of parallel evolution
have been described in other tissues, but the sample sizes of the respective studies have been
insufficient to identify the factors driving this heterogeneity. The observed driver preference
is likely driven in part by the environment and in part by the germline background of the
individual. The joint study of germline variants and somatic mutations might reveal germline
variants that affect the selection coefficients of particular mutations in normal tissues, which
would have implications for cancer risk prediction and prevention and help us understand the
potential role of somatic mutations in non-neoplastic diseases.
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Fig. 5.2 Somatic evolution in health and disease. (A) A tissue can be completely remodeled
by somatic evolution and remain healthy. In this example, independent clones carrying
distinct NOTCH1 mutations replace nearly every wild type cell of the oesophagus. The
tissue retains normal physiological function and cancer growth is not promoted. (B) Disease
can change the somatic evolution landscape of a tissue. In this example, the liver, which
rarely harbors large clones, becomes diseased as a result of environmental exposures. After
disease onset, mutagenesis is increased and clonal growth promoted. (C) A single pathogenic
clone may expand to cause a disease. In this example, a mutation in TET2 in a single
blood stem cell leads to clonal hematopoiesis. The initial mutated cell gives rise to a large
number of monocytes which infiltrate the artery and differentiate into macrophages. These
express high amounts of inflammatory cytokines including interleukin 6, interleukin 1 and
chemokines from the CXC family. Macrophages ingest cholesterol and lipids and form foam
cells at the lesion, facilitating the formation of atherosclerosis and myocardial infarction.
(D) Somatic mutations can be restorative to tissue function. In this example the patient
suffers from an autosomal recessive disease of the skin characterized by germline variants
in COL17A1. Somatic mutations in this gene restore the function of the tissue and mutant
clones outcompete the germline “wildtype”, resulting in symptom improvement. Figure
created with BioRender.com.
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5.3.1 Genome-wide association studies of somatic evolution

Genome wide association studies (GWAS) have identified thousands of associations between
common germline variants and complex diseases, including cancers. The identified variants
tend to have small effect sizes and due to the high burden of multiple testing in GWASs,
tens of thousands of participants are often needed to reach statistical significance. Part of
the reason for the small effect sizes is that diseases are complex, composite phenotypes
and multiple causal factors can lead to the same outcome. The closer one gets to a cel-
lular phenotype however, the larger effect sizes tend to become, which is why studies of
expression-quantitative trait loci (eQTLs) for example, can be well powered at much smaller
sample sizes. It is unclear whether we should expect small effect sizes for somatic evolution
variables, similar to those observed for complex traits, or larger effect sizes, similar to those
observed for cellular phenotypes. There may also be some variability between tissues, as
discussed below.

The availability of hundreds of thousands of blood samples from biobanks has enabled
the discovery of 156 germline variants associated with somatic loss of chromosome Y in
men (Thompson et al., 2019; Wright et al., 2017) and of 10-20 variants associated with the
likelihood of clonal hematopoiesis (Bick et al., 2020; Hinds et al., 2016; Loh et al., 2018;
Zink et al., 2017). The variants associated with ChrY loss have odds ratios (OR) ranging
from 1.03 to 2.02 (Thompson et al., 2019) and similar effects are observed for the common
variants associated with clonal hematopoiesis (Bick et al., 2020; Hinds et al., 2016; Loh et al.,
2018; Zink et al., 2017). Most fall within non-coding regions of the genome. These obser-
vations suggest that clonal evolution phenotypes are complex in nature and have a genetic
architecture similar to that of complex quantitative traits. Rare chromosomal alterations and
loss-of-heterozygosity events (frequency <0.05%) have also been reported that have much
larger effects on clonal hematopoiesis (ORs=18-698) (Loh et al., 2018, 2020; Terao et al.,
2020).

Interactions between germline variants and known somatic drivers in solid tissues have
been most systematically studied in the context of cancer. A study of The Cancer Genome
Atlas (TCGA) dataset (Carter et al., 2017), which was only powered to detect large effects
(1.8-3 fold increase in mutation burden, depending on the frequency with which genes are
mutated in cancers), reported 17 associations between common germline variants and the
frequency of somatic mutations in known cancer genes. The effect sizes reported range
from 1.8 to 14.8 fold increase in mutation frequency. These are much larger effect sizes
than those reported for clonal hematopoiesis but the reasons for the discrepancy are not clear.
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It is possible that germline effects on selection pressure are higher in solid tissues than in
blood, where the admixture of cells is greatest. Tissue architecture and driver prevalence can
influence clonal spread. For example, the glandular structure of the colon seems to curb clonal
spread, (Lee-Six et al., 2019) while in the flat structure of the oesophagus, where the density
of driver mutations is high, the spread of any one clone is constrained by its collision with
neighbours of similar fitness (Colom et al., 2020). How such variables influence germline
effect sizes is unknown. It is also possible the effects of germline variants are larger in
cancers than in evolution of non-neoplastic tissues.

5.3.2 Germline modulators of selection in psoriatic skin

Once all samples have been sequenced, the study of psoriatic skin described in Chapter
4 will comprise samples from 109 tissue donors. This large sample size may enable the
identification of factors that influence the somatic evolution of cells in the skin. These include
some lifestyle and environmental factors like smoking, alcohol intake and BMI, drugs or
treatments the patients have received, and also germline variants.

To enable us to look for germline modulators of somatic evolution (fraction of mutated
cells in particular), all tissue donors will be genotyped on an Illumina GSA-MD v3.0 geno-
typing array. With 109 tissue donors, it is unlikely that a GWAS would be powered to detect
associations between germline variants and driver prevalence. Instead, I mean to carry out
two analyses which focus on variation in or near genes found to be under selection in the
skin: The first uses a two-tiered approach similar to an eQTL study (Figure 5.3). I will
first carry out an unbiased dN/dS analysis, exome wide, to identify genes that are under
selection in psoriatic skin. For each gene under selection, I will search for germline variants
that associate with the fraction of cells carrying a somatic mutation in that gene by testing
only germline variants within a 1 Mb window of the transcriptional start site. Many variants
within that window will be in tight linkage disequilibrium and in order to determine at what
threshold associations should be considered significant, I will permutate the phenotypes and
covariates.

The second analysis uses a design previously employed to show that non-coding reg-
ulatory variants modify the penetrance of rare coding variants in diseases like cancer and
autism (Castel et al., 2018). The idea is that haplotypes that contain germline variants which
cause a gene to be upregulated will be responsible for more than one half of the mRNA
produced from that gene. In other words, the germline variants create an allelic imbalance
when present in a heterozygous state. A mutation of the highly expressed allele should confer
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Fig. 5.3 An eQTL-like study design to identify germline variants that influence the
selection of somatic mutations in psoriatic skin. Figure created with Biorender.com.

a greater selective effect than a mutation of the lower expressed allele, as it is present in
a greater fraction of the protein product (Figure 5.4). This would manifest as a departure
from the expected 1:1 haplotype ratio in individuals who are heterozygous for the germline
variants and information can be pooled across individuals and different germline variants to
boost power.

This analysis makes two assumptions. The first is that there are known germline regula-
tory variants for the gene that have large enough effect sizes in the tissue of interest to cause
consequential allelic imbalance. Castel et al limit their analysis to those eQTLs in the GTEx
database that have absolute effect sizes in the top 25% of all the eQTLs in GTEx. It remains
to be determined if genes enriched in mutations in the skin have eQTLs that fulfil these or
similar conditions.

The second assumption is that somatic mutations and germline variants can be phased
to determine which variants are on the same haplotype. While germline variants can be
phased by comparing them against large external reference panels of haplotypes, no such
references exist for somatic mutations and these must be phased based on reads that overlap
both somatic mutations and one or more germline polymorphic sites. Unpublished work
from the Campbell lab at the Sanger institute suggests that 20-30% of somatic mutations can
be phased in this way.

Both of the approaches described above are only able to identify cis-effects on clonal
evolution. It is unclear what fraction of variants that modify selection are likely to act in
cis vs trans. Cis variants likely play some role in shaping positive selection. For example,
there is evidence that germline variants in or near JAK2 and TET2 are associated with clonal
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Fig. 5.4 Regulatory germline variants that affect the selection coefficients of somatic
mutations. An individual is heterozygous for a germline regulatory variant which causes
allelic imbalance in the protein product. If the somatic mutation occurs on the “lowly
expressed” haplotype then it’s effect is small. In contrast, if the somatic mutation occurs on
the highly expressed haplotype we expect the selection coefficient to be larger, manifesting
as more widespread clonal expansion of mutant cells.



130 Discussion

hematopoiesis (Bick et al., 2020). In IBD, NFKBIZ is both positively selected in inflamed
epithelial tissue and a likely causal gene in a GWAS locus for the disease (de Lange et al.,
2017), although it is not clear if the IBD associated germline variant affects selection of
NFKBIZ mutant cells. However, most variants associated with clonal hematopoiesis lie
outside of known driver genes and variants associated with somatic ChrY loss are scattered
all across the genome. Furthermore, of the 17 associations discovered in the TCGA dataset
mentioned above, the leading variant was never within 1Mb of the gene whose mutation
burden it was associated with (Carter et al., 2017). It seems likely that only a fraction of
germline variants that influence selection will act in cis. To identify variants acting in trans,
larger sample sizes will be needed.

5.3.3 Scaling studies of somatic evolution in solid tissues

To build more complete genetic maps of somatic evolution that include trans-acting associ-
ations, studies must be scaled up to include hundreds or thousands of tissue donors. The
methods discussed in Chapter 1 and summarized in Figure 1.7, organoid culture, LCM and
single cell sequencing are labour intensive and expensive and will be difficult to scale to the
sample sizes needed unless a much greater level of automation can be achieved.

Studies of normal tissues have relied on samples donated post-mortem, surgical resections
or on the willingness of living patients to undergo, or extend, invasive procedures in order to
donate biopsies for research. High-throughput and less invasive sampling methods may need
to be developed and/or methods that avoid artifacts associated with formalin fixation, as these
would enable the repurposing of existing clinical biobanks for research. One exciting prospect
is the recently published NanoSeq method (Abascal et al., 2021), which enables mutation
calling from a single molecule of DNA and can therefore be applied to a polyclonal sample
of cells. NanoSeq is a duplex consensus sequencing method where individual molecules of
DNA are barcoded and copies of both strands of the molecule are sequenced multiple times.
This makes it possible to distinguish between true mutations and sequencing errors, which
are present only on individual reads, and PCR errors and formalin-associated adducts, which
are present on only one of the two strands of DNA. NanoSeq might for example enable the
study of somatic mutations from swabs of buccal, colon or vaginal swabs, or from biofluids
like urine or even cerebrospinal fluid. The limitations of the method include that it requires
flow sorting of cells and, because it uses restriction enzyme fragmentation, it only covers
29% of the genome, making it unsuitable for driver mutation identification (Abascal et al.,
2021). However, targeted NanoSeq is currently under development at the Sanger Institute
and will give exome-wide coverage and enable driver mutation identification.
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5.3.4 Mendelian randomization

If somatic mutations are to inform complex disease drug target identification then the causal
relationship between variant and disease must be established. Mouse models have been
useful in the studies of clonal hematopoiesis, epilepsy ichthyosis and IBD (Fuster et al., 2017;
Jaiswal et al., 2017; Johansen et al., 1999; Kumar et al., 2016; Lim et al., 2015; Sano et al.,
2018; Zhao et al., 2019), but evidence of causation in humans is still outstanding.

Mendelian randomization (MR) has become widely used in the human genetics field for
causal inference in epidemiological studies (Davey Smith and Hemani, 2014; Lawlor et al.,
2008) and could potentially be used for causal inference of somatic mutations if germline
variants that affect their selection can be identified. Assuming that mutations in a given gene
drive clonal expansions in a given tissue causing disease, then any variable that influences
the propensity of clonal expansion in that tissue should also be associated with the disease.
A causal relationship between the clonal expansion and the disease can be inferred if an
‘instrument’, a variable reliably associated with clonal expansion in a known direction, can be
identified. Genetic variants are excellent choices for such instruments because associations
between germline variants and human traits represent causal relationships since alleles segre-
gate randomly during meiosis and reverse causation is not possible (disease cannot ‘cause’
a germline variant). MR, and specifically bidirectional MR, could theoretically be applied
to distinguish somatic variants with a causal effect on complex disease from those that are
a consequence of disease. If the expansion of clones carrying mutations in a specific gene
causes a disease, then genetic variants associated with the propensity for clonal growth will
also be associated with the disease (assuming that this association occurs only through the
effect on clonal growth).

In addition to the conventional assumptions and limitations of MR, which I will not
discuss in detail here (Davey Smith and Hemani, 2014; Lawlor et al., 2008), the assumption
of a single causal direction merits special consideration when studying somatic evolution.
Disease-expansion feedback loops, where disease drives clonal growth, which in turn perpet-
uates the disease and so on, have been proposed for clonal hematopoiesis and atherosclerosis
(Heyde et al., 2021), as mentioned above, and may also exist between IBD and IL-17 mutant
clones. It has been suggested that these can be modeled in a structural equation modeling
framework (Evans and Davey Smith, 2015) but, as far as I am aware, these methods await
development. Furthermore, care must be taken when interpreting associations between
germline variants and somatic mutation frequencies. Cis-associations need not represent
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causal relationships because germline haplotypes can be in linkage disequilibrium with
fragile sites of the genome and other mutational hotspots.

5.4 Population differences in somatic evolution

There is evidence that somatic evolution varies across different ancestries. In a study of
normal skin from just four individuals, the one donor of South Asian ancestry seemed
to exhibit a different evolutionary landscape from the other three (Martincorena et al.,
2015). Similarly, the selection of NFKBIZ, ZC3H12A and PIGR mutant clones seems more
pronounced in IBD patients of Japanese ancestry than Europeans (Kakiuchi et al., 2020;
Olafsson et al., 2020), as discussed in Chapter 3. Furthermore, white Europeans are nearly
twice as likely as Hispanics and East Asians to develop clonal hematopoiesis after adjusting
for age (Bick et al., 2020). European individuals also have a 2-6 fold increase in the mutation
rate of specific sites linked with clonal hematopoiesis compared to Japanese individuals, a
finding which helps explain the different rates of B and T-cell cancers in these populations
(Terao et al., 2020). While it is unclear to what extent these population-specific differences
are due to environmental or germline differences, they highlight the need to study somatic
evolution in diverse populations.

5.5 Final remarks

Darwin didn’t know about the molecular mechanisms behind natural selection and may never
have thought about evolution of cells within the body of an individual. It is tempting to
speculate that he would have been fascinated by the parallels between individuals of a species
and individual cells that cooperate to make up a body. That he would have approved of this
view of life as seen through the lens of somatic evolution. Of a single cell giving rise to a
mosaic of billions of microscopic clones, each different from the next, that make up a body.
Of the continuous struggle for existence every cell must face, be it a unicellular organism or
a cell that is a miniscule part of a much larger whole. Of the ruthlessness of these natural
forces which promote the expansion of an individual cell even to the detriment, disease or
death of the organism. There is grandeur in this view, even of the smallest units of life.
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