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Abstract 

Single-cell sequencing technologies have unsurprisingly become a favourable choice for 

studying key biological questions about cell heterogeneity, rare cell types or lineages. It is only 

cell-level resolution that allows for an accurate analysis of internal cell processes such as 

mutagenesis. Eventually, single-cell RNAseq could provide an explanation of mechanisms that 

lead to the ultimate transformation of healthy tissues into cancerous lesions. One of the main 

interests of my lab is Barrett’s oesophagus. It is a highly clonal disease and a likely cancer 

precursor. We decided to take advantage of the single-cell RNAseq technology in order to 

attempt to identify the tissue of origin of the disease which, despite years of research, still 

remains unknown. However, the range of methods for identification of mutations in single-cells 

is very limited. In order to address that, we developed our own single-cell RNAseq variant 

caller. We validated it on a publicly available breast cancer dataset by achieving a reasonable 

intersection of our results with the output of commonly used bulk tools. Furthermore, we 

showed that our caller was capable of identifying expected data characteristics such as known 

breast cancer signatures and mutations in breast cancer genes. We then applied our method to 

the Barrett’s dataset to investigate connections of Barrett’s with surrounding tissues. Contrary 

to the previous transcriptomic analysis conducted on the same dataset and indicating a  

Barrett’s-oesophagus connection, our results revealed a more likely link of Barrett’s with the 

stomach.    
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1. Introduction 

 

1.1 DNA 

1.1.1 Mutagenesis in healthy tissues 
 

DNA was assumed to be a very stable molecule when it was first discovered as the carrier 

of genetic information (Watson and Crick, 1953). In reality, a genome is highly vulnerable 

to alterations due to oxidation, hydrolysis or alkylation (Lindahl, 1993). DNA damage 

involves physical modifications of its structure – ranging from breaks, depurination, 

depyrimidination to modified bases and crosslinks (Zhang and Vijg, 2018). The apparent 

stability of the genome can be attributed to a highly conserved system of genome 

maintenance mechanisms (Hoeijmakers, 2001). Every day, thousands of modifications are 

introduced in a typical cell. If it was not for the complex genome maintenance systems 

playing a crucial role in their elimination, DNA damage would not be as sporadic as it is in 

a typical mammalian organism (Collins et al., 2004). 

DNA damage is not the only form of genomic alterations. DNA changes that arise during 

DNA damage repair, replication and cell division are collectively termed DNA mutations 

and occur naturally in normal cells (Zhang and Vijg, 2018). Common types of genetic 

variation include single-nucleotide variants (SNVs), copy-number variants (CNVs), and 

other structural variants (SVs). Unlike DNA damage, DNA mutations are not recognized by 

repair enzymes and are, therefore, irrevocable (Lindahl and Wood, 1999). 

Genetic heterogeneity can be described as the one occurring in a group of individuals 

(population-level) or specific to one organism (individual-level). Population-level 
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heterogeneity arises before the formation of a zygote, due to germline mutations. Those are 

inherited by all progenitor cells. Somatic mutations, an expression of individual-level 

heterogeneity, exist only in a subpopulation of cells as they occur post-zygotically (Dou et 

al., 2018). The presence of multiple populations of cells with distinct genotypes in an 

individual have been termed as “somatic mosaicism” (De, 2011).  

Because germline mutations provide a constant genetic variation in organisms, together 

with natural selection they drive evolution. Mutation rates differ between species (Baer et 

al., 2007), are well balanced between being too high and too low, and are subject to natural 

selection (Sturtevant, 1937). Both excessively high and low mutation rates, preventing a 

species from adapting to environmental changes, would lead to extinction. Therefore, 

genomic instability in the germline is a necessary phenomenon in order for a species to 

survive (Corbett et al., 2018).  

Somatic mutations accumulate spontaneously throughout a person’s lifetime. While 

most of them are harmless, they can occasionally have a phenotypic consequence as a result 

of interference with a gene or its regulatory element (Martincorena and Campbell, 2015).  If 

a somatic mutation gives selective advantage to a cell, it can lead to preferential growth or 

survival of a clone. Such mutations, usually under positive selection, are termed “driver 

mutations” (Stratton et al., 2009). The end result of somatic evolution, apart from ageing, is 

cancer. In this disease, an autonomous clone of cells evades normal behaviour and gradually 

accumulates alterations in cell physiology that dictate malignant growth (Hanahan and 

Weinberg, 2000). 

The germline mutation rate in humans can be estimated in a relatively straightforward 

way. It can be done by tissue sequencing from parents and their offspring, and the differences 
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will indicate an occurrence of de novo mutations (Zhang and Vijg, 2018). The human 

germline mutation rates are being approximated at around 1.0-1.5×10−8 per nucleotide per 

generation (Conrad et al., 2011, Rahbari et al., 2016). Consortia such as the 1,000 Genomes 

Project (The 1000 Genomes Project Consortium et al., 2015) have been launched to 

investigate differences between individuals. They concluded that two typical human 

genomes would differ by 4-5 million sites, and most divergences would take the form of 

single nucleotide polymorphisms (SNPs). Short indels or structural variations,  although 

detected, were much less frequent. 

De novo somatic mutations are much more difficult to estimate. Because they arise 

in individual cells and spread slowly, after sequencing they highly resemble low frequency 

sequencing errors (Zhang and Vijg, 2018). Approximations of normal mutation rates in 

mammals range from 1 to 5×10−10 mutations per base pair per cell division (Lee-Six et al., 

2018,Werner et al., 2020). This is a seemingly low value until the size of the genome is 

considered – in that case, 3 billion variants are expected in humans on average (Mustjoki and 

Young, 2021). There has recently been a number of studies investigating the somatic 

mutation landscape in different healthy human tissues, mainly via deep DNA sequencing. 

Examples of such studies include tissues such as liver (Brunner et al., 2019), bronchus 

(Yoshida et al., 2020), brain (Lodato et al., 2018, Bae et al., 2018), blood cells (Lee-Six et 

al., 2018, Watson et al., 2020), colon and rectum (Lee-Six et al., 2019), endometrial 

epithelium (Moore et al., 2020), skin (Martincorena et al., 2015, Tang et al., 2020) and 

oesophagus (Martincorena et al., 2018, Yokoyama et al., 2019). Li et al. argue that while the 

aforementioned studies contribute greatly to the knowledge of mutation rates, driver genes 

and mutagenic factors, cross-organ comparison is unreliable due to the fact the samples came 
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from different donors with distinct germline backgrounds and life histories (Li et al., 2021). 

In order to compare the organs directly, they performed a comprehensive genomic analysis 

of over 1,700 normal tissue biopsies from 5 donors. They found widespread, but occurring 

to variable extents, somatic mutation accumulations and clonal expansions. In tissues such 

as rectum, colon and duodenum, somatic clones evolved independently and were 

microscopic in size, potentially limited by local tissue structures. On the other hand, 

macroscopic somatic clones in oesophagus and cardia were frequently expanded to hundreds 

of micrometres. The results highlight the importance of comparing mutation landscapes in 

samples from the same individual. 

 

1.1.2  Calling variants from DNA sequencing 
 

A pipeline for calling variants from DNA sequencing has now been well established, 

both for germline and somatic variants (Figure 1). The calling is usually preceded by 

extensive quality control and sample pre-processing (Figure 1a). The simplest mode of 

identifying mutations relies on calling variants from a single DNA sample of interest. 

However, more complex calling modes have been available in order to address a wide range 

of questions that follow the advances in next-generation sequencing (NGS) technologies. For 

example, joint calling of variants from parents and their child enables the phasing of variants 

(Figure 1b). Or when tumour variants are desired, somatic variant calling from tumour-

normal matched pairs is performed (Figure 1c).  
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Figure 1. Standard pipeline for variant calling from DNA sequencing. a. Alignment and 

pre-processing of data. b. Variant calling in trio sequencing. c. Somatic variant calling 

in matched tumour-normal pairs. Source: Koboldt, 2020. 

 

 

1.1.2.1 Germline variant calling 

 

Dozens of germline variant callers have been published in the last decade, an even more 

have been developed for internal use by individual researchers. One of the most popular tools 

is the Genome Analysis Toolkit (GATK) HaplotypeCaller (McKenna et al., 2010), which 

consists of pre-processing steps, followed by variant calling and final filtering. The pre-

processing workflow includes sample realignment, marking duplicate reads and 

recalculating base qualities. The HaplotypeCaller itself is a tool capable of calling SNPs and 

indels simultaneously via local de-novo assembly of haplotypes. The reassembly of reads at 

every position of interest enables the program to be more accurate in regions that are usually 

difficult to call, such as where different types of variants occur at close proximity. Another 
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example of a germline variant caller is Octopus (Cooke et al., 2018). Octopus is a mapping-

based variant caller, which constructs a tree of haplotypes and dynamically prunes and 

extends the tree based on haplotype posterior probabilities. The ability to implicitly consider 

all possible haplotypes this way enables Octopus to find an optimal solution in reasonable 

time. FreeBayes (Garrison and Marth, 2012), Samtools/BCFtools (Li, 2011) and Platypus 

(Rimmer et al., 2014) further extend the list of most commonly used SNP callers. Because 

SNP detection in tools such as Haplotypecaller has been shown to have very high accuracy, 

selection of a single caller is usually sufficient in most research settings (Chen et al., 2020). 

However, combining the outputs of two callers using different approaches might result in a 

slight sensitivity advantage (Koboldt, 2020). 

 

1.1.2.2 Somatic variant calling 
 

Somatic variant calling is usually performed with a paired disease-normal sample 

strategy, for example by combining a tumour tissue with a matched normal sample (skin or 

blood) from the same patient. While disease-only variant detection has been adopted in some 

research settings in order to decrease the costs, the ability of this approach to detect somatic 

mutations is heavily compromised (Hiltemann et al., 2015). One of the most popular callers 

is the somatic variant calling mode of the GATK pipeline, MuTect2 (Cibulskis et al., 2013). 

MuTect2, and its predecessor MuTect, is a method that applies a Bayesian classifier to 

identify mutations with very low allelic frequencies. Thanks to carefully tuned filters, high 

specificity is ensured even when a variant is supported by just a few reads. MuTect2 is 

particularly effective at studying cancer subclones and their evolution with respect to normal 

tissues. Somatic variants can also be identified from DNA samples using the aforementioned 
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Octopus (Cooke et al., 2018) or tools such as Strelka (Saunders et al., 2012) and VarDict 

(Lai et al., 2016). Strelka uses a Bayesian approach which considers a normal sample as a 

mixture of germline variants with noise, and the tumour as a mixture of the normal with 

somatic variants. As a result of that, it is able to define continuous allelic frequencies for 

tumour and matched normal samples, while considering the expected genotype of the 

normal. Because of the way the model is structured, high sensitivity can be achieved even at 

high tumour impurity. VarDict, on the other hand, performs a local realignment on the fly 

and simultaneously calls a range of variants, such as SNVs, indels and complex structural 

alterations. This procedure allows it to estimate allelic frequencies more accurately. When 

using paired samples, VarDict is able to not only detect somatic mutations, but also loss of 

heterozygosity between the two tissues.  

There have been a number of studies aiming to benchmark and compare the performance 

of somatic variant callers in different research settings (Krøigård et al., 2016, Xu et al., 2014, 

Wang et al., 2013). They found that because each caller had strengths and weaknesses, no 

tool appeared to offer superior performance. Therefore, an ensemble approach combining 

the output of multiple callers is often advised to reach an optimal balance of sensitivity and 

specificity (Callari et al., 2017, Fang et al., 2015). However, probably the most reliable 

method so far is purely experimental – and relies on the Sanger sequencing validation of the 

mutations (De Cario et al., 2020).  
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1.2 RNA 

1.2.1  The definition and role of RNA 
 

According to the central dogma of molecular biology, the information stored in genes 

as DNA is transcribed into RNA, to ultimately be translated into proteins (Crick, 1970). 

The transcription of specific genes into complementary RNA, dependent on environmental 

factors, forms the phenotype of an individual. In this form, it is responsible for specifying 

a cell’s identity and regulating biological activities within the cell (Kim and Eberwine, 

2010). 

Historically, RNA molecules were considered a simple intermediate between genes 

and proteins. However, is has since been known that there is a high degree of variety within 

RNA molecule types and the analysis of RNA is not limited to mRNA molecules which 

encode proteins via the genetic code. Instead, there has been an increasing focus on the 

noncoding functional RNA molecules (ncRNA). Among those are ribosomal RNAs and 

transfer RNAs involved in mRNA translation, small nuclear RNA (snRNAs) associated 

with splicing, and small nucleolar RNAs (snoRNAs) active in the modification of rRNAs 

(Mattick and Makunin, 2006). Collectively termed the transcriptome, the aforementioned 

RNA molecules are indispensable to interpreting the functional regions of the genome and 

understanding mechanisms of development and disease (Kukurba and Montgomery, 2015).     

 

1.2.2  RNA sequencing and its advantages  

 
RNA sequencing (RNAseq) is a method that resulted from the development of the 

high-throughput next-generation DNA sequencing technologies. It has revolutionized the 

understanding of the compound nature of the transcriptome by enabling analysis through 
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the sequencing of complementary DNA (cDNA) (Wang et al., 2009). RNAseq has clear 

advantages over existing DNA approaches, as it provides a quantitative insight into gene 

expression, allele-specific expression and alternative splicing (Kukurba and Montgomery, 

2015). Calling variants from RNAseq allows for combining both genomic and 

transcriptomic information in order to get a deeper understanding of the samples analyzed. 

RNAseq is cheaper than the sequencing of the whole genome, therefore, a large number of 

studies are limited to solely performing RNA-seq analysis. When no paired DNA is 

available, the ability to call genomic variants from RNA-seq alone is invaluable. Due to 

heterogeneity of diseases like cancers, SNP calling from WGS or WES can be challenging. 

In this case, variant calling from RNA-seq can be a useful validation method (Piskol et al., 

2013). 

 

1.2.3  Current methods in RNAseq variant calling 
 

While calling variants from RNAseq offers significant advantages, there are  obvious 

drawbacks such as being able to identify variants solely from regions that are expressed. In 

addition to that, there are a number of RNA-specific issues that need to be addressed. The 

main challenges involve splice junctions, management of duplicated reads or identifying 

variants in regions with low coverage due to, for example, poor gene expression (Brouard 

et al., 2019). One of the most commonly used tools for discovering and genotyping variants 

from the NGS RNAseq data is the GATK (McKenna et al., 2010), developed to call variants 

from DNA. There have been a number of early callers, such as SNPiR (Piskol et al., 2013), 

that would expand on the capacities of GATK and apply additional filtering to identify 

variants from RNAseq by matching its unique characteristics. However, it has since been 
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possible to accurately call mutations within the GATK pipeline itself by modifying some 

of its steps. An example of such adjustments is the SplitNCigarReads procedure. The main 

goal of this step is to reformat alignments that span introns. It is done by splitting reads with 

N in the cigar into multiple supplementary alignments and hard clipping mismatching 

overhangs. In addition to that, mapping qualities are reassigned to match DNA conventions 

(Brouard et al., 2019). Another example of tool that enables calling variants from RNAseq 

is the aforementioned Octopus (Cooke et al., 2018), which has a specific RNAseq mode.  

It has been shown that RNAseq is a very accurate method of germline detection 

(Quinn et al., 2013). However, this has not been stated about somatic mutations, the calling 

of which the aforementioned methods do not cover. There have been attempts to identify 

somatic variants from RNAseq (García-Nieto et al., 2019), however, they take the form of 

filtering approaches (using the GATK statistics) rather than actual callers. To our 

knowledge, the only complete method so far developed for the purpose of somatic variant 

calling from RNA-seq is RNA-MuTect (Yizhak et al., 2018). RNA-MuTect consists of a 

set of filters that take advantage of the SNV calling from matched DNA samples in order 

to confirm the existence of mutations in RNAseq, but forms a complete pipeline. The key 

filtering steps involve the removal of mapping errors using both STAR and Hisat2 aligners, 

removal of sequencing errors by a site-specific error model built upon thousands of normal 

RNAseq datasets, and removal of RNA editing sites using known databases. RNA-MuTect 

is claimed to achieve high sensitivity and precision, and to outperform previous methods 

(Tang et al., 2014). However, it had been developed to target macroscopic clones rather 

than all somatic variants in general, especially those with lower variant allelic frequencies. 
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In conclusion, it has now been possible to identify germline variants from RNAseq 

with high accuracy, thanks to tools such as the GATK and Octopus. However, there is 

limited scope for calling somatic mutations, apart from RNA-MuTect which targets 

macroscopic clones. In addition to that, the existing RNAseq callers require matched DNA 

or WES, therefore, they cannot be applied to studies where only RNAseq data is available. 

 

1.3 Single-cell RNA sequencing 

1.3.1  The definition and reasons for calling variants from single-cell RNAseq 

 
In the past decades, bulk RNA sequencing methods have been widely used to study 

gene expression patterns at population level. While they opened numerous opportunities to 

study what had previously not been accessible, they could only get the average of many 

cells and would inevitably lose cellular heterogeneity information (Chen et al., 2019).   

Single-cell sequencing technologies refer to the sequencing of a single-cell genome 

or transcriptome, in order to obtain genomic, transcriptomic or other multi-omics 

information at the single-cell level. It is, therefore, not surprising that they have become a 

favorable choice for studying key biological questions about cell heterogeneity, identifying 

rare cell types or delineating cell maps (Tang et al., 2019). In fact, single-cell RNA 

sequencing proved to be so effective that it was named the “Method of the Year 2013” by 

Nature Methods (“Method of the Year 2013 | Nature Methods,” ). 

 

1.3.2  Pure bulk RNAseq callers cannot be used to call variants from single-

cells  
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Due to the nature of single-cell data, calling variants requires certain adjustments, 

and pure bulk RNAseq variant callers are not suitable for identifying mutations from single-

cells (Stegle et al., 2015). The main difference between single-cells and bulk RNAseq is the 

abundance of the starting material. Because single-cell samples contain data from 

individual cells, the initial number of RNA sequences will be very low, even despite 

artificial amplification using PCR. Moreover, many regions will not be covered at all, due 

to cell-specific expression or the state that the cell is in (Lähnemann et al., 2020). Any 

technical errors or biases will have a stronger impact on the final appearance of data, as 

they will be present in a greater fraction of the sparse sequences. The observed allelic 

frequencies of the variants will also be different. Because bulk samples consist of a large 

number of single-cells, the allelic frequencies of some variants will, in general, be lower. It 

is due to the fact that SNVs would be present in only a subset of cells, and when combining 

sequences from all cells, the number of reads with the SNV would be comparably low. In 

healthy single-cells, variants have an allelic frequency of either 100% (homozygous 

mutations) or 50% (heterozygous mutations). Therefore, bulk methods should not be used 

to call variants from single-cells, unless they are modified to suit the specific nature of 

single-cell data. 

 

1.3.3  Current methods in single-cell RNAseq variant calling 
 

Identifying variants from single-cell RNAseq is difficult, as there is a wide range of 

technical artefacts present such as reverse transcriptase errors, PCR errors or sequencing 

biases, all of which are discussed in the subsequent sections of the Thesis. There have been 

a number of approaches to distinguish variants from artefacts in single-cell RNAseq. Most 
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of them are based on tools developed specifically for bulk RNAseq, but could potentially 

be suitable for single-cells provided parameters are adjusted accordingly. Liu et al. 

performed a systematic comparison of seven bulk RNAseq tools (SAMtools, the GATK 

pipeline, CTAT (Fangal, 2020), FreeBayes, MuTect2, Strelka2, and VarScan2 (Koboldt et 

al., 2012)) in terms of their ability to call variants from single-cell RNAseq. While the 

specificities were generally high, predictably the sensitivities would dramatically decrease 

in regions with low read depths, low variant allele frequencies or in certain genomic 

contexts. All callers had performance trade-offs. SAMtools showed the highest sensitivity 

in regions with poor coverage, but it was not able to perform well in the presence of introns 

or high-identity regions. Similarly, FreeBayes showed high sensitivities with high allelic 

frequencies, but the specificities were inconsistent between different datasets. In 

conclusion, the results indicated the necessity of improving detection sensitivity in difficult 

regions that could only be achieved when developing callers specific for single-cell 

RNAseq (Liu et al., 2019). 

SCmut is one of the first approaches to adjust bulk RNAseq callers to identify 

variants from single-cells specifically. Its output is based on somatic calls identified by 

other callers from bulk RNAseq with matched DNA normal. By applying an additional 

filter (two-dimensional local false discovery rate) that statistically detects somatic 

mutations at cell level, it removes a substantial amount of false positives commonly 

produced by bulk methods when calling variants from single-cells (Vu et al., 2019). Despite 

being quite accurate, variant discovery with SCmut is limited to whatever is detectable from 

the matched samples. 
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Developed specifically for single-cell RNA seq, Red Panda takes into consideration 

the unique nature of single-cell RNAseq data and, therefore, has a distinct advantage over 

other methods. It classifies all putative variants into three categories: homozygous-looking, 

bimodally-distributed heterozygous, and non-bimodally-distributed heterozygous variants. 

The main limitation of the method is its reliability on information from other callers (GATK 

Haplotypecaller). Furthermore, even the authors state that despite the 72.44% specificity, 

there is an ongoing need for improvement (Cornish et al., 2020). 

 

1.3.4  Goals of the thesis 
 

The main goal of the DPhil was to develop a stand-alone variant caller that would 

identify somatic mutations from single-cell RNAseq with high accuracy without the need 

for matched DNA or bulk RNAseq. The following thesis contains detailed descriptions of 

how the tool was created and validated. We then present its application to our Barrett’s 

dataset, an attempt to resolve unanswered questions about the origins of the disease. 
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2. Development of the single-

cell RNAseq caller 

 

1.4 Introduction 
 

While bulk RNA sequencing methods have been widely used to study gene expression 

patterns for many years, single-cell sequencing has proven to be a favourable choice for 

obtaining information at the single-cell level. It has since been applied to study key 

biological questions about cell heterogeneity, identifying rare cell types or delineating cell 

maps (Tang et al., 2019). The analyses have previously been conducted solely from the 

transcriptomic perspective. By developing a variant caller, we are hoping to combine 

transcriptomic and genomic information to get a novel perspective on phenomena occurring 

within and between cells. Specifically, we aim to investigate whether we could identify 

mechanisms of mutagenesis in healthy tissues that lead to diseases such as cancer. 

The single-cell RNAseq workflow is a complex, but a well-established, protocol. The 

first step involves an extraction of suitable cells from the tissue of interest. Individual cells 

are lysed and the RNA molecules are captured. In some cases, poly[T]-primers to remove 

ribosomal RNA molecules are used, as a result of what only polyadenylated mRNAs are 

obtained (Haque et al., 2017). The next step involves conversion of the poly[T]-primed 

mRNA to complementary cDNA using a reverse transcriptase enzyme. If unambiguous 

marking of the sequence is desired, additional adaptor sequences or unique molecular 

identifiers (UMIs) are used (Kivioja et al., 2011). The minimal amounts of cDNA are not 



Development of the single-cell RNAseq caller  Development of the single-cell RNAseq caller 

24 
 

sufficient for subsequent sequencing, therefore, PCR amplification is performed. It is 

recommended to execute multiple cycles of PCR, separated by fragmentation (Thermo 

Fisher Scientific - UK). In the final step of the workflow, the amplified and tagged cDNA 

is pooled and passed to a sequencing platform. There is a lot of variety in terms of reagents, 

machines and settings used. Those are usually dataset-specific, and can be modified 

depending on the experiment conducted (Haque et al., 2017). 

 

1.4.1 Technical errors in single-cell RNAseq 
 

Practically every step of the single-cell RNAseq workflow is likely to introduce technical 

biases and errors. They can start as early as cell extraction and lysis, where important cells 

are missed or cells are captured together (Hu et al., 2016). Errors can also arise while 

converting mRNA into cDNA due to infidelity of the reverse transcriptase, which lacks 

proofreading ability and, consequently, has a higher error rate (Li and Lynch, 2020). There 

are two main sources of errors that occur in subsequent PCR amplification: the error rate of 

the PCR polymerase and the thermal damage of the cDNA (Pienaar et al., 2006). In addition 

to that, sequences could be amplified at different levels of efficacy, which is dependent on 

factors like transcript length or GC content (Dabney and Meyer, 2012). Template switching 

is another contributor, occurring more frequently within the final amplification steps 

(Balázs et al., 2019). Depending on how early during amplification the errors occur,  they 

have a varying impact on the rest of the sequences. For example, if a PCR error is introduced 

in the first amplification round, it will be present in as much as a half of the final amplicon 

set. On the other hand, if it is introduced during one of the last amplification steps, its 

frequency will be very low and most likely undetectable. Finally, errors can be introduced 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078503/
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at the sequencing stage. As only a small share of all amplicons is selected for sequencing, 

the error frequency might change again (we are not aware of any studies that determine the 

degree of bias, however). There have been a number of studies aiming to estimate the degree 

of bias and suggesting ways of reducing it, but they are not universally applicable to all 

experiments and, therefore, not really helpful in minimizing biases in custom datasets 

(Lahens et al., 2014). Sequencing errors are dependent on the sequencing method. It is 

estimated that on average 1 in 1,000 bases from Illumina contain a sequencing error 

(Pfeiffer et al., 2018), however, there is a lot of variation depending on data characteristics 

and technology used. While there is an up to 10-fold difference in error rates between 

Illumina sequencers alone, the difference between samples coming from the same 

sequencer is even more striking. Some studies suggest it might be due to oxidative damage 

introduced as a result of differential sample handling (Ma et al., 2019). Error rates are also 

variable at the level of individual reads, as they are highly correlated with the sequencing 

cycle and tend to increase towards the end of the read. Furthermore, they are highly 

dependent on trinucleotide contexts and often increase in the presence of certain sequence 

motifs (Stoler and Nekrutenko, 2021). Once the experimental steps are completed, it is the 

computational post-processing where the last errors occur. Alignment errors arise from 

incorrect mapping of the reads by an aligner. They are specific to the mapping software 

used, as there is a lot of variety in how different aligners deal with problematic areas (Alser 

et al., 2021). For example, many mismatches in a read would confuse aligners which require 

exact seed matching and extension (Sun and Buhler, 2006). Splicing or large indels are 

another such issue, as a way of dealing with gaps in the sequence is aligner-specific (Sahlin 

and Mäkinen, 2021). Furthermore, there are low-complexity regions, which are regions 



Development of the single-cell RNAseq caller  Development of the single-cell RNAseq caller 

26 
 

very similar across different parts of a reference genome. They pose a challenge to all 

aligners, and often lead to different combinations of unique and non-unique alignments 

(Phan et al., 2015).  

Because the amount of the starting material in single-cells is so minute, every mistake 

has a significant influence on the final appearance of the data. Errors introduced early will, 

in general, have higher frequencies, as they will undergo numerous rounds of amplification. 

An allelic frequency of such errors can sometimes be so high that they closely resemble 

real mutations. On the other hand, single-cell data processing has a tendency to result in 

“dropout” events, which indicate observed zeros (Qiu, 2020). Zeros are ambiguous and pose 

significant challenges to transcriptomic analyses. They can either be attributable to 

methodological noise (expressed genes not detected by technology used) or they can 

express genuine biological absence (Lähnemann et al., 2020). Therefore, they have serious 

implications in variant calling, as they make mutations undetectable or make them appear 

at different frequencies than they really are.   

 

1.4.2 Existing methods 
 

Existing single-cell RNA sequencing variant callers strongly rely on sample pre-

processing and quality control. Strict quality thresholds, applied in order to minimize the 

number of false positives often identified in the more ambiguous regions of the genome 

(such as poor coverage), are usually the only method used. Examples of such thresholds 

include keeping only reads with maximum alignment scores or setting minimum limits for 

the numbers of supporting reads. Red Panda (Cornish et al., 2020) and SCmut (Vu et al., 

2019) take it a step further, as instead of setting hard thresholds, they attempt to adjust them 
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based on mutation profiles observed in the data. As aforementioned, mappers have different 

strategies of handling problematic aspects of RNAseq. Such areas include multiple 

mismatches in a read, splicing or large indels, and low-complexity errors. Therefore, to 

reduce the mapping error rate, intersection of results from multiple aligners is recommended 

(Liu et al., 2019). 

 

1.4.3 Our approach 
 

The main goal of our work was to create a single-cell RNAseq-specific variant caller, 

which would be an uncomplicated independent tool. Specifically, we did not want it to rely 

on any bulk callers and aimed to limit the need for other tools. We hoped to achieve high 

accuracy while using only single-cell data, as obtaining and processing bulk or matched 

DNA samples is troublesome and expensive. Finally, we wanted to limit the number of 

steps the user would have to complete to process their samples by compiling our method as 

a complete Python program.  

In order to develop a single-cell RNAseq caller, we decided to address the single-cell-

specific issues from the very beginning, rather than improve on the output of bulk callers 

as most single-cell callers do. In the next sections of this chapter, we describe the 

development of our method.  We begin with detailed explanations of technical errors that 

arise during single-cell RNAseq and outline simple steps required to eliminate some of 

them. We then describe how we used relationships between the remaining, more difficult 

to remove, errors, to ultimately create a complete caller. Finally, we show that combining 

calls from multiple single-cells substantially improves calls in individual samples.   
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1.5 Data and methods 
 

The following section describes a dataset used to develop the single-cell RNAseq caller and 

methods applied to prepare it for the calling.  

 

1.5.1 Data 
 

The lab of Professor’s Xin Lu (Ludwig Institute for Cancer Research, Oxford branch) 

generated a dataset consisting of bulk RNA-sequencing and single cell RNA-sequencing, 

further referred to as the “Barrett’s dataset”. In the analysis, we used data from 4 patients, 

separated into 6 batches as outlined in Table 1. While the original dataset included more 

individuals, only those patients had bulk RNAseq complemented with single-cell RNAseq 

data, and they all experienced symptoms of Barrett’s. There were 4 bulk RNAseq replicates 

for every tissue and patient.   
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Table 1. Number of single-cells per batch, patient and tissue in the Barrett's dataset 

Batch Patient Tissue Number of single-

cells 

4 GEN02021 Barrett’s 86 

4 GEN02021 Gastric 86 

4 GEN02021 Oesophagus 7 

5 GEN02021 Barrett’s 171 

5 GEN02021 Gastric 46 

6 GEN02021 Duodenum 90 

6 GEN02021 Gastric 90 

6 GEN02023 Barrett’s 90 

6 GEN02023 Gastric 90 

6 GEN02024 Barrett’s 90 

6 GEN02024 Oesophagus 90 

6 GEN02025 Duodenum 90 

6 GEN02025 Oesophagus 90 

7 GEN02021 Barrett’s 93 

7 GEN02021 Oesophagus 90 

7 GEN02023 Duodenum 90 

7 GEN02023 Oesophagus 65 

7 GEN02024 Duodenum 82 

7 GEN02024 Gastric 90 

7 GEN02025 Barrett’s 90 

7 GEN02025 Gastric 90 

8 GEN02021 Oesophagus 92 

8 GEN02023 Oesophagus 92 

8 GEN02024 Gastric 93 

8 GEN02025 Gastric 93 

 

Single cell RNAseq was prepared with a custom adaptation of the smart-seq2 method. Bulk 

RNAseq was created using the mir-Vana miRNA Isolation Kit (Thermofisher). ERCC spike-

ins were added for quality control and the sequencing was done using the Illumina HiSeq 

4000 system. A detailed description of data preparation has previously been published (Owen 

et al., 2018). 
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1.5.2 Alignment to the reference genome 
 

The following section contains information about the reference genome used and describes 

the alignment of the samples. 

 

1.5.2.1 Reference genome 

 

The human reference genome used was hg38. Sequences from the Epstein-Barr virus (EBV) 

and Helicobacter pylori (HP) were included in the FASTA file, but only the human 

chromosomal regions were used in the analysis. Information about functional regions 

(known genetic variation, gene annotations) was downloaded from GENCODE and the 

UCSC genomic browser. 

 

1.5.2.2 Single-cell RNAseq 

 

The raw FASTQ files were aligned using two different aligners: STAR 2.6.0c and Hisat 

2.0.4. The parameters used with STAR were --readFilesCommand zcat --runThreadN 4 --

outSAMtype BAM SortedByCoordinate --outSAMmapqUnique 60. The parameters used with 

Hisat2 were --min-intronlen 20 --max-intronlen 500000 -k 5 -X 800. In order to maximize 

the quality of the alignment, all unmapped or multimapped reads were removed. 

Furthermore, only reads with the maximum mapping quality (MAPQ = 60, less than 5 

mismatches) were used in the analysis. 
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1.5.2.3 Bulk RNAseq 

 

The raw FASTQ files were aligned using STAR 2.6.0c by Dr Ruud G.P.M. var Stiphout. 

The parameters used were --readFilesCommand zcat --runThreadN 4 --outSAMtype BAM 

SortedByCoordinate --outSAMmapqUnique 60. 

 

1.5.3 Quality control 
 

The quality of the samples was assessed using a variety of methods, both before and after 

alignment. 

 

1.5.3.1 Quality examination of raw reads with FastQC 

 

FastQC was used to examine the quality of raw reads. It included the analysis of sequence 

length and quality, base quality and content, GC and N content, duplication levels, 

overrepresented sequences and adapter content. 

 

1.5.3.2 Quality examination of aligned sequences 

 

The quality of the aligned sequences was assessed using standard tools used in the analysis 

of BAM files, namely output from the aligners and the samtools toolkit. Reports produced 

by the alignments were used to evaluate general statistics for each sample, such as alignment 

rates (ratio of aligned reads to total reads) and percentages of uniquely mapped, multi-

mapped and unmapped reads. The quality of individual reads and bases was examined using 

samtools. Metrics taken into account included mapping and base qualities, number of 

mismatches and length of the soft-clipping regions. 
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1.5.4 Ground truth variant calling (germline variants) 
 

For every patient, 4 bulk RNAseq samples from every non-disease tissue (Gastric, 

Oesophagus and Duodenum) were collected. Each of the samples was processed separately. 

The aligned BAM files were processed according to the GATK 3.7.0. Best Practices and the 

germline variants were called with Haplotypecaller (default settings). The final variants were 

defined as those that passed the additional GATK VariantFiltration (default settings) step. 

After that, variants called for the same patient and tissue were grouped. All calls were taken 

into account, even if they were called in only one out of four samples from the same tissue. 

In order to create the final list of germline mutations per patient, calls from healthy tissues 

(Gastric, Oesophagus and Duodenum) were merged.  

 

1.6 Development of the single-cell RNAseq caller 
 

This section contains detailed information about the development of the single-cell 

RNAseq caller. It begins with a description of technical errors that are the easiest to remove, 

and presents measures taken to eliminate them. It then continues to the main part of the 

caller, and finally explains additional filters applied during the last steps of the calling in 

order to maximize the quality of the output. 

 

1.6.1 Most technical error types can be eliminated with standard quality 

control measures 
 

The following subsection explains the characteristics of technical errors in single-cell 

RNAseq and shows how they can be eliminated with standard quality control measures. 
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1.6.1.1 Alignment errors 

 

Alignment errors arise from incorrect mapping of reads by an aligner. They are 

specific to the mapping software used, as there is a lot of variety in how different aligners 

deal with problematic areas.    

As already described, all non-uniquely mapped reads and reads with poor mapping 

quality were removed to reduce the mapping error rate. For most samples in our work, 

different mappers were used (STAR and Hisat2, specifically) and a variant was only called 

if it was supported by the output of both aligners. 

 

1.6.1.2 Sequencing errors 

 

Sequencing quality scores, provided by Illumina for each base, measure the 

probability that a base is called incorrectly (Illumina, Inc. U.S). Therefore, some sequencing 

errors can be identified by a poor base quality score. We excluded all bases with quality 

<20, or any positions with average base quality  <20. However, this is not sufficient to 

remove all sequencing errors, as the scores only express error probabilities and a risk exists 

that some errors are not marked.  

Considering that 1 in 1000 sequenced bases are incorrect and the coverage in single-

cell RNAseq hardly ever exceeds 1,000 reads, it is quite unlikely for two sequencing errors 

to be present at the same position, and even more unlikely for them to be of the same type. 

To make sure that we do not call a sequencing error in case of a very unlikely event that 

two sequencing errors of the same type are present at the same position, we excluded any 

variants that were not supported by at least 3 reads. 
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1.6.1.3 PCR errors 

 

PCR errors arise during PCR amplification due to inaccuracy of the PCR polymerase 

at a rate of approximately 10-4 (Potapov and Ong, 2017). If there is only one  PCR 

amplification step, those errors can be easily removed. They can be identified by their 

presence in only one PCR duplicate group, therefore, removing PCR duplicates with 

samtools markdup should be enough to filter them out. However, in single-cell RNAseq 

there is a pre-adapter-ligation (pre-fragmentation) amplification, which complicates the 

problem. In this case, two independent PCR amplification steps are performed and each of 

them carries technical errors of unlike characteristics. As described, errors from the pre-

library-amplification (second round of PCR) can be removed using samtools markdup. In 

the next section, we explain how we estimated the frequency of the pre-adapter-

amplification errors, and our attempts to eliminate them. 

 

1.6.2 Errors from the first PCR amplification round                                                                                                               

(pre-adapter-amplification errors) are difficult to eliminate 
 

Because amplicons from the pre-adapter-amplification undergo fragmentation, it is 

impossible to tell which duplicate group they originally came from. Therefore, tools like 

samtools markdup are not suitable to remove PCR errors from the pre-adapter-amplification  

(further referred to as PCR1 errors).  

We made an attempt to estimate the frequency of such errors in order to estimate the 

scale of their influence on our calling. The crucial question is about the regularity of PCR1 

errors that could resemble real variants. If 3 out of 10 reads supported an alternative allele, 

is it likely to be a PCR1 error? Is it still likely if 6 out of 10 reads support the variant? 
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We found the calculations to be challenging due to a large number of unknowns. 

Among the information we did not have was the initial number of transcripts, the probability 

of an amplicon to be passed to the pre-library-amplification PCR, or the probability / 

number of amplicons from the pre-library-amplification PCR to be chosen for sequencing. 

We hence had to make rough approximations, simulating a “bad” scenario (i.e. resulting in 

the highest allelic frequency of the PCR error).  

Let us assume that there is one initial transcript, as in this case, the number of 

observed reads will be the lowest and the frequency of the error will be the highest. Even 

though PCR efficiency is dependent on factors like GC content and amplification round, in 

our calculations we assume that all amplicons are amplified at maximum rate (i.e., every 

amplicon is amplified at every round). After the pre-adapter-amplification is finished, all 

amplicons undergo fragmentation and are passed on to the pre-library-amplification, where 

they are, again, amplified with maximum efficiency. Up to this point, the original allelic 

frequency of the PCR1 error from the pre-adapter-amplification is unchanged. The next and 

final step to consider before sequencing is amplicon selection, as not all amplicons will be 

sequenced. We do not know how many amplicons with the PCR1 error are going to be in 

this group, but in order to estimate this, we can use the binomial distribution. The number 

of trials can be expressed as the total number of observed reads at the position of interest, 

number of successes is the observed number of reads with the PCR1 error, and the 

probability of success is the allelic frequency of the PCR1 error. The probability values 

output by the distribution should give us an indication about which combinations of reads 

with and without PCR1 errors are possible, hence answering our original question (given 
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that 3 out of 10 reads in our data support the alternative allele, is it likely to be a PCR error 

from the pre-adapter-amplification)? 

The earlier a PCR error occurs during amplification, the higher its allelic frequency. 

In order to estimate the frequency of such errors in our data, we needed to evaluate the 

maximum number of amplification rounds the PCR1 error could be introduced by. In other 

words, the error would only be detectable if it had been introduced early enough (as 

otherwise, its frequency would be too low). We started our calculations with determining 

the allelic frequency of a PCR error at each PCR amplification round (Table 2).  

 

Table 2. Allelic frequency of PCR errors from the first round of PCR at each 

amplification round. 

Amplification round Total number of amplicons AF of PCR error 

1 2 0.5000000 

2 4 0.2500000 

3 8 0.1250000 

4 16 0.0625000 

5 32 0.0312500 

6 64 0.0156250 

7 128 0.0078125 

 

The minimum number of reads supporting an alternative allele to be considered 

during our calling is 3 and the allelic frequency is 0.1. As shown in Table 3, we considered 

3 extreme scenarios - 3 out of 30 reads supporting the alternative variant (minimal coverage 

required to call a variant with AF = 0.1), plus 3/10 and 3/5 as most positions in our data 

have lower coverage and higher allelic frequencies. Using the binomial distribution 
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(cumulative) as described earlier, we were able to calculate the probability of observing at 

least 3 reads for each coverage value. For example, for the case with 3 out of 30 reads 

supporting the alternative allele with a PCR error introduced during the second round of 

pre-library-amplification, the number of trials will be 30, number of successes 3, and the 

probability of success will be 0.25 (AF of PCR error corresponding to 2 rounds of 

amplification, taken from Table 2.). The probabilities of observing at least 3 reads were 

higher for lower allelic frequencies (3/30 versus 3/5), what is not surprising as one would 

expect to see 3 desired reads among a pool of 30 more often than among 5. 

 

Table 3. Cumulative binomial probabilities of detecting a PCR1 error for different 

combinations of amplification rounds and supporting reads. 

 Number of supporting reads / coverage 

Amplification round 3/30 3/10 3/5 

1 >0.99 0.9450 0.500 

2 0.989 0.4740 0.104 

3 0.742 0.1200 0.016 

4 0.288 0.0210 <0.016 

5 0.066 <0.021 <0.016 

6 0.011 <0.021 <0.016 

 

 The PCR errors can be introduced in all rounds of amplification. Therefore, if 18 

rounds are performed, the number of positions in which potential errors can be introduced 

is 217. Assuming that the PCR error rate is 10-4, one could expect 13 PCR errors at each 

genomic position.  

 A PCR1 error’s detectability is dependent on two factors: probability of observing a 

sufficient number of reads (Table 3) and, fundamentally, the error being introduced in the 
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first N amplifications. This can be estimated using the binomial distribution, as in the 

previous case. The success rate can be expressed as the number of PCR errors versus the 

number of all amplicons in which they could be introduced (13/217), and the number of 

trials corresponds to the number of opportunities the error could be introduced in by the N 

amplification round (number of amplicons produced at the N-1 amplification round). For 

example, at the second round of amplification, the number of trials will be 2 (errors could 

only be introduced in 2 amplicons from the first round). The probabilities of observing 1 

PCR error at N amplification round are presented in Table 4. Interestingly, the probability 

of observing more than 1 PCR error at each of the considered N amplification rounds was 

always 0, suggesting that it was not likely to observe more than 1 PCR error per genomic 

position.  

 

Table 4. Probability of observing 1 PCR error in the first N amplification rounds 

Amplification round (N) Probability  

1 0.0001 

2 0.0002 

3 0.0004 

4 0.0008 

5 0.0016 

6 0.0032 

 

 Based on probabilities of detecting variants from Table 3, we were able to calculate 

the probability of observing a PCR1 error at a genomic position (probability of the error 

occurring in the first N amplification rounds from Table 4 multiplied by the probability of 

observing a sufficient number of reads from Table 3). The resulting probabilities are 
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presented in Table 5. As previously, the “3/30” case carried the highest probability of 

occurrence. However, the probability did not decrease with the amplification rounds N, and 

it was more likely to observe PCR errors introduced within the first 2 or even 3 

amplification rounds than in the first one, despite a lower allelic frequency. This was due 

to a greater number of amplicons the errors could be introduced in (greater difference 

between probabilities of a PCR error occurring in the N amplification rounds than 

probabilities of detecting a sufficient number of reads for N=2 or 3).  

 

Table 5. Cumulative binomial probabilities of observing a PCR1 error for different 

combinations of amplification rounds and supporting reads. 

 Number of supporting reads / coverage 

Amplification round (N) 3/30 3/10 3/5 

1 >0.000099 0.000094500 0.000050000 

2 0.0001978 0.000094800 0.000020800 

3 0.0002968 0.000048000 0.000006400 

4 0.0002304 0.000016800 0.000001776 

5 0.0001056 0.000004960 0.000000464 

6 0.0000352 0.000001344 0,000000128 

 

 The values from Table 5 could be directly translated to the number of observable 

PCR errors per sample. Estimating that there were, on average, 120,000 chromosomal 

positions of high quality per cell in which the errors could be introduced, we calculated the 

number of PCR1 errors per sample, relative to the N amplification rounds that an error was 

introduced in, by multiplying the probabilities by the number of chromosomal positions 

(Table 6). 
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Table 6. Expected number of PCR1 errors per sample, with the corresponding 

amplification round that the error was introduced by 

 Number of supporting reads / coverage 

Amplification round 

(N) 

3/30 3/10 3/5 

1 12 11 6 

2 24 11 2 

3 36 6 <1 

4 28 2 <1 

5 13 <1 <1 

6 4 <1 <1 

 

 Beyond 6 amplification rounds the number of PCR1 errors becomes negligible. 

Therefore, we believed that setting the threshold for the number of amplification rounds N 

to 6 was feasible. Because we expected only 1 PCR error per genomic position, the final 

probability of observing a PCR1 error could be obtained by summing probabilities of 

observing the error at each amplification round N (mutually exclusive events), or, 

alternatively, summing the expected numbers of errors per sample. Therefore, the expected 

numbers of PCR1 errors per sample were 117, 30 and 8 for the cases “3/30”, “3/10” and 

“3/5”, respectively. While different allelic frequencies and combinations of supporting 

reads were possible, the case “3/30” was the one with the highest number of expected errors 

(lowest allelic frequency and fewest supporting reads). Therefore, up to 117 observable 

PCR1 errors were expected per sample. While we have not managed to produce a method 

to remove the PCR1 errors directly, we are going to show how we handle them in the later 

sections, and how we minimize their contribution to our final list of calls. 
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1.6.3 Real mutations have at least the same allelic frequency as reverse 

transcriptase errors 
 

Reverse transcriptase is an enzyme used for translation of RNA into cDNA and is 

very prone to errors as it has no proofreading ability. There has been a limited number of 

attempts to estimate the error rate of the reverse transcriptase, and the values are not 

consistent between publications (most likely somewhere in the range of 10-5 (Gout et al., 

2017)). These kinds of errors are the most difficult to identify, as they appear the earliest 

and are the most similar to real mutations.  

Real mutations, due to the fact they are already present before reverse transcriptase 

errors occur, have at least the same or higher allelic frequency than transcriptase errors. 

Similarly, reverse transcriptase errors will have at least the same allelic frequency as PCR 

errors from the first round. Therefore, determination of the reverse transcriptase allelic 

frequency should allow us to determine an allelic frequency threshold above which all 

remaining errors (PCR1 and reverse transcriptase) are unlikely. 

 

1.6.3.1 Estimation of error allelic frequency threshold from spike-ins cannot be 

translated to chromosomal regions 

 

In the following section, we present our method of estimating the expected allelic 

frequency threshold above which technical errors are not expected and, ultimately, all 

variants are real mutations. 

The allelic frequency of the reverse transcriptase error is dependent on the number of 

original transcripts in the sample and the number of transcripts it is introduced in (most 

likely introduced in only 1 original transcript, as both the error rate of the reverse 

transcriptase and coverage are very low in our data). It has been shown that the final number 
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of reads covering a position is proportional to the number of the original transcripts in our 

data (Owen, 2018). Therefore, one could expect the errors to occur at similar frequencies 

when comparing them across positions with similar depths, equal to 1 divided by the 

number of original transcripts. A position with one transcript would result in a reverse 

transcriptase error frequency equal to 1, a position with two transcripts equal to 0.5, a 

position with three transcripts equal to ~0.3 and so on.  

In order to validate this statement, we decided to use the spike-in sequences included 

in our single-cell data (as we did not expect them to have any mutations). We removed the 

hypothetical sequencing, mapping and PCR2 errors using techniques described in the 

earlier sections of this chapter. By plotting allelic frequency of the remaining technical 

errors versus coverage , we aimed to determine the allelic frequency threshold above which 

no technical errors occur. As expected, we observed a decrease in allelic frequency of 

technical errors as coverage increased (Figure 2). 

 

Figure 2. Allelic frequency of technical errors versus coverage in ERCC spike-ins. 
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We made rough approximations of the allelic frequency thresholds for different 

coverage ranges (Table 7). Applying those thresholds to positions different from the 

reference in the spike-in regions would be sufficient to remove most of the remaining errors 

in the spike-in regions (subject to noise). 

 

Table 7. Allelic frequency thresholds for PCR1 and reverse transcriptase errors in the 

ERCC spike-ins. 

Coverage (DP) Max AF of PCR1+RT errors 

DP>600 0.2 

300<DP<=600 0.3 

200<DP<=300 0.5 

150<DP<=200 0.7 

DP<=150 1.0 

 

Naturally, we would proceed to apply the same procedure to chromosomal regions. 

Removing all variants below the just defined threshold frequency would, theoretically, 

ensure the sole preservation of real mutations. However, most chromosomal positions in 

our dataset have low coverage (<100) and considering that the allelic frequency threshold 

in this coverage range has been defined as 1.0, subjecting to this restriction would result in 

no variants being called. Therefore, while setting a fixed allelic frequency threshold could 

be a reasonable option for positions with high coverage, finding a different method for 

identifying mutations in regions with fewer reads was necessary. 

 

1.6.4 The “linkage method” can distinguish between reverse transcriptase 

errors and real mutations in specific conditions 
 

Because it was not an effective solution to set a fixed allelic frequency threshold 

above which no errors occur, especially in regions with poor coverage, we developed an 
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alternative strategy to distinguish between errors and real mutations, which from now on 

will be referred to as the “linkage method”. 

Figure 3 presents the main idea behind the method. For now, let us assume that only 

real variants and reverse transcriptase errors are present (no PCR1 errors). The goal is to 

determine the origin of the position different from the reference shown in red. There are 

two possible variants present at a nearby position (A and C), that share reads with our 

position of interest. Because a transcriptase error would only be introduced in one original 

transcript, it should always be present on reads with one version of the other allele (in other 

words, always with an A or a C). Therefore, if the error is introduced on a read with an A, 

it is not possible for it to be found on a read with a C. Because we can never see a full set 

of reads, even if we only see our variant present on reads with the A allele, it does not mean 

that our variant is never present on reads with a C. In this case, we are not able to determine 

the origin of our position. However, on the other hand, if it is present on the read with a C, 

it is an indication that it must have been “introduced” either at the same time as the “A/C” 

position or earlier – which basically means that it would be higher in the hierarchy, where 

homozygous SNVs are the highest, heterozygous are lower and RT errors are equal to or 

lower than the heterozygous SNVs (because they occur the latest). Therefore, if our position 

is present on reads with both A and C alleles,  it is called as a real mutation. 

 

Figure 3. A visual representation of the linkage method. 
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An IGV screenshot in Figure 4 presents a real-life application of the linkage method. 

Two variants share a number of reads. Variant on the right is present on all reads that the 

left variant is present on, but not vice versa. Therefore, the variant on the right is higher in 

the hierarchy than the left variant (i.e. appearing earlier in sample processing). Knowing 

that the only errors present are reverse transcriptase errors, the variant on the right must be 

a real mutation. Therefore, the variant on the right will be called and the variant on the left 

will be put aside. There are two scenarios for the variant on the left now. If no other 

positions different from the reference that share reads with the variant on the left exist, it is 

going to be discarded. This would be a correct decision if the variant was a reverse 

transcriptase error. However, it is also possible that the variant is a heterozygous mutation 

- and it in this case, it should not be removed. If another position exists that is evident to be 

lower in the hierarchy than the variant on the left, the variant on the left is going to be called 

as a heterozygous mutation (not shown). 
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Figure 4. IGV screenshot presenting the linkage method in practice. 

 

The problem is relatively simple if only reverse transcriptase errors and real 

mutations are present. The reconstruction of hierarchy, however, becomes much more 

difficult when errors from the first round of PCR are present as well. As shown in Figure 

5, PCR1-RT pairs can be confused with RT-SNV pairs. In this case, when comparing a 

reverse transcriptase error to a PCR1 error instead of a reverse transcriptase error to a 

mutation, the reverse transcriptase error would be called a mutation. 
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Figure 5. PCR1-RT and RT-SNV pairs can easily be confused. 

 

1.6.4.1 The false positive rate of calls in the spike-in regions is low 

 

We were wondering how often reverse transcriptase errors would be wrongly called 

as real mutations in the cases when PCR1-RT pairs were confused for RT-SNV pairs, and 

whether it was a significantly common phenomenon. In order to estimate that, we needed 

to investigate the frequency of PCR and reverse transcriptase errors occurring close to one 

another. As mentioned in the previous sections, the expected error rates for both of those 

errors was in the range of 1 per 10,000 bases. Considering that transcripts are only a few 

thousand bases long and usually only a few dozens of positions are considered (reads need 

to overlap in order for the linkage method to work), we suspected it was very rare for the 

PCR and RT errors to occur simultaneously, and therefore, for the RT error to be called a 

mutation.  

To check whether our results agreed with that assumption, we looked at variants 

called from the spike-in regions. As we did not expect there to be any real mutations, all 

calls must have been reverse transcriptase errors that were misidentified as real mutations 

due to their proximity to PCR errors.  

In total, there were 331,766 candidates in the spike-in regions that could be called as 

they were of good quality and located in regions with sufficient coverage. Out of those, 
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however, only 19,032 (5.7%) were paired and could be used as input for the linkage method. 

Even fewer were ultimately selected as variants by our caller, as presented in Figure 6. 

 

Figure 6. Histogram of calls made from the spike-in regions per cell. 

 

Our method called 299 spike-in positions among 839 cells (only samples with SNV 

calls were considered), which gives a very low rate of 0.36 false positive calls per cell 

(within the spike-in region). Considering that there are around 300 times as many 

chromosomal positions with sufficient coverage as in the spike-in regions per cell, we could 

expect around 100 such cases per cell. However, the quality of positions (coverage and 

number of supporting reads) is higher in the spike-in than in the chromosomal regions. In 

effect, calls are made more often per region in the spike-ins, and therefore, it is not correct 

to use the frequency of false-positive calls from the spike-in regions to estimate their 

frequency in the chromosomes. We observed that the frequency of potential calls  (PCR1 

and reverse transcriptase errors plus real mutations) is over 4 times lower in the 

chromosomal regions than in the spike-ins (~7*10-4 versus 3*10-3 potential variants per 

position covered by at least 3 reads, accordingly). Therefore, the number of expected PCR1-
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RT error pairs in the chromosomal regions could be estimated not around 100, but rather 

closer to 25.  

 

1.6.5 RNA editing sites 
 

RNA editing is a molecular process that is one of the most evolutionarily conserved 

characteristics of RNAs. Occurring in all living organisms, it generates RNA and protein 

diversity by specific amino acid substitutions, deletions, and changes in gene expression 

levels (Li and Mason, 2014). Adenosine-to-inosine (A->G) substitutions represent the most 

important class of editing in humans, and are of particular interest during variant calling 

(Lo Giudice et al., 2020). The reason for that is that they occur at high allelic frequencies 

and can highly resemble the characteristics of real mutations. 

There are a number of existing databases that contain information about known RNA 

editing sites, such as REDi and DARNED. Initially, we used them to filter out such sites 

post-calling. However, we realized that RNA editing sites had an influence on our calls as 

they were used during the linkage step, and therefore had to be removed before it. 

Additionally, we noticed that there still were numerous RNA editing-like variants left in 

our set of potential variants (A->G variants with high AF and occurring in many cells, most 

likely sites not present in the databases). Therefore, in the end we decided to remove all 

positions with A->G (if the transcript’s orientation was “+”) and T->C (if the transcript’s 

orientation was “-”) substitutions, regardless of whether they were in the databases or not. 

While this action decreased the number of mutations we could detect, it was preferable to 

calling RNA editing sites or using them to decide about other positions different from the 

reference.  
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1.6.6 Known variants can be used to identify others within the transcript 
 

Successful identification of real mutations using the linkage method relies on two 

variants sharing the same reads. However, there are numerous positions that are not found 

at close proximity to other variants and which could potentially be real mutations. As 

explained in the previous sections, reverse transcriptase errors are not expected to have a 

higher allelic frequency than real mutations. Therefore, one could treat a mutation with the 

lowest allelic frequency identified using the linkage method as the allelic frequency 

threshold required to call other positions in the transcript. In other words, if we find a 

mutation with a particular allelic frequency, we would call all other variants within the 

transcript with allelic frequency above that. 

 

1.6.7 Coverage and frequency thresholds exist above which all variants are 

real 
  

As explained in the section describing reverse transcriptase errors, the higher the 

coverage, the lower the allelic frequency of the reverse transcriptase error. If one could 

determine the allelic frequency threshold of the reverse transcriptase for each coverage 

range, calling would be quite straightforward, as all variants with allelic frequency above 

the threshold would be real mutations. While this approach could work for regions with 

high coverage, it is not a reasonable solution for those with poorer, in our case most, 

regions.   

However, we believed that there must be a reasonable combination of coverage and 

allelic frequency thresholds above which variants are real. In order to define them, we 

plotted allelic frequency histograms for different coverage ranges of SNPs (identified from 
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RNA bulk) present in single-cells versus all other variants present in those cells in the 

chromosomal regions. As shown in Figure 7, while the distributions are relatively flat in 

the coverage range of 10 to 20 reads, there is a clear increase of SNPs around the allelic 

frequency of 0.5 when more than 50 reads are present. Peaks around 0.5 and 1.0 AF are 

what we would expect to see in the distribution of SNPs, considering that heterozygous and 

homozygous mutations are present in the data. Furthermore, there is a large increase of 

variants with lower allelic frequencies, suggesting that this is where most errors are located. 

We decided to use this case to determine our conservative threshold and, therefore, 

treated all variants with allelic frequency of at least 0.4 found in regions covered by more 

than 50 reads as real mutations. 

 

Figure 7. Variant allele frequencies of known SNPs versus other positions of interest 

for different coverage ranges. 

 

1.6.8 Combining calls from multiple samples greatly improves results in 

individual single-cells 
 

The linkage method, using known mutations to make calls from the same transcript 

or identifying “high-confidence” variants all rely on coverage, quality of reads around 

positions of interest and potential variants sharing the same reads. Those criteria 
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significantly decrease the number of calls we were able to make. This is why we decided to 

add the recalling step in the end of the calling. 

The recalling step involves gathering all calls made from samples from the same 

cohort (we grouped the samples per patient) and checking whether there is any evidence for 

them in the samples in which they were not called. It would often happen that despite the 

fact that a call was made in only one cell, the same mutation was present in a number of 

other samples but not called for example due to lack of other variants sharing the same reads 

(the linkage method could not be applied). In order for a variant to be recalled, it still had 

to pass the standard quality criteria (minimal AF, coverage and number of supporting 

reads).  

Figure 8 compares the numbers of calls per single-cell before and after recalling. 

After the first round of calling, the average number of calls per cell was 17. After the 

recalling, it increased to as many as 152. The results highlight the importance of the 

recalling step, and therefore the benefit of using information obtained from all samples in 

order to improve the calling in each individual cell. 

 

Figure 8.  Distributions of the numbers of calls per single-cell before and after recalling. 
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1.7 Conclusions 
 

 In this chapter, we provided a detailed description of our single-cell RNAseq caller.  

We explained how we handled each type of technical errors and how we focused on 

relationships between them in order to select mutations with high confidence. Finally, we 

discussed additional measures we applied to increase the quality and number of our calls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Validation of the single-cell RNAseq caller  Validation of the single-cell RNAseq caller 

54 
 

3. Validation of the single-cell 

RNAseq caller 

 

1.8 Introduction 
 

A comprehensive validation of a new technique is an essential final step to make the 

results reliable. However, proving that a method works is not always straightforward. This 

is the very issue we have been struggling with in our work. First of all, not many datasets 

exist that would satisfy all criteria required to perform variant calling from single-cells. It is 

common knowledge that unless data of sufficient quality is available, no trustworthy calls 

can be made. Because calling variants from single-cells is a novel approach, most single-cell 

data does not fulfil the required quality criteria. Secondly, in order to compare calls from 

single-cells to gold standard methods, paired DNA is required. Even if this is accessible, 

comparison to other methods is problematic in itself. It has long been known that there is 

poor consensus between commonly used variant callers (Cornish and Guda, 2015), and the 

degree of the overlap of called variants is highly dependent on the caller, or even aligner, 

used. Therefore, sole intersection of variant calls from single-cells with those made by gold 

standard callers from DNA or bulk RNAseq might not be sufficient to prove the method 

works. Alternatively, a method could be validated by proving that it successfully identifies 

phenomena that are known to be present in the data. In the case of cancer, those could include 

known mutation profiles or cancer driver genes. This approach would limit the need for 

additional tools, which are prone to errors.  
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We decided to start with the first method of validation. In the first section of the 

following chapter, we compare our single-cell RNAseq caller output to variants detected in 

bulk DNA and RNA sequencing data from the same patient. We conduct our analysis on a 

publicly available breast cancer dataset (described in subsequent sections). There are two 

reasons for that. Firstly, calling somatic variants from tumour and normal DNA is the most 

reliable way to identify cancer mutations - and DNA was not included in our Barrett’s data. 

The breast cancer dataset was the only dataset that we could find that had whole-

transcriptome single-cell RNAseq with a DNA-based match, and had spike-ins. Secondly, 

we believe that validation should be conducted on a different dataset than the method had 

been developed on.  

We begin the following section with a comprehensive comparison of both germline 

and somatic calls made from whole exome sequencing (WES) and bulk RNAseq data using 

common tools. We then continue to the processing of the single-cell RNAseq samples with 

our method and evaluate our results with regards to the calls from gold standard tools. Apart 

from intersection statistics of our findings with the output of other callers, we provide a 

detailed analysis of the variants that our caller missed or the calls that were only made from 

single-cells. Finally, we search for known cancer driver genes and mutation profiles linked 

to breast cancer among our single-cell calls in order to expand our validation beyond what 

other variant callers are able to identify.  

 

1.9 Data  
 

The following section contains a description of the breast cancer dataset, which was 

used to validate the single-cell RNAseq caller. 



Validation of the single-cell RNAseq caller  Validation of the single-cell RNAseq caller 

56 
 

1.9.1  Data 
 

The breast cancer dataset consists of single-cell RNAseq data paired with bulk 

RNAseq and WES. The RNAseq data (single-cell and bulk) has been deposited in the NCBI 

Gene Expression Omnibus database under the accession code GSE75688, and the WES data 

can be found in the NCBI Sequence Read Archive under the accession code SRP067248. We 

chose it because apart from the aforementioned fact it was one of the few single-cell RNAseq 

datasets with paired WES, it had previously been shown to be of good quality (Chung et al., 

2017).  

 

1.9.2 Alignment to the reference genome 
 

The following section contains information about the reference genomes used and 

describes alignment of the samples. 

 

1.9.2.1 Reference genome 

 

Two reference genomes were used in the analysis of the breast cancer dataset. Most 

of the analysis was conducted using the hg38 version of the human reference genome 

(already described along the Barrett’s dataset). Somatic variant calling from bulk RNAseq 

was done using RNA-MuTect with the hg19 version of the human reference genome, as it 

was the only version that the software was compatible with. Published analysis of the breast 

cancer dataset was also performed using hg19 (Chung et al., 2017). In the cases where data 

was obtained in the hg19 format, it was lifted over to hg38 using the USCS liftOver tool.   
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1.9.2.2 Single-cell RNAseq 

 

The raw FASTQ files were aligned using two different aligners: STAR 2.6.0c and 

Hisat 2.0.4. The parameters used with STAR were --readFilesCommand zcat --runThreadN 

4 --outSAMtype BAM SortedByCoordinate --outSAMmapqUnique 60. The parameters used 

with Hisat2 were --min-intronlen 20 --max-intronlen 500000 -k 5 -X 800. In order to 

maximize the quality of the alignment, all unmapped or multi-mapped reads were removed. 

Furthermore, only reads with the maximum mapping quality (MAPQ = 60 and less than 5 

mismatches) were used in the analysis. 

 

1.9.2.3 Bulk RNAseq 

 

The raw FASTQ files were aligned using STAR 2.4.2a. The parameters used were --

runThreadN 4 --outSAMtype BAM SortedByCoordinate --outSAMmapqUnique 60 --

readFilesCommand zcat --outFilterType BySJout --outFilterMultimapNmax 20 --

alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --

outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 1000000 --

alignMatesGapMax 1000000. 

 

1.9.2.4 WES 

 

The raw FASTQ files were aligned using BWA 0.7.15 (bwa mem). We used --M 

parameter for compatibility with Picard, while all other settings were left as default. 
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1.9.3 Ground truth variant calling 
 

We used gold standard tools to call germline and somatic variants from WES and 

bulk RNAseq data, in order to compare them to our calls from single-cells. 

 

1.9.3.1 Methods 

 

The following section contains information about how the ground truth variant calling 

was conducted. 

1.9.3.1.1 SNP calling from WES 

 

SNPs were called from WES using two callers - Haplotypecaller and Octopus. 

Calling variants with Haplotypecaller (default settings) involved the calling itself, preceded 

by pre-processing of the aligned BAM files according to the GATK 4.1.7.0 Best Practices. 

The final variants were defined as those that passed the additional GATK VariantFiltration 

(default settings) step. No pre-processing steps were applied before calling variants with 

Octopus, which was ran with the germline forest file (v0.6.3-beta) provided with the Octopus 

software.  A final list of calls was created from an intersection of results from the two callers 

and restricted to the SureSelect All Exon V5 regions.  

 

1.9.3.1.2 SNP calling from RNA bulk 

 

The aligned BAM files were processed according to the GATK 4.1.7.0 Best Practices 

and the germline variants were called with Haplotypecaller (default settings). The final 
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variants were defined as those that passed the additional GATK Variant Quality Score 

Recalibration (default settings) step.  

 

1.9.3.1.3 SNV calling from WES 

 

SNVs were called from WES using two callers - Mutect2 and Octopus. Calling 

variants with Mutect2 (default settings) involved the calling itself, preceded by pre-

processing of the aligned BAM files according to the GATK 4.1.7.0 Best Practices. The final 

variants were defined as those that passed the additional GATK VariantFiltration (default 

settings) step. No pre-processing steps were applied before calling variants with Octopus, 

which was ran with the germline (v0.6.3-beta) and somatic (v0.6.3-beta) forest files provided 

with the Octopus software. The additional parameter used was --sequence-error-model 

PCR.HISEQ-2500. A final list of calls was created from an intersection of results from the 

two callers and restricted to the SureSelect All Exon V5 regions.  

 

1.9.3.2 Investigation of germline calls 

 

 There were two reasons for calling SNPs from the breast cancer dataset. Firstly, they 

gave us a good indication of what real mutations look like in our single-cells, in addition to 

less frequent SNVs. Secondly, because our single-cell RNAseq caller does not discriminate 

between somatic and germline variants, we needed a list of SNPs in order to remove them 

from our calls. Calling SNPs from both WES and RNAseq allowed us to identify more 

variants than if we only used either. Furthermore, it gave us an opportunity to explore the 

limitations of calling SNPs from each of those data types.  
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The following section begins with an evaluation of variants identified with different 

variant callers from WES. It then continues with a comprehensive comparison of SNP calls 

from WES and bulk RNAseq. This information is required not only to understand the 

limitations of each of the tools and data types, but also to have a good benchmark of the 

degree of overlap of gold standard callers. 

 

1.9.3.2.1 High concordance in SNPs called from WES using different variant callers 

 

 As described in the previous sections, SNPs were called from WES using 

Haplotypecaller and Octopus. The output of both callers was concordant in terms of the 

numbers (Figure 9a.) and experienced a high degree of intersection of over 90% (Figure 

9b.) for most patients. A poorer overlap for patients BC02, BC05 and BC06 resulted from a 

greater number of SNP calls made by Octopus, rather than from a disparity in results 

produced by the two callers. 

 

Figure 9. SNP calling from WES with Haplotypecaller and Octopus. a. Comparison of 

the numbers of SNPs from the two callers per patient. b. Intersection of the SNPs from 

the two callers per patient. 

 



Validation of the single-cell RNAseq caller  Validation of the single-cell RNAseq caller 

61 
 

 Closer examination of the reasons why some SNVs were only called by Octopus 

revealed that 23% of them were removed during the Haplotypecaller’s Variant Quality Score 

Recalibration, which is a final filtering step that uses machine learning to eliminate probable 

artefacts. The remaining variants were either removed during the pre-processing steps such 

as marking duplicates and base quality score recalibration or during the main calling itself. 

 

1.9.3.2.2 Agreement of SNP calls from WES and bulk RNAseq  

 

 Having obtained a satisfactory intersection of the WES SNP calls from different 

callers, which would from this time forth form the eventual list of SNP calls from WES, we 

progressed to its intersection with SNPs called from bulk RNAseq.  

 Before comparing SNP calls from WES and RNAseq, we needed to consider shared 

coverage. We expected RNAseq reads to span regions outside of the transcriptome, and this 

was something we could correct for by restricting coverage to the SureSelect regions. 

However, this would not solve the problem of the unexpressed DNA regions, not captured 

in RNAseq. Furthermore, raw coverage alone was not sufficient to compare the calls in a fair 

way, as they were also highly impacted by the presence of the SNPs in each data type in the 

first place, and an adequate number of supporting reads. Indeed, we discovered that only 6% 

of SNPs called from WES and missed in bulk RNAseq calling were covered in the bulk 
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RNAseq (Figure 10). Similarly, only 9.7% of SNPs called from bulk RNAseq and missed 

in the WES calling were covered in WES. 

 

Figure 10. Presence of SNPs called from one data type but missed in the other. a. 

Presence of WES SNPs in bulk RNAseq. b. Presence of bulk RNAseq SNPs in WES.  

 

 Analysis of SNPs missed by either caller revealed that 43% of calls made from WES 

but missed in RNAseq were covered by less than 2 reads, and 50% by less than 3 reads in 

RNAseq (Figure 11a). Similarly, 56% of calls made from RNAseq but missed in WES were 

covered by less than 2 reads, and 73% by less than 3 reads in WES (Figure 11b). To focus 

on the effect of the callers, and not the difference in technology, we restricted to regions in 

which there was coverage of at least 3 reads in both RNAseq and WES. Furthermore, in order 

to ensure that variants had sufficient support, we restricted the comparison to variants 

covered by at least 3 reads (simultaneously matching our single-cell RNAseq calling 

requirements). 
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Figure 11. Number of reads supporting SNPs a. called from WES but missed in bulk 

RNAseq, b. called from bulk RNAseq but missed in WES.  

 

 The intersection of SNPs called from WES and bulk RNAseq after the initial 

coverage restriction (regions shared in both WES and RNAseq) contributed to 57.2% of all 

calls (Figure 12a). The value further increased to 80.9% when at least 3 reads supporting an 

SNP were required (Figure 12b).  

 

Figure 12. Comparison of SNPs called from WES and bulk RNAseq, restricted to 

regions only covered in both tissues (a.), with a further requirement for at least 3 

supporting reads (b.). 

 

 Coverage alone was enough to explain most differences in the SNP calls from WES 

and bulk RNAseq. While additional aspects such as allelic frequency and quality of regions 
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would most likely be strong contributors as well, the results we obtained so far were 

sufficient to conclude that in regions with adequate quality, SNP calling from WES and bulk 

RNAseq was in relative agreement. 

 

1.9.3.3 Investigation of somatic calls 

 

Calling the same somatic mutations from single-cells as those identified using 

common tools would provide a sufficient validation of our method. Identification of SNVs 

from RNAseq is not yet a well-established method and tools such as RNA-MuTect rely 

mainly on identification of macroscopic clones rather than all somatic mutations. Therefore, 

we decided to treat only variants identified from WES as our benchmark list. 

In the following section, we provide a comparison of calls from WES using Octopus 

and Mutect2.  

 

1.9.3.3.1 Overlap of somatic calls made by Mutect2 and Octopus 

 

In order to estimate the consensus of Mutect2 and Octopus in calling somatic variants 

from WES, we compared the number and the intersection of SNVs per patient (Figure 13.). 

The total number of SNV calls was similar between both callers, with slightly more calls 

being made by Octopus in general. However, this was not the case for patients BC03 and 

BC04, which not only featured a greater number of calls made by Mutect2 (Figure 13a), but 

also a poorer intersection of calls from both callers (Figure 13b). We investigate reasons for 

the differences between SNV calls made by Mutect2 and Octopus in the Supplement 

(Supplementary section 1.14). 
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Figure 13. SNV calling from WES with Mutect2 and Octopus. a. Comparison of the 

numbers of SNVs from the two callers per patient. b. Intersection of the SNVs from the 

two callers per patient. 

 

1.9.4 Conclusions 
 

In the previous section, we compared germline and somatic mutations identified from 

WES and bulk RNAseq samples. We concluded that in regions with sufficient quality, the 

(germline) calls from the two data types were concordant. The results made us confident 

about the reliability of the consensus of the callers in the context of validating our calls from 

single-cell RNAseq.  

 

1.10 Single-cell RNAseq variant calling 
 

The following section begins with an analysis of mutations identified by our single-cell 

RNAseq caller, and follows with a comprehensive validation of our method. 

 

1.10.1 Most SNPs called from WES and bulk RNAseq successfully identified in 

single-cells 
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We used our single-cell RNAseq caller to identify variants from the breast cancer 

single-cells (Figure 14). A large number of calls per cell was substantially reduced after 

removing germline variants previously identified from bulk RNAseq and WES. The size of 

the overlap was an indication that our method was successfully calling real mutations, and 

we considered that as the first indication that our tool is able to identify real genetic variants.  

 

 

Figure 14. Distribution of calls per breast cancer single-cell before SNP removal 

(showing separately all calls per cell [red] and calls in regions covered by at least 3 reads 

in WES [green]) and after SNP removal, in regions covered by at least 3 reads in WES 

[blue]. 

 

Analysis of SNPs identified from bulk RNAseq and WES but missed by our tool 

provided an opportunity to explore the limitations of our calling. On average, our caller 

identified 6.45 +- 3.62% of SNPs from the consensus WES and bulk RNAseq calling. While 

the number might appear low, it was due to coverage as 74.55 +- 10.79% of the benchmark 

SNPs were not detectable in the single-cells at all. Out of the approximately 25% that were 

present in the single-cell data but missed by the caller, only 0.64 +- 0.16% were considered 
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during the calling. The reason for that was that they had not passed the necessary quality 

criteria (coverage, allelic frequency) or were detected in the alignment from only one 

mapper. 

As coverage was the main factor limiting the potential of calling variants from single-

cell RNAseq, estimation of positions missed by our caller required restriction to only 

positions with sufficient quality. The intersection indicated that the single-cell RNAseq caller 

only missed 2% of SNPs identified from WES and bulk RNAseq (Figure 15). Those were 

not called due to lack of suitable neighbours during the application of the linkage method 

(none of the missed SNPs passed the main calling stage, despite passing the necessary quality 

criteria). 

 

Figure 15. Intersection of variants called from single-cell RNAseq and SNPs from                  

WES + bulk RNAseq. 
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1.10.2 Over a third of single-cell SNV calls shared between multiple cells 
 

 The statistics of single-cell RNAseq calls per patient after removal of SNPs are 

presented in Table 8. On average, the single-cell RNAseq caller identified 2,272 mutations 

per cell. 38% of the calls were shared between at least two single-cells. Because the calling 

was done independently for every single-cell, we treated variants identified in multiple cells 

as likely real SNPs or SNVs. The fact that over a third of our de-novo calls were shared 

between single-cells could be treated as a further validation of the caller.  

 

Table 8. Statistics of single-cell RNAseq calls per patient after removal of SNPs. 

Patient Number of 

cells 

Mean number of calls per 

cell 

Median STD 

BC01 26 2089 2543 1139 

BC02 56 1765 1833 778 

BC03 92 2678 2591 1270 

BC04 59 2636 2778 959 

BC05 77 2362 2326 684 

BC06 25 587 601 334 

BC07 104 3173 3221 1255 

BC08 23 1228 1295 527 

BC09 60 1267 1204 608 

 

The substantial number of calls shared between multiple cells made us wonder about 

the number of SNPs still remaining among the calls.  
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1.10.3 Calls shared between different cell types identified as unfiltered SNPs  
 

We used cell type labels from the original publication to group the single-cells into 

three groups: tumour, stromal and immune cells. We noticed that the absolute numbers of 

variants called per single-cell differed per cell type, with the tumour cells having the most 

calls (Figure 16).  Unfortunately, we could only investigate that in patients BC01-8, as the 

single-cell set from patient BC09 did not contain any tumour cells (or at least, no cells were 

identified as tumour). 

 

Figure 16. Swarm plots of calls per single-cell, separated by cell type and patient. 

 

In order to search for the yet unfiltered SNPs among our single-cell calls, we 

intersected calls from different cell types (Figure 17). Our assumption was that any variant 

shared between multiple cell types would be germline. We found that 67% of calls were 

unique to tumour cells, while 22% were unique to either of the other cell types. Therefore, 

the remaining 11%, shared by at least 2 cell types were the unfiltered SNPs still present 
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among our calls. The fraction of shared calls was greater for patients in which more cells 

from each type were present (for example, 18% for patient BC03 with a 15:18 split of tumour 

to immune cells versus 1.6% for patient BC05 with a 75:1 split of tumour to stromal cells).  

 

Figure 17. Intersection of calls from tumour, immune and stromal cells. 

 

The increased contribution of shared calls in patients with a greater number of non-

tumour single-cells indicated a high likelihood of the further rise in the fraction of shared 

calls if more non-tumour single-cells were present. In the case of patients like BC06, the 

final set of SNVs was substantially smaller than for BC02 with no non-tumour cells. 

Therefore, our ability to detect unfiltered SNPs was reliant on the presence of non-tumour 
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single-cells - the more single-cells of various types available, the better the ability to remove 

SNPs and the higher the accuracy of the final SNV set.  

 

1.10.4 Cancer Signature 3 identified in tumour, and not in stromal, cells 
 

COSMIC, the Catalogue Of Somatic Mutations In Cancer (Tate et al., 2019), is 

currently the most comprehensive resource for exploring the functional effects of somatic 

mutations in cancer. Mutation signatures, included in the catalogue, characterize different 

processes active throughout cancer development. Apart from the signatures, the catalogue 

also contains information about proposed aetiology, tissue distribution of each signature and 

potential connections with other signatures. 

Breast cancer has not only been well characterized in terms of gene mutations, but 

also in terms of mutation signatures. Figure 18 presents the most common signatures in 

breast cancer. Those include Signatures 1,2,3,5,8 and 13. Other signatures are also present 

(Nik-Zainal and Morganella, 2017), but less frequently (in less than 10% of samples).  
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Figure 18. The most common mutation signatures in breast cancer (Nik-Zainal and 

Morganella, 2017). 

 

 While the overlap of the listed signatures with those identified by us from the single-

cell data would be a reasonable further validation of our method, we were primarily focused 

on investigating differences between tumour and non-tumour cells. Identifying such 

signatures within the disease tissues and not in the healthy cells would prove that our caller 

had the ability to identify the crucial intracellular mechanisms correctly. 

In order to obtain the mutation signatures in the breast cancer dataset, we grouped all 

SNVs identified from single-cells per patient and cell type (keeping only cell type-specific 

mutations). We then calculated the frequency of each mutation type, as shown in Figure 19.  
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Figure 19. Sample mutation frequency plot of the SNVs identified from the breast 

cancer single-cells, grouped by patient (BC08) and cell type (a. tumour, b. immune, c. 

stromal). 

 

 There is a range of software available to identify mutation signatures from pre-

calculated mutation profiles. In our study, we used an R package deconstructSigs (Rosenthal 

et al., 2016) due to its popularity in recent years. It uses a multiple linear regression model 

to determine the linear combination of mutation signatures and accurately reconstructs the 

mutation profile of a sample. We calculated mutation profiles for each patient and cell type 

separately, as presented in Table 9. 
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Table 9. Mutation signatures reconstructed from the single-cell somatic calls (cell type-

specific). The signatures include Signature 1 (blue), Signature 3 (beige), Signature 5 

(yellow), Signature 9 (rose) and unknown (gray). 
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We identified 3 out of 6 most common breast cancer signatures (1,3 and 5). In 

addition to that, Signature 9 was detected. While less frequent, it had been identified in breast 

cancer samples before (Figure 20). The unknown signatures contributed to roughly 15% of 

the profiles. While Signatures 1 and 5 were detected in all cell types, Signature 9 was not 

discovered in stromal cells and Signature 3 was only found in tumour cells (with the 

exception of patient BC09 for whom no tumour cells were identified). The fact that no 

tumour cells were present in the data from patient BC09, and that the immune cells carried 

characteristics of tumour cells, made us aware of potential issues with the cell type 

assortment, and therefore potentially even greater differences between the cell types in 

reality.  

 

Figure 20. Frequency of Signature 9 in different cancer types. Source: COSMIC. 
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1.10.5 WES SNVs identified in all cell types 
 

The intersection of our calls from single-cells with the SNVs identified from WES 

would provide a solid validation of our method. The following section contains information 

about the concordance of WES SNVs and the tumour-specific calls detected from our single-

cells (all calls minus calls found in either stromal or immune cells), and an analysis of the 

calls that were either uniquely called from single-cells or missed with respect to WES. 

Analysis of the single-cell RNAseq pre-processing output revealed that over 80% of 

the SNVs called from WES but missed in single-cells did not pass the quality criteria, and 

were therefore not considered during the calling. Out of those, 96.9% were not detectable 

in single-cells at all, while 2.1% had insufficient read support and 1% had low allelic 

frequency or either mapping or base qualities below required thresholds. Therefore, only 

around 20% of WES calls could in fact be called from single-cells. 

Similarly, 82% of variants called from single-cells were not detected in WES at all. 

Among the detectable alleles, 74% did not pass the quality thresholds that we set for single-

cells. Therefore, less than 5% of SNVs identified solely from single-cells had reasonable 

read and coverage support in WES. We believe the actual values could be even lower as 

our quality thresholds might not be strict enough for bulk samples (caller-dependent). 

Furthermore, the 5% of callable variants still included variants with low base and mapping 

qualities, and potentially only had sufficient support until duplicate reads were removed. 

We would normally eliminate such positions as well but because such thresholds are caller-

specific, we decided to keep those positions at this stage.  

The number of WES SNVs and the fraction called in tumour single-cells, restricted 

to variants only present in both data types and passing the quality criteria, is presented in 
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Table 10. No WES SNVs of sufficient quality were found in tumour single-cells from 

patients BC06-BC09. In total, 11.5% of WES SNVs were detected in the tumour single-

cells. Interestingly, the percentage of detected WES SNVs would increase to 23.5% if all 

cell types were considered. There were a few potential reasons that we could think of that 

could explain this phenomenon. Firstly, the mislabeling of SNPs as SNVs. This is a scenario 

that we had seen before, which would explain the presence of variants in different cell types. 

Secondly, the wrong assignment of cells into cell types. Considering how similar immune 

and tumour cells were (what was not only evident in our mutation signatures but also 

repeatedly mentioned in the original publication), we did not exclude this possibility. While 

we were not able to prove any of those hypotheses directly (apart from proving that some 

variants were called as both germline and somatic and indicating a similarity between 

tumour and immune cells), we had the capability to investigate the reasons for removing 

the WES SNVs during the single-cell calling using our method. 

 

Table 10. WES SNVs called from tumour single-cells, restricted to variants present in 

both WES and single-cells, in regions covered by at least 3 reads and with at least 3 

supporting reads. 

Patient Number of 

WES SNVs 

% of WES SNVs called from 

tumour single-cells 

BC01 8 0 

BC02 7 0 

BC03 8 0 

BC04 6 50 

BC05 25 16 

BC06 0 0 

BC07 0 0 

BC08 0 0 

BC09 0 0 
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1.10.5.1 Lack of suitable pairings for the linkage method as the main reason for 

missing WES SNVs during single-cell variant calling 

 

The quality analysis of variants called uniquely in WES but missed by our caller (all 

cell types considered) revealed that as much as 54% did not pass the main calling due to 

lack of suitable pairings for the linkage method (Figure 21. Reasons for removal of WES SNVs 

during the calling of variants from single-cells). A further 7% of calls were removed during the 

final filtering, which included removal of RNA editing sites and variants from outside the 

transcriptome region. The intersection of outputs from two aligners (STAR and Hisat2) 

resulted in the elimination of the subsequent 13% of WES SNVs. The remaining 26% of 

variants were removed during the exclusion of SNPs called from bulk RNAseq and WES. 

This suggested that somatic variants called from WES must have been simultaneously 

called as SNPs by germline callers. This was not surprising, as we had already described 

such a case when analyzing differences between SNV calls made by Mutect2 and Octopus. 

Therefore, if it had not been for the 33 WES SNVs filtered out during the single-cell variant 

calling as a result of being called as SNPs from bulk RNAseq, our caller would have 

successfully identified 29.3% of WES calls from single-cells. 
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Figure 21. Reasons for removal of WES SNVs during the calling of variants from single-

cells 

 

1.10.5.2 Most single-cell SNVs removed from the callable WES positions during base 

recalibration 

 

Because less than 1% of the single-cell SNVs were called from WES, we wanted to 

investigate the reasons for missing the single-cell calls by the WES callers as well. As 

above, we restricted our analysis to single-cell variants that were supported by at least 3 

reads in WES. 

Due to the fact that the gold standard list of SNVs called from WES was an 

intersection of Mutect2 and Octopus, we suspected that the overlap with our calls would be 

greater if the calls from only one caller were considered as well. In order to confirm this, 

we intersected the single-cell variants filtered out during the SNV calling from WES with 

outputs of Mutect2 and Octopus. We found that only 16 were identified solely from Mutect2 

and 6 from Octopus. Those values were much lower than we had been expecting, therefore, 
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we continued to investigate the reasons for removing the single-cell calls by the WES 

callers.  

We chose Mutect2 as our benchmark because it is not only the most popular caller, 

but also it provides filter tags for the most likely, but eliminated, variant candidates. 

Furthermore, we selected it because it consists of a number of steps, which allow for 

tracking of variants after every checkpoint of the pipeline. The first steps of the pre-

processing pipeline were marking duplicates and base recalibration (BQSR), which relies 

on machine learning to correct over-optimistic base quality scores by fitting them to an 

expected distribution. Out of single-cell SNVs present but missed by Mutect2 in WES from 

patient BC05, only 54.3% passed base recalibration. The number of detectable SNVs 

decreased further by 72% after the second round of recalibration (Apply BQSR), therefore, 

only 16% of the SNV variants were available for Mutect2 to call for patient BC05. 

Considering all patients, less than 5% (none for patient BC05) passed the main Mutect2 

calling step. While we were not able to investigate why the variants were eliminated at this 

stage, we could explore the reasons for filtering out the variants using the filter tags that 

variants eliminated in the last filtering step were supplied with.  

We had been expecting that single-cell calls still contained SNPs, which was indeed 

confirmed by the “normal artifact” Mutect2 filter given to almost a third of the calls that 

passed Mutect2 (27.5%). The other filters included strand bias (22.5%), clustered events 

(20.0%), Panel of Normals (10%), haplotype (10%), weak evidence (7.5%) and base quality 

(2.5%). We found those filters to be reasonable, as they indicated aspects that we were not 

able to manage from the level of single-cells. For example, strand bias is a tag given to 

variants in which evidence for the alternative allele consists solely of reads from one strand. 
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While our caller does remove variants present on one strand only, the low count of reads in 

single-cells does not give us statistical power to confirm strand bias if the majority of the 

alleles are on one strand (or at least not for most positions, as the coverage is insufficient to 

apply any statistical tests). When it comes to the “clustered events” filter, it is applied when 

two mutation candidates are close to one another. Because single-cells cover only a small 

fraction of the genome, it is difficult to estimate the frequency of mutations accurately, and 

especially to determine whether any variants are statistically too close to be real. Panel of 

Normals is a list of common artefactual or germline sites. It is a part of the inner Mutect2 

pipeline, and takes a form of a set of positions regularly called when using pairs of 

(unrelated) tumour-free samples as if they were tumour-normal pairs. Positions that were 

marked as variants repeatedly in different pairs allow for the identification of common 

variant calling artefacts. However, construction of a Panel of Normals would be difficult in 

the case of our data, as it does not contain any tumour-normal pairs.  Finally, the remaining 

“haplotype”, “weak evidence” and “base quality” filters are strictly linked to the quality of 

the data, which is heavily compromised in single-cells.  

 

1.10.5.3 Conclusions 

 

The intersection of single-cell RNAseq calls and variants identified by bulk callers 

revealed that our caller had the capacity to identify nearly 30% of the WES SNVs. The 

main reason for missing the remaining WES SNVs was insufficient single-cell data quality. 

On the other hand, an excess of variants called from single-cells in comparison to WES was 

explained by additional information that could not be obtained from single-cells alone. In 
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conclusion, we showed that in regions of sufficient quality and coverage, our single-cell 

RNAseq caller was capable of calling mutations with reasonable accuracy.    

 

1.10.6 Majority of our calls shared with Red Panda  
 

We used Red Panda, currently the most advanced of the few single-cell-specific 

variant callers available, as a direct benchmark for comparison of our calls. Because we 

were particularly interested in the number of unique tumour calls per patient and the number 

of WES SNVs detected by each tool, we restricted our analysis to calls from tumour cells 

only, and removed all variants called in the other cell types from the same patient.  

The two methods have slightly different approaches – while our caller is tuned 

towards producing high-confidence calls, Red Panda heavily relies on the output of the 

GATK Haplotypecaller to validate its decisions. The creators of Red Panda show that the 

method is able to efficiently call “homozygous-looking” variants in comparison to other 

tools. However, they admit that the majority of calls are “heterozygous-looking” and 

because their fate is mainly determined by the Haplotypecaller, the number of false 

positives among the final set of calls is significant (Cornish et al., 2020). A large number 

of calls per cell output by Red Panda, most of which not shared between multiple cells, was 

something we observed when we intersected them with our calls (Figure 22). While 74.5% 

of our calls were shared with Red Panda, 89.3% of all called variants were unique to the 

latter.  
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Figure 22. Overlap of our and Red Panda calls, restricted to tumour-specific calls in 

tumour cells. 

 

A comparison of our and Red Panda calls to WES revealed that both tools correctly 

identified 28 SNVs, with Red Panda additionally calling 69 variants. There were no SNVs 

that our caller would call that would not be found among the Red Panda calls. Therefore, it 

was Red Panda that correctly identified more WES SNVs than our caller. However, when 

taking into account the number of calls produced (and potentially large numbers of false 

positives present especially among Red Panda calls), the actual concordance of calls with 
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WES was higher in the case of our caller (0.012% of calls shared with WES versus 0.005% 

of those output by Red Panda). We considered this as a reasonable result – firstly, we 

obtained a solid intersection of calls with those produced by Red Panda without using the 

aid of the other tools such as Haplotypecaller. Secondly, we achieved our goal of 

maximizing the number of real variants while limiting the amount of false positives, which 

still are a difficult problem even for the most advanced single-cell RNAseq callers such as 

Red Panda.  

 

1.10.7 Known breast cancer genes among single-cell calls 
 

To validate the results of our caller, we decided to move beyond the comparison to 

mutations discovered by other tools from the same dataset. Specifically, we were interested 

to see whether our method identified mutations in genes known to be commonly mutated 

in breast cancer. In order to do this, we annotated the variants called from single-cells with 

the Variant Effect Predictor tool (McLaren et al., 2016). We then searched for the common 

breast cancer genes from breastcancer.org.  

Interestingly, our caller did not identify any mutations in the BRCA1 and BRCA2 

genes, which account for most of the inherited cases of breast cancer. However, we did 

discover at least one point mutation in all other genes mentioned. Specifically, those 

included high risk gene mutations (PALB2, PTEN, TP53), moderate to high risk gene 

mutations (ATM, CDH1), moderate risk gene mutations (CHEK2, NBN, NF1, STK11) and 

even some mutations with an uncertain breast cancer risk (BRIP1, MLH1, MSH2, RAD51C 

and RAD51D).   
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1.10.8 Conclusions and Discussion 
 

In conclusion, we showed that the disagreement of bulk RNAseq and WES callers 

resulted mainly from the lack of or poor quality of variants in either tissue. The situation was 

similar when comparing the ground truth calls to those identified using our method from 

single-cells. However, additional limitations are evident when calling variants from single-

cells alone. For example, due to low coverage, estimation of strand bias or sufficient read 

support is highly problematic. Furthermore, in order to ensure real mutations are identified, 

our caller heavily relies on their proximity to other positions differing from the reference 

(other mutations or technical errors) during the linkage method. Therefore, even if a variant 

is of very good quality and occurs at high frequency, it will not be called unless the linkage 

method confirms that it had been introduced at the very beginning of the sample preparation. 

This was very evident when comparing our calls for Red Panda, which identified more WES 

SNVs, but also appeared to have produced substantial amounts of false positives at the same 

time. 

 Despite the numerous obstacles related to the identification of variants from single-

cells, our called still managed to identify nearly 30% of the gold standard calls from WES 

and provided reasons for not calling the remaining ones. In addition to that, our calls were 

highly concordant with the output of Red Panda, and a higher fraction of our, and not Red 

Panda’s, calls overlapped with WES. Furthermore, we found cancer mutation profiles in 

tumour and not in stromal cells, and provided evidence for mutations in known cancer driver 

genes. We believed that, despite the evident limitations of working with single-cells, our 

results were sufficient to validate our caller, therefore, we decided to progress to the 

application of the method to our Barrett’s dataset. 
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4. Application of the single-

cell RNAseq caller 

 

1.11 Introduction 
 

1.11.1 Recap 
 

In the previous chapters of the Thesis, we described the development of our single-cell 

RNAseq caller. The tool consists of three steps: pre-processing, the main calling stage, and 

final filtering. The pre-processing involves a removal of problematic reads, including multi-

mappers, reads with numerous mismatches, or PCR duplicates, and elimination of positions 

with insufficient quality, such as regions with poor coverage or not supported by an 

acceptable number of reads. This step removes most technical errors present in single-cell 

data, such as sequencing and mapping errors, and errors occurring as a result of PCR 

amplification (or the second round of amplification, if two rounds are performed). Once the 

quality of callable regions in ensured, the linkage method is applied. It is a step which 

reconstructs the hierarchy of positions different from the reference, based on their relative 

positions on the reads, to distinguish the real mutations from the remaining reverse 

transcriptase errors and those introduced during the first PCR amplification round. Once only 

the strongest candidates remain, final filtering is performed. It includes the removal of RNA 

editing sites and positions outside of the transcriptome region.  

We validated our method against a breast cancer dataset with matched exome-seq and 

scRNAseq data. We showed that not only our caller was able to identify mutations called 
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from WES, but it also identified mutations in known cancer driver genes and allowed for a 

successful reconstruction of the breast cancer mutation signatures. 

The following chapter describes the application of the single-cell RNAseq caller to the 

Barrett’s dataset. In the first section of the chapter, we introduce the Barrett’s oesophagus in 

detail and elaborate on the unknowns of the origins and the mechanisms of the disease. We 

then present the general results of the single-cell RNAseq variant calling. Finally, we show 

how we used the calls to address the outstanding questions about Barrett’s.  

 

1.11.2 Barrett’s Oesophagus 
 

Intestinal metaplasia is the ectopic growth of intestine-like tissue in the oesophagus 

or stomach and has been commonly linked to the development of oesophageal and gastric 

adenocarcinomas (Xian et al., 2019). Its occurrence is associated with the acid reflux disease 

that leaves the oesophagus in the state of chronic inflammation - oesophageal 

adenocarcinoma - (Souza, 2016) or H.pylori infections in the case of gastric adenocarcinoma 

(Wroblewski et al., 2010). 

Intestinal metaplasia at the distal oesophagus was initially observed and characterized 

in 1950, and termed Barrett’s oesophagus after the author (Barrett, 1950). Barrett’s 

oesophagus  is a common condition, found in approximately 10-15% of patents with 

gastroesophageal reflux disease (Ouatu–Lascar et al., 199)). It is not only a serious disease 

in itself, manifesting reflux symptoms a couple of times per week (Zagari et al., 2008), but 

also carrying a 30-fold increased risk of oesophageal adenocarcinoma (Haggitt, 1994). The 

5-year overall survival rate for this type of cancer is less than 20% (Pohl et al., 2010).  
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There is a strong motivation to improve current treatment or develop novel 

therapeutic strategies in order to improve the perspectives for oesophageal cancer patients. 

A preferred strategy aims to prevent the initial development of the adenocarcinoma in the 

first place, however, better understanding of its pathogenesis is still required. Barrett’s 

oesophagus is the only known precursor of the tumour, and once Barrett’s is established, 

increased stress from chronic exposure to acidic bile salt can lead to dysplasia and eventually 

to cancer (Rhee and Wang, 2018).  

There have been numerous studies aiming to define how exactly benign tissues 

progress to malignant tumours. Agrawal et al., 2012 performed the first genome-wide study 

of mutations in oesophageal cancer, which consisted of exome sequencing data from two 

matched Barrett’s oesophagus and oesophageal adenocarcinoma samples. They found that 

roughly 80% of the mutations identified in cancer samples had already been present in the 

neighbouring Barrett’s epithelial tissue.  

In order to characterize a gradual accumulation of mutations across different disease 

stages, Weaver et al., 2014 screened for the most recurrently mutated genes in Barrett’s in 

cohorts who had never had dysplasia and those with high-grade dysplasia. Interestingly, they 

found multiple mutations occurring in never-dysplastic individuals at considerable allelic 

frequencies (>10%). Furthermore, the most widespread mutations present in 

adenocarcinoma were also occurring at similar rates in both non-dysplastic and high-grade 

dysplasia Barrett’s samples, among which were mutations present in known cancer-

associated genes, ARID1A and SMARCA4. Their results were a good example of complex 

mutational processes that occur even in tissues with a low risk of malignant progress. On the 

other hand, the authors argued that considering the mutations in ARID1A and SMARCA4 
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were present in patients without any signs of dysplasia over multiple years of follow-up, they 

could not play a causal role in disease progression. Instead, they indicated TP53 and SMAD4 

mutations as more likely candidates, because they were specific to patients with high-grade 

dysplasia or oesophageal adenocarcinoma (Ross-Innes et al., 2015). A similar relationship 

was discovered by Paulson et al., 2022, whose multi-sample WGS revealed that the critical 

difference between individuals with Barrett’s who either do or do not progress to 

adenocarcinoma was clonal expansion of TP53 -/- cell populations and subsequent 

chromosomal structural events. Structural rearrangements and copy number changes are 

another aspect common for adenocarcinoma but rarely occurring in Barrett’s epithelium. 

This was something that Ross-Innes et al. found in their later study (Ross-Innes et al., 2015), 

aiming to decipher the clonal architecture of Barrett’s tissues over time. In addition, they 

found that while numerous point mutations and small indels would occur at all stages of 

disease progression, the specific SNVs were overlapping poorly between Barrett’s and 

adenocarcinoma. Instead, it was the mutational context of the point mutations that was most 

frequent throughout the disease, suggesting that chronic exposure to similar mutagens could 

be the reason for disease progression.  

Several endoscopic therapies exist that target Barrett’s oesophagus in order to prevent 

its progression to adenocarcinoma, but they are costly and usually require multiple 

interventions (Shaheen et al., 2009). Understanding mechanisms driving the development of 

a highly heterogenous disease such as Barrett’s has a potential to result in novel approaches 

that could be a reasonable supplement or, even, alternative to the endoscopic therapies. 

Furthermore, it would also give valuable insights into diverse biological processes such as 

wound healing, embryogenesis and cancer (Rhee and Wang, 2018).  
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The connection of Barrett’s with healthy tissues remains unknown, and identification 

of the cell of origin is currently under intense study. Numerous hypothesis include 

dissemination from bone marrow, reparative emergence of oesophageal submucosal glands, 

or migration of gastric cardiac epithelium (Xian et al., 2019).  

The bone marrow theory explained the origins of Barrett’s oesophagus by the 

colonization of the acid-damaged oesophagus by circulating bone marrow stem cells.  One 

evidence for that included the formation of Barrett’s metaplasia after the transplantation of 

bone marrow info a wild-type mouse, followed by surgical esophagojejunostomy 

(Hutchinson et al., 2011). Similar results were found by Sarosi et al., 2008, who gave female 

rats a lethal dose of irradiation, followed by tail vein injection of bone marrow cells from 

male rats. Their results suggested a contribution of multi-potential progenitor cells of bone 

marrow origin to oesophageal regeneration and metaplasia. However, it is argued that the 

potential of bone marrow stem cells to form epithelial populations has not been established. 

Furthermore, the incorporation of bone marrow stem cells proposed in this way does not 

explain the foundation of Barrett’s exclusively at the gastrointestinal junction (Xian et al., 

2019).   

Because Barrett’s is known to be linked to gastroesophageal reflux, the migration of 

gastric cardiac epithelium to repair the reflux-mediated damage in the neighbouring 

oesophageal epithelium has been suspected to lead to the disease. It has previously been 

confirmed that the upward expansion of gastric cardiac epithelium was possible in the 

presence of Barrett’s oesophagus (Bremner et al., 1970). Nowicki-Osuch et al., 2021 

identified undifferentiated gastric cells which would eventually transform into Barrett’s by 

certain transcriptional programs. Despite strong similarities between the undifferentiated 
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gastric cardia cells and Barrett’s, causality has not been proven explicitly (Geboes and 

Hoorens, 2021). However, the results provide a strong support for the previous evidence of 

shared characteristics of Barrett’s and gastric cardiac epithelium, such as the proposed 

gastric-origin goblet cell migrating up from the stomach to the oesophagus (Jin and Mills, 

2018). 

Oesophageal submucosal glands and ducts have also been proposed as potential 

sources of Barrett’s progenitor cells (Lörinc and Öberg, 2012, Van Nieuwenhove and 

Willems, 1998, von Furstenberg et al., 2017, Leedham et al., 2008, Coad et al., 2005, Lörinc 

et al., 2015, Owen et al., 2018) . Other evidence suggests that Barrett’s might originate 

directly from the native oesophageal squamous epithelium (Hu et al., 2007, Quante et al., 

2012). Despite the fact that Barrett’s always originates in the oesophagus, similar 

concentrations of oesophageal submucosal glands are found in proximal and distal regions 

(van Nieuwenhove et al., 2001). Furthermore, oesophageal submucosal glands express p63 

(Glickman et al., 2001), which is absent in the stem cells of Barrett’s oesophagus (Yamamoto 

et al., 2016). On the other hand, single-cell RNAseq performed by Owen et al., 2018 revealed 

a profound transcriptional overlap of Barrett’s cell populations marked by LEFTY1 and 

OLFM4 with oesophageal submucosal glands, but not with gastric or duodenal cells. In 

addition to that, they found SPINK4 and ITLN1 cells that preceded morphologically 

identifiable goblet cells in colon and Barrett’s, potentially facilitating the detection of 

metaplasia.  

The best way to determine the cell of origin of Barrett's would be to trace the lineage 

from precursor cell to Barrett's using a genetic marker that is not under positive selection, 

such as passenger mutations or mutational signatures.  
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1.11.3 Goals  
 

In the following chapter, we present the application of our caller to the Barrett’s 

dataset, in which connections of Barrett’s to oesophageal submucosal glands have previously 

been described. Our goal is to combine earlier transcriptomic with novel genomic 

information, to provide a new insight into the origins of Barrett’s. Specifically, we are hoping 

to find new evidence for either Oesophagus or Stomach as the source of Barrett’s precursor.  

 

 

1.12 Single-cell RNAseq variant calling 
 

1.12.1 General results 
 

1.12.1.1 Only a third of single-cell calls detectable in bulk RNAseq 

 

 Before progressing to the analysis of single-cell SNVs, we wanted to explore the 

uniqueness of our calls. Specifically, we wanted to investigate the number of single-cell 

SNVs that could be identified from the bulk RNAseq. We found that only around 30% of 

our variants passed the QC criteria in bulk RNAseq, which were coverage of at least 3 and 

at least 3 supporting reads (Figure 23). While some variants were supported by 1 or 2 reads 

in bulk RNAseq, most were not detectable at all. 
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Figure 23. Fraction of single-cell RNAseq calls not passing QC criteria in bulk RNAseq 

(“Post QC”) or not detectable in bulk RNAseq at all (“Poor quality included”).  

  

 We wondered whether the detectability of variants in bulk RNAseq, linked to allelic 

frequency of variants in a population of cells, could already be estimated at the level of our 

single-cells. Indeed, we noticed that variants not detectable in bulk were, on average, found 

in less than 10 cells for patient GEN02021, less than 4 for GEN02023 and less than 3 for 

GEN02024 and GEN02025 (Figure 24a). Mann-Whitney U test statistics confirmed that 

there were significant differences between the means of the detectable and non-detectable 

groups (Figure 24b). 
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Figure 24. a. Comparison of single-cell variants detectable or not in bulk RNAseq. b. 

Mann-Whitney U test results confirming the differences between the means are 

significant. 

 

1.12.1.2 Per-cell mutation frequency tissue rankings not consistent between patients 

 

In order to get an overview of the output for different patients and tissues, we 

calculated the number of calls per cell and grouped them accordingly (Figure 25). We found 

that the majority of cells had less than 50 calls, while, on the other hand, up to 800 calls were 

made from cells with the most calls. The patient with the highest average number of calls per 

cell was GEN02021 (250.6 +- 233.5 versus 34.7 +- 60.0 for patient GEN02023, 40.8 +- 59.6 
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for GEN02024 and 184.9 +- 148.2 for GEN02025), while the tissue with the most calls was 

Barrett’s (210.4 +- 221.6 versus 182.0 +- 212.7 for Oesophagus, 80.9 +- 130.4 for Gastric 

and 139.0 +- 149.3 for Duodenum). 

 

 

Figure 25. Distributions of the numbers of SNVs called from single-cells, grouped by 

patient and tissue. 

 

Because coverage and the number of reads per single-cell were diverse, the absolute 

numbers of calls per cell were not a reliable way of comparing the patients and tissues. In 

order to correct for that, we calculated mutation frequencies by dividing the numbers of calls 

by the numbers of positions in which calls could be made (in other words, in regions covered 
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by at least 3 reads). It was still patient GEN02021 who had the highest frequency of calls 

(2.3e-06 +- 3.1e-06 versus 8.7e-07 +- 1.4e-06 for patient GEN02023, 6.7e-07 +- 1.2e-06 for 

GEN02024 and 1.9e-06 +- 2.6e-06 for GEN02025). However, Oesophagus, and not 

Barrett’s, had the highest mutation rate this time (2.1e-06 +- 3.0e-06 versus 2.0e-06 +- 2.8e-

06 for Barrett’s, 1.2e-06 +- 2.0e-06 for Gastric and 1.5e-06 +- 2.4e-06 for Duodenum). 

The next step involved the investigation and subsequent removal of SNPs called from 

bulk RNAseq. Because SNPs had a significant contribution to the single-cell calls, we 

expected the average numbers of calls per cell to be much lower once germline variants were 

eliminated. We found that our method identified only up to 3% of bulk RNAseq SNPs that 

were present at sufficient quality in at least one single-cell. However, less than 0.1% of those 

SNPs had suitable neighbours for the linkage method, and therefore, could not in fact be 

called. Because our variant calling approach was biased towards the quality and not the 

number of the variants called, we treated a high percentage of SNPs among our calls, rather 

the fraction of bulk SNPs identified from the single-cells, as a fair validation of our approach. 

Therefore, we were content to see that the removal of SNPs from our calls resulted in a 98.7% 

decrease in the number of calls from Barrett’s, 99.4% for Oesophagus, 98.5% for Gastric and 

99.5% for Duodenum, as it proved the high accuracy of our approach . The average number 

of calls per Barrett’s cell after SNP removal was now 5.4 +- 4.5, 3.3 +- 2.2 for Oesophagus, 

4.0 +- 3.2 for Gastric and 2.2 +- 1.6 for Duodenum (single-cells with 0 calls were not taken 

into account).  

We also recalculated the mutation frequencies per cell (Figure 26). We found that 

the removal of SNPs resulted in Barrett’s cells having the highest mutation rate (4.9e-08 +- 

8.0e-08), followed by Gastric (4.5e-08 +- 1.4e-07), Oesophagus (3.2e-08 +- 7.2e-08) and 
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Duodenum (1.4e-08 +- 3.1e-08). Interestingly, this ranking was patient-dependent. While 

Barrett’s had the highest mutation rate in most patients, this was not the case for GEN02025. 

Similarly, while the mutation rate in the Gastric cells was high in comparison to the other 

tissues in patients GEN02024 and GEN02025, Oesophagus had a higher rate in patient 

GEN02021 and Duodenum in GEN02023. 

 

Figure 26. Frequencies of calls identified from single-cells post SNP removal, grouped 

by patient and tissue. 

 

As already mentioned, the SNPs we removed from the single-cell calls were 

originally called from bulk RNAseq. However, it was possible that some might have been 

missed by the caller. In order to maximize the number of SNPs removed from our calls, we 

decided to eliminate all single-cell calls that had evidence in the bulk. Specifically, we 

removed all alleles that were present in at least two bulk RNAseq tissues. The number of 

such positions was not as considerable as we had been expecting, however (1 for GEN02021, 

none for GEN02023, 5 for GEN02024 and 9 for GEN02025).  
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1.12.1.3 Mutation counts or frequencies might not be a reliable comparison method 

for single-cell data 

 

 We wondered whether using the single-cell information to compare samples at tissue-

level would result in different rates of mutation accumulation per tissue. Specifically, our 

goal was to compare the tissues in terms of the numbers of their unique mutations by 

combining single-cell calls from the respective tissue. We anticipated the mutations to be 

more abundant in clonal and highly heterogeneous tissues of Barrett’s. Furthermore, we 

expected that more non-SNP mutations would be shared between Barrett’s cells than cells 

from Oesophagus, Stomach or Duodenum.  

 The numbers of calls per tissue are presented in Table 11. As previously, Barrett’s 

had the most calls for patients GEN02021 and GEN02023, while Gastric for GEN0204 and 

GEN02025. 

 

Table 11. Numbers of calls per tissue and patient, constructed from single-cell data 

 Barrett’s Oesophagus Gastric Duodenum 

GEN02021 889 289 276 34 

GEN02023 98 41 4 24 

GEN02024 69 0 225 35 

GEN02025 30 18 276 123 

 

 However, we expected those results to be biased due to the fact that some of the calls 

could have been made in multiple tissues. We found that no mutations were shared by more 

than 2 tissues, which was expected as those positions were removed from the single-cell calls 

as potential SNPs. Just under 200 mutations in total were shared between two tissues (always 
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one of those tissues was Barrett’s), and had to be removed for an accurate tissue-specific 

comparison. 

 Just as mutation frequencies were used to compare single-cell cohorts, we wanted to 

ensure the fairness of the per-tissue comparison. In other words, we believed reliable 

assumptions about the tissue-specific mutations could only be made provided the regions 

were covered in other tissues. Because single-cells cover a very narrow range of the human 

transcriptome, we were not sure whether identification of regions covered in all tissues was 

feasible. However, analysis of the number of healthy tissues in which sufficient coverage 

existed revealed that this was possible (Figure 27).  

 

 

Figure 27. Coverage of each single-cell mutation in other tissues. The plots include 

regions covered without the actual variants present. Bars with “0” represent coverage 

solely in the Barrett’s tissue.    
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 The final counts of mutations per tissue, present only in the tissue of interest but 

covered in all other tissues, are presented in Table 12. Interestingly, the ranking of the tissues 

in terms of mutation abundance did not change. It was still Barrett’s with the highest number 

of calls for patients GEN02021 and GEN02023, while more unique calls were identified for 

Gastric in patients GEN02024 and Duodenum in GEN02025. We investigated the metadata 

hoping to discover information about the varying disease characteristics that those patients 

experienced, but the only difference between those two patient groups was sex.  We 

concluded this was not a likely influencer of the results, however, as the coverage of 

chromosome X was similar across all patients (2.4% of all shared regions in GEN02021, 

3.4% in GEN02023, 3.0% in GEN02024 and 2.8% in GEN02025). Furthermore, the ranking 

of tissues according to the fraction of variants in chromosome X also did not correlate with 

the results in Table 12 (highest in Duodenum in GEN02021, Barrett’s in GEN02023, no 

calls in chromosome X in GEN02024 and Gastric in GEN02025).  

 

Table 12. Tissue-specific mutations, restricted to shared regions. 

 Barrett’s Oesophagus Gastric Duodenum 

GEN02021 251 79 12 77 

GEN02023 20 1 1 1 

GEN02024 2 0 4 7 

GEN02025 8 6 40 68 

 

 We had two potential explanations for the differences between patients GEN02021 

& GEN2023 and GEN02024 & GEN02025. The first one assumed the results were an 

accurate representation of the biological phenomena and could indicate different 
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mechanisms occurring during Barrett’s progression. Specifically, as had been described in 

the introduction, they might provide evidence that point mutations are not the only cause of 

the disease. On the other hand, while raw mutation counts or mutation frequencies are often 

used to estimate mutational burden within tissues, we believe they should be treated with 

reservations when working with single-cells. The reason for that is that the transcriptome of 

single-cells covers a very narrow range of the genome, and might not be a truthful 

approximation of the general mutational landscape. Furthermore, our linkage method heavily 

relies on the neighbouring positions differing from the reference in order to collect evidence 

for a call. Therefore, even if a true mutation is present at a high allelic frequency, it might 

not be called (unless it had been identified in a different single-cell, then the recalling step 

would result in calling it as well).   

 In order to investigate whether the mutation rates were influenced by the way we 

performed the calling, we recalculated the rates using only “high confidence” variants. 

Previously defined as positions present in regions with coverage > 50 and allelic frequency 

>= 0.4. We defined the new mutation rates as the number of “high confidence” variants 

divided by the total number of positions with coverage of over 50 reads, measured per cell 

and grouped by patient and tissue type. While the differences between the mutation rates in 

each tissue from the same patient were not striking, we observed the same patterns as before, 

namely the highest values for Barrett’s in patients GEN02021 and GEN02023, for 

Duodenum in GEN02024 and Gastric for GEN02025 (Figure 28). The results supported the 

hypothesis of biological differences between the patients, rather than the limitations of our 

calling in the context of mutation rate reconstruction. 
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Figure 28. Mutation rates calculated from the “high confidence” variants in regions 

with coverage of >50 reads, grouped by patient and tissue. 

 

 Satisfied with the results so far, we were curious to investigate whether the single-

cell calls could reveal any information about Barrett’s. Therefore, we decided to progress to 

more specific questions about the disease. Our approach was to begin with the search for 

evidence that would support or deny what is currently known. Once such was found, we were 

hoping to take advantage of the single-cell data to explore it further. 

 

1.12.2 Barrett’s-specific analysis 
 

1.12.2.1 No signs of Signature S17 in Barrett’s samples 

 

Two predominant mutation signatures have been consistently characterized in 

Barrett’s and oesophageal adenocarcinoma (Galipeau et al., 2018). Those include COSMIC 

Signatures S1 and S17. Signature S1 is associated with aging and cancer progression, and is 

linked to spontaneous deamination of 5-methylcytosine accumulating over cell divisions at 
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regular intervals. Signature S17, on the other hand, is characterized primarily by T > G and 

T > C substitutions in CTT contexts. It has not only been linked to both oesophageal and 

gastric cancers, but also identified in surrounding Barrett’s tissues. A reconstruction of those 

signatures from the single-cell calls, especially the unique Signature S17, would be a 

straightforward way to firstly confirm the genetic grounds of Barrett’s in our dataset and, 

secondly, to prove the ability of our caller to accurately recreate mutational landscapes.  

We used calls from Table 11 to calculate mutation profiles for each tissue and patient 

(Barrett’s mutation profiles in Figure 29, the remaining tissues can be found in Supplement 

1.15).   
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Figure 29. Barrett’s mutation profiles reconstructed from single-cell calls. 

 

We did not see any substantial differences between Barrett’s and the remaining 

healthy tissues, neither did we identify any signs of Signature S17. The lack of Signature S17 
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was further confirmed by the output of the desconstructSigs software (Figure 30) which, 

however, did identify Signature 1 in all patients. A wide range of other signatures has also 

been identified. While they have not been linked to Barrett’s, we did not consider this as a 

failure of our method as it is common to see a combination of various signatures across 

samples, based on how the signatures are calculated. 

 

 

Figure 30. Barrett’s mutation signatures reconstructed from single-cell calls. 

 

 

 We wondered whether the Barrett’s specific signatures would be identified if only 

mutations unique to Barrett’s were considered. In order to check that, we removed all calls 

discovered in matching healthy tissues from the Barrett’s set and recalculated the signatures. 
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However, still no evidence of Signature S17 was found (Figure 31). Moreover, the removal 

of calls shared with healthy tissues resulted in the disappearance of Signature S1 in patient 

GEN02024.  

 

Figure 31. Barrett’s mutation signatures reconstructed from Barrett’s-specific single-

cell calls. 

 

Because we did not have any paired DNA samples to compare our results to the actual 

mutation profiles of the somatic variants in our data, we were not able to determine whether 

there was a genuine lack of Barrett’s signatures in our data or a bias introduced as a result of 

the way we performed the calling. Therefore, we decided to progress to more specific aspects 

of our calls – namely, the individual SNVs.    
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1.12.2.2 SMARCA4 mutation identified in a Barrett’s single-cell  

 

As aforementioned in the Introduction, there have been numerous genes linked to 

Barrett’s and oesophageal adenocarcinoma. We were particularly interested in four genes: 

TP53, SMAD4, ARID1A and SMARCA4 (Ross-Innes et al., 2015), and wondered whether 

we could identify them among our single-cell calls.  

In order to do this, we annotated the Barrett’s-specific variants with the Variant Effect 

Predictor (VEP) tool. We did not identify any signs of TP53, SMAD4 or ARID1A in our 

calls. However, there was a hit for SMARCA4 in a Barrett’s single-cell for patient 

GEN02021 (chr19:10986212:T>C, CTC context). Searching for this variant in the remaining 

single-cells from the same patient resulted in the identification of a second Barrett’s single-

cell. The mutation had not been called because it did not pass the required quality criteria 

(only 1 supporting read in a region covered by 2 reads).  

Because no single-cells from other tissues contained the SMARCA4 variant, and 

often did not even cover the region, we were not able to investigate any connections with 

Barrett’s. However, we wondered whether this would be possible at the level of the bulk 

tissues. Interestingly, we found evidence for this mutation in 7 bulk RNAseq samples (2 for 

patient GEN02021, 2 for GEN02024 and 3 for GEN02025). The bulk samples from patient 

GEN02021 belonged to Barrett’s and Oesophagus, and the variant appeared at allelic 

frequencies of 0.08 (1 supporting read, coverage of 13) and 0.03 (1 supporting read, coverage 

of 29), respectively. The tissues from patient GEN02024, in which the SMARCA4 variant 

was identified, were Oesophagus (AF=0.05, 1 supporting read, coverage = 19) and 

Duodenum (AF=0.2, 1 supporting read, coverage = 5). There was also a mutation at the same 

position in the Barrett’s bulk RNAseq from this patient but it was a T>A. Finally, two 
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samples from patient GEN02025 were from Oesophagus (AF=0.04, 1 supporting read, 

coverage = 26 and AF=0.03, 1 supporting read, coverage = 29) and one from Duodenum 

(AF=0.17, 1 supporting read, coverage = 6). 

The fact that the SMARCA4 variant was identified in Barrett’s and Oesophagus in 

patient GEN02021 and in none of the Gastric bulk tissues from any patients was definitely 

interesting, as might indicate Oesophagus as a potential origin of Barrett’s. However, there 

was no support for that in the single-cell data, as no single-cell from Oesophagus with this 

variant was found. Furthermore, we did not discover any evidence for this variant in single-

cells from other tissues and patients. We appreciate that we might not have been lucky 

enough to have such cells in our dataset, but on the other hand, we could not exclude the 

possibility of the variant found in the Oesophagus to be a technical error. However, the fact 

that we identified it in different samples made us suspect that it actually was real.  

We were particularly surprised to have discovered it in the bulk samples from the 

Duodenum, because we had treated it mainly as our healthy control, rather than consider it 

an actual location of Barrett’s progenitor cells. However, Ross-Innes et.al. stated that 

SMARCA4 was identified even in tissues with a low risk of malignant progress and was 

therefore unlikely to play a causal role in disease progression. We concluded that this could 

explain our results if, again, the variant found in the Duodenum was an actual mutation.  

The four genes considered were not an extensive list of Barrett’s associated 

mutations, and we considered other genes such as NOTCH1, NOTCH3, FAT1 or PIK3CA 

(Martincorena et al., 2018). However, the poor overlap of their regions with our single-cells 

encouraged us to return to the level of individual SNVs. If there were recurrent point 

mutations within cancer-related genes, we would still identify them. More importantly, this 
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bottom-up approach would give us an opportunity to identify novel genes that we might miss 

if we only focused on the genes already known.  

 

1.12.2.3 No evidence for the Barrett’s origin in the Oesophagus 

 

Single-cell RNAseq performed by Owen et al., 2018 revealed a profound 

transcriptional overlap of Barrett’s cell populations with oesophageal submucosal glands, 

but not with gastric or duodenal cells. Because we used the same dataset, we were curious to 

investigate whether our genomic results would support the transcriptomic discoveries. 

Combining transcriptomic and genomic aspects of single-cell RNAseq would be an original 

approach to investigating not only Barrett’s, but somatic mutagenesis in clonal diseases in 

general. If our results did agree with Owen et al., they would provide a solid evidence for the 

hypothetical origin of Barrett’s from the Oesophagus (more specifically, oesophageal 

submucosal glands). 

Owen et al. performed two types of clustering, which we decided to take advantage 

of in order to compare our results directly. The first type of cell segregation involved the 

relation to known cell types based on the cellular expression of genes characterized in the 

past. There were 7 types that the single-cells were assigned to: squamous, non-epithelial, 

mucus neck, goblet-type, enteroendocrine, enterocyte and Barrett’s-type (Figure 32). Most 

cells from Barrett’s oesophagus were labelled as Barrett’s type, while non-epithelial, goblet-

type and enteroendocrine were found as well. The Barrett’s type cells were also found in the 

Gastric and Oesophageal tissues, but not in Duodenum (hence using it mainly as a healthy 

control). Apart from their connection with Barrett’s, goblet-type cells were only found in the 

Oesophagus. The second type of clustering was based on gene expression, and resulted in 
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the grouping of single-cells into 11 novel clusters (4 each for Barrett’s, Oesophagus and 

Duodenum and 3 for Gastric). We were focused primarily on Oesophageal clusters O3 and 

O4, as the detection of TFF3 expression in both of them indicated their relationship with the 

oesophageal submucosal glands. 

 

 

Figure 32. Separation of single-cells into cell types and their relationships with the 

corresponding tissues of origin. Source: Owen et al., 2018 

 

The clustering performed by Owen et al. indicated a similarity of Barrett’s tissue to 

all other tissue types (Figure 33a). The cell-type clustering revealed even more complex 

relationships of Barrett’s-type cells to most cell types, namely enterocyte, enteroendocrine, 

goblet-type, mucus neck and non-epithelial cell types (Figure 33b). Interestingly, the 

oesophageal squamous cells were the only cluster not visibly close to Barrett’s. They 

corresponded to clusters O1 and O2, what indicated that the oesophageal cell types similar 

to Barrett’s were the aforementioned clusters O3 and O4 (oesophageal submucosal glands).   
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Figure 33. Clustering of single-cells by a. tissue type and b. cell type. Source: Owen et 

al., 2018 

 

Because we did not use the Brain control tissue in our analysis, we wanted to ensure 

the cluster relationships were maintained without it. The t-SNE clustering we executed 

confirmed that (Figure 34). Just like in the original clustering, Barrett’s-type cells were 

closely linked to enteroendocrine and goblet cells, while squamous remained distant. Similar 

relationships with the remaining cell types were also unaltered.  
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Figure 34. t-SNE clustering of the single-cells analyzed in this study. 

 

We began our analysis with the consideration of calls per cell in each cell type. We 

expected to see higher values for cell types most closely related to Barrett’s, which would 

indicate higher rates of mutagenesis in disease or precursor tissues. On average, there were 

4.03 +- 3.40 calls per cell for non-epithelial cells, 4.72 +- 3.68 for Barrett’s-type, 2.08 +- 

2.05 for enterocytes, 3.63 +- 2.58 for mucus neck, 5.81 +- 5.03 for goblet, 2.01 +- 1.16 for 

squamous and 8.55 +- 8.61 for enteroendocrine (the exact numbers of mutations per cell type 

and tissue can be found in Supplement 1,16). Therefore, just as we expected based on the 

transcriptomic clustering, it was the Barrett’s-type, goblet and enteroendocrine cells that had 

the most calls. The distribution of calls per cell, grouped per cell type, also revealed similar 
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patterns, with some cells from the three types having substantially more calls than others 

(Figure 35).  

 

Figure 35. Distributions of the number of calls per cell, grouped by cell type. 

 

Because the number of calls could be the correlated with the cell size, we wanted to 

confirm this was not the case. We divided the number of calls by the size of the callable 

region to obtain mutation rates for each cell type and tissue (Table 11). Interestingly, it was 

the non-epithelial and enteroendocrine cells that had the highest mutation rates (with 

enteroendocrine cells in Barrett’s, Oesophagus and Gastric having substantially more 

mutations than in the Duodenum), and not Barrett’s type as we had been expecting. Even 
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goblet cells, which we however had found to be close to Barrett’s-type cells in the clustering, 

had higher mutation rates than Barrett’s-type. On the other hand, mutation rates were lower 

for mucus neck and squamous cell types. This is something we had been predicting because, 

based on previous results, we considered them as less likely Barrett’s progenitors. We kept 

in mind that a bias introduced due to limitations of our calling method was possible. 

However, we still believed that they were a valuable addition to the evidence we were 

gathering, as we believed this was the fairest way of comparing mutation load in different 

cell types. 

Table 13. Mutation rates in different cell types and tissues. 

Cell type Barrett’s Oesophagus Gastric Duodenum 

Non-epithelial 1.85 1.33 2.41 1.84 

Barrett’s-type 1.21 0.99 1.46 0.00 

Enterocytes 0.00 0.00 0.00 0.55 

Mucus neck 0.87 0.35 1.08 0.00 

Goblet 1.67 1.50 0.00 0.55 

Squamous 0.00 0.49 0.00 0.00 

Enteroendocrine 2.22 1.49 2.19 0.57 

 

While comparing mutation rates was the first step to identifying potentially 

accelerated mutagenesis in certain tissues and cell types, only direct evidence of connections 

between them would prove their similarity. We found that three cell types had mutations 

identified in at least two different tissues: Barrett’s-type (28 mutations), goblet (17 

mutations) and enteroendocrine cells (10 mutations). Most connections were found between 

Barrett’s & Oesophagus, followed by Barrett’s & Gastric, Barrett’s & Duodenum and 

Oesophagus & Duodenum (Table 14). 
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Table 14. Mutations identified across different tissues in cells of the same type. 

Cell type Barrett’s-

Oesophagus 

Barrett’s-

Duodenum 

Barrett’s-

Gastric 

Oesophagus-

Duodenum 

Barrett’s-type 26 0 2 0 

Goblet 14 4 0 1 

Enteroendocrine 9 2 8 0 

 

The fact that mutations shared between Barrett’s & Duodenum and Oesophagus & 

Duodenum were found made us suspect that SNP variants were still present among our calls. 

In order to prevent that, we removed variants that were covered only in the cells they were 

seen in. In other words, if no other cell of the same type with sufficient coverage and a 

different allele was found in the same tissue, we could not be sure if the suspected mutation 

was not just present across all cells. This procedure eliminated the majority of calls in 

different cell and tissue types. Interestingly, the Oesophagus & Duodenum connection was 

still present, and the only link that disappeared was Barrett’s & Gastric for Barrett’s-type 

cells (Table 15).  

 

Table 15. Mutations identified across different tissues in cells of the same type after 

additional SNP removal. 

Cell type Barrett’s-

Oesophagus 

Barrett’s-

Duodenum 

Barrett’s-

Gastric 

Oesophagus-

Duodenum 

Barrett’s-type 9 0 0 0 

Goblet 8 3 0 1 

Enteroendocrine 1 1 6 0 

 

We were wondering about the distribution of those mutations in different cells. Were 

they always the same cells? Were they of the same type? If we managed to identify a specific 
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set of cells that shared multiple mutations with Barrett’s, if would be a good indication of 

their close connection to the disease. 

Because most mutations from Table 15 were identified in patient GEN02021 who 

had the most samples, we decided to restrict our analysis solely to this individual. We found 

multiple cells in which at least two mutations were identified. Analysis of their connections 

to other cells revealed a complex mutation landscape within and across various tissues. What 

we had been expecting was a set of different Barrett’s cell clusters with unique connections 

to either Gastric or Oesophagus. Instead, we not only found just a single Gastric cell that had 

multiple mutations shared with Barrett’s, but we also witnessed that most cells had various 

connections with multiple cells of different types. Furthermore, we also did not see a clear 

separation of Barrett’s cells sharing mutations with either Oesophagus or Gastric – in fact, 

some Barrett’s cells (such as GEN02021_Barret_Manual_P4_B10) shared unique mutations 

with both tissues.   

We wondered whether changing perspective to mutation-level would allow us to 

identify trends in which the mutations spread across the tissues. Assuming that Barrett’s 

originates from a single-cell, identifying mutations present in one type of a cell from a 

healthy tissue and, simultaneously, in multiple types of Barrett’s cells could be an indication 

of a Barrett’s progenitor. In order to investigate that, we considered each of the mutations 

shared between two tissues separately and checked which cells they were present in (Figure 

36). We included all cells from patient GEN02021 in the analysis, even if they only contained 

a single mutation from Table 15, and marked all cells that belonged to clusters O3 and O4. 

Interestingly, we found that all oesophageal cells that shared mutations with Barrett’s had 

originated from oesophageal submucosal glands. Furthermore, there were only two 
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enteroendocrine Gastric cells which shared mutations with Barrett’s. The range of 

connections was broad. While there were mutations present in only cells of the same type 

(chr11:1024914:G, two Barrett’s-type cells from Barrett’s tissue and OSGs), there were also 

others identified in all cell types (chr3:42177960:C). In addition to that, we identified a few 

mutations present in one type of a cell from a healthy tissue and in multiple types of Barrett’s 

cells (among others, chr2, chr4 and chr6). 
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Figure 36. Presence of mutations spanning multiple tissues in different cell types.                             

Frames: red = Barrett’s-type, blue = goblet, brown = enteroendocrine. 
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The fact that majority of Barrett’s mutations were shared with single-cells from OSGs 

could be treated as support of the hypothesis proposed by Owen et al. However, despite the 

fact that only two Gastric cells were considered, their connection with Barrett’s could not be 

ignored. At this point, we still had not considered coverage of the mutations in different 

tissue types. As described previously, because we were dealing with RNAseq data, we could 

not exclude the possibility of the mutations to be absent due to lack of sufficient read support, 

rather than them not being there in the first place. In order to correct for that, we decided to 

re-examine every mutation and eliminate it if it was not covered in other healthy tissues. We 

were not sure whether we should consider different cell types as well. In other words, if a 

Gastric mutation was present in a Gastric enteroendocrine cell, would it be sufficient if it 

was only covered in a goblet cell in the Oesophagus? We decided that coverage in single-

cells of different type was preferable as a more reliable control measure. Therefore, a 

mutation was eliminated unless the region was covered in multiple single-cells of different 

types in another healthy tissue. If it was covered in only one single-cell, it had to be of a 

different type than the Barrett’s and the healthy tissue it was called in. Apart from coverage, 

the mutation was only considered further if no reads with the allele were found in the other 

tissues.  

We found that only 12 out of 21 mutations (57%) were covered in at least one single-

cell from Oesophagus or Gastric tissues (variant-dependent). 67% of them were in a cell of 

a different type, as required. Finally, only 5 mutations (24%) passed all the initial criteria, as 

they were not found in a single read in any single-cell from the other tissues. Among those, 

3 mutations were Barrett’s-Oesophagus-specific and 2 were shared between Barrett’s and 

Gastric. 



Application of the single-cell RNAseq caller  Application of the single-cell RNAseq caller 

120 
 

In order to confirm that the mutations were not found in either of the matched healthy 

controls (Oesophagus or Gastric) due to lack of coverage or randomness of the single-cell 

pool, we re-checked their occurrences in the single-cells from Duodenum. Indeed, we found 

that one Barrett’s-Oesophagus connection was present (chr6:1810559:C) and was therefore 

removed from the list of tissue-specific connections. 

Finally, because single-cells only represent a fraction of the whole tissue, we 

examined the bulk samples as well. We found multiple reads supporting two mutations (chr7: 

151094165:T and chr8:58888276:T). Interestingly, both of them were unique to Barrett’s 

and Oesophagus, meaning that the remaining two mutations with no identified presence in 

the other tissues were shared between Barrett’s and Gastric. Using the VEP annotation tool 

revealed that they occurred in genes RIMBP2 and CACNA1A which, however, are not 

known to have any strong implications in cancer.  

 

1.12.3 Conclusions and Discussion  
 

Calling variants from single-cell RNAseq is a difficult challenge, and therefore it is 

not surprising that so few resources that allow that exist. We have found that only a small 

fraction of our calls was detectable in bulk, and while our quality criteria and calling were 

strict, we were very limited in terms of the validation of our results. However, the fact that 

we identified a large share of known SNPs and that multiple mutations were independently 

detected in various single-cells encouraged us to believe that our calls had reasonable 

accuracy.   
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We found two main limitations when analyzing single-cell RNAseq data: coverage 

and random sampling of cells. We would often find that the mutation was only called in one 

single-cell, but it was also only covered there. The lack of coverage in the other samples was 

very problematic, because we would not get any information about whether the mutation was 

present or not. Because we did not know what we were not able to see, we decided to reverse 

the perspective and remove ambiguity based on what we could detect. Therefore, we would 

eliminate Barrett’s-Oesophagus-specific mutations if even one read in a single-cell from 

Gastric or Duodenum was identified. While the read could contain an unfortunate technical 

error, it was not something we could determine and we would still reject the mutation to 

reduce the risk of calling a false positive.  

The filters applied by our caller are very stringent. It is deliberate, however, as one 

of our main goals was to minimize the number of false positives. While this action made us 

confident about the results, we are aware that certain parts of the analysis, especially mutation 

signatures, can be biased. The main factor influencing signature construction was the 

exclusion of all A to G mutations, which we decided to do in order to eliminate RNA editing 

positions. This was not an issue in our case as we calculated the signatures mainly with the 

aim of finding Signature 17, not heavily influenced by A to G mutations. However, the 

removal of all A to G mutations should be considered in the future, depending on the research 

question asked.  

Other filters included in our tool could also be altered in order to help guide novel 

hypotheses in healthy tissues. Preferably, adjustments would be made to reverse transcriptase 

and PCR error rates, if such are known – in order to make our tool applicable to a wide range 

of datasets, we assumed the highest values and simultaneously removed substantial amounts 
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of uncertain calls. Another limitation of our tool was the lack of neighbours to determine the 

origin of positions different from the reference. Addition of known polymorphisms, on top 

of those included in the dbSNP database used by our tool, would expand the number of calls 

identified from data in regions of interest. Our tool is highly modular – and provides a solid 

base for future developments, such as an expansion to indel calling that we did not manage 

to add throughout the duration of the project.  

The fact that multiple reads were not detectable in single-cells but in multiple bulk 

samples indicated a substantial amount of heterogeneity within healthy tissues. It made us 

appreciate the great amounts of single-cells required in order to fully examine the mutation 

landscapes. While it is difficult to determine the exact number of cells that would be 

sufficient, it is certain that the value in the order of thousands, and not dozens as in our case, 

is necessary. Heterogenous diseases with high mutation rates might require even greater 

numbers. Examining mutation profiles or the number of calls shared between cells would be 

a reasonable way to estimate the optimal number of cells – while the profiles and overlaps 

change substantially with every cell added, a saturation point should eventually be reached.  

The fact that, ultimately, all Barrett’s-Oesophagus-specific mutations were 

eliminated and only Barrett’s-Gastric connections looked likely was peculiar. However, as 

they were not present within genes known to be implicated in cancer and were covered in 

very few single-cells from Oesophagus and Duodenum made us doubt that they were 

implicated in Barrett’s, and that the Gastric was the tissue of origin. We strongly believe that 

more research is needed to confirm that.  
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5. Conclusions, Discussion 

and Afterword 

 

 The work presented in this Thesis is the result of the second half of a three-

year research I conducted as a doctoral student in the Ludwig Institute for Cancer Research. 

While some time was required to learn the necessary programming and bioinformatics skills, 

the majority of the first part of my DPhil was spent on developing a different approach to 

single-cell RNAseq calling which ultimately turned out to not be useful for the overall goals 

of the project. Originally, our idea was to use machine learning to distinguish between real 

variants and technical errors. Calling variants from single-cell RNAseq data is a very 

exciting, but a very difficult, problem. It is therefore not surprising that existing methods are 

limited to applying strict thresholds to the outputs of tools developed for bulk or heavily rely 

on paired RNA and DNA samples. Yet, we decided that the idea of developing a single-cell 

RNAseq caller that would be independent of other tools and bulk tissues was worth taking 

the risk. We tried to create an optimal set of dataset features that would be fed to the models. 

Those features included basic information such as coverage, allelic frequency and quality of 

alignment, but also more complex ones including strand bias, position in the read or 

frequency of the mutation context that the position of interest was present in. We then 

experimented with different machine learning models - neural networks which we found to 

be best suited for the characteristics of our problem, or models such as random forests due 

to their interpretability. The final result was always similar. Despite achieving good recall, 

the caller would also identify substantial numbers of other likely false-positive positions (ie 



Conclusions, Discussion and Afterword  Conclusions, Discussion and Afterword 

124 
 

low precision). Due to the “black-box” nature of the machine learning approach, we were 

not able to explain the calls that were listed by our caller. We tried using the explanations 

provided by the random forest, however, we found the information such as “the caller was 

mainly using allelic frequency and base quality” insufficient in order to gain full confidence 

in our results. 

 Discovery of things previously unknown requires an extensive validation and the lack 

of a solid ground truth set of mutations was an issue we struggled with. We constructed the 

ground truth mutation list based on the intersection of commonly used bulk methods. A 

consensus approach is commonly applied to calling variants in WGS data, increasing the 

false-positive rate at the expense of more false negatives. However, any false negatives in 

our ground truth set would affect the reported accuracy of our single-cell caller.  

 To overcome the problem of ambiguity among the ground truth list, we experimented 

with the creation of a clean dataset with simulated mutations and technical errors in known 

locations. Machine learning was quite straightforward now that we knew the exact origin of 

every position different from the reference. However, we found that what we learnt from the 

artificial dataset variant calling could not be directly translated to real data. Namely, there 

were numerous mutations in the non-artificial dataset that would not resemble any in the 

artificial dataset in terms of coverage and allelic frequency and vice versa. We concluded 

that the complexity of the single-cell RNAseq, an understudied area especially in terms of 

variant calling, could not be captured with the existing models developed based on the 

understanding of bulk tissues.  

 Ultimately, we returned to the drawing board. On one hand, we started completely 

from scratch – we knew that we required a different approach. On the other hand, we were 
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now more aware of the issues with variant calling from single-cell RNAseq, and we knew 

what we required from our caller in terms of its interpretability and validation.  

 We decided that it was the quality, and not the quantity, of variants that we were 

interested in. In other words, we much preferred calling just a few, but real, mutations per 

cell instead of thousands of false positives. Therefore, we reversed the way we had been 

thinking about variant calling before  - instead of trying to prove a variant was real, we would 

only call it if it was unlikely to be a technical error. In order to do this, as explained in the 

Thesis, we carefully analyzed the characteristics of different types of technical errors in 

single-cell RNAseq and developed ways to calculate their probability in our data. Our final 

caller is simple and most likely captures only a fraction of the mutations that are present in 

single-cells. One the other hand, its simplicity allows for efficient interpretation, and we are 

now able to clearly determine why each potential mutation candidate had been filtered out. 

Simultaneously, we achieved our initial goals – creating a method independent of other tools 

and not requiring any paired bulk samples. 

 A substantial obstacle in the development and validation of our caller was the quality 

of the single-cell RNAseq data. While we did take quality into consideration when choosing 

the datasets, it was still insufficient and ultimately only a few percent of the bulk calls would 

pass the basic quality thresholds in single-cells. Furthermore, a large fraction of the calls that 

did fulfill the quality criteria would be removed during the preparation for the linkage 

method. Because the method relies on relationships between neighbouring reads, it is highly 

sensitive to coverage and cannot be applied in regions covered by few reads, which form a 

majority in single-cell RNAseq data. In effect, a great proportion of mutations present in 

single-cells would never be called. Therefore, we decided to introduce a recalling step. By 
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re-visiting every cell and searching for mutations called in other single-cells from the same 

cohort, we were able to significantly increase the number of mutations called per single-cell. 

This would not only allow us to compare cells more accurately, but also made us aware of 

the number of SNPs not identified from the bulk tissues and, therefore, still present among 

our single-cell calls. The fact that the single-cells were of different types and came from 

various tissues was a crucial factor in the discovery of the latter, as mutations identified in 

multiple healthy tissue types were unlikely disease-related somatic mutations. Furthermore, 

the availability of the various types of single-cells allowed us to mitigate the effects of 

differential gene expression and cell states. The more single-cells we had, the more shared 

mutations we would find. This would eventually lead to a better validation of the caller (same 

mutations identified independently in different samples), a more comprehensive removal of 

germline calls and a more accurate analysis of single-cell relationships.    

Single-cell RNAseq has been used mainly in transcriptomic analysis, usually to 

distinguish between different cell types. Therefore, the quality thresholds that are applied 

during sample preparation and processing are targeted specifically for this purpose. 

Unsurprisingly, because using RNAseq to call mutations is still a relatively novel approach, 

the minima required to successfully identify mutations are not taken into account. Ultimately, 

very few single-cell RNAseq datasets of sufficient quality exist and the opportunities for 

method development and validation are limited. We developed and validated our caller on 

two datasets. The Barrett’s dataset was an obvious pick as the method was created in order 

to gain new insights into the origins of the disease. While cells of multiple types and collected 

from various tissues were included, the dataset lacked an important component – it did not 

have any paired DNA samples. As a result, the validation of our calls was very difficult as 
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we were not able to determine whether the lack of Barrett’s signatures was an evidence of 

the failure of our caller or whether the signal had not been there in the first place. Our solution 

was to use a different dataset to validate our method. We chose the breast cancer dataset as 

not only it had paired WES samples included, but also it had been shown to be of high quality 

and having breast cancer characteristics identified before. However, a downside to this 

dataset was a different kind of spike-ins than the ones included in our Barrett’s dataset, which 

we discovered only after the completion of the whole processing pipeline to have large 

amounts of variation from the reference sequences. Because even commonly used bulk 

callers would identify mutations in the spike-in regions, we could not confidently treat them 

as technical errors. Therefore, we could not learn much about the error profile of the dataset.  

 Because we conducted our research on just two single-cell RNAseq datasets which 

were of high quality, we needed to ensure our method was using strict quality thresholds in 

order to be applicable to a wider range of datasets in the future. We believe that further 

analysis of single-cell RNAseq data in the context of variant calling is required. Research 

into various kinds of single-cell RNAseq datasets would hopefully reveal more differences 

from the bulk samples, and would allow for the identification of aspects that are conserved 

or different between single-cell datasets. Discovery of shared features would hopefully give 

more insights into dataset-specific characteristics. That would allow for the elimination of 

strict quality thresholds and, ultimately, would lead to the identification of a larger number 

of mutations.   

 Understanding relationships between single-cells and, eventually, mechanisms of 

mutagenesis, requires large numbers of cells (ideally located in close proximity as this would 

allow for better tracking of the spread of novel mutations). We found that a few dozens of 
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cells coming from the same tissue (and batch) were far from sufficient, as each consecutive 

cell merged with our results would shift the interpretation. Specifically, apart from the 

addition of new mutations, we would identify that some, previously occurring in individual 

single-cells, would be shared with the new sample. If a sufficient number of single-cells was 

available, we would expect to see a decrease in the pace at which new shared mutations were 

found. In other words, at some point there would be enough single-cells to represent a 

complete mutational profile, and allow for the distinction between larger clones (mutations 

shared between multiple cells) and rare mutations (occurring in only one or few cells). 

However, estimation of the exact number of single-cells required is difficult, as it is 

dependent on the disease. A reconstruction of a full mutation profile in a homogenous tissue 

would require a smaller number of single-cells. On the other hand, the requirements increase 

dramatically when analyzing highly clonal diseases such as Barrett’s. 

 In conclusion, I believe we managed to achieve a solid first step in the attempt to 

identify variants from single-cell RNAseq. Additional time and datasets would be required 

in order to develop the methodology further. Ideally, the new data would be of high quality, 

consist of a large number of single-cells from different tissues and paired DNA samples. It 

would also have high-quality spike-ins which would give better insights into the occurrence 

and characteristics of technical errors in the single-cell RNAseq data. Successful validation 

of the method would involve a reconstruction of mutation profiles present in the paired DNA, 

and identification of other known disease characteristics.  
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6. Supplement 

 

1.13 Single-cell SNV calls from the breast cancer dataset 
 

Table 16. Number of unique single-cell SNV calls from the breast cancer dataset, 

grouped by patient and cell type 

Patient Immune cells Stromal cells Tumour cells 

BC01 0 642 21,581 

BC02 0 0 44,181 

BC03 22,759 0 26,638 

BC04 10,638 1,492 46,577 

BC05 0 1,211 46,814 

BC06 4,423 1,448 4,691 

BC07 34,766 9,978 47,996 

BC08 711 5,350 12,872 

BC09 17,344 2,180 0 
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1.14 Differences in WES SNV calls between Mutect2 and Octopus in the 

breast cancer dataset 
 

1.14.1 Differences between the outputs of two callers not explained by 

confusion between germline and somatic calls 
 

Because germline and somatic calling was performed independently, we wanted to 

exclude the possibility of confusion between the two. In other words, we checked that the 

somatic calls had not been earlier identified as germline variants by either caller, as this 

would explain the excess of non-shared calls. We found 6 cases of variants called as both 

germline and somatic, mostly by Octopus (Table 17). However, this was insufficient to 

have an impact on the differences in SNVs called by the two callers (over 400 non-shared 

positions in the case of patient BC03).  

 

Table 17. Variants called as both germline and somatic. 

Variant Patient Germline call Somatic call 

chr2:214149062:214149063:A:G BC01 Octopus Mutect2, Octopus 

chr6:158605151:158605152:G:A BC01 Octopus Octopus 

chr6:158605155:158605156:G:A BC01 Octopus Octopus 

chr7:151240005:151240006:T:A BC01 Haplotypecaller Octopus 

chr19:1457875:1457876:G:A BC04 Octopus Octopus 

chr7:100963865:100963866:G:A BC08 Haplotypecaller Octopus 

 

 

1.14.2 Insufficient evidence as the main reason for filtering out Octopus-

specific calls by Mutect2 
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Both Mutect2 and Octopus consist of the main calling stage and final filtering. 

Investigation of calls made solely by Octopus revealed that 44.6% of them passed the 

variant calling performed by Mutect2 and underwent subsequent filtering. The reasons for 

removing the potential candidates from the final set of mutations were “weak_evidence” 

(35.0%), “strand_bias” (29.3%), “orientation” (17.4%), germline (6.6%), 

“clustered_events” (3.5%) and “haplotype”, “base_qual”, “contamination”, 

“normal_artifact” (less than 1.0% each). On the other hand, only 92 out of 838 (11.0%) 

Mutect2-specific calls passed the calling performed by Octopus. They were consequently 

eliminated as a result of random forest filtering (“RF” filter).   

 Because Mutect2 would filter out variants called by Octopus partially due to poor 

quality,  we wondered whether it was due to different sample pre-processing. When using 

the “--bamout” option, Octopus generates realigned BAMs that provide visual evidence for 

why a call has been made. We found that the internal sample processing performed by 

Octopus increased the quality of variants not called by Mutect2 in terms of coverage (Figure 

37a) and allelic frequency (Figure 37b). The results suggest that the sample pre-processing 

(read realignment performed by Octopus) could have an influence on the quality of variants, 

and subsequently on whether they would be considered during the calling.  
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Figure 37. Comparison of characteristics of SNVs called only by Octopus in the original 

and Octopus-processed BAM files in terms of a. coverage and b. allelic frequency. 
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1.15 Mutation profiles reconstructed from the breast cancer single-cell 

SNV calls, grouped by patient and cell type 
 

 

 

 

Figure 38. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from stromal cells of patient BC01 

 

Figure 39. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from tumour cells of patient BC01 

 

 

Figure 40. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from tumour cells of patient BC02 
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Figure 41. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from immune cells of patient BC03 

 

 

Figure 42. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from tumour cells of patient BC03 

 

 

Figure 43. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from immune cells of patient BC04 
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Figure 44. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from stromal cells of patient BC04 

 

 

Figure 45. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from tumour cells of patient BC04 

 

 

Figure 46. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from stromal cells of patient BC05 
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Figure 47. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from tumour cells of patient BC05 

 

 

Figure 48. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from immune cells of patient BC06 

 

 

Figure 49. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from stromal cells of patient BC06 
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Figure 50. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from tumour cells of patient BC06 

 

 

Figure 51. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from immune cells of patient BC07 

 

 

Figure 52. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from stromal cells of patient BC07 
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Figure 53. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from tumour cells of patient BC07 

 

 

Figure 54. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from immune cells of patient BC08 

 

 

Figure 55. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from stromal cells of patient BC08 
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Figure 56. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from tumour cells of patient BC08 

 

 

Figure 57. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from immune cells of patient BC09 

 

 

Figure 58. Mutation profile reconstructed from the breast cancer single-cell SNV calls 

from stromal cells of patient BC09 
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1.16 Single-cell SNV calls from the Barrett’s dataset 
 

Table 18. Number of unique single-cell SNV calls from the Barrett’s dataset, grouped 

by tissue and cell type 

Cell type Total Barrett’s Oesophagus Gastric Duodenum 

Non-epithelial 149 46 19 38 46 

Barrett’s-type 721 598 130 21 0 

Enterocytes 146 0 0 0 146 

Mucus neck 440 3 2 435 0 

Goblet 454 355 101 0 16 

Squamous 101 0 101 0 0 

Enteroendocrine 370 211 20 150 8 

 

 

Table 19. Number of unique single-cell SNV calls from the Barrett’s dataset, grouped 

by tissue and cell type, in patient GEN02021 

Cell type Barrett’s Oesophagus Gastric 

Non-epithelial 35 8 15 

Barrett’s-type 497 130 21 

Enterocytes 0 0 0 

Mucus neck 3 2 115 

Goblet 284 89 0 

Squamous 0 84 0 

Enteroendocrine 196 20 37 

 

Table 20. Number of unique single-cell SNV calls from the Barrett’s dataset, grouped 

by tissue and cell type, in patient GEN02023 

Cell type Barrett’s Oesophagus Gastric 

Non-epithelial 2 9 0 

Barrett’s-type 50 1 0 

Enterocytes 0 0 0 

Mucus neck 0 0 2 

Goblet 35 13 0 

Squamous 0 1 0 

Enteroendocrine 12 0 0 
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Table 21. Number of unique single-cell SNV calls from the Barrett’s dataset, grouped 

by tissue and cell type, in patient GEN02024 

Cell type Barrett’s Oesophagus Gastric 

Non-epithelial 7 0 14 

Barrett’s-type 26 0 0 

Enterocytes 0 0 0 

Mucus neck 0 0 84 

Goblet 28 0 0 

Squamous 0 0 0 

Enteroendocrine 1 0 101 

 

Table 22. Number of unique single-cell SNV calls from the Barrett’s dataset, grouped 

by tissue and cell type, in patient GEN02025 

Cell type Barrett’s Oesophagus Gastric 

Non-epithelial 1 2 9 

Barrett’s-type 25 1 0 

Enterocytes 0 0 0 

Mucus neck 0 0 233 

Goblet 8 1 0 

Squamous 0 16 0 

Enteroendocrine 4 0 11 

 

Table 23. Number of unique single-cell SNV calls from the Barrett’s dataset, grouped 

by tissue subtype and patient 

Tissue subtype GEN02021 GEN02023 GEN02024 GEN02025 

B1 487 64 26 21 

B2 261 7 27 8 

B3 69 15 16 6 

B4 217 12 1 5 

G1 12 0 0 136 

G2 151 2 97 124 

G3 26 0 101 11 

O1 84 0 0 0 

O2 0 1 0 16 

O3 131 1 0 1 

O4 108 22 0 3 
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1.17 Overlap of Barrett’s and OSG variants 
 

Table 24. Single-cell SNVs identified in Barrett’s-type and OSG cells 

Chromosome Position [0-offset] Position [1-offset] Allele 

chr1 

chr2 

chr2 

chr2 

chr3 

chr3 

chr3 

chr3 

chr3 

chr3 

chr3 

chr3 

chr3 

chr3 

chr3 

chr4 

chr4 

chr4 

chr4 

chr4 

chr4 

chr6 

chr6 

chr6 

chr6 

chr6 

chr7 

chr7 

chr7 

chr7 

chr7 

chr7 

chr8 

chr8 

chr8 

chr8 

chr8 

chr8 

chr8 

chr8 

chr8 

chr8 

chr8 

chr9 

chr9 

19282709 

109387344 

175419149 

238239951 

136819348 

178518786 

187669659 

187670122 

42177959 

42178632 

62428458 

62508932 

62509003 

62579958 

62718205 

139866540 

16043742 

56188685 

91303681 

9601276 

9602144 

1810558 

325960 

326133 

39067219 

39067355 

101020572 

151094164 

157545671 

32206443 

75813536 

8239535 

124033990 

12575551 

12587750 

41697462 

72632092 

72654225 

72680405 

72693444 

72711407 

72859987 

72860984 

121876654 

135738596 

19282710 

109387345 

175419150 

238239952 

136819349 

178518787 

187669660 

187670123 

42177960 

42178633 

62428459 

62508933 

62509004 

62579959 

62718206 

139866541 

16043743 

56188686 

91303682 

9601277 

9602145 

1810559 

325961 

326134 

39067220 

39067356 

101020573 

151094165 

157545672 

32206444 

75813537 

8239536 

124033991 

12575552 

12587751 

41697463 

72632093 

72654226 

72680406 

72693445 

72711408 

72859988 

72860985 

121876655 

135738597 

A 

A 

C 

G 

C 

G 

G 

A 

G 

C 

T 

T 

T 

G 

G 

T 

T 

G 

A 

C 

T 

G 

C 

C 

A 

A 

T 

C 

T 

T 

T 

G 

A 

A 

G 

T 

G 

A 

T 

G 

C 

T 

A 

T 

G 
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chr11 

chr12 

chr12 

chr15 

chr16 

chr16 

chr16 

chrX 

1024913 

120199456 

130476189 

43793758 

16170240 

16170558 

976397 

79362614 

1024914 

120199457 

130476190 

43793759 

16170241 

16170559 

976398 

79362615 

T 

G 

T 

A 

T 

G 

G 

C 
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1.18 Mutation profiles reconstructed from Barrett’s single-cell SNV calls, 

grouped by patient and tissue type 

 

Figure 59. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Barrett’s tissue of patient GEN02021 

 

Figure 60. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Oesophagus tissue of patient GEN02021 

 

Figure 61. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Gastric tissue of patient GEN02021 
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Figure 62. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Duodenum tissue of patient GEN02021 

 

Figure 63. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Barrett’s tissue of patient GEN02023 

 

Figure 64. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Oesophagus tissue of patient GEN02023 
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Figure 65. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Gastric tissue of patient GEN02023 

 

Figure 66. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Duodenum tissue of patient GEN02023 

 

Figure 67. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Barrett’s tissue of patient GEN02024 
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Figure 68. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Gastric tissue of patient GEN02024 

 

Figure 69. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Duodenum tissue of patient GEN02024 

 

Figure 70. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Barrett’s tissue of patient GEN02025 
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Figure 71. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Oesophagus tissue of patient GEN02025 

 

Figure 72. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Gastric tissue of patient GEN02025 

 

Figure 73. Mutation profile reconstructed from the Barrett’s single-cell SNV calls from 

Duodenum tissue of patient GEN02025 
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1.19 SNVs shared between different cell types in the Barrett’s dataset 
 

  We found a number of SNVs that were shared between different cell types. Apart 

from comparing all cells, we grouped them by tissue type. 

 
Table 25. SNV shared between different cell types in the Barrett’s dataset 

 
 

 

Table 26. SNV shared between different cell types in the Barrett’s dataset in Barrett’s 

tissue 

 

 

Table 27. SNV shared between different cell types in the Barrett’s dataset in 

Oesophagus tissue 
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Table 28. SNV shared between different cell types in the Barrett’s dataset in Gastric 

tissue 
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1.20 Other software used 
 

• Python 2.7.5 (Python documentation) 

• Samtools 1.9 (Li et al., 2009) 

• Bcftools 1.9 (Danecek et al., 2021) 

• Vcftools 0.1.14 (Danecek et al., 2011) 

• Bedtools 0.26.0 (Quinlan and Hall, 2010) 

• FastQC 0.11.5 (LaMar, 2015) 
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