351 research outputs found

    Engineering model transformations with transML

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs10270-011-0211-2Model transformation is one of the pillars of model-driven engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations as well. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. In this way, even though transformations should be built using sound engineering principles—just like any other kind of software—there is currently a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life cycle of transformation development enabling the engineering of transformations. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for several transformation implementation languages.This work has been sponsored by the Spanish Ministry of Science and Innovation with project METEORIC (TIN2008-02081), and by the R&D program of the Community of Madrid with projects “e-Madrid" (S2009/TIC-1650). Parts of this work were done during the research stays of Esther and Juan at the University of York, with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185)

    A Model-Driven approach for functional test case generation

    Get PDF
    Test phase is one of the most critical phases in software engineering life cycle to assure the final system quality. In this context, functional system test cases verify that the system under test fulfills its functional specification. Thus, these test cases are frequently designed from the different scenarios and alternatives depicted in functional requirements. The objective of this paper is to introduce a systematic process based on the Model-Driven paradigm to automate the generation of functional test cases from functional requirements. For this aim, a set of metamodels and transformations and also a specific language domain to use them is presented. The paper finishes stating learned lessons from the trenches as well as relevant future work and conclusions that draw new research lines in the test cases generation context.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-

    Model Transformations in MT

    Get PDF
    Model transformations are recognised as a vital aspect of Model Driven Development,but current approaches cover only a small part of the possible spectrum. In this paper I present the MT model transformation which shows how a QVT-like language can be extended with novel pattern matching constructs, how tracing information can be automatically constructed and visualized, and how the transformed model is pruned of extraneous elements. As MT is implemented as a DSL within the Converge language, this paper also demonstrates how a general purpose language can be embedded in a model transformation language, and how DSL development can aid experimentation and exploration of new parts of the model transformation spectrum

    A Comparative Study on Model-Driven Requirements Engineering for Software Product Lines

    Full text link
    [EN] Model-Driven Engineering (MDE) and Software Product Lines (SPL) are two software development paradigms that emphasize reusing. The former reuse domain knowledge is represented as models and model transformations for product development, and the latter reuse domain knowledge is represented as core assets to produce a family of products in a given domain. The adequate combination of both paradigms can bring together important advantages to the software development community. However, how to manage requirements during a model-driven product line development remains an open challenge. In particular, the Requirements Engineering (RE) activity must deal with specific properties such as variability and commonality for a whole family of products. This paper presents a comparative study of eleven approaches that perform a MDE strategy in the RE activity for SPL, with the aim of identify ing current practices and research gaps. In summary, most of the approaches are focused on the Domain Engineering phase of the SPL development, giving less attention to the Application Engineering phase. Moreover there is a lack of coverage of the Scoping activity, which defines the SPL boundaries. Several approaches apply some model transformations to obtain architectural and application requirements artifacts. Regarding the tool support for requirements specification and management, we found that most of the approaches use only academic prototypes. Regarding the validation of the approaches, the use of Case Studies as a proof of concept was the most commonly used method; however, there is a lack of well-defined case studies and empirical studies to improve the proposals.This research is part of the MULTIPLE project (with ref. TIN2009-13838).Blanes Domínguez, D.; Insfrán Pelozo, CE. (2012). A Comparative Study on Model-Driven Requirements Engineering for Software Product Lines. Revista de Sistemas e Computação. 2(1):3-13. http://hdl.handle.net/10251/43841S3132

    Transformación de modelos dirigida por atributos de calidad

    Full text link
    González Huerta, J. (2010). Transformación de modelos dirigida por atributos de calidad. http://hdl.handle.net/10251/8627.Archivo delegad

    Review of Requirement Engineering Approaches for Software Product Lines

    Full text link
    The Software Product Lines (SPL) paradigm is one of the most recent topics of interest for the software engineering community. On the one hand, the Software Product Lines is based on a reuse strategy with the aim to reduce the global time-to-market of the software product, to improve the software product quality, and to reduce the cost. On the other hand, traditional Requirement Engineering approaches could not be appropriated to deal with the new challenges that arises the SPL adoption. In the last years, several approaches have been proposed to cover this limitation. This technical report presents an analysis of specific approaches used in the development of SPL to provide solutions to model variability and to deal with the requirements engineering activities. The obtained results show that most of the research in this context is focused on the Domain Engineering, covering mainly the Feature Modeling and the Scenario Modeling. Among the studied approaches, only one of them supported the delta identification; this fact implies that new mechanisms to incorporate new deltas in the Domain specification are needed. Regarding the SPL adoption strategy, most of the approaches support a proactive strategy. However, this strategy is the most expensive and risk-prone. Finally, most of the approaches were based on modeling requirements with feature models giving less support to other important activities in the requirements engineering process such as elicitation, validation, or verification of requirements. The results of this study provide a wide view of the current state of research in requirements engineering for SPL and also highlight possible research gaps that may be of interest for researchers and practitioners.Blanes Domínguez, D.; Insfrán Pelozo, CE. (2011). Review of Requirement Engineering Approaches for Software Product Lines. http://hdl.handle.net/10251/1023

    Transforming OCL to PVS: Using Theorem Proving Support for Analysing Model Constraints

    Get PDF
    The Unified Modelling Language (UML) is a de facto standard language for describing software systems. UML models are often supplemented with Object Constraint Language (OCL) constraints, to capture detailed properties of components and systems. Sophisticated tools exist for analysing UML models, e.g., to check that well-formedness rules have been satisfied. As well, tools are becoming available to analyse and reason about OCL constraints. Previous work has been done on analysing OCL constraints by translating them to formal languages and then analysing the translated constraints with tools such as theorem provers. This project contributes a transformation from OCL to the specification language of the Prototype Verification System (PVS). PVS can be used to analyse and reason about translated OCL constraints. A particular novelty of this project is that it carries out the transformation of OCL to PVS by using model transformation, as exemplified by the OMG's Model-Driven Architecture. The project implements and automates model transformations from OCL to PVS using the Epsilon Transformation Language (ETL) and tests the results using the Epsilon Comparison Language (ECL )

    MODEL DRIVEN SOFTWARE PRODUCT LINE ENGINEERING: SYSTEM VARIABILITY VIEW AND PROCESS IMPLICATIONS

    Full text link
    La Ingeniería de Líneas de Productos Software -Software Product Line Engineerings (SPLEs) en inglés- es una técnica de desarrollo de software que busca aplicar los principios de la fabricación industrial para la obtención de aplicaciones informáticas: esto es, una Línea de productos Software -Software Product Line (SPL)- se emplea para producir una familia de productos con características comunes, cuyos miembros, sin embargo, pueden tener características diferenciales. Identificar a priori estas características comunes y diferenciales permite maximizar la reutilización, reduciendo el tiempo y el coste del desarrollo. Describir estas relaciones con la suficiente expresividad se vuelve un aspecto fundamental para conseguir el éxito. La Ingeniería Dirigida por Modelos -Model Driven Engineering (MDE) en inglés- se ha revelado en los últimos años como un paradigma que permite tratar con artefactos software con un alto nivel de abstracción de forma efectiva. Gracias a ello, las SPLs puede aprovecharse en granmedida de los estándares y herramientas que han surgido dentro de la comunidad de MDE. No obstante, aún no se ha conseguido una buena integración entre SPLE y MDE, y como consecuencia, los mecanismos para la gestión de la variabilidad no son suficientemente expresivos. De esta manera, no es posible integrar la variabilidad de forma eficiente en procesos complejos de desarrollo de software donde las diferentes vistas de un sistema, las transformaciones de modelos y la generación de código juegan un papel fundamental. Esta tesis presenta MULTIPLE, un marco de trabajo y una herramienta que persiguen integrar de forma precisa y eficiente los mecanismos de gestión de variabilidad propios de las SPLs dentro de los procesos de MDE. MULTIPLE proporciona lenguajes específicos de dominio para especificar diferentes vistas de los sistemas software. Entre ellas se hace especial hincapié en la vista de variabilidad ya que es determinante para la especificación de SPLs.Gómez Llana, A. (2012). MODEL DRIVEN SOFTWARE PRODUCT LINE ENGINEERING: SYSTEM VARIABILITY VIEW AND PROCESS IMPLICATIONS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15075Palanci

    Automatic Generation of Trace Links in Model-driven Software Development

    Get PDF
    Traceability data provides the knowledge on dependencies and logical relations existing amongst artefacts that are created during software development. In reasoning over traceability data, conclusions can be drawn to increase the quality of software. The paradigm of Model-driven Software Engineering (MDSD) promotes the generation of software out of models. The latter are specified through different modelling languages. In subsequent model transformations, these models are used to generate programming code automatically. Traceability data of the involved artefacts in a MDSD process can be used to increase the software quality in providing the necessary knowledge as described above. Existing traceability solutions in MDSD are based on the integral model mapping of transformation execution to generate traceability data. Yet, these solutions still entail a wide range of open challenges. One challenge is that the collected traceability data does not adhere to a unified formal definition, which leads to poorly integrated traceability data. This aggravates the reasoning over traceability data. Furthermore, these traceability solutions all depend on the existence of a transformation engine. However, not in all cases pertaining to MDSD can a transformation engine be accessed, while taking into account proprietary transformation engines, or manually implemented transformations. In these cases it is not possible to instrument the transformation engine for the sake of generating traceability data, resulting in a lack of traceability data. In this work, we address these shortcomings. In doing so, we propose a generic traceability framework for augmenting arbitrary transformation approaches with a traceability mechanism. To integrate traceability data from different transformation approaches, our approach features a methodology for augmentation possibilities based on a design pattern. The design pattern supplies the engineer with recommendations for designing the traceability mechanism and for modelling traceability data. Additionally, to provide a traceability mechanism for inaccessible transformation engines, we leverage parallel model matching to generate traceability data for arbitrary source and target models. This approach is based on a language-agnostic concept of three similarity measures for matching. To realise the similarity measures, we exploit metamodel matching techniques for graph-based model matching. Finally, we evaluate our approach according to a set of transformations from an SAP business application and the domain of MDSD
    corecore