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ABSTRACT 

The Unified Modelling Language (UML) is a de facto standard language for describing 
software systems. UML models are often supplemented with Object Constraint 
Language (OCL) constraints, to capture detailed properties of components and systems. 
Sophisticated tools exist for analysing UML models, e.g., to check that well-formedness 
rules have been satisfied. As well, tools are becoming available to analyse and reason 
about OCL constraints. Previous work has been done on analysing OCL constraints by 
translating them to formal languages and then analysing the translated constraints with 
tools such as theorem provers. 

This project contributes a transformation from OCL to the specification language of the 
Prototype Verification System (PVS). PVS can be used to analyse and reason about 
translated OCL constraints. A particular novelty of this project is that it carries out the 
transformation of OCL to PVS by using model transformation, as exemplified by the 
OMG's Model-Driven Architecture. The project implements and automates model 
transformations from OCL to PVS using the Epsilon Transformation Language (ETL) 
and tests the results using the Epsilon Comparison Language (ECL ). 
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The Unified Modelling Language (UML) [68] is one of the most widely used modelling 
languages for developing software. The current version of UML (UML2) has moved a long way 
since its initial version. It incorporates more notations to support modelling of different types of 
software with different levels of complexity. 

Although UML has been modified to better meet the current need of software 
developers, it has been proved that diagrammatic modelling language such as UML are 
insufficient to represent all the information and design decisions relevant to a system design. The 
Object Constraint Language (OCL) [57, 62] was created to fill in this gap by providing a formal 
text-based syntax to represent constraints on element of a UML model. 

To ensure the correctness of software being developed, OCL constraints should also be 
verified along with the UML model to which they apply. Currently, active research focuses on 
finding suitable methods for verifying UML models and OCL constraints. Two widely used 
methods are model checking and theorem proving. 

Model checking represents OCL constraints in temporal logics such as Linear Temporal 
Logic (LTL) or Computational Tree Logic (CTL) while theorem proving approaches represent 
OCL using formal languages such as B-method [22], Z [3 I, 32], lsabelle/HOL [21, 29] and 
others. A more thorough study on different methods proposed to verifY OCL and UML will be 
discussed in the Literature Review chapter. 

Although there exists a substantial body of previous work on verifYing OCL constraints 
through the means of theorem proving, much of this work did not specifY how the 
transformation from OCL to the formal languages used by theorem provers is to be carried out. 
What are the techniques, languages or tools used to transform OCL into the formal languages? 
As of now only the work by Marcano and Levy [53] rigorously specifies their method of 
translation, which is using a tool (OCL2B) that translates OCL to B specification. The 
translation is done using OCAML language. 

To our knowledge, there is no translation of OCL to any formal languages using the 
model transformation method. Being able to transform OCL (or any model) to formal languages 
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using model transformation will make Model Driven Engineering (MOE) a rigorous approach in 
software development. Using the same approach to create and verify the models allow the 
streamlining/integrating the process of creating a model and verifying it. Thus, it minimise the 
development time and reduce the cost for buying development tools. 

There is research such as [50] that tries to represent OCL in Prototype Verification 
System specification language (PVS) [26, 64] for the purpose of proving properties about OCL 
constraints but the work concentrates more on resolving the differences in mapping from First
Order logic to Higher-Order logic than the mapping of OCL to PVS. This project will transform 
OCL to PVS using model transformation, study the suitability of PVS in representing OCL 
constraints, identifying the process of analysing OCL through model transformation and finding 
the most suitable type of transformation. We also concentrate more on the mapping of OCL to 
PVS. 

What makes this project interesting and at the same time challenging is the novelty of 
our method. We chose to use model transformation, a new technique that is still undergoing 
research. Model transformation is a technique originally proposed by Object Management Group 
(OMG). It is part of the Model Driven Architecture (MDA) [66] initiative. But it has not been 
effectively applied, yet, to transformations involving formal languages such as PVS. 

Tools and model transformation languages exist but most of them are still prototypes. 
There are several model transformation languages but there is no research or case studies similar 
enough to help in selecting the most suitable transformation language. Model transformation is 
still in its infancy in both research and implementation, and has a long way to go. The use of 
model transformation as part of the process to analyse model is not the original purpose of its 
creation, thus improving the value this project. 

Another challenge exhibits from using PVS and OCL together. Both language are formal 
languages but developed for different purpose by different groups. OCL was created for 
developers to write constraints on elements in UML model while PVS specification language 
was created for proving properties of a theory. Both languages have manuals and guidelines to 
explain their syntax and semantics. OCL abstract syntax and semantics are explained using UML 
models while PVS 's syntax is describe in Extended Backus-Naur Form (EBNF) and its 
semantics in set theory. The transformation is not a straight forward process since PVS does not 
have a metamodel that explains its syntax. Depending on the type of transformation, metamodel 
for PVS may need to be created. Considering the complexity and size of PVS syntax, the 
creation ofPVS metamodel is no easy task. 

OCL and PVS also used different kinds of logic: OCL using First-Order logic while 
PVS uses High-Order logic. This may add to the complexity of transforming OCL to PVS. 

1.1 Project Background 

This project aims to provide support for analysing properties written as OCL constraints 
by transforming OCL to PVS and used the PVS theorem prover to reason about the result of the 
transformation. Figure 1.1.1 illustrates the process of reasoning OCL properties using our 
proposed method. 
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Figure 1.1.1: Process to verify OCL through transformation 

Our proposed process starts by creating the OCL using OCL CASE tools such as 
Octopus and then importing the OCL constraint into a transformation tool. In the transformation 
tool the OCL is expressed in the form of Eclipse Modelling Framework (EMF) or Metadata 
Repository (MDR) model which from now on will be referred to as OCL model. The OCL 
model will be transformed into a PVS specification using transformation program written in a 
transformation language. The PVS specification will then be analysed by the PVS theorem 
prover. PVS can therefore provide validation and verification for the transformations. 

From Figure l.l.l, the rectangle at the centre is the focus of this project. This project 
will develop transformation program that transform EMF/MDR model of the OCL into PVS. As 
mention earlier model transformation is part of MDA and it plays a vital role in achieving 
MDA's objectives. MDA's main objective is to upgrade the status of models in software 
development, not just a medium to exchange information or documenting design and ideas. 
Models going to be first class artefact that can be used throughout the software production chain 
[65]. From this objective the intended used of model transformation is to help to iteratively 
refine models created in early phase of software development into detailed models of the system 
and finally to a working product. 

In [66] different approaches in model transformation are explained along with the 
definition of important elements in the transformation. Table 1 in Appendix E is the definition of 
these elements. There are five approaches to model transformation: 
I. Marking: Transform PIM, which is marked using the given marks, to PSM using the 

mapping provided. 
2. Metamodel Transformation: The mapping specifies the transformation from source 

metamodel to target metamodel. PIM that conforms to source metamodel will be 
transformed to PSM that conforms to target metamodel. 

3. Model Transformation: The mapping specifies the transformation from platform 
independent types to platform specific types. The PIM contains elements that are a subtype 
of elements in platform independent types while the PSM contains elements that are a 
subtype of elements in platform specific types. The mapping will transform PIM to PSM. 

4. Pattern Application: Applying transformation patterns that is supplied with the mapping, or 
marking PIM with pattern names and transformed the marked PIM to PSM based on the 
patterns. 

5. Model Merging: PSM is created by merging P!Ms with other models. 
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One of the milestones of MDA is to provide automatic transfonnation tools to users. 
Currently there are a number of transformation tools that have its own transformation languages. 
We can group these languages into two major groups: model-to-model transformation language 
and model-to-text transfonnation language. Model transformation languages will be discussed in 
more detail in Chapter 2. 

1.2 Dissertation Outline 

This chapter explains the objective of this project and background infonnation on this 
project. The next chapter is Literature Review where it focuses on previous work in verifYing 
OCL and UML models, fonnal language and theorem provers, and model transfonnation 
languages. In Chapter 3, project requirements will be identity along with the implementation 
plan. We will also discuss issues that need to be resolve before the start of design and 
implementation phase and choose our project methodology. Chapter 4 will explain the design 
and implementation of our transfonnation and in Chapter 5 result of testing the transfonnation 
will be discuss. Discussion on the transfonnation will be discussed in Chapter 4 and will be 
revisited again in Chapter 5. Chapter 5 will also evaluate the whole project. The project will be 
concluded in Chapter 6. 

I Next Chapter: Literature Review 
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There are three main topics of interest that relate or contribute (based on the chosen 
solution) to this project. These topics are model transformation technology, theorem proving 
tools and verification techniques for OCL. 

Section 2.1 will discuss different methods in verifYing UML models and OCL 
constraints. A lot of attention is given to UML models, other than OCL, because OCL is 
developed to complement UML models, particularly in order to show information that cannot be 
represented using UML notations. Thus the verification of OCL may require the work of 
verifYing UML models, as what has been done in previous work [50, 52, 53, 54 and 55]. OCL is 
mainly used in class diagrams but in this section research work on verification and checking will 
also touch on other models in UML. 

The second section of this chapter will explain about automated theorem proving. 
Discussion in this section will be divided into two parts, tools and specification language. Tools 
of interest here are PVS, HOL System (HOL-S) and lsabelle/HOL (Isabelle). PVS is the main 
focus in this section. HOL-S and Isabelle are two theorem provers that similar to PVS uses 
Higher-Order Logic (HOL). PVS also includes a specification language and in this section, PVS 
specification language will not be discuss in detail. However, B and Z specification language 
will be discuss because these two languages have been used for verifYing models. Final word 
about this section is it will not discuss any of the tools and specification languages in detail and 
will not compare PVS, HOL-S and Isabelle, or Z and B. Aim of this section is to research other 
tools and specification languages other than PVS and discuss their characteristic. 

Model transformation is one of the main contributing elements of the Model Driven 
Engineering (MOE) initiative [8]. Section 2.3 is dedicated to discussing the state-of-the-art in 
model transformation. Although currently model transformation is being done using 
transformation languages, and discussions in section 2.3 focus on these languages, the phrase 
model transformation technology is used (instead of model transformation languages) because 
these languages are now part of a larger framework that includes other model management 
operations. Examples of model transformation languages include the Atlas Transformation 
Language (ATL) which is now part of Atlas Modelling Management Architecture (AMMA), 
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Extensible Platform for Specification of Integrated Languages for Model Management (Epsilon) 
and Visual Automated Model Transformation (VIATRA). Query View Transformation (QVT), 
AMMA, Epsilon and VIA TRA will be discussed in more detail. A final note about model 
transformation technologies discussed here is that they are chosen from Eclipse Generative 
Modelling Technologies (GMT) and Model to Model Transformation (M2M) projects. 
Technologies within GMT and M2M are preferred in the MDE community because they are well 
supported with tools, case studies and tutorials. 

2.1 UML/OCL Verification 

In software engineering, verification means ensuring the correctness of features and 
behaviours of the product [ l]. Previous research has been done in verifYing UML models and 
OCL constraints. The effort to verify UMLIOCL is to achieve rigorous software engineering, 
avoid propagation of design errors to later stage in development and proving properties of UML 
models. 

Most of the research work can be group into two groups, base on the methods that they 
use in verifYing UML/OCL. UMLIOCL is verified by mapping UMLIOCL to a formal language 
or temporal logic language. The result of the mapping will be a representation of UMLIOCL in 
the target language, which later can be verity/check!proofby tools. 

This section will discuss about various works that maps UML/OCL to four specification 
language: B, Object-Z, Isabelle/HOL and Prototype Verification System (PVS). Discussion will 
also include research that verifies UML/OCL using model checkers (temporal logic). For 
completeness of our research, other works on verification of UMLIOCL is also included at the 
end of this section. 

2.1.1 Mapping UMUOCL to B 
Verification of UML/OCL by mapping it to B was done by three groups of researchers: 

l) Marcano and Levy (53, 54], 2) Souquieres et.al. [34, 42, 55], and 3) Butler and Snook [37]. 
Work by Marcano and Levy concentrates on the mapping of OCL and UML class model, 
Souquieres et.al. concentrates more on OCL and UML behavioural models while Butler and 
Snook covers both UML class model and behavioural model (UML state chart) but not OCL. All 
three groups also create tools to automatically translate UMLIOCL to B specification. 

In (53] and [54] the tools created to translate UML/OCL to B is called UML2B that uses 
OCAML higher order language to write mapping rules shown in Appendix B. As mention earlier 
the mapping covers only UML class model and OCL expressions but the work lack in discussing 
the mapping of OCL types to B types. In both (53] and [54] Marcano and Levy does not clearly 
state the mapping of OCL operations on basic and collection types to B. Only a few operations 
were shown by examples. 

This remark is also agreed by Souquieres and Ledang in [55]. [55] continues the work in 
[53] and (54] by highlighting and overcoming the shortcoming of the work. The shortcomings 
are l) post conditions on behavioural concepts have not been considered, 2) mismatch between 
OCL and B types are not considered in mapping operations on types, and 3) mapping of all types 
ofOCL collections to a B set (55]. 
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The shortcomings were overcome by specifYing in detail the mapping of operations on 
OCL basic types to operators and expressions in B. Different types of OCL collections are also 
map differently in [55]. OCL set ofT is map to a power set ofT, a bag ofT is map to a partial 
function T to a natural number, while a sequence ofT is map to B sequence. Different types of 
collections generated from OCL navigation expressions have also been handled ([53] and [54] 
only consider navigation expression to return a single element). Additionally [55] also give a 
mapping of @pre, result, OCL If expression and OCL Let expression. 

Souquieres and Ledang also contribute in the research of mapping UML Statechart to B, 
continuing the work of Meyer, Nguyen and Lano. Their contributions are identifYing two types 
of events ( deffered and non deffered events) and proposed a mapping of both type of events to 
B. Non-deferred events are events that must be handled immediately just after its occurrence and 
deferred events can be handled in another state [34]. Non-deferred events can be modelled using 
B implementation construct or B refinement constructs with B inclusion primitives [34]. 
Deferrable events are modelled by introducing a buffer that stores events when they are deferred 
and removed from buffer when events are handled. Both non-deferred and deferred events are 
modelled using B refinement construct because, if compared to implementation construct, 
refinement construct avoids auxiliary operations [34]. 

Other contributions of [34] are modelling asynchronous communication between state
charts and a framework that creates specification in B from both structure (class) and behaviour 
(states) diagrams. The result can be use to check the conformance of both diagrams. 

Butler and Snook [37] take a different approach than Souquieres and Ledang [55], and 
Marcano and Levy [53, 54]. The research presented in [37] does not directly translate UML 
models to B and in [37] Butler and Snook did not even specifY their intension to verity UML 
models. Their work is more to providing formal modelling capabilities by synchronising UML 
with B. The synchronisation of B and UML is achieve by first creating a UML profile that used 
stereotypes to close the gap between elements in UML and elements in B. Second, they create a 
constraint language called 11B (micro-B) that is closer to B expressions than OCL. Using the 
UML profile and 11B language allow the translation of UML models to B specification, which 
the later can be used for verification. Translation in [37] is also shown in Appendix B and we 
only took the translation of UML. 11B translation is not taken thus translation to important 
elements such as operations, invariants and post conditions are not specifY in Appendix B. 
Translation of 11B is neglected because the language is of no interest in this project. 

Both [34] and [37] translate UML state charts in B and the difference between the work 
of Meyer, Nguyen and Lano (taken from [34]) compared to [37] is the representation of an 
object state. Both work represent all state of a class as a enumerated set but [37] represent object 
state as a variable of type one of the element in the enumerated set, while Meyer, Nguyen and 
Lano (taken from [34]) represent it as a variable that define as a function from variable of type 
objects that owns the state to the enumerated set. Transitions are modelled as B operation in 
both, and Meyer, Nguyen and Lano also modelled Actions and Events in the same way [34]. 
There is no indication of how statechart Action and Event is modelled in [37]. However, [37] did 
introduce the idea of invariants in states and decision points (similar to the one in UML Activity 
diagram). 
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A formal mapping of UML has been done by Kim and Carrington in [33]. The mapping 
is done by first representing elements in UML metamodel in Object-Z. This representation only 
covers elements in the class model. Second, abstract syntax and semantics of Object-Z language 
in UML class model is created so that Object-Z syntax will have the same representation as 
UML syntax. This will simplify the mapping of UML to Object-Z. A representation of Object-Z 
abstract syntax and semantics in Object-Z specification are created and the mapping is done 
between both representations of the language in Object-Z. The mapping rules are written as 
Object-Z specification. 

Based on the work in [33], Roe et.al. [52] proposed a mapping of UML and OCL to 
Object-Z. The mappings of individual elements of UML and OCL are shown in Appendix C. 
The mapping covers main elements of class model (class, attributes, operations, associations, 
inheritance, and association class), and OCL expressions (invariants, pre conditions, post 
conditions, result keyword, @pre). Operations on OCL basic types and collections are mention 
but examples and explanation are only given to selected operations of collections. OCL 
expressions that fail to be mapped are OCL IF expression, collect, iterate, subsequence, and 
some operations on integers and real. There are also no explanations on the compatibility of 
OCL types to Object-Z types. 

2.1.3 Mapping UMLIOCL to Higher-Order logic 
Previous research have map OCL to two Higher-Order logic (HOL) languages; PVS and 

Isabelle/HOL. In [50] other than OCL the mapping to PVS also include the mapping of class 
diagrams and state machines. State machines are mapped into graph while class diagram are 
mapped into enumerations that contains all the names of classes in the class diagram. Attributes, 
operations are also mapped to enumerations. The mapping proposed in [50] can only be apply to 
class diagram that have association with multiplicity 0 ... 1 and does not have generic classes, and 
flat state machines. 

The most important issue that need to be resolve when mapping OCL to PVS, and is 
explained in detail in [50], is how to represent OCL 3 valued logic in PVS that only have two 
values for its logic: true and false. Besides true and false, OCL other value is undefined. In OCL 
undefined value can be a result of using recursive function in OCL, using universal quantifier 
with alllnstances() operation on types (e.g. integer) that creates infinite sets, and accessing 
undefined values in variables or arrays [50]. Some standard operations provided by OCL also 
generate undefined value because the operations are partial functions [50]. 

The solution to map undefined value in PVS in (50] depends on how the value is 
generated. If the value is generated from partial function operations, domain of the operation will 
be restricted so that the operation is now a total function. If undefined is the result of a recursive 
function, the recursive function in PVS must have a ranking function and a termination proof 
that need to be defined by the user. Using universal quantifiers with alllnstances() operation that 
create an infinite set can be solve by using PVS FORALL expression on a type that is similar to 
the type in OCL. For undefined value obtain from accessing undefined attributes, [50] only 
assume that all attributes are defined and have values. 

Mapping of OCL to Isabelle/HOL also consider the problem of mapping undefined 
value (51]. (51] handles undefined value by creating lifted type for each type. Lifted types have 
additional value to represent undefined [51]. Besides undefined other concerns when mapping 
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OCL to Isabelle/HOL are mutual recursion between object instances, dynamic types and 
extensible class hierarchies. 

Other than [50], mapping of UML state chart to OCL have also being done in [35]. 
Work done in [35] aim in checking the correctness of UML statecharts compared to its 
semantics and syntax. To achieve this, three theories in PVS-SL is written for abstract syntax of 
UML statechart, well-formedness rule of UML statechart and semantics of UML statechart 
respectively. Formalization steps specified in [35] is supported by a tool called PrUDE (Precise 
UML Development Environment) [35, 36]. PrUDE provides proof strategies to proof well
formedness and validity ofUML models [36]. 

2.1.4 Model checking UMUOCL 
Model checking is a technique to check properties of a model based on properties given 

by users. A common way to specify properties for this technique is by using temporal logic and 
the most common temporal logic is Linear Temporal Logic (LTL) and Computation Tree Logic 
(CTL) [46]. Verification using temporal logic usually supported by a model checker like the one 
specified in [46], [47], [48] and [67]. 

NuSMV is the model checker use in [ 46] to verify workflow model with formal 
requirements. Workflow is modelled using UML activity model and the requirements must be 
represented in LTL. For NuSMY to be able to verify workflow model, an extension for strong 
fairness constrain is added to the tool in order to ensure all loops eventually exits [46]. 

TABU (Tool for the Active Behaviour of UML) is a tool for verifying UML activity 
model and UML statechart [47]. TABU will take as input a XMI file that is generated by UML 
modelling tools such as Rational Rose or ArgoUML. XMI will be translated automatically into a 
formal specification that can be latter use in Symbolic Model Verifier (SMV) tool. To complete 
the verification, user need to provide properties in temporal logic and TABU provide assistance 
for this task. SMV can process both L TL and CTL. 

Rhapsody is another tool that provides verification of UML models by comparing the 
model with properties specify in temporal logic. VIS (Verification Interacting with Synthesis) is 
the tool use for verification and accepts two input, finite state machine (FSM) description of the 
model and the properties in CTL [ 48]. The UML models need to be translated into FSM, but 
instead of translating it directly, Rhapsody translates it to SMI (System Modelling Interface). 
SMI is preferred over direct translation because translation from SMI to FSM is already 
available [ 48]. Properties in CTL are generated from two sources, temporal pattern definition 
and Life Sequence Charts (LSC). [48] does not indicate specific type of UML model but from 
the example given, Rhapsody can verify class model and state chart. 

SPIN is a well known model checker that checks properties of a model written in 
PROMELA (Process Meta Language). In [67] a translation of UML state charts to PROMELA 
is given where each class is translated to a PROMELA process that have only one argument, the 
instance number of created object. However [67] restrict their research by only testing their 
translation on state charts used to modelled protocols. 

From our study, only one research has been found to check properties of OCL using 
model checking tools. In [56] a translation of OCL syntax to BOTL is given where BOTL is an 
object-based extension of CTL. One notable translation of BOTL is to translate OCL collections 
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(set, sequence and bag) to arbitrary list. Arbitrary list is chosen because it is sufficient to 
represent sets and bags, and solve the problem of non-determinism [56]. However the use of 
arbitrary list is only for flatten (non-nested) collections. Also, [56] does not specify any tools 
that automate the translation of OCL to BOTL or tools that model checked BOTL. 

2.1.5 Other verification of UML 
One way of verifYing UML is to check for consistencies between UML models. 

Consistencies are a concern for modelling language like UML that allow the representation of a 
system from multiple views. It is normal to see software being design using UML to have 
multiple diagrams that represent the software from multiple views. 

Model Consistency Checker (MCC) is a tool that checks the consistency of UML model 
by using UML metamodel to represent domain knowledge and user models as individual 
knowledge [38]. Individual knowledge is compared with domain knowledge to check 
consistency of user models. Translation of UML metamodel and user model to knowledge is 
done with Knowledge Representation System (KRS) and Description Logic (DL) [38]. User 
models are the input for MCC and can be provided by UML modelling tool such as Poseidon. 
MCC also used Racer, a DL engine, to check the consistency of models. 

Another approach is consistency checking for UML models are through constraint 
checking. There are two types of constraints for UML, syntactic and semantic constraints [39]. 
Syntactic constraints are constraints that are written in formal language and can be check 
automatically while semantic constraints are the same constraints written in natural language. 
There are many levels of constraints as specified in [39]: 

• Paradigmatic level: Constraints on metamodel 
• Paradigmatic extension level: Constraints on domain-specific application of model using 

stereotypes( e.g. UML for real-time or UML for web service) 
• Modelling domain level: Constraint on styles of design (e.g. design that will be 

implement in Java cannot have multiple inheritance) 
• Target domain level: Constraint on the design element itself (e.g. attribute stud en tid in 

class Student cannot be null) 
• Implementation level: Constraint when translating designs to code (e.g. constants in 

design does not have a value for it to be translate into C++ code) 
In [39] a tool called Constraint Checker (CC) is introduced. CC is an expert system that checks 
constraints of UML model. UML model constraints are translated in production rules and it will 
be used by inference engine Sherlock for checking systems design. CC will accept a system 
design in XMI (XML Metadata Interchange) and translates it to knowledge base for Sherlock to 
diagnose. 

Consistency rules in UML can be considered as constraints of paradigmatic or 
paradigmatic extension level. Constraint that is normally specified using OCL in a UML model 
is of target domain level. 

Malgouyres and Motet [ 40] formalize UML consistency rules in CLP (Constraint Logic 
Programming). Consistency is check by first taking a UML model and coding it in CLP. CLP 
representation of the UML model with consistency rules (also in CLP) will be input to CLP 
solver for diagnosis. In [ 40] to fully automate the process of checking consistency of UML 
model, UML metamodel and MOF is also formalise in CLP. Formalizing UML metamodel and 
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MOF allow the inheritance of consistency rule used for checking them to be re-used in checking 
consistency ofUML model [40]. 

Another tool that checks the consistency ofUML models are presented in [41]. The tool 
takes XMI files that have been added with semantics for each element and compare it with 
Specification Language for XML Semantics (SLXS), a XML document that contains the 
consistency rule [41]. Adding semantics to XML element is base on XML Semantics technique 
(propose to check the semantic of XML document) and the semantics are added as attributes to 
the element [41]. 

Besides work to check the consistency of UML diagrams other works exists that did not 
fall into any of the categories we specified above. A framework called Property Verification 
Framework (PVF) is proposed in [43]. PVF verifies UML models from properties that are taken 
from UML abstract syntax, well-formedness rules and semantics of UML, same as [42]. The 
framework is integrated with RIVIERA, a UML modelling tools. User can select which property 
to be check and verification will be done by calling internal methods or using theorem provers. 
There is no theorem provers integrated with the framework and there is no translation module 
(translates UML model to theorem prover language) provided [ 43]. The only suggestion made 
for using theorem prover is through RIVIERA that can use MAUDE theorem prover [43]. 

Another verification for UML based on properties is proposed in [44], but unlike [42] 
and [43], [44] is aim at Aspect-UML. Aspect-UML is a UML profile for Aspect-Oriented 
programming. The work in [ 44] focuses on verifying interactions in Aspect-UML models and 
separate properties to verify as local properties of global properties. Local properties are pre and 
post conditions induced by woven aspects or advices, while global properties are invariants for 
aspects [44]. Alloy [45], a tool for analysing model, is used in verification. Alloy came with a 
modelling language based on first-order calculus. Verification is done by translating the model 
into element of Alloy modelling language and properties into Alloy predicate [44]. 

USE validates UML models by creating snapshot of the system that represents the 
system state at a particular point in time [49]. The snapshot can be created using ASSL (A 
Snapshot Sequence Language) that allow the user to create snapshot by specifying the properties 
of the system [49]. USE work with 4 types of file: [49] 

I. USE model (.use): Contains information on classes, associations and invariants 
2. command file (.cmd): Responsible in performing the validation test 
3. invariant file (.invs): Additional properties of the snapshot 
4. ASSL file (.ass!): Procedures in constructing the snapshot 

The validation starts when the command file loads USE model file. The command file can then 
load the ASSL file to create a snapshot. Snapshot with specific properties can be created by 
loading invariants file before loading ASSL file. When loading the ASSL file and running 
procedure inside ASSL file, USE will display the output which is the existence of valid state for 
the ASSL and invariants file. If there is a valid state, sequence of operations that leads to the 
valid state will be displayed. 

From all the previous research, this project is most interested in works that maps UML 
and OCL to formal languages. OCL has been map to B, Object-Z, PVS and Isabelle/HOL. 
Research on mapping OCL to B and Object-Z mostly concentrates on mapping constraints on 
classes (invariants) and on operations (pre/post conditions). Mapping of OCL types and its 
operations are mention but only [55] discusses it in details. 

Page 16 of Ill 



Transfonning OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman Ab. Rahim 

Research mapping OCL to PVS and Isabelle/HOL on the other hand concentrate on 
handling the differences of First-Order logic (OCL) and HOL (PVS and Isabelle). It concerns so 
much on this issue that it neglects translation of other parts of OCL such as invariants, pre/post 
conditions, operations on basic and collection types, and @pre. 

Comparing all the formal languages used in representing OCL, representation in Object
z seems to be the clearest. What it means by clearest is the Object-Z specification generated 
from the translation can be easily traced back to its UML model and OCL constraints. The 
reason for this is because Object-Z already supports object-oriented concepts. Other formal 
languages need to handle these concepts during their translation thus creating complex mappings 
and specifications. 

PVS, B, Isabelle/HOL and Z (parent language of Object-Z) will be discussed in more 
detail in Section 2.2. 

2.2 Automated Theorem Proving 

Automated theorem proving is a form of automated reasoning where theorems specified 
in mathematical notations are verified using software tools. There are three types of tools for 
theorem proving; model checkers, interactive theorem provers, and automated theorem provers. 
Table 2.2.1 give a brief description about the three types of tools and examples. The description 
is taken from [27]. 

Theorems are normally written in first-order logic (FOL) or higher-order logic (HOL). 
FOL, also known as predicate calculus, is an extension of propositional calculus with quantifiers 
(existential and universal) and variables in propositions, while HOL is the combination of logic 
and functional programming [21]. Another definition of HOL is a predicate calculus where 
extension of variables can range over function and predicates, logic is typed, and there is no 
separate syntactic category of formulae [28]. 

Table 2.2.1 :Summarisation of different types of tools for theorem proving 

Tvoe Description 
Model Checker Decision procedures for temporal propositional logic. Suitable to 

show properties of finite state machines. Limitations in the size of 
state space that a model checker can handle. Model checkers can 
check large formulas of easy proofs. Examples are SMV, SPIN, 
Step and Murphi. 

Interactive Theorem Systems that process logical formulas and apply inference rule on 
Prover (ITP) the formulas. Command script is created and executed to produce 

proof. Human intervention is needed when proving the formulas. 
High expressive power and flexibility in the type of logic to be used. 
HOL and FOL is the most common logic to be used and the chosen 
logic will determine the expressiveness of the theorem prover. ITP 
can prove complex proof in a large formula. The downside of!TP is 
proving a formula needs intervention from knowledgeable human in 
the domain area, logic and language of the prover. Well known ITP 
are NuPrl, PVS, Isabelle and HOL svstem 

Automated Theorem Programs that validate a formula without anv intervention from 
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Prover (A TP) 

2.3.1 PVS 

user. Nonnally use FOL because there are a lot of effective 
inference rules and proof procedures. ATP can proof small but 
complex formulas but the complexity of proof will drop as the 
formulas gets larger. OTTER, SPASS, Gandalf and SETHEO are 
exam les of ATP. 

PVS is a combination of formal specification language and tools to conduct theorem 
proving. PVS specification language is a strongly typed HOL with a type system that includes 
built-in type (integers, real and Booleans), user define unintepreted types, enumerations, sets, 
tuple, records, functions, inductively defined abstract type (binary trees and list) and co
inductively defined abstract type (streams) [25,26]. Having a strong typed language allow 
specification written in PVS to have no type errors and a consistent higher-order logic. To 
support a strongly typed language, a type checker system is provided but it is not algorithmically 
decidable [25]. Users can also create a new type by sub-typing base types using predicates. 

The main building block of PVS specifications are parameterised theories. Theories can 
contain axioms, assumptions, theorems, obligations, types, subtypes, variables, constants, 
functions, macros and etc. Explanation on theories and its components will be discussed in 
Chapter 4. Theories as the main construct in PVS specification imply that PVS specification 
language can be either model-based or property-based. Property-based specification languages 
describe a system by specifying its intended properties without creating model of the system, 
while model-based specification language creates a model of the system [24]. 

As mention earlier, PVS also include a proof checker. Theories are proved in a goal
directed manner and proofs are represented as a sequent [25]. To improve the 
performance/reliability of the proof checker, PVS uses powerful primitive inference rules and 
strategies [25]. Strategies are a group of frequently used proofs [25]. 

The next two subsections will discuss about two theorem proving tools; Isabelle and 
HOL-S; and two formal specification languages; Z and B. 

2.3.2 Other Tools for Theorem Proving 
HOL-S and Isabelle are two theorem provers that use HOL. Isabelle as a generic 

theorem prover also has versions that uses other type of logic such as lsabelle/FOL (Isabelle 
with FOL) and Isabelle/ZF (Isabelle with Zennelo-Fraenkel set theory) [29]. One similarity 
between PVS, Isabelle and HOL-S is they support a notion of theory where inside a theory types 
can be define, axioms and functions can be created, and variables or constants can be declared. 

2.3.2.1 HOL-S 
HOL-S is greatly influence by LCF (Logic for Computable Function) system and a lot of 

features in HOL-S are taken from LCF. New feature of HOL-S but not in LCF is separation of 
consistency-preserving definition principle from arbitrary axioms [28]. HOL-S is supported by 
powerful rewriting subsystem for forward proof technique but proof can also be generated in 
goal-directed manner using tactics [28]. In HOL-S tactics is a function that split a goal into sub
goals and records the reason why proving sub-goals will prove the goal [28]. 
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There are four types of terms in HOL-S which are variables, constants (variables that 
cannot be bound by quantifiers and have a fixed type), function application (relationship 
between domain and range) and lambda-abstraction (denote a function/operation) (28]. HOL-S 
also allows theories to be combined or extended. Theory extension is a common way to create a 
new theory in HOL-S. 

2.3.2.2 Isabelle 
Isabelle/HOL (Isabelle) is the Isabelle version for HOL. Types that are supported by 

Isabelle are base types (Boolean, truth values and natural number), type constructor (list and set), 
function types (total function) and typed variables [21]. As in functional programming, terms in 
Isabelle are formed by applying functions to arguments. Formulae are terms of type Boolean, 
such as the constant True and False, logical connectors, quantifiers and equality [21]. Isabelle 
also has three types of variables, free, bound and schematic. Schematic are free variables that 
can be instantiated by another term during process (21]. 

2.3.3 Specification Languages 
Section 2.2 discussed various work in verifYing models by representing models into 

specification languages and using tools to verifY the representation. The specification used in 
some of the work are written in either B or Z. Formal specification languages are used to specifY 
what the system should do and avoid specifYing how [23]. To be more precise, formal 
specification languages are used to specifY the requirements but not the implementations. This is 
true for most specification languages but B and Z allow the use of the language to specifY the 
implementations as well. 

2.3.3.1 B-Method 
B-Method is a method in developing software that encourages the use of B specification 

language not only in writing formal specification but throughout the development process. Use 
of formal mathematical notations throughout the software life cycle is achieve by stepwise 
refinement where formal specification is refine by including formal specification of design and 
implementation. With stepwise refinement, formal representation of design and implementation 
can be verified for correctness and conformance to specification. Stepwise refinement will also 
allow non-determinism rules introduce in the specification to be resolve when refining [22]. 

B is a model-based specification language where specifications are written by creating 
model of the system. Model of the system can be specified using Abstract Machine Notation 
(AMN) and it is the main building block for software specification [22]. With AMN, a large 
specification can be created by combining smaller specifications represented by machines. 

A machine is similar to objects in object oriented programming and it has a name, local 
states (variables), invariant (condition that must be true at all times), initialisation state and 
operations (behaviour of the machine) [22]. Operations also act as an interface to change the 
state of a machine and other machines cannot change the state of other machines directly. 
However, a machine can have several relationships with other machines such as include 
(machine A is part of machine B), extend (machine A is part of machine B and all operation in 
machine A is promoted), uses and sees [22]. 

B seems to be a suitable specification language to be used with MDA and 
transformations. MDA introduce the idea of transformation from PIM to PSM this is similar to 
the term refinement in B-Method. This means the concept of stepwise refinement in B-Method is 
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similar in objectives to what is being proposed in MDA where each transformation from PIM-to
PSM or PSM-to-PSM is taken as a refinement from specification to design and finally to 
implementation. 

2.3.3.2 z 
Similar to B, Z is also a model-based specification language base on FOL and set theory 

(23]. Z stresses on operation abstraction process using high-level mathematical structures such 
as arbitrary set, relation, function, sequence, bag and tree [23]. The operation abstraction process 
is the process of defining an operation by specifYing what are the inputs, outputs, pre-conditions 
and post-conditions of the operations. Pre-conditions are rules that need to be true in order for 
the operation to be executed while post-conditions are the rules that must be true after the 
operation is executed. 

The schema is the basic construct of a system specification written in z. Spivey (24] 
explained a schema consist of a collection of named object with a relationship specified by some 
axioms. Similar to machines in B, schemas allow specification to be broken up into sub
specification and each sub-specification is represented by a schema. Complex specifications can 
be created by connecting a number of schemas using logical connectors (AND or OR). But, 
unlike machines, schemas represent a state in the system only using variables, and do not 
encapsulate any behaviour (operation). Operations in Z, or the result of executing an operation, 
are specified in a separate schema. 

From the description in the previous paragraph, schemas in Z can be used in two ways. 
The first use of schemas is to specifY a state of the system or an object in the system [23, 24]. 
For example, a schema can be created to represent a phone book that have two entries a name 
and a phone number. A schema can also specifY rules of a valid phone book for example a name 
can only be associated to one phone number. 

The second use of schema is to represent the change of state of the system cause by the 
execution of an operation [23, 24]. For example, change of state when adding a new entry (a pair 
of name and telephone number) in a telephone book. When using schema in this way, a schema 
can be parameterised and give output. 

There is similarity in the concept of schema and the concept of structure in C 
programming language [30]. This similarity is obvious when schema is use to represent a 
complex type that have a state. Structure in C is also simi Jar where when creating a new 
structure, the programmers actually create a new complex type by encapsulating variables of 
basic types and arrays. Although conceptually, structures unlike objects do not have a state but 
changes of values in variables inside a structure can be taken as a change of state, the same as 
object in object oriented, schema in Z and machine in B. This observation seems to be correct in 
certain situations such as the phone book examples given above. Situations may exist where 
schema used to represent complex type but does not resemble a structure. 

Refinements are also supported by Z and there are two types of refinements, data 
refinements and operation refinements [30, 31 and 32]. Data refinements refine data structures in 
Z such as sets and sequence to data types or structure that is supported by programming 
languages. When refining data structures, the refine data structure must have the same properties 
of the data structure is Z [31]. Operation refinement in Z refines operations (usually represent by 
a schema) based on the new refined data structure. Preconditions schemas for the operation can 
also be defined as part of the process of refining an operation. Properties of the refined operation 
that needs to be check are applicability (refined operation can be applied safely whenever it is 
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safe to apply operation in the specification) and correctness (refined operation gave the same 
output and produce the same state change as the operation in specification) [31]. 

2.3 Model Transformation Technology 

As mentioned earlier, model transformation technology that will be discussed here is 
chosen from Eclipse GMT and M2M project. Technologies inside these projects are QVT and 
ATL for M2M project and Epsilon, VlATRA2, MOFScript, and UMLX for GMT project. 
MOFScript is a Domain Specific Language (DSL) created to transform models to text 
specifically from models to implementation code or documents. UMLX project provide 
complementary tools and concrete graphical syntax to model transformation [2]. Currently 
UMLX is using ATL in transforming UMLX models to QVT [2]. 

Besides technology and languages in GMT and M2M project, other languages exists 
such as GreAT, A TOM, BOTL, Jamda, AndroMDA, OptimalJ, ArcStyler, XDE and etc. 
Czarnecki and Hilson [3] provide a classification on model transformation languages mentioned 
above. The classification is done based on design features of transformation (see Appendix A). 
Major categories of transformation languages are also proposed in [3] which are Model-To-Code 
language and Model-To-Model language. Model-To-Code is further divided into Visitor-Based 
approach and Template-based approach. Model-To-Model can use Direct-Manipulation 
approach, Relational approach, Graph-Transformation-Based approach, Structure-Driven 
approach or Hybrid approach. 

Further discussion will be on QVT, ATL, Epsilon and VIATRA2. UMLX is excluded 
because UMLX is a supporting tool for transformation languages. 

2.3.1 QVT 
QVT is proposed by the OMG as part of the Model-Driven Architecture (MDA) 

initiative. QVT is a query, view and transformation language created by combining multiple 
proposals from organisations and groups. The result is a language and standards for tools 
specified in [4]. 

Figure 2.3.1 is the architecture of QVT transformation language. QVT is a hybrid of 
declarative and imperative constructs [5] where the declarative construct is divided into 2 layers. 
QVT declarative construct, Relations and Core, are somehow the same but in different level of 
abstraction. Between the two, Relations is a more complex language that supports object pattern 
matching and object template creation while Core language is simpler and only support pattern 
matching over a flat set of variables [4]. Transformation can be done from Relations language to 
Core language and in this case the Core language act as a reference for the semantics of 
Relations language [ 4, 5]. Traceability in transformation process is done automatically in the 
Relations language but need to be managed manually in the Core language just as any other 
MOF objects. 
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QVT has two imperative languages, Operational Mappings and Black Box. Operational 
Mappings is the standard imperative language while Black Box is a plug-in mechanism for 
executing complex algorithm from external code programmed in any programming languages 
[5]. Operational Mappings can be used in two approach, (I) operational transformation and (2) 
hybrid transformation [4]. Operational transformation implement a transformation using only 
imperative constructs while hybrid transformation used imperative construct to initiate object 
patterns specified in relations. Black Box must be use with care because transformation using a 
black box is not control by the transformation engine. The transformation process is partially or 
fully executed by the black box program making traceability by transformation engine difficult 
[5]. In order to be able to trace the transformation process is by explicitly implement a Relations 
[4]. 

In [4], conformance of tools to the QVT standard can be at one or more of the 12 
conformance points. There are two dimensions used in identifying conformance of a tool, 
lnteroperability and Language. Language dimension represent the two declarative construct 
(Relations and Core) and Operational Mappings language that made up QVT. Interoperability 
dimension specify four functionalities [4]: 

I. Syntax Executable: Be able to execute syntax of any language construct in Language 
dimension. 

2. XMl Executable: Be able to import and execute QVT transformation in XMl 
serial isation 

3. Syntax Exportable: Be able to export model-to-model transformation in any language 
construct in the Language dimension 

4. XMI Exportable: Be able to export model-to-model transformation into its XMI 
serialisation 

Conformance points are the combinations of elements in Interoperability dimension and 
Language dimension. The combinations that created the 12 conformance points are best shown 
in Figure 2.3.2. An implicit requirement that is not shown in Figure 2.3.2 are tools that is Syntax 
Executable must also be Syntax Exportable for the same language level and tools that is XMI 
Executable must also be XMI Exportable in the same language level. 
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Figure 2.3.3: QVT conformance table 
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Although QVT is the standard transformation language as proposed by OMG, more and 
more transformation languages have been created since the publication of [4]. Instead of 
developing tools that conform to QVT requirements, research groups are creating new model 
management languages to fulfil the requirements in QVT RFP or [4] with the addition of other 
functionalities. 

The existences of these languages are to overcome the shortcomings of QVT which is 
said to be immature for unidirectional transformation, and difficult to use [6]. Also, QVT 
specification only concentrates on model transformation which is just a small part of model 
management. There are no indications or explanations in [4] of facilities to extend other model 
management operation such as model comparison, model merging and management of multiple 
metamodels. Platform such as AMMA and Epsilon is currently working on providing support for 
these operations. 

2.3.2 AMMAIATL 
ATL is a transformation language similar to QVT. It is now part of a model management 

called AMMA. Other than ATL, AMMA also consist of Atlas Model Weaver (AMW), Atlas 
MegaModel Management (AM3) and Atlas Technical Projectors (ATP). AMW proposed the 
idea of specifYing relationship model between source model and target model. The relationship 
model then can be use to create transformation script in any direction (source to target, target to 
source or bi-directional) [7, 8]. Before AMW is proposed, the process of weaving a source 
model to a target model is done implicitly by human when they create a transformation script. 
AMW initiative extracts the task of identifYing these relationships and creates metamodels and 
tools to weave source and target models. 

The advantage of using AMW is the creation of transformation scripts can be done 
automatically in any direction instead of creating manually two transformation script one for 
each direction [8]. Another advantage of using AMW instead of only transformation is the reuse 
of transformation patterns in specifYing the relationship between model elements [8]. The 
patterns can be reuse for any source or target models that confirms to any metamodel that is 
woven using the same relationship. Weave models can also be used as a source to trace the 
transformation. 

The AM3 project is an initiative related more to model management than transformation. 
Atlas proposed the term megamodel to represent a M I level model that contains other models. A 
new meaning for Zoo is also introduced, which is a type of megamodel that contains all models 
that confirms to the same metamodel [9]. A TP is a new project that tries to identifY the 
projections between different technological spaces and incorporate it in AMMA platform. The 
projections will be used in transformations applying A TL. 

A TL transformation language supports two components of QVT which is query and 
transformation. A query in ATL is done using OCL, in much the same way as in QVT. A TL can 
only transform models that conform to MOF and that have fully initialised model elements. This 
means that a modeller can navigate through elements from source model, source metamodel, 
target metamodel, ATL metamodel and current transformation model [10]. ATL can be 
considered as a hybrid language that allows the modeller to construct fully declarative rules, 
fully imperative rules (procedure) or hybrid rules that combine elements of both declarative and 
imperative rules. 
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There are two types of transformation rules in A TL, called rules and matched rules. 
Called rule are rules that call A TL predefine operation or modeller-define operation while 
matched rule is used in declarative rule [I 0]. Declarative rule have source (inPattern) and target 
(outPattern) pattern. Source patterns used match rule and OCL to assign elements of source 
metamodel to variables while target patterns used match rule to bind values !Tom variables to 
elements in target metamodel. Rules can be inherited and modeller can also create abstract rules 
which have similar concepts as abstract class in object oriented programming [ 10]. A TL abstract 
syntax mention above can be represent using textual or graphical concrete syntax. 

Traceability information can be added to ATL transformation scripts in order to generate 
traceability model elements. Traceability model just like any other model have traceability 
metamodel [11]. Traceability is also supported internally by ATL transformation engine. ATL 
transformation engine will store runtime information on transformation being done [I OJ. Atlas 
used Model-In-Action (MIA) transformation engine developed by Soft-Maint for ATL instead of 
creating its own engine [12]. Table 2.3.1 shows the complete design features of ATL taken from 
[3]. 

Table 2.3.2: Design features of ATL 

Design Features 
Transformation Rules Full declarative, full imperative or hybrid 
Rule Application Seeping Seeping for both source and target model 
Source-Target Relationship Separate source and target model but support in-place 

transformation 
Rule Application Strategy Deterministic 
Rule Scheduling Implicit and explicit, internal scheduling 
Rule Organisation Support rule inheritance 
Tracing Separate storage location and automatic 
Directionality Unidirectional 

2.3.3 Epsilon 
Epsilon is a suite of DSL for model management contains in the same platform and base 

on one common language, Epsilon Object Language (EOL). The objective of Epsilon is to 
provide platforms for development of model management DSL without the need to re-implement 
the same basic language features and redeveloped tools [13]. To achieve this, two base layers, 
Epsilon Model Connectivity (EMC) and EOL, are created. EMC layer will interface with 
different modelling technology by providing driver specification [ 13 ]. Currently EMC driver 
exist for Eclipse Modelling Framework (EMF) and Meta-Data Repository (MDR). 

EOL built upon OCL for model navigation and adds features to overcome the 
deficiencies ofOCL (because OCL is a constraint language, not a model management language) 
[13, IS]. EOL supports statement sequencing and grouping, access to multiple models, model 
modification, predefine operation for debugging and error reporting and reusability of user
define operation [IS]. The most notable new feature of EOL compared to other transformation 
languages are the reusability of user-defined operation. User-defined operation can be reused in 
any DSL in Epsilon platform and can be exported and imported into external model management 

programs. 
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Figure 2.3.3 is the latest architecture of Epsilon and currently Epsilon has five DSL, 
Epsilon Transformation Language (ETL), Epsilon Comparison Language (ECL), Epsilon 
Validation Language (EVL), Epsilon Wizard Language (EWL) and Epsilon Merging Language 
(EML) [ 14). There is another language that is not in the figure, the Epsilon Generation Language 
(EGL). EGL is a template based model-to-text transformation language that uses EOL and is 
similar to MOFScript [ 15). 

Eclipse-based 

Development 

Tools 
Epslon 

Transformation 

L~(ETL) 

Future task-specific lan&LJaaes 

~~~ 
~~~ 

Figure 2.3.4: Epsilon Architecture 

Below are brief descriptions of the model management DSLs mentioned above: 
• ETL [13]: a rule based transformation language that transforms elements in source 

model to elements in target model. 
• ECL [16]: a language that compares source and target model elements. The need for 

ECL arose when researchers found that comparison is an essential process for other 
model management processes such as model merging and model transformation testing. 
Model comparison is based on the fundamental notion of a match defined between 
model elements. There are four categories of matched elements, (la) exist elements in 
target model that match and conform to elements in source model, ( 1 b) exist elements in 
target model that match but not conform to elements in source model, (2a) no elements 
in target model exist in target model but exist in domain of comparison operation and 
(2b) no elements exist in both domain of comparison operation and target model. 

• EVL [13]: a language for constraint and consistency checking amongst models; in 
particular, it supports inter- and intra-model consistency checking, and also improves 
error/warning reporting features in other DSLs in Epsilon. 

• EWL [ 14): a transformation language created specifically for transformation in the 
small. The term transformation in the small means transformations that updates selected 
group of model elements. The selected element is explicitly chosen by the user. The 
opposite of transformation in the small is obviously transformation in the large, which is 
generally supported by ETL. Transformation in the large executes batch transformation 
on model elements specified in transformation programs. 

• EML [17]: Merging language that is built on top of ETL and ECL. A merging process 
requires model comparison, conformance on feasibility of merging, merging all models 
and lastly removing inconsistencies in the result model. Comparison and conformance of 
merging is done using ECL compare and conform rules. Merging is done using merge 
and transform (from ETL) rules depending on type of elements. If there exist matching 
model elements in source models, elements will be merge but if there is no matching 
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elements, the elements will be transform. EML also allows the use of strategies which is 
a merging rule define from metamodels. Strategies can be created for comparison and 
mergmg process. 

EML also support traceability features by creating a second result model (besides the 
merging result model) that have annotated traceability stereotype. These stereotypes will specify 
from which source model the model element came from and if it is located in all source models 
<<common>> stereotype will be used [18]. The annotated result model is a solution that 
combines embedded traceability (traceability link embedded in result model) and external 
traceability (traceability model that confirms to traceability metamodel) [18]. Embedded 
traceability has the problem of flooding the result model with stereotypes while external 
traceability requires human to inspect two models to trace a transformation. Loosely coupled 
traceability used in ATL [II] is an example for external traceability. 

ETL can be considered as a new transformation language if compared with A TL and 
VIATRA. Categorisation work in [3] does not include ETL because at that time ETL was still in 
its development. The categorisation is also suitable for EML, EWL and EGL. Table 2.3.2 will 
describe the design features of ETL and features of EML, EWL and EGL where relevant. 

Table 2.3.3: Design features of ETL 

Desi!!n Features ETL features 
Transformation LHS/RHS Syntactically typed variables. Patterns are in string 
Rules form, represented in abstract and textual concrete 

syntax. Logics are executable and have imperative 
and declarative constructs. 

LHS/RHS Syntactic LHS and RHS is syntactically separated using ':=' 
Seoaration symbol 
Bidirectional Onlv suooort sinl!le direction rule 
Parameterization Rules can be oarameterise 
Intermediate There is no immediate structure. 
Structures 

Rule Application Seeping Scope of transformation can be set to certain model 
element. ETL does this by specifying in 
transformation script. EWL allow user to explicitly 
choose model elements to transform 

Relationship between Source & Target ETL and EML will create new target model but 
EWL can have in-place transformation 

Rule-Application Strategy ETL, EML rule application strategy is deterministic. 
EWL use interactive strategy 

Rule Scheduling Form User has no control of scheduling algorithm 
!imolicit) 

Rule Selection ETL and EML can have guards as an explicit 
condition. EWL allow interactive selection of rule 

Rule Iteration Rules can be iterate using recursion, looping and 
fixooint iteration 

Phasing ETL does not have any phase when executing 
transformation but EML has. 
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Rule Modularity Support modularity by grouping rules into module 
Organisation Mechanism 

Reuse Mechanism Rules can be inherit and can be called from other 
rules (logical composition) 

Organisational ETL is source oriented but Epsilon allow creation of 
Structure DSL with independent structure 

Tracing Storage Location Traceability information is stored in a separate 
model 

Control Traceability links is created automatically for ETL. 
Directionality Transformation can only be done in one direction. 

Bidirectional transformation can be done using two 
complementary unidirectional transformation 
scripts. 

Based on Table 2.3.2, ETL is a unidirectional and hybrid model-to-model transformation 
language. It is also very useful to specifY to what extent Epsilon languages fulfils the main 
requirements of QVT RFP. This will show the suitability of using Epsilon as a QVT tool. Some 
of requirements ofQVT RFP are fulfil by design features specified in Table 2.3.2. 

Table 2.3.4: Degree offulfilment of Epsilon to QVT RFP 

QVT RFP Requirements Epsilon 
Proposal shall define a query language Epsilon develop EOL as its query language 
Proposals shall define a language for Currently Epsilon have ETL, EWL and EML 
transformation definitions 
The abstract syntax of transformation will be Abstract syntax of Transformation is done 
define in MOF using Context Free Grammar (CFG) 
Transformation language can create target model Transformation using ETL, EWL and EML 
from source model automatically is done automatically by providing tools 
Transformation language enable the creation of a Not supported 
view of a metamodel 
Incremental changes in source model may be Not supported 
transformed into changes in target model 
immediately 
Proposals shall operate on model instance Epsilon can transform models that confirms 
defined using MOF toMOF 
Proposal may support bidirectional Bidirectional is only supported by having 
transformation two unidirectional transformation 
Transformation may support traceability of Traceability information is recorded 
transformation execution automatically in a seiJarate model 
Proposals may support mechanism for reusing Transformation rules can be extend, can be 
and extending generic transformation definition called from other rules or by creating 

strategies (only for EML) 
Proposals may support transactional Currently Epsilon does not provide database 
transformation definition like transactional transformation 
Proposals may support the definition of EWL support in-place transformation but 
transformation where the source and target ETL and EML will create a new model 
model is the same 
Provide support for black-box implementation. EOL can callout to java codes using 

wrappers 
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Another approach to show conformance of ETL to QVT is by using a QVT conformance table 
(Figure 2.3.2). Although the conformance table from [4] is intended to be used with tools, it can 
be used for transformation languages with minor modification. In [4] there is an explicit 
explanation that conformance for language dimension means only for the concrete syntax in [ 4] 
but for the table to be used for Epsilon (or other transformation languages), this constraint will 
be disregarded. Removing the constraint allows ETL to be categorised as QVT-Operational
Syntax Executable and QVT-Operational-XMI Executable. 

2.3.4 VIATRA2 
The VIATRA2 model management framework is aim for a more specific market 

compared to AMMA and Epsilon. VIA TRA2 is targeted for safety critical, embedded, and 
robust e-business application, while AMMA and Epsilon is developed without any constraint on 
application. 

All VIA TRA2 targeted applications require precise system development and VIATRA2 
used formal methods to support precise model-based system development [ 19]. Because of this, 
all transformation in VIATRA2 must be specified in a precise way [20]. 

VIATRA2 proposed the Visual and Precise Metamodeling (VPM) instead of using MOF 
metamodeling standard. This is because MOF is claimed to be unsuitable for multi-level 
metamodeling, which is important for working with multiple technological spaces [19]. 

VIA TRA2 transformation language can support both model-to-text and model-to-model 
transformation. Model-to-text transformation is done using a template-based approach while 
model-to-model transformation is done using graph-transformation-based approach [3, 19]. 
Viatra Textual Command Language (VTCL) is created for model-to-model transformation and 
Viatra Textual Template Language (VTTL) for model-to-text transformation. VTCL combines 
graph transformation (GT) and abstract state machine (ASM) technique where GT is used to 
define rule for model manipulation and ASM is used to define control structure [19]. 

VIA TRA2 currently conforms to all mandatory and optional requirements specified in 
QVT RFP except for (I) support for declarative and bidirectional transformation and (2) support 
for view generation [ 19]. 

2.4 Hypotheses 

From the study of specification languages and theorem proving tools, two concerns 
anse: 
I) Is there going to be any difficulties when transforming OCL, a specification language based 

on FOL, to PVS which uses HOL? 
2) Can OCL be translated into a property-based specification language, or must it be translated 

into model-based specification language? 
From these concerns, two hypotheses are drawn and are shown in Listing 2.4.1. 

Listing 2.4.1: Project Hypotheses 
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HI: There is no problem transforming from OCL to PVS cause by the nature of 
OCL that use FOLand PVS that use HOL 

H2: OCL can be represented in property-based form languages 

I Next chapter: Project methodology, requirements and planning 

3. REQUIREMENT ENGINEERING 

Chapter 3 will discuss the first project activities which are requirement identification, 
selecting a project methodology and planning the design implementation. Two development 
concerns will also be discuss in the final section. 

3.1 Requirements 

This project has two types of requirements, functional and non-functional. Functional 
requirements are the capabilities of the transformation or a specific list of what the 
transformation supposed to do and the model that comes out of the transformation. Non
functional requirements are the properties of interest that the transformation in this project need 
to have. Table 3.1.1 is the list of functional requirements and Table 3.1.2 is the list for non
functional requirements. Both functional and non-functional requirements will be given 
priorities. These priorities will be used in planning the implementation. 

Requirement priorities are determined by its importance in transforming OCL to PVS. 
Priority for requirements in transforming OCL types are determined by the probability of it 
being used. Priority for requirements in transforming OCL expressions is based on its type and 
the probability of it being used. For example, OCL Property expression is more likely to be used 
than OCL Let expression and requirements for expression in OCL standard library has high 
priority because some of the expressions are related to types that have high priority. 

Table 3.1.5: Functional Requirements 

' 
. . .. I' 1111 • I ' I ' 

FROJ Transformation shall transform OCL types to its equivalent in PVS 
FROI.l Transfonnation shall transform OCL Integer type to its equivalent in High 

PVS 
FR01.2 Transformation shall transform OCL Real type to its equivalent in PVS High 
FR01.3 Transformation shall transform OCL Boolean type to its equivalent in High 

PVS 
FR01.4 Transformation shall transform OCL String type to its equivalent in PVS High 
FROI.S Transformation shall transform OCL Ordered Set type to its equivalent High 

in PVS 
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FR01.6 Transformation shall transform OCL Set type to its equivalent in PVS High 
FR01.7 Transformation shall transform OCL Sequence type to its equivalent in High 

PVS 
FROl.8 Transformation shall transform OCL Bag type to its equivalent in PVS High 
FR01.9 Transformation shall transform OCL Tuple type to its equivalent in PVS High 
FROl.lO Transformation shall transform OCL Void type to its eguivalent in PVS Medium 
FROl.ll Transformation shall transform OCL Invalid type to its equivalent in Medium 

PVS 
FR01.12 Transformation shall transform OCL Any type to its ~uivalent in PVS Medium 
FR01.13 Transformation shall transform OCL Type type to its ~uivalent in PVS Medium 
FR01.14 Transformation shall transform OCL Message type to its equivalent in Low 

PVS 
FR01.15 Transformation shall transform OCL Element type to its equivalent in Low 

PVS 
FR02 Transformation shall transform OCL ex_l!!ession to PVS 
FR02.1 Transformation shall transform OCL State Expression to PVS Low 
FR02.2 Transformation shall transform OCL Message Expression to PVS Low 
FR02.3 Transformation shall transform OCL Type Expression to PVS Hig_h 
FR02.4 Transformation shall transform OCL Variable Expression to PVS H!&h_ 
FR02.5 Transformation shall transform OCL If Expression to PVS Medium 
FR02.6 Transformation shall transform OCL Let E~ression to PVS Medium 
FR02.7 Transformation shall transform OCL Literal Expression to PVS High 
FR02.8 Transformation shall transform e~ession in OCL standard lib@!)'_ High 
FR02.9 Transformation shall transform OCL lterator E~ression to PVS Medium 
FR02.10 Transformation shall transform OCL Iterate Expression to PVS Medium 
FR02.11 Transformation shall transform OCL Property Expression to PVS High 
FR02.12 Transformation shall transform OCL O_Q_erationCall Expression to PVS Hig_h 
FR02.13 Transformation shall transform OCL Navigation Expression to PVS High 
FR03 Transformation result shall be able to be prove by PVS theorem prover High 

A full list of OCL expressions and descriptions are given in Appendix D. The semantics and 
well-formedness rule of OCL expressions and types can be found in [57). All sub-requirements 
of FRO I and FR02 are based on the OCL metamodel that is taken from [57]. There are other 
metamodels proposed in [61] and [62] but metamodel from [57] is chosen because it comes from 
the OMG and this will increase the applicability of the projects findings. 

Table 3.1.6: Non-Functional Requirements 
,·~ ~ .. ~ -
~-''I~ ! ~ 'I!J . . ' • : f r. • 1 ~ 1 1 ;.~ l. 

1 ~· ~ ll~ I -. r 1 1 : .. 
NFROl Correctness- Semantics of OCL will be preserved after transformation High 

toPVS 
NFR02 Deterministic-The same OCL will always generate the same PVS High 

when running the same transformationpro~m 
NFR03 Simplicity- Transformation result shall be simple in order to ideally Medium 

allow PVS theorem prover to carry out proof without human 
intervention 

NFR04 Traceability- Result of transformation shall be able to be trace back to Medium 
source model 
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For this project, the transfonnation will be done using Epsilon (ETL to be specific) in 
Eclipse. Epsilon is chosen over other transfonnation languages because 1) experts in Epsilon are 
available for assistance and guidance in the university and 2) Epsilon has never before this been 
used in analysing model properties through transfonnation, thus increasing the research value of 
this project. 

A decision has also been taken on what kind of transfonnation is suitable for our 
purpose. We have three choices, which are model-to-model transfonnation, model-to-text 
transfonnation and text-to-text transformation. The first option is chosen because some of the 
infonnation needed can only be obtained from UML models that the OCL being transfonn 
constraints. The most obvious one is class attributes. 

Class attributes have a type and in OCL this infonnation is not explicit. To know the 
type, one must look at the UML model or make a judgment based on the value used with the 
attributes in OCL expression. To transform OCL to PVS all elements of OCL that is being 
transformed must have a type. Although types for attributes can also be identified from OCL init 
or derive statement where the type of the attribute is specified in the context, only type for 
attributes that have init or derive statement can be identified. Other attributes and its type will 
still be unknown ifUML model were not referred. 

From the justification above, an assumption can be made that transfonnation of OCL to 
PVS can only be done without the transfonnation of the UML model if and only if the OCL is 
complete. The definition of complete here is the OCL must specify invariants of all classes, 
initial or derive value for all attributes, and operation's body, pre or post conditions for all 
operations. But complete OCL is seldom created, thus it is safer to include the transformation of 
UML model with the transfonnation of OCL. Table 3.1.3 adds new functional requirements to 
the list of requirements in Table 3 .1.1 based on the explanation above. 

Table 3.1.7: Requirements from UML model 

The reason given above eliminates text-to-text option. Model-to-text transformation is 
also not the best option because PVS specification language cannot completely represent all 
OCL expressions. In order to have model-to-text transfonnation, all OCL expressions should 
exist in PVS similar expressions. This requires the creation/extension of PVS libraries in 
addition to creating the transformation program. We chose model-to-model transfonnation so 
that the project doesn't need to extend PVS libraries and still have the possibility of maintaining 
the completeness of the transformation. Besides, having a PVS model as the result of the 
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transformation means the result will be available for other model management activities such as 
comparison, merging and validation. 

Because of the decision to use model-to-model transformation and to transform both 
UML models and its OCL constraint, the process that we explain in Chapter 1 is change. Now 
the process will accept not only imported OCL constraints but also UML models. The 
transformation result will be a PVS model that will then be serialised to PVS specification. 
Figure 3 .1.1 show the new process. 

Proof I PVS Theorem I 
Pro-

I UM~ASE IIIT1l0f\ UML 

Figure 3.1.5: Process in proving properties of OCL constraints 

3.2 Methodology 

A Spiral model (with modification) is chosen for this project. The modification made to 
the model is the activities that will be done in iteration. In each cycle, there are three main 
phases which are planning, implementation and testing. During the planning phase, requirements 
to be implemented in that iteration are chose/identified. Test cases will also be prepared for each 
requirement. The second phase of the development is the implementation where the 
transformation is designed and implemented. After implementing the transformation, it will be 
tested using test cases created in the planning phase. Figure 3.2.1 is the diagrammatic fonn of 
our methodology. 

-1\_ Planning 

/ 1 1 Analyzll risk ' -v 2] -lect requirements 
31 design teiR ca-

~ !:::--

l;1- Implementation 

Testing 
11 design tranaformatlon 

~ 
2] create tranaformatlon 

1 1 conduct test program 

Figure 3.2.6: Methodology 

Compare to the spiral model proposed by Boehm [63], this project spiral model strips 
down some of the features of the original model. Features that are removed are prototypes, 
concept of operation, requirement validation and design verification. Instead of multiple levels 
of design and test, the strip down spiral will conduct only one level of design and test for a cycle. 

Page 32 of 111 



Transforming OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman Ab. Rahim 

This project has only one risk, which is the inability to complete all the requirements 
because of time constraint. During the planning phase of each cycle, priority of requirements and 
the order of implementation may change as a reflex to risk analysis. 

There are other methodologies available for developing software. Since this project is 
about model transformation and the product is a transformation program written in a 
transformation language, existing methodology does not quite fit into the project. Table 3.2.1 
summarise the investigation that has been done on identifying methodologies suitable for this 
project. 

Table 3.2.8: Methodologies evaluation 
FV ···;l.:;:~""'';:""(i6~~~-~"li'Pi'~""~ .• ~~>~?,...;::?"'<.:.,..,,~~..:.·~~,_,,.,;~ '1;~~~:--_.:;·~r;"~'k"";C j .---c.--·· ... · ... -,;t:Q, 
Ec ~~ J,J_ 'J lJ~! ~,!.'l r~;~~~~--~~~~(~:.'J_ ·.::~J.r~~)l.: .. L~Jj~lJJ ; .. j ~1c~.~:ilt;;.~ ... ,.:: .~: · · ~ · ~ ~~ ~-:~~ 
Waterfall This project is experimental in nature and more suitable with methodology 

that have iterations 
Incremental This project have evolutionary characteristic where priorities of 

requirements may change over time 
RAD RAD separate the project into teams but this project must be done by one 

person 
Prototyping There is no prototype for this project 
Spiral Seems to be the best candidate for its evolutionary nature but the activities 

(as explained in r 1 n need to be change 
COTS There is no existing libraries or components that can be reuse for this project 
RUP More suitable for large commercial project [58] compared to experimental 

project such as this. 
Agile (XP, Agile encourage collaboration and communication among teams and many 
SCRUM,ASD, techniques in Agile methodologies (paired programming in XP and serum 
DSDM) meeting) is catered towards this. This special technique is not needed in a 

single-person project 

Since none of the existing methodologies fit directly with this project, the proposed 
methodology took some of the concepts from methodologies specified in Table 3.4. The spiral 
structure is chosen because it allows the project to change its priorities in selecting which part of 
OCL need to be transformed. Spiral structure is evolutionary in nature also means that it is 
incremental. Incremental characteristic allow flexibility in the completeness of the final product. 
The project can stop implementing the transformation either because the project already meet its 
objectives or because of time constraints. 

Another concept that is taken from existing methodology is Test-Driven Development 
(TDD). TDD encourages the creation of test cases before development and the implementation 
process is done based on the test cases. This will lead to the development of 
products/components that only passes the test, avoiding gold-plating features that are not needed, 
and increases the confidence of the developer in the product. 

Next section will discuss the project's implementation plan. The plan will divide the 
requirements into cycles. 

3.3 Project Implementation Plan 
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After identifying and classifying requirements, the rest of the project will be divided into 
several cycles where in each cycle; requirements will be selected for implementation in that 
cycle, design of the transformation and implementation ofthe transformation will be created and 
the transformation will be tested. This subsection will divide the functional requirements into 
cycles as shown in Table 3.3.1. Non-functional requirements will be fulfilled in all cycles. 

However, the first cycle is unique where it will not follow the project development 
phase. In the first cycle, a metamodel for PVS specification language will be created, thus there 
is no need for planning, design and testing. 

Table 3.3.9: Project implementation plan 
•• .-, I • ~ ... ' N': '?,' • 

~;i-·:~--~~ ••• ~ .J ' - . - ~ L - ·-· ~~- . -
; 

FROI.l 2 FR02.2 5 
FR01.2 2 FR02.3 2 
FR01.3 2 FR02.4 2 
FR01.4 2 FR02.5 4 
FROI.5 3 FR02.6 4 
FR01.6 3 FR02.7 2, 3, 4 
FR01.7 3 FR02.8 2,3 4 
FROI.8 3 FR02.9 3 
FR01.9 3 FR02.1 0 3 

FROI.lO 4 FR02.11 2 
FROI.ll 4 FR02.12 2 
FR01.12 4 FR02.13 2 
FR01.13 4 FR03 2-5 
FR01.14 5 FR04 2 
FR01.15 5 FR05 2 
FR02.1 5 

Requirement FR02.7 and FR02.8 will be implemented in 3 cycles because OCL Literal 
expression and OCL standard library contains expression that support different types; primitive 
(cycle 2), collections (cycle 3) and general (cycle 4) types. Requirement FR03 will be 
implemented in all cycle except cycle I in order to say that all transformation result must be able 
to be proved by PVS theorem prover. Requirements in cycle 5 will only be implemented ifthere 
is enough time because types (FRO 1.14 and FRO 1.15) and expression (FR02.1 and FR02.2) are 
related to UML behavioural diagrams while other requirements are more frequently use in UML 
structural diagram. 

3.4 Development Concerns 

Model transformation is a new approach to software development and the artefact in 
model transformation is the transformation program. In order for software development to 
remain as an engineering discipline, engineering practises must also be applied to developing 
model transformation. Thus, the development of model transformations also has specification, 
design and testing phases. This subsection focuses on the issues of testing and design of 
transformation. 
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Testing transformations has started to gain attention from the MDA research 
community. Current research focuses on applying and customizing existing testing technique for 
software to test model transformation programs. Functional testing which is a kind of dynamic 
testing is currently the technique being customized and adapted for model transformation [58, 
59]. 

Both [58] and [59] proposed a technique on how to generate test data for functional 
testing. Test data generation is one of the major concerns in generation of test cases for 
functional testing, other than identifYing the objective of the test cases and how to measure the 
result of the test [58]. One of the methods proposed is, generating test cases from model 
transformation specification (MTS) written in formal language [58]. MTS are a mapping of 
elements from the source model to elements of the target model [58]. [58] proposed a formal 
language called MTSpecL for writing MTS. 

Another method in generating test data is by conducting partition analysis to source and 
target metamodel. From a metamodel, test data can be generated from association multiplicities, 
class attributes and generalization [59]. Comparing the work in [58] and [59], [59] explicitly 
mention the use of category partitioning method and cover the issue of test data coverage and 
representative values. [58] pays little attention to these two issues and did not constrain their 
partition analysis technique to any method. It concentrates more on the use of MTS in generating 
test cases. 

Other contributions of [59] are using OCL to constrain the scope of metamodel being 
analyse, conducting static analysis on model transformation program for identifYing 
representative values, and automatic generation of models of test data. Using static analysis, 
representative values can be identifY by checking the transformation program for values that are 
being assigned or compared to attributes. Drawbacks of static analysis are human need to 
understand the transformation language and result of the analysis depends greatly on the 
transformation language being used [59]. In the automation of generating test data models, [59] 
proposed the use of systematic approach or bacteriologic approach. 

A framework for testing transformation has been proposed in [60]. The framework 
consists of Test Cases Generator, Testing Engine and Test Analyzer. Test case generator accepts 
input of source and target metamodel, transformation specification and test specification to 
generate executable test cases. Generated test cases, source model, expected model and 
transformation specification is given to test engine where executor component inside the test 
engine will generate the result model and comparator component will compare the expected 
model with the result model. From the result, test analyzer will highlight the errors in the 
transformation program. 

The comparator component in the testing engine compares result model with expected 
model using graph matching algorithms [60]. Another method of comparing models has been 
proposed in [16] where comparison is being done using the Epsilon Comparison Language 
(ECL). Using ECL requires human to write a comparison program in ECL, and given the source 
and target model the program will compute the compatibility of source and target model. 
Comparison result from ECL can be group into one of the four categorisations shown in Table 
3.4.1 [16]. 
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Transformation has correctly 
source to model 

Not matching but belonging to domain of Transformation is incomplete 

Not and not belonging to domain of Comparison in incomplete 

From the studies on transformation testing, research on transformation testing is still in 
its infancy and there are no tools that can be used to automatically test a transformation. The 
framework proposed in [60] is targeted for C-SA W transformation engine that uses Embedded 
Constraint Language as its transformation language. For this project, transformations will be 
tested using a comparison program written in ECL because it is easier to use the same tool 
(Epsilon) for both transformation (written in ETL) and comparison. 

3.4.2 Design 
Other than transformation testing, transformation design is a more pressing concern 

because as of now there is no published research for this topic. For the purpose of this project, a 
design notation will be proposed. The notation is neither complete nor universal in that it can 
cover the need of all types of transformation. The notation is only build to cater the need for this 
project. 

Design language for transformation is needed because of the same reason why 
developers need design/modelling notation to design software. It is obvious that transformation 
program is not abstract for people to understand and rely heavily on the language construct of 
the transformation language, the same reason why programmers communicate through diagrams 
and not through source codes. 

The design notation is influence by Atlas Model Weaver (AMW) [7, 8] that was 
previously mentioned in Chapter 2. AMW map the relationship between source and target model 
using links. Links is associated with strategies that can be reuse to show mapping of other 
elements. AMW has a metamodel but there is no example of AMW model in [7] and [8]. 

The proposed design notation also shows the source model, target model and the 
mapping between them. The mapping can have information that show how the source element is 
being transformed to the target element. Metamodel for the design notation is shown in Figure 
3.4.1. 

Lsource Eleme~ ~- --M~ppi,:;9·--- i TargetEiement 
'_t4>__ name : Stringi. *source ·-.-----"·:·--. ______ +t_a_:rg'--e7-it : Q;,.name : String 
1 i~· --- ~relat•onText : Stnng ,___ .

1
.- ; 

L ______ ~i1 1 .. ·.•- . ·1 

Figure 3.4.7: Design metamodel 

To better show the proposed design notation, a small example will be given in this 
section. The example is a transformation of class attributes to PVS (requirement FR04). An 
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attribute has a name, a type and an assumption is made that it does not have any initial value. 
The attribute will be transform into a variable in PVS of the same type. Figure 3.4.2 show the 
design ofUMLAttribute-to-PVS transformation. 

<<source>>! +type 
Classifier ;_,·C---·----------
. ··---·· ----~---------] 1 

:<<source>> 
-- ---- --- -- ~ Attribute 

0. n ~---------· 

<<target>> I 
-----: _ Variable - --- . I 

-- -------- ___j__ ___________ _ 

<<mapping>> · 
attribute=x; VAR t 
where 
x=Attribute. name 
t=Attribute.type 

Figure 3.4.8: Design for UMLAttribute-to-PVS 
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This chapter will focus on the transformation of OCL to PVS. The implementation will 
be broken into several cycles (section 3.3) and each section in this chapter will explain the work 
that had been done in a single cycle. Objective of each cycle are: 

• First Cycle: to create a PVS metamodel 

• Second Cycle: to design and transform classes, properties, operations, constraints, OCL 
basic types (and operations), and OCL expressions (property call, navigation call and 
operation call) 

• Third Cycle: to design and transfonn tuple type, collection types (and operations), 
iterator expressions and iterate expression 

• Fonrth Cycle: to design and transfonn Void type, Type type, Invalid type, and Any type 
(and operations). 

The implementation is broken down into cycles to follow the project plan that have been made 
during the requirement phase. Please see Chapter 3 and Appendix D for a more detailed list of 
transfonnation in each cycle. 

4.1 First Cycle 

The first cycle of the implementation creates a metamodel for PVS specification 
language. The task of creating a metamodel is not part of the requirements that were identified in 
the requirement phase. The metamodel is a prerequisite for the transfonnation and must be 
prepared before transformation can start. The metamodel can be created based on reference to 
the main language constructs ofPVS or by referring to the PVS syntax tree [64]. 

The PVS syntax tree explains the syntactic structure of PVS where a syntax structure is 
composed of other syntax structure. A metamodel created based on a syntax tree will represent 
the composition of the syntax structure; the result is a model with elements that have a 
composition relationship with other elements. The advantage of creating a metamodel based on a 
syntax tree is the metamodel will have elements that represent the detailed structure of the 
language. However, this detailed model is created at the expense of simplicity. For this reason, 
this project creates PVS metamodel based on the main language constructs which results in a 
more abstract metamodel. 

There are five groups of language constructs in PVS: theories, types, type expressions, 
declarations and expressions. As previously mentioned in Section 2, theory is the main language 
construct of PVS specifications. Inside a theory, one can have declarations of different types and 
language construct. Declarations consist of PVS expressions and PVS types are declared using 
type expression. 

Figure 4.1.1 shows the main packages in the PVS metamodel. The next subsection will 
explain the contents of each package. 

Page 38 of Ill 



Transfonning OCL to PVS: using theorem proving support for analysing model 
constraints 

PVSTheory 

j PVSExpressiOn' 

4.1.1 PVS Types 

r-~ 
! PVSTypeExpre! 

ssion 

PVSDeclaration 

----~-~ 

Figure 4.1.9: Packages in PVS metamodel 

Type 
~.,string 

~--"'~ ' c:;--"--:;-, ,--L-:~ ----- --- -· 
l_s::'~'" 1 , subtype 1 '------- ~-~=~~:_: =-·: ___ 1i __ ~~-~e~~-~ lR::r= sag __ -l 

! ~nt~ectioo{) 
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PVSType 

i '"ioo() 
: "count() 

' 'dH!ereoce{) 
""on() ' : 'nth() 
"symmetric-<lifference() ~rst() 
'intersection{) ~nsert() 

--~---

--~--'--" 

u 
~ 

Rational : 

<<Enumeratioo>> 
Set Operata 

~nion ----~-- -· 

~ntersectioo 
~ifference 
~ymmetric-difference 

«Enumeration>> 
AnthmaticOperata 

~ 
"'
~
~ 
~iW:Jes 
~em 

"" ~ ~· 
i~'" 

«Enumeration>> 
BooleanOpent:ct 
·~R -----

i~ND 
~DT 
~XOR 
~IMPLIES 

Figure 4.1.1 0: Meta model of PVS Types 

«Enumeration» i 

BooleanValue ' 

~TRUE: Boolea1 1 
~ALSE. Booteoo; 

Figure 4.1.2 is the metamodel for PVS types. This is not a complete set of all PVS types 
because the type system in PVS can be extended by importing libraries. Subtype is based on a 
type but the values are constrained by predicates. Subtype is an important part of PVS language 
because it helps simplify predicates, and functions are expressed over a subtype in order to make 
it total [64]. Functions are functions in set theory and a tuple is a list of values. Record is the 
same as tuple but order is not important [64]. Set, Bag and Sequence are PVS libraries for Set 
type, Bag type and Sequence type respectively. Set and Sequence library is provided in PVS 
prelude while Bag is taken from the NASA PVS library. 
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4.1.2 PVS Theory 

+exportedTheories 

I '-·) 

! Assuming i 
! i 

Theory Part 
~--------· 

+exportedNames 
O .. n 

.-. --- +bodYDeclara.tion __ ,. · ... ,: . -
·-----___- ._ Declaration 

. (fromP~~~Ciaration!. 

.. name : Stnng Importing 
------

Figure 4. I. II: Meta model of PVS Theory 

PVS theories consist of importing clauses, exporting clauses, assuming block and theory 
block. Importing clauses are statements to import external theories while exporting clauses 
specify part of the theory that can be shared with other theories that imports the theory. Export 
clauses can be used to specify a public interface of the theory and control the accessibility of 
elements in the theory. Assuming block contains Assumptions that are used to specify 
constraints for the theory while the theory block is the body of the theory where axioms and 
proof of the theory will be written. 

4.1.3 PVS Type Expression 

FunctionTypeExpr 

~lim TyPe 

j1 
' 
' 

+parameters ! 0 -_I/ .. n 

Type 
(fromPVSType) 

~a~-~~~ing, 

TypeExpression :.,+elementTypes 

1 .. n 

~- EnumerationTypeExpr .I SubtypeTypeExpr 
------- ·-- --i i--

RecordTypeExpr j: __ !u_pi~Ty_~Expr W 
- ------i[ . ----, 

1 ' . • 

+elemeq~j n 

!. UninterpretedConstantDecl il 

(from PVSOedaration) 
- ·-············· I 

' 

Figure 4.1.12: Metamodel for PVS Type Expression 

Type expressions are the general form used to construct different types in the PVSType 
package. Type expression is used in PVS declaration syntax and PVS expression. 
TypeExpression class represent a general form of a type in PVS and TypeExpression has 
subclasses to denote forms for different types in the PVSType package that are different from 
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the general form. Other types that are not represented by subclasses are represented by 
TypeExpression. Table 4.1 show the general form for each subclass of TypeExpression. 

Table 4.1.11: General form for type expression 

4.1.4 PVS Declaration 

Most PVS statements in theories are declarations. Declarations are statements that 
introduce PVS entities, where each entity will have an identifier that can be overloaded [64). 
Declarations use type expressions in introducing entities. Entities that are typed (have type 
expression) are variable, macro, inductive, constant and judgement. 

Constants in PVS can represent a function, relation or a fixed value. Unlike some 
programming languages, PVS constants do not need to have a value during its declaration (un
interpreted constants). Functions and relations are interpreted constants (and must have a value) 
and the value is the function/relation body. Function can also be declared as a type but the 
difference between a function declared as a type and as a constant is a function that is declared 
as a type only specify its signature while constant function is the actual function with signature 
and body. For example,.func:TYPE=[int -> int} is a function type and we can create function 
g:.func=(/ambda (x:int): x+ I) and function n:.func=(lamda {y:int): y*y). This feature is very 
helpful in representing abstract methods. 

Figure 4.1.13: Metamodel for PVS Declaration 

Judgements are constructs that will help simplify the process of type checking by 
explicitly stating that a value will be of a specific type. There are different types of judgement as 
shown in the hierarchy of judgement declaration. Subtype judgement is use to specify that a type 
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is a subtype of another type, simple judgment use to specify a value is of a given type and 
function judgement specify that the function will only work with the specified type [64]. 

Formulas and type are declared without any relation to type expression. Formulas are 
used when proving a theory and the body of a formula must return a Boolean value [64]. 
Assumptions can only be declared in the assuming part of a theory. 

i TypeRefaledDecf 

,/\, 

I lnterpretedConstantDecl 

L __ - ~------· 
:. Uninterpr~~Consta~-~~, :-~~btypeJu~_~n::!entDecl j.; ~ Constant..ucigementOecl 

"""""----·------ ... -- --····--····--· .. ! 

/ 
~---·-----· 

i ConstantRelationDecl i ConstantFunctionDecl 
_I ___ _ 

SimpleJudgementDecl 

-------· .. ·-·--
I Furx:trooJudQementDeciJ 

Figure 4.1.14: Metamodel for TypeRelated Declaration 

Type declaration introduces a type, where each type that is being introduced must follow 
the form (to use the type expression) of its type. For example, syntax to declare an enumeration 
type is T:Type = {r,g,b} where {r,g,b} is the form for enumeration type in PVS that is taken from 
PVSTypeExpression package. Interpreted types are a method to give a name to a specific type 
while uninterpreted types introduce a type that has the minimum constraint on the value it can 
have [64]. When a new type is declared by constraining the values it can have using predicates 
on a type, then the new type being declared is a subtype of the type use in its declaration. 
Subtype can be uninterpreted or interpreted. Interpreted subtypes are followed by a PVS type 
expression while uninterpreted subtypes only define its parent type. 
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TypeRelatedDecl 

' 
[ TypeDecl 

~-! ~ MacrosDecl t'"'li~Decl I 
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Fe<pretedTy~ectl[··· Interpret···.-__ --edTy.peD~ ... ' ... I· ~~ ____ Sut)ty_~~~- _i 

_ -- -- ----------- -l 1: _ .,_ .[~baserype:Typej 

f~merationOecl ' ' ' 
! - lnt~edCol;lstantDecl I 

+....alu8 +~~e +~lue 
1)t 1\ ~-_:_1 __ ,_ 

+\EIIueExpression 
+....alu~ 

,'·.{ ,. 

! EnumeratlonTypeExpr TypeExpression 
' (from PVSType~~J___ : !!_':':'~-~Jp~-E_~-JU-~-~~). 

' Expression . 
(from PVSEI<flllj~on): ::•wlueExpresslon 

Figure 4.1.15: Detail metamodel for Declaration hierarchy 

4.1.5 PVS Expression 

•pal'imVtlua 
fo. n ,,. 

Elpress>Oil! •apress~ 
··~--r-· 

' . 
Li 

Figure 4.1.16: Meta model for PVS Expression 

··~ ..... 
r 

·i 
VQbiiOecl I 
~ PV_9Jod.-nl j 

~l-'EipjWIIion' 

The PVSExpression package contains classes that represent different types of expression 
in PVS. Boolean expressions represent TRUE and FALSE value and operators on Boolean such 
as AND, OR, IMPLIES and etc [64]. Numeric expressions include numerals and arithmetic 
operators(+,-,* and/). Tuple and record expressions are expression that gives value to elements 
of a tuple and record respectively. Values in a tuple and record can be access using projection 
expression and record accessor expression respectively. Set expressions are expressions that 
create a set and table expression creates a table. 

IF and Condition expressions represent choices. It is equal to condition statements (IF
ELSE and SWITCH-CASE) in programming languages. Override expression is used to override 
the values of functions, tuples and records. Coercion expressions have the same purpose as 
judgement, it simplifies type checking. Since PVS allow overloading of identifier, using 
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coercion expressions will explicitly state to the type checker what the expected type for the 
identifier. 

+elseExpression Expression : +thenExpression ---- -------- -l 
O .. n __ !1' __ n 

[ ~--

i 
! BooleanExpr c-- .--····-------

. 1 +condition 

i IFExpr 
1 t -----· 

Figure 4.1.17: Structure ofPVS IF expression 

+inExpression 
1 

+valueExpression 

' c---
(from PVSOect>uation) 

L__ ______ _ 

i 
I 1 

i LetExpr 
--t-·-·--·--·· --

Figure 4.1.18: PVS LET expression 

The produced metamodel above is the final PVS metamodel for this project. The 
metamodel was not completed in just one cycle; it was developed over several cycles base on the 
incompleteness that is discovered. Next subsections will explain the transformation for each 
cycle and changes that have been made on the metamodel based on the transformation. 

4.2 Second Cycle 

The second cycle will focus on meeting requirement FROI.l. FROI.2, FROI.3, FR01.4, 
FR02.7, FR02.8, FR02.11, FR02.12, FR02.13, FR04 and FR05. The following subsections will 
discuss about the test plan, design and evaluation for this cycle. 

4.2.1 Test Plan 

variable or 
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coercion expressions will explicitly state to the type checker what the expected type for the 
identifier. 

+elseExpresslon 1. __ E_x_p_re~s-sl-on .- + thenExpresslon 

o .. n 1 .. n l 
J 

~leanExpr i 
~ 1 +condition 

1 

Figure 4.1.17: Structure of PVS IF expression 

+lnExpre~slon 
1 1 

•l· r Expression I-:::)-• ---------I(_L=e=.:t.::E::.:x!:.:.pr 

+valueExpress I on 1 

lnterpretedConstantDecl +locaiConstant 
(from PVSDecleretlon) 

~~~=11 .. n 

Figure 4.1.18: PVS LET expression 

The produced metamodel above is the final PVS metamodel for this project. The 
metamodel was not completed in just one cycle; it was developed over several cycles base on the 
incompleteness that is discovered. Next subsections will explain the transformation for each 
cycle and changes that have been made on the metamodel based on the transformation. 

4.2 Second Cycle 

The second cycle will focus on meeting requirement FROI.l, FR01.2, FROIJ, FROI.4, 
FR02.7, FR02.8, FR02.11 , FR02.12, FR02.13, FR04 and FR05. The following subsections will 
discuss about the test plan, design and evaluation for this cycle. 

4.2.1 Test Plan 

Test Content 
Transform UML class to PVS 
Pass Criteria 
A is created with the same name as the class 
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If the property is private, a variable is created. If property is public, an interpreted type is created 
and included in theory export clause. Variable or type name must be the same as property name. 
Variable or base must be the same 

Test Content 
Transform UML method to PVS funct · variable or constant 
Pass Criteria 
If the operation has arguments, PVS function created must have the same name, parameters and 
type with the operation. If the operation does not have arguments and visibility is private, PVS 
variable created will have the same name as the operation and the same type. If visibility is 

bt" d h t PVS stant d ·11 h th d I ! I .. 

r·.:· i • ·l . ;L'! •• r. : 
. . ~ ~ 

Test Content 
Transform ,.,. ... ,,,..,T, 

Pass Criteria 
ion to PVS function 

Function application expression created should have the correct function name and parameters 
in the correct order and value. 

Test Content 
Transform navigation expression to PVS expression that uses the variable created for the 
association end 
Pass Criteria 
If the association end is private, then use the created variable. If the association end is public, 
create a variable for the association end and use the new created variable. 

Test Content 
Transform nr''""'''""' 

Pass Criteria 
toPVS 

If the property is private, then use the created variable. Ifthe property is public, create a variable 
tl h d h I d . bl 

Test Content 
Transform class invariants to PVS 
Pass Criteria 

Test Content 
Transform OCL initial clause to PVS ion 
Pass Criteria 
Variable name use is assignment must be the same as property name and the expression must be 
semantical similar to the in OCL initial clause 
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Variable name use is assignment must be the same as property name and the expression must be 
semantical similar to the in OCL derive clause 

Test Content 
Transform OCL body clause to THEN section of PVS IF expression and OCL pre-condition 
clause to IF section of PVS IF on 
Pass Criteria 
A PVS constant function is created with parameters the same as the operation and return a 
Boolean or type that is returned by the operation. Inside the function there is a PVS IF 
expression for operation's pre-conditions (IF section) and body (THEN section). In the THEN 
section TRUE will be return and in the ELSE section FALSE will be return 

I -~ • 

r · • '. • I '. . ·.: 
I 

l " • -. '. ·- ........ '"' ' "'" . ....... • . 

Test Content 
Transform condition clause to PVS axiom 
Pass Criteria 
PVS axiom is created. Format of the axiom body is precondition function I TRUE IMPLIES 
post-condition expression. The created axiom will call precondition function created for the 
precondition clause or if there is no precondition clause TRUE is used. Post-condition 

must have similar semantic with OCL condition clause. 

Test Content 
Transform· 
Pass Criteria 

to PVS numeric 

~~"""'""'~:".:'1~~ 

lG ~--· _:~: ·:·: -~ -~-- .......... J 

Integer literal is transform to the same literal in PVS and OCL div and mod operation will be 
transform to PVS function 

t;~: ~ :- ~f·-:,-, ·. :~~-l"~:r--rx~~~ :r ~r~~:~r~7~:~~~"\·"!~~~~-r~~,.~~'"~~~=~··:-r~-z;.-.rr-~~:- -~~~- .. -. . -· ··: 

~ .... ~- -··- ···--·-- _ .. \ -- ~ .......... ~-~--~-·.,...;.-.~;..:;..,._ ___ ··-----.. ·~----·- -... •• --~ • • .;J 

Test Content 
Transform real 
Pass Criteria 

ion. 

Real literal is transform to the same literal in PVS and OCL floor, round,<,>,<=,>= operation 
will be transform to PVS and function 

Test Content 
Transform Boolean literal and """''""t''" to PVS Boolean 
Pass Criteria 
TRUE, FALSE value and NOT, AND, OR, IMPLIES operator in OCL will be transform to its 

· value and in PVS 

Page 46 of 111 



Transfonning OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman Ab. Rahim 

' J ~ ~. J. ·, • -,..-~ .. -; '.. l ' -~--! 1 

... • ~- ~·-. .. .#--- • ' 

Test Content 
Transform String literal and operation to PVS string 
Pass Criteria 
OCL string operation such as size(), concat(), toReal(), tolnteger() and substring will be 
transform to eQuivalent PVS string function. 

4.2.2 Design 
For our design, a decision has been made to change the notations. Instead of using class 

diagram notation as shown in Chapter 3, a collaboration diagram will be used instead. Reasons 
for the changes are discussed in Chapter 5. Figures 4.2.1 to 4.2.19 except for 4.2.13 and 4.2.14 
are the design for transformation done in the second cycle. 

~~ 1:~~sfonn» [ Th 
L_ss I I ~~eo~ry.z._ l 

ass=(tName:"THEORY) ~ 
ere 
ame:=Ciass .name J 

Figure 4.2.19: Class-to-PVS design 

2: <<transform>> 
> : VariableDecl 

<<Mapping>> 
Property = (name:TYPE=type) 
where 
name:=Property .name 
type:=Property. type 

<<Mapping>> 
Property=(name:VAR type) 
where 
name: =Property. name 
type: =Property. type 

Figure 4.2.20: Property-to-PVS and Association end-to-PVS design 

Opefaial = \tlame: VAR vType ~ 
v.t'oefe 
\tlame.=Opefalcnname 
vType =Opefamtype 
'------------

I OpefaiOI'F(!Nane. lYPE=[tl'nneter ->IRet\ITl)) 
v.tln 

OpefatKniiSibdity=PIAIUC] ~!Nane=Operatmname 
tl'nmeter=Operallon.pnmeter.type 

» tReh.m=Operalial.type 
t «msbm> ....., 

--7/• <TY....n-~ 
{~mpilillleleHloiEmJlly(~~ 

[Opelaticnparameter 1sEmpiy[l'f~ ~m \ISiblity=PRIIIA lEI 2:«,sr» 

Figure 4.2.21: Operation-to-PVS design 

~ 

J 
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<<Guard>> 
----- ------- -"-~~ 

[PorpertyCaiiExp. referred Property. visibility=PUBLIC] 
<<Action>> 
pName:VAR pType where 
pName=PropertyCaiiExp. referred Property. name 
pType= PropertyCaiiExp. referred Property. type 
<<Mapping>> 
PropertyCaiiExp=pName 

1: <<transforfn>> 
~~ ~~ E_)o(PfEIS_::O_i()n_ j 

r <<G-uard>> l> 
[PorpertyCaiiExp. referred Property. visibility=PRIVA TE] 
<<Mapping>> 
PropertyCatiExp=pName 
where 
pName:=PropertyCaiiExp. referredProperty. name 

Figure 4.2.24: PropertyCaliExp-to-PVS design 
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Transformation of property call and navigation call expression is similar. Both 
expressions will be transformed into a PVS expression depending on its visibility. If the 
visibility is public a variable is created first and the variable name will be used to represent the 
navigation call or property call expression. This condition exists because public properties are 
transformed into a type while private properties are transformed into variable. Since private 
properties are already transformed into variable, property call or navigation call expression for 
those properties will only be represented by the variable name. 

Figures 4.2.7 to 4.2.1 0 are the design for transformation ofOCL constraints (invariants, 
pre conditions, post conditions, initial clause and derive clause). 

'Class.invariant-(aName:ASSUMPTION expression) .. , 
where 
aName=class. name+"-invariant" 
express ion=class. invariant. expression 

Figure 4.2.25: Invariant-to-PVS design 

1: <<transform>> 
: Constraint· ------> : AssignmentExprl 

r· Property. initiaiValue=,(varName:=expression) 
i where 
! varName=Property.name 
I expression= Property. initiaiValue. expression 

Figure 4.2.26: Initial clause-to-PVS design 

' 
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1: <<transform>> 
> : Constraint: 

, ___ _ 

I 

: AssignmentExpr, 

c=--- . ·-·----~---- . ·----
'1 Property. deri~.eRule= (varNam e: =express ion) 
where 

! varName=Property.name 
1 express ion= Property. deri~.eRule. expression 

Figure 4.2.27: Derive clause-to-PVS design 

«Mapping» l.. 

I 
result : fNcme:(params->retum]= ..... 

fN<me:=Operation.name+"-constraint" 
pcvams:=Operation.ownedParam.type 
retum:=Operation.type.name 1 bool 

Exp~ssion 

3~--. <i<:part-otr> , Operation.result=\SrName 
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, v : v.ttere 
' ..arName: =Operation. result. representedPcrameter. name 

1: <<ifansform» 
\\> I 

: Operation --~--~ · 
ConstantFunctionOecJ 

2: <<part-of>> 
: IFExprj 

4: «transform>> 
v 

I 
Operation.postConstraint=(axiomNaTie:AXIOM axiomBody) ..... 

<· 

: «Mapping» 
! IF preCondition THEN txx:ly ELSE FALSE ..,... 
preCondition:::Operation.preConstralnt.exi)'EI 

j ssion 
1 body:=Operation.bodyConstraint.expression; 
I TRUE; 

axiomName:=Operation.name+''-post" 
axiomBody:=FORALL(Operation.ownedParam:Operation.ownedParam.type):booleanExpression 
booleanExpression.leftValue:= [filnctionCaU to operation-constraint] I 
Operation. postConstraint.leftOperand 
booleanExpression.operator:=Operation.postConstraint.operator I IMPLIES 
booleanExpression.rightValue:=Operation.postConstraint.rightOperand 

Figure 4.2.28: OperationConstraint-to-PVS design 

I 

Pre conditions, body clause and result are transform into a function where inside the 
function there is an If expression. Pre conditions will be transformed into condition part of the IF 
expression while body clause will form an expression in THEN block. Post conditions are 
transformed into axioms over the functions created for the preconditions. 

Class invariants are transformed into assumptions because, same as invariants, 
assumptions must be true at all times [64]. Initial and derive expression for properties are 
transformed into PVS assignment expression. 

Changes has been made to UML metamodel used in this project where an association 
from operation to OCL expression has been added. The OCL expressions represent the result of 
the operation using the result keyword. 
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1: <<transform>> 
)> 

«Mapping» 
Type.name:=TypeExp.referredType.name 

Figure 4.2.29: TypeExp-to-PVS design 

1: <<transform>> 

I :~ariable~xp( ___ --3l> : Expression j 
~-· --···--~ 

----·--···· 
VariableExp=pName 
where 
pName: =VariableExp. referredVariable. represented Parameter. name 

Figure 4.2.30: VariabteExp-to-PVS design 

Lukman A b. Rahim 

For the transformation of OCL basic types (and its operations) changes have been made 
to the OCL metamodel used in this project. A hierarchy of OCL standard library has been added 
to OCL expression package. Enumerations have been added to the metamodel to represent 
operators for OCL base types. Figure 4.2.13 and 4.2.14 show the OCL standard library 
enumerations and metamodel respectively. 

~Enumeratio~>> !. 

umericOperator : .,.,.. ' 

i-.- ; 
~~-
' (llo.l 
~bs 

1 ~max 
~~min 
--·-------

! <<Enumeration>>; 
Real Operator 

~< ... 

~> 
~<= ,.>= 
.. floor 
~round 

Figure 4.2.31: Enumerations added to OCL metamodel 
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OCLExpression ~el!presslon 
"---------------•. 

~--" 

StandardLib ; 

.~----, 

Constraint 
~LCiass)_ 

1 "~----~-----< 

Lukman Ab. Rahim 

·, OCLAny_L_i~- j i Set lib 
~ Booleanlib 

' 

Numeficlib ·: 

[ ~perator . Numeric?pe::j 

~eftOperand : OCLExpression 
~ghtOperand : OCLExpression 

i ~perator : BooiOperator 
' 

---·" lntegerlib ~! . R~-l~ib 
! ~eft Operand : Integer ; .. eflOperand Double 
~ghtOperand . Integer ; i ~ghtOperand : Double 

~~nteg~~p~-rator : lnteg~~~r~j i ::::~-~-~~~aiO~~or~ 
~ound() 

Figure 4.2.32: OCL standard library hierarchy 

BooleanLiteraiExp.booleanSymbol -> 
TRUE 

·OR 
:NOT BooleanLiteraiExp.booleanSymbol 
1-> FALSE 

: .. BooleanliteraiExp ~ ···---- ____j BooleanExprj 

BooleanLib 

' _.--j 

a, b:: Boolean 
a orb= a ORb 
a and b = a AND b 
a xor b = a XOR b 
nota= NOTa 
a implies b = a IMPLIES b 

Figure 4.2.33: Boolean-to-PVS design 

_:. :;;t_r_il_l_g_Lite~c~I_~><:P'] 
1: <<transform>> 

> 

! <<Mapping>> L;,.. 
j String.literai:=StringLiteraiExp 
[____ -·---

Figure 4.2.34: StringLiteral-to-PVS design 

: String I 
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,-------1: <<transform>> 
: Numericlib > 

a,b:Number 
a+b=a+b 
a-b=a-b 
a*b=a*b 
alb= alb 
a abs = abs(a) 
a max b = max(a,b) 

. a min b = min(a,b) 

Figure 4.2.35: General Numeric Operation-to-PVS 

1: <<tran>form>> 
: lntegerliteraiExn, · · : NumericExpr I 

______ j 
. . . "I 
2: <<transform>> 

.'7 

: lntegerlib [ 
a, b: Integer """ 
a divb =a dil.ides b 
a mod b = a rem b 

~-------·---·------

Figure 4.2.36: Integer-to-PVS design 

,--------1: <<transform>> 
: RealliteraiExp I _> __ _ 

----.------~ 
: NumericExpr 

2: <<transform>> 

Lukman Ab. Rahim 

./'7 la,b:Real---~ 
ja<b=a<b 
a>b=a>b 
a<= b =a<= b 

1 

a>= b =a>= b 1 

a. floor() = floor( a) 
a. round()= ceiling(a) 

Figure 4.2.37: Real-to-PVS design 

4.2.3 Evaluation 
Changes have been made to the PVS metamodel created in the first cycle. Enumerations 

have been added to PVS metamodel to represent operators for Boolean and arithmetic. Other 
main changes to the PVS metamodel include the identification of association for PVS 
expression, declaration and type expression to other elements in the metamodel, adding 
AssignmentExpr elements that inherits from Expression, adding ExportingTheory and 

Page 53 of Ill 



Transforming OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman Ab. Rahim 

ExportingName elements and adding attributes and methods to NumericExpr and BooleanExpr. 
ExportingTheory represents expressions that exports theory and ExportingName represent 
expression that exports other elements such as type and formulas. Table 4.2. I summarise the 
associations identified. Multiplicities, directions and roles for these associations can be viewed 
in the metamodel presented in section 4.1. 

Table 4.2.12: Association among PVS elements identified in the second cycle 

Transformation program and comparison program had been created for all the 
transformation in this cycle as specified in the requirements in Section 3. I and OCL libraries in 
Appendix D except transformation ofOCL String standard library, and self keyword. 

The Self keyword cannot be transformed because there is no equivalent language 
construct in PVS. The Self keyword is used to represent the current instance of the OCL context. 
If the context is a class, self can be used the same as this keyword in Java. Since PVS does not 
directly support 00 concept such as encapsulation and instances (the concept that the self 
keyword is based on), there is no transformation of the self keyword. Instead transformation of 
OCL statement such as self.age or self.getSalary() will be considered as a PropertyCallExp or 
NavigationCallExp for the first statement and OperationCaliExp for the second statement. The 
Self keyword in both examples will be omitted. 

Operation in OCL standard library for String cannot be transformed because the String 
library provided in PVS is not suitable to represent OCL String. In PVS, the String library 
represents a string as a finite sequence of character and there are no functions associated with the 
String library that is equivalent to operations on OCL String. 

4.3 Third Cycle 

OCL main concepts that will be transformed in this cycle are Tuple (requirement 
FROI.9), Set (requirement FROI.6), Ordered Set (requirement FROI.S), Sequence (requirement 
FRO 1.7), and Bag (requirement FRO 1.8). Each type has their own set of functions in OCL 
standard library (requirement FR02.8) and OCL lterator expressions (requirement FR02.9). This 
cycle will also transform OCL Iterate expression (requirement FR02.1 0) which is the iterate 
function that can be used with any Collection subtype. 
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Similar to what we did in previous subsection, this section will be divided into three 
main parts; Test Plan, Design and Evaluation. 

4.3.1 Test Plan 

Test Content 
OCL Tuple type shall be transform into RecordTypeExpr and accessing tuple element 

shall be transform into PVS 

Test Content 
OCL Ordered Set shall be transform into PVS uence 
Pass Criteria 
A se shall be c eated from OCL • • ·o th t turns d d t 
:~".; ··~.:~~ ....... !,1 ..-~ .... 1\':.[ . ~·\t; ·,1 .. ~ . ' . : 

·~ ,,. ..... __ • -~....;..,;,. .... ""'""-~·- -~ -· - .. ~. - ~-- .. ·~ OA0 ...... _ A • 

Test Content 
Iterate .. v,,.r,.,... shall be transform to a recursive function 
Pass Criteria 
A constant function declaration called iterate will be created. Iterate function receive a set as a 
parameter and returns a set. Inside the recursive function there will be a recursive called to the 
function and a termination rule that state the function will stop calling itself when there are no 

other elements in the set. ~I!~~::RiiOO~if!~~~ii~i.iiT~~~~~~~ 

Pass Criteria 
OCL iterator expression shall be transform to equivalent function that can return output of the 

t • r· \. /~ ;"' 1 ~l .. -;~·::·---~~q~~:"'~i-~T-"t,~~:'P:~·rn1 ~'"7'~--:\"':1,...T;-;::,:-.-.~~·;~ .. :-t.~,.·1i~"I~;.-·--t~1r-·--·~ · · i 
. . 
~~ - ~ '•'- • ~ •• _....... '•• • -~ _.. • • ~ - •• • . ' l - •~' '. • I '.. ~ I ~- 0 

Page 55 of 111 



Transforming OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman A b. Rahim 

and its shall be transform functions or lemmas 
Pass Criteria 
The PVS functions or lemmas must return the same result of the same type as the one return by 

4.3.2 Design 

1: «transJgrm» 

t : TupleType -------~--- --, 
I 

r : RecordTypeExpr 

«mapping» '] 
TupleType=RecordTypeExpr .1 

i where 
, r. elements. name: =t. elements. name 
1 r.elements. type:=t.elements. type 
'---------- ___ __j 

Figure 4.3.38: Tuple Type-to-RecordType Expression 

From Figure 4.3.1 OCL tuple type is transform PVS record type. The PVS record will 
have elements with same name and type as in the OCL tuple. For this purpose change is made to 
OCL metamodel used in this project. An association from TupleType to Variable is added to the 
metamodel. The Variable represents the elements in the tuple. Changes are also made to the PVS 
metamodel. An association between RecordTypeExpr to UninterpretedTypeDecl is added. In 
this relationship UninterpretedTypeDecl represents the elements in the record. For the purpose 
of completeness an association is also created from TupleTypeExpr to TypeExpression where 
the TypeExpression represent elements in the tuple. 

1: <<transfonn>> 

: Set lib! > 

<<mapping>> 
fi rstSet-secondSet=difference(fi rstSet, secondSet} 

·--. '--=---:-1 
I :Set 1 

~-·, 

' ' 

firstSet. intersection( secondSet}=intersection(firs !Set, secondSet} 
:first Set. union(secondSet}=union(firstSet,secondSet} 
I firstSet. sym metricDiiference.(secondSet}=sy ~metric-difference(firstSet, secondSet} 

Figure 4.3.39: Set library-to-Set Expression 
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1: <<transform>> 
: OrderedSetlib ---> 

--------~-------
:Sequence 

j <<mapping>> '--, 

I 

os 1.at(index)=nth(index,os 1) 
os 1. first()=first(os 1) 
I os 1. insertAt(index, object)=insert(index, object, os 1) 

' 

Figure 4.3.40: OrderedSet Library-to-Sequence 

Lukman Ab. Rahim 

1: <<transform>> 
> :Sequence! 

~
·-----·· ··-····'·-------- ······ 

<<mapping>> 
seq1.at(index)=nth(index, seq1) 
seq1.first()=first(seq1) 

. seq1. insertAt(index, object)=insert(index, object, seq1) 

Figure 4.3.41: Sequence Library-to-Sequence 

1: <<transform>> 
i B_agLib]___ __ > ____ __ 
I ' L__________.__ •• ,,, ___ _l 

! <<mapping>> 
bag1. intersection(bag2)= intersection(bag1, bag2) 
bag1. union(bag2)=union(bag1, bag2) 
bag1.count(object)=count(object, bag1) 

Figure 4.3.42: Bag Library-to-Bag 

I 

Figure 4.3.2, 4.3.3, 4.3.4 and 4.3.5 is the transformation of OCL Set, Ordered Set, 
Sequence and Bag. OCL Set, Sequence and Bag are transformed into PVS Set, Sequence and 
Bag. OCL Ordered Set is also transform into PVS Sequence. As part of transforming Set, 
Ordered Set, Sequence and Bag, their operations in OCL standard library will also be 
transformed to their equivalent PVS function. To transform this operations, new elements is 
added to the OCL metamodel as shown in Figure 4.3.6, 4.3.7, 4.3.8 and 4.3.9. 
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Set Lib 
~perator : Set-Operator 
~firsSet : SetType 
~econdSet : SetType 

'-····' 

r-----------~----,-----~-

seu~i~::;,ection ! ~~::.,~:~~=~ ] ,,--=5=-_~-c-__ t-c __ ~-:-""-:_io_n ____ E-__ :_-~--~-'J 

Lukman Ab. Rahim 

Figure 4.3.43: Subclasses of operation for sets in OCL standard library 

OrderedSetlib I 
~set1:6rd'eieC!setTypel 

! 

OrderedSetAtEx 
p 

i ~index : Integer! 

.. , ' 

OrderedSet 
FirstExp 

OrderedSetlnsertAt! 
Exp I 

~index : Integer 1 

~bject : AnyTypej 

Figure 4.3.44: Subclasses of operation for ordered sets in OCL standard library 

L_ .. 

Sequencelib 
· ~eq : SequenceType1 

--- ---------

____ j 

SeqlnsertAtExp 
~illdex : Integer· 
~bject : AnyType 

r-.. ·-----, 
'SeqFirst 

Exp 
-------~_:_J 

Figure 4.3.45: Subclasses of operation for ordered sequences in OCL standard library 

BaglntersectionEx 
p 

!~ag2: BagType
1 

! ! 
I 

: BagUnionExp 

~ag2 : BagT~pei 
[, BagCountExp .J 
~~t>ject : AnyTyp1 

Figure 4.3.46: Subclasses of operation for ordered bags in OCL standard library 
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Figure 4.3.6, 4.3.7, 4.3.8 and 4.3.9 only show the operation that has been successfully 
transformed. Besides the changes mention earlier an enumeration is also created for Set 
operators and the only operator for a set is the difference (-)operator. The enumerations and new 
elements added to represent operations for Set, Ordered Set, Sequence and Bag are part of a 
hierarchy of elements that represent all the operations in OCL standard library. 

For the purpose of transforming Set, Ordered Set, Sequence and Bag new elements are 
also added in the PVS metamodel to represent operations provided by PVS Set, Sequence and 
Bag library. This will be discussed further in the evaluation subsection. 

1: <<transform>> 
I !orAl~-! 

ForAIIExp ! 

--~>_· ____ ' FORALL :I 
~_indingsE>c:P£ .. 1 

-~··-·=-:---

;<<mapping>> 
! forAII=FORALL vars:predicate 
where 
vars: =forAII. iterator 
predicate: =forAII. body 

---

Figure 4.3.47: For All Expression-to-Binding Expression 

exist: ·: 
E)(iStExp j 

2: <<transform>> 
> 

<<mapping>> >-
exist=EXIST vars:predicate 
where 
vars: =exist. iterator 

: predicate: =exist. body 

EXIST: 
BindingsExp_r 

Figure 4.3.48: Exist expression-to-Binding Expression 

one: 
Q.r>_~E>- . 

3: <<transform>> 
--···-3>-

1 

<<mapping>> ~'::, 
one=exists 1! vars: predicate 
where 
vars: =one. iterator 

i predicate:=one.body 

exists1!: 
BindingsE~r 

Figure 4.3.49: One expression-to-Binding Expression 

: SortedByExp: 

4: <<transform>> 
~ sort: [ 

Seguen~~-~ 
! sortedBy=sort(~et) L-, 
!where I 

·, set:=sortedBy.source 

Figure 4.3.50: SortedBy expression to sort operation in Sequence library 
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select : 
SelectExp 

3: <<transform>> 
-----7 

-----~---·--· 

; select=filter(set, pr~dicate) ~ 
1where 
predicate:=selectbody 
set: =select source ' collect: 

i CollectExp 

reject=filter(set, NOT(predicate))l", 
where 
predicate =reject body 
set: ::;reject source 

· collect=filter(set,predicate) i'1 
where 

i predicate:=collectbody 
i set:=collectsource 

___ __J 

Figure 4.3.51: Select Reject & Collect expression to filter operation in Set library 

In order to transform OCL iterator expressions, a hierarchy of OCL iterator expression 
has been created (Figure 4.3.15). The need for subclasses is to simplifY the transformation and it 
arises when trying to transform OCL lteratorExp to PVS BindingExpr. Not all expressions in 
lteratorExp are suitable for transformation to BindingExpr. Only forA!/, exist and one can be 
transform into binding expression. This solution is also the solution taken in the metamodel 
created by Richters and Gogolla [61]. 

SortedByl 
Exp I 

Figure 4.3.52: Subclasses of lteratorExp 

CollectExp: 

For the purpose of the transformation, two new relationships are created for PVS 
BindingExpr. The first relationship is a directed link from BindingExpr to 
UninterpretedTypeDecl that represents variable in the binding expression. The second 
relationship is also a directed link to BooleanExpr. The BooleanExpr represents the predicate in 
the BindingExpr. 

forAll, exists and one operation are transform to PVS binding expression. sortedBy 
operation are transform to sort operation in PVS Sort_Seq library while select, reject and collect 
are transform into filter operation in PVS Filters library. 
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iterate : 
lterateExp 

1: <<transform>> 
> recursi.eFunction : 

ConstantFunctionDecl 

iterate,;iterate(x:type): RECURSIVE retumType ;; body MEASURE x 
where 

itype:=PVSType::Set I PVSType::Sequence I PVSType::Bag 
' retumType:=iterate. result. representedParameter. type 

Lukman Ab. Rabim 

: body:=iterate.body ··-·····-·· .. _.,, .. - ... ____ j 

Figure 4.3.53: Iterate Expression to Recursive Function 

An OCL iterate expression iterates through all the elements in a collection and generate 
results from the application of OCL expression inside the iterate expression. OCL iterate 
expression will be transform into PVS recursive function. PVS recursive function must be total 
and be able to terminate. This is not a problem because all OCL collections are finite and the 
termination rule for iterate expression can be the size of the collection. The problem in 
transforming Iterate expression to recursive function is there are no operations or expressions in 
PVS that returns the length of a sets, sequences or bags. Also, there are no operations or 
expression to check if an element is the last element in the set, sequence or bag. Because of this, 
recursive function cannot be created because there is no way to detect the end of a set, sequence 
or bag. 

A solution to this is creating a PVS function that takes a collection as a parameter and 
returns the size of the collection. This function can also be used in the transformation of size 
operation in Collection standard library. 

4.3.3 Evaluation 
The PVS metamodel for Set, Sequence and Bag are refined to include operations from 

Set, Sequence and Bag libraries. In PVS, operations for a type can be taken from different 
libraries. For example, filter operation for sets is taken from Filters library. In PVS metamodel 
that is used in this project, a simple solution to model the library is taken. The project will 
pretend that there exist a number of classes (one for each type) to represent all the related 
libraries. The class will have operations from multiple PVS libraries. This solution will cause 
problems in testing the metamodel because there is no way to compare operations in ECL. 

A more suitable and long term solution is to create a model for each library and use 
something like the Epsilon Merging Language (EML) to merge all related libraries into one 
model. This solution requires more work to create models for each library and then create 
merging rules for the models. 

Another solution is to manually create a unified model for all the libraries. This solution 
does not require the development of an EML program but the complexity of creating the model 
increases because we are trying to merge multiple models manually. 

The transformation from OCL to PVS for this cycle is very limited because not all OCL 
standard library and iterator expression can be transformed to PVS expression. Table 4.3.1 is a 
list of OCL expressions that can be transformed to PVS. 

Page 61 of Ill 



Transfonning OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman A b. Rahim 

Table 4.3.13: Transformation of OCL expressions to PVS 

OCL Expression PVS expression 
Collection::exist Binding Expression::EXIST 
Collection: :for All Binding Expression::FORALL 
Collection::one Binding Expression::exists I! 
Set::select Filters:: filter 
Set::reiect Filters: :filter 
Set::collect Filters: :filter 
Set::"-" Set::difference 
Set: :intersection Set:: intersection 
Set: :symmetricDifference Set:: symmetric-difference 
Set::union Set::union 
Bag::"-" NASA-Bag::Bag-equality 
Bag: :intersection NASA-Bag::intersection 
Bag::union NASA-Bag::union 
Bag::count NASA-Bag::count 
Sequence: :sorted By NASA-sort seq::sort 
Sequence::at Sequence::nth 
Sequence::first Sequence: :first 
Sequence: :insertAt Sequence:: insert 
Ordered Set:: insertAt Sequence:: insert 
OrderedSet::at Sequence::nth 
Ordered Set:: first Sequence::first 

Some of the OCL expressions that should be transformed in this cycle have similar 
expression in PVS but are not suitable because the operation return a different type that what is 
required in the OCL expression. The similarity is in the purpose of the PVS operation. For 
example, OCL append operation for sequence is similar to PVS append operation in list__props 
library but PVS append can only be used with a list. Table 4.3 .2 list out PVS expressions that is 
similar in purpose but not suitable for transformation and Table 4.3.3 list out the OCL 
expression that does not have equivalent expressions in PVS. 

Table 4.3.14: Non suitable PVS expressions and its OCL expressions 

PVS expression OCL expression 
list props::length Collection::size 
Set::empty? Collection::isEmpty and Collection::notEmpty 
Filters: :filter Bag::select, Bag::reject, Bag::collect, Bag::excluding, 

Sequence: :excluding, Set: :excluding 
NASA-seq sort::sort Set::sortedBy and Bag::sortedBy 
list _props::append Sequence: :append and OrderedSet::append 

Table 4.3.15: OCL expressions that cannot be transformed 

OCL Type OCL expression 
Collection includes, excludes, includesAll, excludesAll, any, 

isUnique iterate, sum and product 
Set asSequence, asBag, asOrderedSet, collectNested, 

including, count flatten 
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Bag asOrderedSet, asSet, asSequence, collectNested, 
including, flatten 

Sequence asBag, asSet, asOrderedSet, collectNested, including, 
prepend, last, subsequence, count flatten, indexOf 

Ordered Set prepend, subOrderedSet, indexOf, last 

As a result of the transformation and investigation in the third cycle, changes to the 
transformation on UML class elements have been done. Class properties, operations and 
association ends are transformed into record elements. The record will represent the class that 
encapsulate the elements. This changes is needed to represent OCL self keyword. By creating a 
record for each theory and transforming properties, operations and association end to elements of 
the record, expression such as self.age and self.open() can be transform to record accessor 
expression. 

As a result of changing the transformation of class properties and associatiOn end, 
changes also need to be done on OCL navigation call expression and property call expression. 
Both expressions are transformed into record accessor expression. If the result of the navigation 
call expression creates a set, a PVS set is created, if a sequence or ordered set is created, it is 
transform into a PVS sequence, and if a bag is the result, it will be transform into a PVS bag. 
Figure 4.3.17, 4.3 .18 and 4.3.19 are the design for transformation of property call expression, 
navigation call expression and class elements respectively. Table 4.3.4 is the new test 
specification for the changes made on transforming OCL property call expression, navigation 
call expression and UML class elements. 

propertyCall : 
PropertyCaiiExp 

1: <<transform>> 
> 

--------

: RecordAccessorsExpr 

-------··· -----~ 

'PropertyCall=recordName'elementName '"· 
:where 
: record Name:= property Call. referredP roperty. class. name. tolowercase() 
· element Name: =property Call. referred Property. name 

Figure 4.3.54: Property call expression to Record accessor expression 
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Na>.AgationCaii=Set.cr8atelnstance() b.. 
j 

1· <<transformation>> ! 

-3> 
[ Na oi @Bt ianCall. isT) 13eef(Set )J 

Lukman Ab. Rahim 

~N~-~Qationc~ii=Bag.creatE!Instance()~ 

<(·~ -'~· 
4: <<transformation>> 2 <<transformation>> ' - > . 

-~~\igmjonCa_~E~:P. [Na\igationCall.isTypeOf(Bag)] 

3-.--:<; <lri;i~nsformation> > . .::c. 
[Na'.igationcau}srx~.()f(Sequence)] 

[ Na\1gationC911=recordName'elementN~me 
!where 
record Name: = NcMgationGall. na\igationSoorce. class. name. tolowercase() I elementName: = Na'ligationGall. na'vigationSource. name 

\ ~-~ .. . 
• . . 

• • • 

., 

·~! 

Sequence 

:c Na"YigationCaii=Seq~ce.createlnstanceQ.G 
L .. ', 

Figure 4.3.55: Navigation call expression to PVS 

----··, 
_:CI~~ 

ClasS,;.(tName:.THE.oRY) ·~,_ 
where 
tName: ""Class. name 

--~ 

1: <<transform>> 

Class.,name:TYPE.,recordType 
where 
name:.,Ciass.name 

: Theory 

A 
2:·-<""""Part..of.i-> 

. ----·---·-- . - ----, 
class Type : ; 
SubtypeDecl 

A 
3 <<part..of>> 

recordType : 
Recor:cJTypeExpr: , 

; recordType. elements. name: •Ciass.properties. name 1 Class. Operation. name 

1

1 recordType.elements. type: •Class. properties. type. name 1 functlonType:: FunctlonTypeExpr 
~onType.parameters.name:=Ctass.opel""ations.ownedParam.type.name 

Figure 4.3.56: Class elements to PVS 

One drawback of transforming all properties, operation and association end of a class to 
elements of a record is there is no control over the visibility of elements. In the second cycle, 
visibility of elements is controlled by transforming private properties and association ends to 
variables, and public properties to types. Transforming properties and association end to record 
will allow it to be used by theories that import the theory containing the record. 

To control the access of elements from external theories, the transformation program for 
properties and association end checks the visibility of the properties/association end. If it is 
PUBLIC, it is transform into an element of the record and if it is PRIVATE it will be transform 
into a variable. Transformation on the property call and navigation call expression will check the 
visibility and is transformed accordingly. 
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Using records for classes also change the transformation of OCL initialise and derive 
constraint. Before this initial and derive constraint are transform into PVS assignment 
expression. But assignment expression cannot be used to change the value of one element of the 
record. To change a partial record (not all element being change) PVS override expression must 
be used instead. 

Using override expression to change the value of record element of type constant is easy 
but changing the value of functions is more difficult. To make it easier in transforming constraint 
on operations, operations will not be transformed into element of a record but to a function type, 
same as the transformation for operations in the second cycle (see Figure 4.2.3). Changes on 
Figure 4.3.19 are shown in Figure 4.3.20. Figure 4.3.21 and 4.3.22 are the design for initialised 
and derive constraint respectively. Table 4.3.4 also show the new test specification for initial 
(FR05.2) and derive constraint (FROSJ). 

Table 4.3.16: Test specification for new transformation of FR04, FR02.ll, FR02.13, FR05.2 and 
FR05.3 

Jt'":'i-------771ir.'~-~~~~":'!v;>''·'-'' ·-· • . ., r:• 1
J ~•" \ 

1 
I J l ~:;;· ~~·~~15 ·(~:-.-~:}~\ ,:; ~"~ ~, ~'?.~:~;;:-;~! lr! I~ i 1~1 !1},,' : ! rw..;; ~ 7 '"'•:~~~,~· :r~ ••""fl": t 

~---- -~~~--~~~~~a. .. ; ... ~-~:~~-~:._::: __ .:_·_~~ .... ~.:~---~ -.- .. L· --~:o.:u..-~""'- .._:.:..:..:_ -, . 
Test Content 
UML class elements shall be transformed to various PVS ex ressions 
Pass Criteria 
A theory is created with the same name as the class. A record is also created where the elements 
are class public properties, public association ends. Private properties and association ends is 
transformed into variable. An Operation is transformed into a function type that returns a type 
that is the same as what the operation returns and accept arguments same as the one accepted by 
the operations. Type of properties and association ends are maintained. A constant oftype 
record created is also created. 

f"" .,. · ·.- ·-·~· .... , ..... ~.-... ·~ri"'i .. ,~~r.7:l"'lt';"'~~~lf·- ,. - . , 

(':,~· -·-~~ <'·~:':';: '.:;;;.:: ·~:.:·: ,;,/' ·: ;' ' . ~3 <' • .;; '~- --~·- .. . . . ' : 
Test Content 
Property call shall be transformed into PVS expression or record accessor expression depending 
on visibili of the ro erties 
Pass Criteria 
If the property is public, record accessor will be created where the name of the class that owns 
the property in lower case and element name that is the same as the property name. Private 

. fi d . PVS . th . h th f h • • • • • 
: ; ~ I :' • ' 

1 
\ • 'I ' ' ' • •: I I • 

Test Content 
Navigation call shall be transformed into a set, bag, sequence or PVS expression depending on 
the type generated by navigation call. The PVS expression can be a general expression or record 
accessor expression depending on visibility of the association end. 
Pass Criteria 
Navigation call will be transform into a set, sequence or bag if the navigation calls generates a 
set, ordered set, sequence or bag respectively. Other wise it is transform into a PVS expression 
or record accessor expression. If the association end is public then record it will transformed into 
a record accessor with the record name is the same as the class name that owned the property 
and the element name is the name of the property. Private association end is transformed into 
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PVS expression that is the same as the name of the property. All the elements from set, ordered 
. ied to PVS 

Test Content 
Initial clause will be transfonn into override expression that overrides value of record element 
that the .... ,..., .. .,. .. "";.,.., 
Pass Criteria 
Override expression will change the value of record element that have the same name as the 
property that is the context of the initial clause. The new value of the record element will be an 
ex ression s'm'lar to the ex ress'on i th · ·r I I 

Test Content 
Derive clause will be transform into override expression that overrides value of record element 
that represent the properties 
Pass Criteria 
Override expression will change the value of record element that have the same name as the 
property that is the context of the derive clause. The new value of the record element will be an 
expression similar to the expression in the derive clause 

recordType. elements. name:=Ciass. properties. name 
recordType. elements. type:=Ciass. properties. type. name 

Figure 4.3.57: Changes on Figure 4.48 

init : 
Constraint 

1: <<transform>> 
- -3>- override : 

OwrrideExpr 

owrride. with. assignedVariable. name:= init.propertyContext. name 
owrride. with. expression: =init. expression 

Figure 4.3.58: Transformation of OCL initial clause to PVS override expression 

1: <<transform-{>> :] 
--7 owrride : - l OwrrideExpr [ 

-. 
deriw : 

Constraint J 
owrride. with. assignedVariable. name: =deriw. propertyContext. name 
owrride. with. express ion: =deriw. express ion 

Figure 4.3.59: Transformation of OCL derive clause to PVS override expression 

The use of override expression to change the value of record elements requires two 
constants of the same type. One constant represent the previous state of the record and another 
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one represent the record with the new value. The constant with the old value can be used in the 
transformation of property call expression with @pre. Property calls with @pre represent the 
previous state of the property before the operation and it can only be used in the post condition. 

To consider @pre in the transformation of property calls, changes must be made to the 
OCL metamodel because the current metamodel does not represent @pre. The changes to the 
metamodel is taken from OCL metamodel in [61] where @pre is represented by a property 
called isMarkedPre of type Boolean in property call expression. Changes will also be made to 
the transformation of UML class where the transformation will create two constant of type 
record that is created to represent the UML class. The new design of the transformation of 
property call expression is shown in Figure 4.3.23. 

<<Guard>> 
propertyCall.isMar1<edPre 
<<Mapping>> 
PropertyCall=-recordName'elementName 
where 
element Name: =property Call. referred Property . name 
record Name: =property Call . referred Property. class. name. toLowercase()+"Cpre" 

2 . <<transform>> 
propertycall : _____ •_>_ __1_:. R~ordAccessorsExprj 

PropertyCaiiExp ' ~ 

l. 

<<Guard>> l 
~
NOT propertyCall.lsMar1<edPre 
<<Mapping>> 
PropertyCall=recordName'element Name 
where 
element Name: =property Call. referred Property . name 
record Name: .. property Call . referred Property. class. name. toLowercase() _ 

Figure 4.3.60: Transformation of property call expression 

4.4 Fourth Cycle 

In this cycle, OCL elements that will be transformed are OCLVoid (requirement 
FRO 1.1 0), OCLinvalid (requirement FRO 1.11 ), OCLAny (requirement FRO 1.12), Let expression 
(requirement FR02.6), If expression (requirement FR02.5) and standard library operations for 
OCLAny (requirement FR02.8). Subsection 4.4.1, 4.4.2 and 4.4.3 will discuss about the test 
plan, design and evaluation ofthe fourth cycle respectively. 

4.4.1 Test Plan 
=·· .-1 • - .... ~~ - ...... -.-:--- .... ,~"".""';-:::· ~..-··l"i --~:f ..... :i· ~~ ..-.~·-,- .. ,-., "i • • ~-:,.--~ - - -

.... . ~-- -- - -· ~ . . . -

Test Content 
OCL It""''"r"'""u'" shall be transformed to PVS ion 
Pass Criteria 
If condition in OCL shall be transform into condition for PVS If expression. 
Expressions in Then block shall be transform into equivalent expression in PVS Then block and 
ext>res;st'ot in Else block shall be transform into · in PVS Else block 
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Local variables in PVS. The Let expression is similar to local variables in OCL's let expression. 
Expressions for initial value for local variable shall also be equivalent to the ones in OCL Let 
expression and expressions after IN keyword must also be the equivalent to the ones after 'in' 
k d. OCL Let . 

Test Content 
= and <> o erator shall be transform to e uivalent o rator in PVS 
Pass Criteria 
=operator shall be transform into= operator in PVS while<> operator will be transform to I= 
operator in PVS. Expression on the left hand side and right hand side of both operators will also 
b tr fi t 'ts . I t . . PVS I I 

r. . .. ,._ . . r·. _.~ '< • ·, ~~~~ ,,, ,! • 

~ 

' l~. - -~ ~' _,~· ~. J•.i .... : t<..:...... \o<:..i( .... - .._< .. _ '. ,;:,;.__ • .........lS~.::: ··- ·~ ....... '1" .... ~ ~~--,_.~ .. - • • ... 

Test Content 
OCL shall be transform into u . r<>rr•r<>n•n 

Pass Criteria 

Test Content 
OCL invalid shall be transformed into 

declaration 

Pass Criteria 
u . d II d. I'd h II b d d .. f I ~~ 

r . ' •"' , ' • ' ~ jj t ~ I ' ' 

>. .. 
Test Content 
OCL invalid 
Pass Criteria 

shall be transformed into 

Uni constant called undefined shall be created and it is of 

Test Content 
Call to islnvalid operation shall be transformed into function application expression for the 
function islnvalid 
Pass Criteria 
Function application expression for islnvalid function that accept one argument which is the 
. t th t II OCL. I I'd fon I 

~"L:'. ,~;.' ,""' ;:~. {1'- H ~-~ .·.· --~t{l- ,.., ---. "'f ~:·~'~-;-.~·oo; ... ~f1T'~'7~ f""', . .,.,"' -:---- -r .. ,,j 

•. .:...-.. ~·-·~· ' .• ' ~ .J' 

Test Content 
Call to isNew operation shall be transformed into function application expression for the 
function isNew 
Pass Criteria 
Function application expression for isNew function that accept one argument which is the 
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Call to isUndefined operation shall be transformed into function application expression for the 
function isUndefined 
Pass Criteria 
Function application expression for isUndefined function that accept one argument which is the 
instance that call OCL ·sundefined o erafo • 

p-,- ... :,.~., ·-: ~·~ :;·";'~~n: .... ~.;·~, ... -.-.~fi: .;;- _:· -L:- .... :r::.·;.~~;~ ~_.,~;..u~~' .,,_~GJR"J;fl"~~"'~.~ • ... · ~ ~· · -I 
r_} i • , < . , '"~ ~ .. , ..... •· ~ , , ~ ,, , , , .- . -, ( ~ ! 1 • , • ~ , ! •• ~r: . . ~ - ~ , , , . . , 
' '. ... . 
i~--- _,_ ~~:J -~ -.u-'1 •_,:__,_~•_: ___ ,_.:.. __ _..~~~::.;;. _ _.1 .. ~.:•,' I j ~ ....:-..: • .JW.<<"'"- •• 

1 ,_' ; 

Test Content 
Call to alllnstances operation shall be transformed into function application expression for the 
function alllnstances 
Pass Criteria 
Function application expression for a11Instances function that accept one argument which is the 
. ta th t II OCL HI tan f • 

' . _, -
• -- ' { • • J • •• c ' I - ~ ( j ' ' ' I I 

~ --- ~- ---~- .~............. . ...... .... - • ....... :._ - ·--- ···-~-~ ----·:....J..:....: ........ : __ _.. '....:.....L·- ••• .__..;a .:_. ; 

Test Content 
Call to oclAsType operation shall be transformed into PVS Conversion 
Pass Criteria 
Conversion function is created for each call to oclAsType. The conversion function will accept 
an argument which is the type of the instance that calls oclAsType operation and returns the type 
that is the argument for oclAsType 

4.4.2 Design 

1: <<transform>> 

> -l : IFEx_2_r~ 
if=IF condition THEN thenExpression ELSE elseExpression ~ 
where 
condition:=if.condition 
thenExpression:=if. then Expression 
elseExpression: =if. elseExpression 

Figure 4.4.61: OCL If expression to PVS If expression 

let : LetExp 

1: <<transform>> 
> 

let= LET locaiConstant=valueExpresslon IN inExpression 
where 
local Constant: =let. variable 
valueExpression:=let. variable. initialisedExp 
inExpression:=let. in 

Figure 4.4.62: OCL Let expression to PVS Let expression 
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OCL If expression and Let expression are transformed into PVS IF expression and LET 
expression respectively. The transformation cause a few changes on the PVS metamodel created 
in the first cycle. The changes are made to PVS LET expression. LET expression is now 
associated with Interpreted Constant as the local variable in the LET expression. IN segment of 
the LET expression may contain any PVS expressions. 

To transform operations for OCLAny type in the OCL standard library, the OCL 
metamodel used in this project need to be refined. A hierarchy of element to represent OCLAny 
operations from the standard library has been added. The hierarchy of elements is shown in 
Figure 4.4.3. 

,-··--···-· ---
1 OCLAnylib . 
i ~eftExp : OCLExpression 

I 

' 
~ -- l 

1

1 

BooleanRetumedOperation j 
...... ult : Boolean ' ~~~;t•;~;;ypej ilfv::•'~:tetrations '~~~i:li:tyl\~~or [ 

-----·c ~. --·-----1 ',~ghtExp; OCLExpression; 

Is New 

l 
' 

lsUndelned II lslmelid 
~, -----, ~---·--

. ' 
1\ 

-~~~lsK~~-~Of OcllsTypeOf OciAsType · 

~---J ··---·-: ~- ___j 

Figure 4.4.63: Hierarchy of elements for OCLAny operations in OCL standard library 

From figure 4.4.3 OCL "=" and "<>" operator are transformed into PVS Boolean expression 
where the operators are "=" and "/=" respectively. 

<<Guard>> ~ 

I 

any.operator = AnyOperator#= I 

<<Mapping>> 

il ~:;:~~~~=~~alue:=any.leftExp 
: boolean. rightValue: =any. rightExp 
boolean.operator:=BooleanOperator#= 

any: 
~~_lityOper~J.?-::9-_ 

1: <<trailsfoiTTl>> 
> boolean: 

Bool_~anExpr 

<<Guard>> ',, 
any .operator=AnyOperator#<> 
<<Mapping>> 
any=boolean 

i boolean.leftValue:=any .left:Exp 
boolean. rightVal ue: =any . right Ex p 

, bool~~n.opera_!?r: =B~~_e~nOperat_or#/= __ _ 

Figure 4.4.64: OCL '=' and '<>' operator to PVS '=' and '/=' operator 
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1: «part-<>!>> 2: <<transform>> 
~ any: 

UninterpretedTypeDecl 
__ ------3> ____ ---j!OCLAny : 

i lhemy 

AnyType=any:TYPE 1 

Figure 4.4.65: OCLAny to Uninterpreted Type Declaration 

1: <<transform>> 

: VoidType __ _ > undefined: 
UninterpretedConstantDecl 

I • • 

1 VoidType=undefined:any. ' 

I ! _________ _ 

Figure 4.4.66: VoidType to Uninterpreted Constant Declaration 

1: <<transform>> 
> ,------··--- -----------, 

invalid: 
l)_nln!~rpretedCoQ~tantDecl 

lnvalidType=invalid: any "' 

Figure 4.4.67: InvalidType to Uninterpreted Constant Declaration 

2: <<transform>> 
: lslnvalid __ ____? ___ ~ 

I 

isln~.elid : I 
FunctionAppExJ?!: 

l
lsln~.elid-isln~.elid(class)- 'l 
where 

i class:=lslnvalid.leftExpression.name I 

' ' 
' ' 

Figure 4.4.68: islnvalid operation to PVS function application 

: lsNewi 

3: <<transfonn>> 

> 

,----------------------

' lsNew=isNew(class) 
where 

isNew: 
FunctionAj)QExpr 

' class:= lslnvalid.leftExpression. name 

Figure 4.4.69: isNew operation to PVS function application 
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: Is Undefined' 

4: <<transform>> 
> 

! 

r:--: . . ·····-··~ 

1 lsUndefined=isUndefined(class) ' ' 
;where 
[ class: =lslnvalid.leftExpression. name 

Figure 4.4.70: isUndefined operation to PVS function application 
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Figure 4.4.8, 4.4.9 and 4.4.1 0 are the design for transformation of islnvalid, isNew and 
isUndefined operation respectively. They are transformed into PVS function application. Three 
functions will also be created in OCLAny theory for isNew, islnvalid and isUndefined where 
these functions will return results of comparing the argument with new, invalid or undefined 
constant. invalid and undefined constant represent OCL YoidType and InvalidType as shown in 
Figure 4.4.6 and 4.4.7. new, invalid and undefined constant is of type any; that represent OCL 
Any Type (as shown in Figure 4.4.5). 

5: <<transform>> 

: OciAsType·~------~ :,._ ___ ~,;~--;:;;~ 
_I-··· _ __j 

OciAsType=c:Jparam->resuiiJ CONVERSION c 
where 
param :=OciAsType.leftExpression. name 
result:=OciAsType.type 

~l 
I 

Figure 4.4.71: ociAsType operation to PVS conversion 

oclAsType operation is transformed into PYS conversion. An element is added to represent PVS 
conversion declaration in PYSDeclaration package. Conversion is a function, created to be used 
by PYS type checker for casting from one type to the other. In the PYS metamodel conversion 
has an attribute of type UninterpretedConstantDecl to represent the function used in the 
conversiOn. 

6: <<transform>> 

: Alllnstances' --7 
!-------·- ·····-··---·--··-··-

· Alllnlances=alllnstances(class) 
where 
class: =lslnvalid.leftExpression. name 

Figure 4.4.72: alllnstances operation to PVS function application 

To transform alllnstances operation, a theory to represent a heap must be created where 
inside this theory a bag is created to store all instance of every class. A function called 
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alllnstances will return this bag. Each call to OCL alllnstances function will be transfonned into 
function application of the created alllnstances function. 

ocllsKindOf and ocllsTypeOf operation cannot be transform into PVS. There are no 
PVS language construct that matches ocllsKindOf and ocllsTypeOf operations. Type checking 
in PVS is done automatically by the theorem prover. OCLType type is not transfonned because 
it is not needed. OCL Type represents all classifiers and data types that can be used in OCL type 
expression. However OCL type expression had already been transfonn in the second cycle. 

4.4.3 Evaluation 
An interesting transformation in this cycle is the transformation of OCL Invalid and 

Void type. OCL Void only has one instance which is undefined or null. One way of representing 
undefined in PVS is to create an uninterpreted constant called undefined for all type expression 
created. This option requires a lot of transformation and results in a PVS theory that have a lot of 
constant called undefined. 

A more suitable solution is to create a new theory called OCLAny. In this theory a new 
type called any is created. Three constants of type any called undefined, invalid and new are 
created to represent OCL undefined, invalid and new. Invalid represent the only instance in OCL 
Invalid. All theories created for each UML class will import OCLAny theory and all types 
created will be a subtype of any. This solution is similar to the concept of object hierarchy in 
Java. In Java, all user defined classes inherits from Java Object class. Java Object class can have 
a null value and this means that all user defined classes can also have the value of null. For this 
solution, changes have to be made to the transfonnation of UML class, association and 
association end. 

In OCLAny theory another type called VOID is created to represent situation where a 
function does not return anything. A constant of type VOID is created for it to be used in a 
function. VOID type is needed because a PVS function must return something even though it 
represents class operation that returns nothing. 

The solution that we identified for OCL Void can be used in solving the problem in 
transforming OCL iterate expression as PVS recursive function. The problem that was mention 
in the third cycle can be solve by purposely adding undefined constant at the end of every sets, 
sequences or bags created. In the recursive function, undefined will be used to detect the end of a 
set, sequence or bag and this will stop the recursive call. To implement this solution, 
transfonnation of OCL navigation call expression need to be change by adding codes that add 
undefined constant at the end of every collection. 

The fifth cycle is not implemented because of insufficient time. This project has 
successfully transfonned where possible OCL expression to PVS. This chapter discussed the 
successful and unsuccessful transformation, and the changes made to both OCL metamodel and 
PVS metamodel used in this project. 

I NeitChapt~l': Testbig th~ transformation and project evaluation 
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The purpose of Chapter 5 is to evaluate and discuss the achievements and findings of 
this project. It is divided into two main sections: the testing of the transformation program and 
the evaluation of the entire project. 

This chapter will first focus on the testing of the transformations. The testing process 
will be discussed first, followed by the presentation of testing model and the result of the testing. 

The second part of this chapter will talk about the evaluation of the whole project. The 
evaluation will cover the interesting findings that are found during the design and 
implementation phase. Non-functional requirements and hypotheses that are identified in 
Chapter 3 and Chapter 2 respectively will be revisited. Discussion will also be on how well the 
project meets its non-functional requirements and the status of the hypotheses. 

Some of the points discussed may have been discussed in earlier chapters but we 
remunerate them again in this chapter to make the evaluation section more complete, to highlight 
the importance of the points and to make this report much easier to read by compiling all the 
previous discussion. 

5.1 Testing 

In software development, all project artefacts need to be verified. Requirements are 
verified through reviews or formal methods, designs are verified using model checking, static 
analysis, or formal methods and programs are verified using various techniques. Like any other 
software project artefacts, transformation program also need to be tested. Although the 
transformation in this project is not part of a software development project, the need for testing 
still applies which is to convince the user that the artefact being tested held certain properties. 
Another reason is seen from a research point of view. The technique (model to model 
transformation) used in this project needs to be tested in order for the research to be complete. 

To test the transformation, the result of the transformation will be compared against a 
source model. The comparisons are done using Epsilon Comparison Language (ECL) programs. 
The testing process starts by changing the UML class model and OCL constraints for the UML 
class model, that conforms to the UML and OCL metamodel used in this project, to Eclipse 
Modelling Framework (EMF) or Metadata Repository (MDR) models. The models are going to 
be transformed into a PVS model that conforms to the PVS metamodel, which was created for 
this project, using transformation program that is created in the implementation phase. An ECL 
program, which is also created during the implementation phase, will compare the PVS model 
with UML and OCL model. 

By comparing the PVS model with the source model, similarities between what is in the 
OCL expression and the PVS expression can be checked. Although the expressions are different, 
the values, variables or constants used in both expressions should be the same in order to have a 
semantically equivalent expression. This is what being test by comparing the source model and 
the result model. 
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The comparison is not sufficient to ensure the transformation is correct. Although the 
target model may create PVS specification that is semantically equal to the source model, the 
PVS specification may be grammatically incorrect. So, as part of testing the transformation, the 
PVS model will be serialised to PVS specification and run through PVS theorem prover. The 
result of the transformation need to be typed checked by PVS because of requirement FR03. 

The testing model used in the testing is taken from a case study in [62]. The case study is 
about a company called Royal and Loyal (R&L) that provides loyalty programs to their clients 
that offers bonuses to their customers. Figure 5 .1.1 is UML model for R&L case study while 
Listing 5.1.1 is the OCL constraint for the model. The model and OCL constraints are modified 
to make them more suitable for our testing. OCL constraints that were unable to be transformed 
will not be tested. 

Figure 5.1.1 and Listing 5.1.1 only cover the transformation in Cycle 2 and 3. For Cycle 
4, testing will use a different model which is shown in Figure 5.1.2 and the OCL constraints in 
Listing 5.1.2. 

~~Y~ty .. p·r~~' 
1 _,.,arne . String 

~nroll() 
~etSeNces() 

+partn~rt .. n 

Program Partner 

+programs 

O .. n 

.,numberOfCustomer: lntegeri 

.,name : String 

~alcPoints() 

;poame : String i I. Customer j 

+participants ,.title : String i 

---------4 .;>is Male: Boolean, 
o .. n ql age: Integer 

Membership , 1 

"'age() 
. ···-·-·-J 

+OW~-;;-·f 
··-""""'""'-''''"""""-~·-·j 

-·---- -j + membeOhip 
1 

+membership 

+account 0 .. 1 

LoyaltyAccount i 

...,C>;nt5 , tnteo~'l 
,;number : Integer 

""earn(} 
"'t>um() 
""'sEmpty{) 

' :o .. n 
. +transactions 

Transaction 

qpoints : Integer 
~mount : Double! 

. --, 
"'Program() ! 

+can$ 
I O .. n 

CustomerCard 

+c~rd j ,..valid : Bootean 
1 

·· ..... 1·~---~ .. ~~ntedName: ~-~-~.~~.j 
! ' 

+transactions 

O .. n 

Figure 5.1.73: UML model for R&L case study [62[ 
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+managedCompanies 

' 
+spouse Person ;+-employees 

~i-SUnemp-iOY-6d: Boolean--~--
0 .. 1 .. n 

JOn 
~emplo:7!--C~~pany ·;: 

Job 

~salary : Integer 

----- _ __j 

Figure 5.1.74: UML model for testing transformation in fourth cycle (62( 

context Loyalty Account: :points 
init:O 

context LoyaltyProgram::getServices():Set(Service) 
body: partners.deliveredServices 

context Customer 
inv: self.age>=l8 
inv: Membership.account->select(points>O) 

context Loyalty Account: :isEmpty():Boolean 
post: result"'(points~O) 

context Transaction: :getPrograrn :Loyalty Program 
post: resuit~se If. card. M em bersh i p. pro grams 

context CustomerCard :valid 
init: true 

context CustomerCard::printedNarne 
derive: owner. name 

context Loyalty Account:: bum( i:lnteger) 
pre: points>O 
post: points=points@pre·i 

context Loyalty Program 
inv: participants-> forAll(age()<~70) 
inv: self.Membership.account->one(number<lOOOO) 

context Loyalty Account 
inv: points>O implies transaction->exists(t(t.points>O) 

Listing 5.1.1: OCL constraints for R&L case study 

context Person 
inv: let income: Integer = self.job.salary 

in 
if isUnemployed then 

income< 100 
else 

income >~ 100 
elseif 

Listing 5.1.2: OCL constraint for testing transformation in fourth cycle 
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The testing process has two results. The first result is the result of comparing source and 
target model using ECL. The second result is of comparing the PVS specification generated 
from the target model with the expected PVS specification. Since the generation of PVS 
specification from the result model is beyond the scope of this project, the PVS specification will 
be created manually along with the expected PVS specification. The comparison of PVS 
specification will be done using human observation because the difference between both 
specifications is explicit enough to be easily detected by human eye. Although human 
observation have been proved to be sometimes unreliable, time limitations have constraint our 
effort to research or develop tools to compare the expected and actual PVS specification. 

As mentioned in Chapter 3, the results of comparing source model and target model can 
be categorised into four groups. The result can be either matching and conforming, matching but 
not conforming, not matching but belongs to domain of comparison, and not matching and not 
belong to domain of comparison. Table 5.1.1 is the result of the comparison. 

The result that we look for is matching and conforming. Matching but not conforming 
means the transformation is incorrect, not matching and not belonging to transformation domain 
means the transformation is incomplete [16]. Not matching but belonging to the transformation 
domain can be interpreted differently depending on where the element belongs to. If it belongs to 
the target model, it means the transformation is incomplete, but if it belongs to the source model, 
it means the transformation is erroneous [16]. 

Class Customer 

Class LoyaltyProgram 

Class ProgramPartner 

Class Service 

Class Transaction 

C!ass.OustqmerCard··. 

Class Membership 

ChiSS L9yalty ACC(lunt 

Class Person 

Class C9mpany 

Class Job 

Properties qf Cust9mer 

Table 5.1.17: Comparison result using ECL 

Record type of subtype any with 
the name Customer 
Record type of subtype any with 
the name LoyaltyProgram 
Record type of subtype any with 
the name ProgramPartner 
Record type of subtype any with 
the name Service 
Record type of subtype any with 
the name Transaction 

~~or~~.!:>f~~~~ any with 
tlte:l!ameCu$tomerCard · 
Record type of subtype any with 
the same name 
R\l\JQrd type of subtype any with 
the name Membership 
Record type of subtype any with 
the name Person 
Record type of subtype any with 
the name Company 
Record type of subtype any with 
the name Job 
Element of record type with the 
same name and type 

Properties of Loyalty Program Element of record type with the 
same name and type 

Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
co .. nforming 

llln > d 
··•~r· 

Matching and 
conforming 

~liil!~~d 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
confon1ling 
Matching and 
conforming 
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P:ro~rtie~ of P:rogramP:artner 

Properties of Service 

Properties of CustomerCard 

Prot>erties ofloyaltyAccount 

Properties of Company 

Properties of Person 

Properties of Job 

Operations of Customer 

Operations of Loyalty Program 

Operations of Transaction 

Initial clause for valid 

Initial clause for points 

Body clause for getServices() 

Post condition for isEmpty() 

Post condition for getProgram() 

Pre condition for bum() 

Invariants for Loyalty Account 

Invariants for Loyalty Program 

Invariants for Customer 

Invariants for Person 

All navigation call expression 

All property call expression 

Element of record type with the Mlltching and 
. &llbie name and type cp!lf()Jihing 
Element of record type with the Matching and 
same name and type conforming 
Al~I)!Ofrec<!rdtype with the ... M!!t9llill!!and 
same~!li!te MdtYP~ ''CtW'olirii~g 
Element of record type with the Matching and 
same name and type conforming 
J:;l.em~:nt of record type with the Matc~ing tmd 
same name and type conforming 
Element of record type with the Matching and 
same name and type conforming 
Element of record type with the Matching and 
same name and type conforming 
Variable with the name salary of Matching and 
type int conforming 
Constant call age of type int Matching and 

·conforming 
Constant call get Services of type Matching and 
set and a function type call enrol conforming 

............ ~~~~~ .. fi!l!lfi!l{ll?9~~ .. 9~~'.ill~· ·: .. ~flltlllf~· .... ·· 
Constant call program of type 
Loyalty Program 
C~tca!HsEmpty and4 
functions call earn and bum 
Override expression that overrides 
valid element 
Override expression that overrides 
points element 
Expression 

Axiom 

Axiom 

Matching and 
conforming 
~!Itching at'\d 
col:lfoliriing 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 

.. ; .. ~tlf~t~·.·.·· 
Condition in IF expression 

Assumption in Loyalty ACCQunt 
theory · 
Assumption in Loyalty Program 
theory 
Assumption in LoyaltyCustomer 
theory 
Assumption in Person theory 

Sets or bags 

Record accessor expression 

Matching and 
co~forming 

.·····•· .Mat¢hins !!fid · co!lfonning . 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
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All operation call expression Function application expression 

Forall operation Binding expression 

Exis~ opef<!tion J;linding expression 

One operation Binding expression 

Select operation Filter function is Set library 

All Boolean expression Boolean expression 

All Equality operation Boolean expression 

All Real operator Numeric expression 

If expression IF expression 

Let expression LET expression 
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conforming 
Matching and 
conforming 
Matching and 
conforming 

· M~hing aW 
co'nfonning 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 
Matching and 
conforming 

Listing 5.1.3 and 5.1.4 are the expected results that are created manually and Listing 
5.1.5 and 5.1.6 are the actual result, also created manually based on the PVS model generated 
from the transformation. The expected and actual PVS specification are created manually 
because the transformation done in this project will only create a model of PVS specification. 
Model-to-text transformation from the PVS model to PVS specification falls outside the scope of 
this project. 

From the PVS specification, one can see that although the result of comparison are 
matching and conforming for all transformation, the specification that is generated from the PVS 
model is not what is expected. 

The difference between the actual and the expected PVS specification are I) 
assumptions and records are not created in the PVS assuming block 2) OCL constraints are 
transformed into PVS language construct outside the theory and 3) related theories are not 
imported. One of the reasons why the expected and actual PVS specification is not the same is 
each transformation of one element of the source model to element of target model is done in 
separate rules. For example, the rule to transform invariants to assumption is done in 
Invariant2Assumption rule and derive clause is transform into override expression in 
Derive20verride rule. In both this rule and in some other rules, there is no link between the 
created PVS language construct with the theory that the construct supposed to belong to. 
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Loyalty Account:THEOR Y 
BEGIN 

ASSUMING 
IMPORTING OCLAny, Transaction 
LoyaltyAccount:TYPE FROM any~[# points:int, number:int, 

transactions:Transaction, 
membership:Membership #] 
loyaltyaccount@pre:LoyaltyAccount 
loyaltyaccount:LoyaltyAccount 

EARN:TYPE~[ int ->VOID] 
BURN:TYPE~[ int ->VOID] 
isEmpty:bool 

LoyaltyAccount-invariant:ASSUMPTION loyaltyaccount'points>O IMPLIES (EXISTS 
(I oyal tyaccount' transactions): loyaltyaccount' points>O) 

ENDASSUMING 

loyaltyaccounrloyaltyaccount@pre WITH ['points:~O] 
isEmpty-post:AXIOM FORALL loyaltyaccount: isEmpty~(loyaltyaccount'points~O) 
burn:BURN~JF loyalty'account>O THEN void ELSE void 
burn-post:AXIOM FORALL (i:int):loyaltyaccount'points~Joyaltyaccount@pre'points-i 

END Loyalty Account 
LoyaltyProgram:THEORY 
BEGIN 

ASSUMING 
IMPORTING OCLAny, ProgramPartner, Customer, Services 
LoyaltyProgram:TYPE FROM any~[# narne:String, partners:PrograrnPartner, 

participants:Customer, Membership:Membership #] 
loyaltyprograrn@pre:LoyaltyProgram 
loyaltyprograrn:LoyaltyPrograrn 

ENROLL:TYPE ~[Customer-> VOID] 
getServices: setof[Sevi ces] 

LoyaltyPrograrn-invariant:ASSUMPTION (FORALL (loyaltyprograrn'participants): 
loyaltyprograrn'participants'age<~70) AND (exist!! (loyaltyprograrn'Membership'account): 
loyaltyprograrn 'Membership 'account' number< I 0000) 

ENDASSUMING 
END LoyaltyPrograrn 
CustomerCard:THEORY 
BEGIN 

ASSUMING 
IMPORTING OCLAny, Customer, Transaction 
CustomerCard:TYPE FROM any~[# valid:bool, printedName:String, owner:Customer, 

transactions:Transaction #] 
customercard@pre:CustomerCard 
customercard:CustomerCard 

ENDASSUMING 
custornercard=customercard@pre WITH ['valid:=true] 
customercard=customercard@pre WITH ['printedName:=customercard@pre'owener'name] 

END CustomerCard 

Listing 5.1.3: Expected PVS specification 

To overcome this, some of the transformations need to be done as a batch process. Instead of 
creating individual rule for each transformation, one rule will be created that transform multiple 
elements of the source model to multiple elements of the PVS model. The elements that will be 
part of the batch process are class, properties, operations association ends, invariants, pre 
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condition, post condition, initial clause and derive clause. The transformation of class, 
properties, operations and association ends has already been transform as a batch process and the 
transformation for invariants, pre condition, post condition, initial clause and derive clause will 
be added to the existing rule. The shortcoming of creating such a big rule is the increase in 
complexity of the rule. The rule is difficult to design, build and understand. 

Customer:THEORY 
BEGIN 

ASSUMING 
IMPORTING OCLAny, LoyaltyProgram, CustomerCard 
Customer: TYPE FROM any~[# name:String, title: String, isMale:bool, age:int, 

programs:LoyaltyProgram, cards,CustomerCard #] 
customer@pre:Customer 
customer: Customer 

age:int 

Customer-invariant: ASSUMPTION customer'age>~l8 
ENDASSUMING 

END Customer 
Person:THEORY 
BEGIN 

ASSUMING 
IMPORTING OCLAny, Job, Company 
Person:TYPE FROM any~[# isUnemployed:bool, spouse:Person, Job:Job, 

employers:Company #] 
person@pre: Person 
person:Person 

Person-invariant:ASSUMPTION LET income:int ~ person'job'saiary IN 
IF person'isUnemployed THEN income<IOO 
ELSE income>~IOO 
ENDIF 

ENDASSUMING 
END Person 

Listing 5.1.4: Expected PVS specification (continued) 

Another reason why there are differences as mentioned above is the transformation involved two 
source model, UML model and OCL model. Both models are imported from different CASE 
tools such as Rational Rose for UMLand Octopus 2.0 for OCL. Thus there is no integration 
between UML and OCL model. Although the relationship between OCL and UML metamodel 
exist in the source metamodel used in this project, it does not mean the source model is related. 
For example, the initial clause for valid property own by CustomerCard class will be transform 
into a override expression, but the transformation program will not know the CustomerCard in 
the OCL expression is the same as the CustomerrCard class in the UML model and the derive 
clause is for the property own by CustomerCard class. Since the transformation is done at 
different time and in different rule, the transformation of the derive clause will not be part of the 
CustomerCard theory (generated by transforming CustomerCard class). 
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Customer: THEORY 
BEGIN 

Customer: TYPE FROM any~[# name: String, title: String, isMale:bool, age:int, 
programs:LoyaltyProgram, cards,CustomerCard #] 

customer@pre:Customer 
customer: Customer 

age:int 
END Customer 
Customer-invariant: ASSUMPTION customer' age>= IS 

LoyaltyProgram:THEORY 
BEGIN 

LoyaltyProgram:TYPE FROM any~[# name: String, partners:ProgramPartner, 
participants:Customer, Membership:Membership #] 

loyaltyprogram@pre:LoyaltyProgram 
loyaltyprogram:LoyaltyProgram 

ENROLL:TYPE ~[Customer-> VOID] 
getServ ices :seta f1 Sevi ces] 

END Loyalty Program 
LoyaltyProgram-invariant:ASSUMPTION (FORALL (loyaltyprogram'participants): 
loyaltyprogram 'participants'age<~70) AND (exist 11 (loyalty program 'Membership'account) : 
loyaltyprogram' Membership' account 'number< I 0000) 

CustomerCard:THEORY 
BEGIN 

Lukman Ab. Rahim 

CustomerCard:TYPE FROM any~[# valid:bool, printedName:String, owner:Customer, 
transactions:Transaction #] 

customercard@pre:CustomerCard 
customercard:CustomerCard 

END CustomerCard 
customercard~customercard@pre WITH ['valid:9rue] 
customercard=customercard@pre WITH ['printedName:=customercard@pre'owener'name] 

Person: THEORY 
BEGIN 

Person:TYPE FROM any~[# isUnemployed:bool, spouse:Person, Job:Job, 
employers:Company #] 

person@pre:Person 
person:Person 

END Person 
Person-invariant:ASSUMPTION LET income:int ~ person'job'salary IN 

IF person'isUnemployed THEN income<lOO 
ELSE income>= 100 
ENDIF 

Listing 5. 1.5: Actual transformation result 
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LoyaltyAccount:THEORY 
BEGIN 

LoyaltyAccount:TYPE FROM any~[# points:int, number:int, 
transactions:Transaction, membership:Membership #] 

loyaltyaccount@pre:LoyaltyAccount 
I oyaltyaccount: Loyalty Account 

EARN:TYPE~[ int ->VOID J 
BURN :TYPE~[ int ->VOID ] 
isEmpty:bool 

END Loyalty Account 
LoyaltyAccount-invariant:ASSUMPTION loyaltyaccount'points>O IMPLIES (EXISTS 

( t: I oyal tyacco unt' transactions): t' po ints>O) 
loyaltyaccountoloyaltyaccount@pre WITH ['points:~O] 
isEmpty-post:AXIOM FORALL loyaltyaccount: isEmpty~(Ioyaltyaccount'points~O) 
bum:BURN~IF loyalty'account>O THEN void ELSE void 
bum-post:AXIOM FORALL (i:int):loyaltyaccount'points~Ioyaltyaccount@pre'points-i 

Listing 5.1.6: Actual transformation result (continued) 

Lukman Ab. Rahim 

One solution for this problem is to merge a UML model and OCL model into a single 
model that conforms to the metamodel used in this project. Both models could be merged using 
merging language such as Epsilon Merging Language (EML) [17]. Merging the source model 
changes our process to prove the properties of OCL constraints that we proposed in Chapter I 
and changed in Chapter 3. Figure 5.1.3 includes merging OCL and UML model in our process. 

T ranslormation Tool 

~I~OCL® MDR Merge 
Translo 8 

lniE9'aled 
OCL-UML 

"""" Serialize 

@ ~ T raosformaOOn 
Proof ~I~UML® .,,. prognom MDR 

Figure 5. 1. 75: Process to prove the properties in OCL constraints 

5.1.1 Non-Functional Requirement 

In chapter 3, four non-functional requirements have been identified: correctness, 
traceability, simplicity and determinism. This subsection will discuss results of testing for non
functional requirements. 

From the testing that has been done for functional requirements, the PVS specification 
that is created based on the result of the transformation is incorrect. Individual PVS expression 
created from the transformation are correct but the whole specification is incorrect because there 
is a possibility that expressions are created outside of the theory. 
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The incorrectness of the result can be solved using a single transformation rule that 
transforms multiple source elements as discussed in Section 5.1. This solution is complex and 
traceability from target to source element will be more difficult. Traceability is much easier if 
transformation is done using small transformation rule, one for each element of the source 
model. Since not all transformation will be done in the same transformation rule and only a few 
transformations are done this way, the project still meets the traceability requirement. Another 
way to ensure traceability is by using model merging (proposed in [ 18]) in order to create target 
model with annotated traceability information. The annotated model would be created by 
merging result model with traceability model. 

The transformation rules created are deterministic which means the transformation will 
always create the same target model for the same source model. Simplicity is the most difficult 
characteristic to achieve. Most of the OCL expression can be transformed straightforwardly to 
PVS expression and the resulting expression is easy to prove. Problem in proving may arise 
because of complex navigation call expression that will be transformed into nested record 
accessor expression. For example axioms or binding expressions that have 
/oyaltyprogram 'Membership 'account 'number expression will require PVS to resolve its type. 
Deeply nested binding expressions are also difficult to reason about automatically and this can 
be generated from the transformation if the OCL expression is also deeply nested. 

Both causes of difficulties mentioned above cannot be avoided unless the OCL 
expression is simple. Thus, it is encouraged that the OCL expression used as the source of the 
transformation is kept as simple as possible. OCL expression can be kept simple by carefully 
choosing the context of the constraint, which is one of the best practices in writing OCL 
constraint. 

5.2 Evaluation 

Section 5.2 will evaluate what the project has achieved until now. There are five topics 
that will be discussed: the status of the hypothesis, evaluation on the design notation for 
transformation, enhancement to OCL metamodel, interesting findings in transformation, the 
suitability of methodology and tools, and evaluation of the testing process. 

5.2.1 Hypotheses 
In an earlier chapter, two hypotheses have been identified: I) There will be no problem 

in transforming OCL to PVS caused by different types of logic used by OCL and PVS, and 2) 
OCL can be represented in property-based PVS specifications. 

For the first hypothesis, there is no problem with transforming OCL to PVS although 
OCL used First-Order logic (FOL) while PVS used Higher-Order logic (HOL). This is because 
logic used in PVS is sufficient to represent logic in OCL. 

The second hypothesis is proved to be neither true nor false. It is more natural to 
transform OCL to model-based PVS specification and that is what we have done, but that does 
not mean property-based specification cannot be generated from PVS. 

However, we have concluded that the property of the system that exists in the OCL and 
UML diagrams is not explicit enough for the transformation process to identifY and generate a 
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property-based specification. Property-based specification may be generated from OCL and 
UML diagrams through other techniques but not using the technique used in this project. 

5.2.2 Transformation design notation 
For this project, a design notation was created to design the transformation. The design 

notation and metamodel was introduced in Chapter 3. But during the design and implementation 
phase, some changes have been made to the notation and metamodel. Instead of using class 
diagram notation, collaboration diagram notation is chosen because transformation applied not to 
the element of the metamodel but to the instances of the element. 

The change is also made because of tool limitations. The design and metamodel is 
created with the help of Rational Rose. Objects are used in many UML diagrams but in Rational 
Rose it can only be created in UML dynamic diagrams. 

However collaboration diagram notation is not the most suitable notation for our design 
because it lacks notation for some of the element in the metamodel. In Rational Rose links 
between object in collaboration diagrams cannot have arrows and stereotypes to represent the 
direction of the transformation and the type of link respectively. Some transformation uses the 
association of source model elements and target model elements and these elements should be 
grouped into source group and target group. 

With these limitations, one has to wonder why we use Rational Rose and do not try other 
UML modelling tools. The reason is that, I) Rational Rose models can be imported to Eclipse 
EMF project and 2) Rational Rose is widely available in the department. 

For this project the notation will not be developed further as it is not the objective. The 
metamodel is shown in Figure 5.2.1 and explanations of the elements are in Table 5.2.1. 

SourceMetamodel 
ResllltMetamodel 
SourceElement 

SourceGroup 
Re5liltGtoup 
Link 

TransformLink 

RelationLink 

SourceRelation 

ResultRelation 

Table 5.2.18: Description of metamodel elements 

Metamodel for the source element 
Metamodel for the result element 
Element that will be transform. Must be instance of element in 
SourceMetamodel. NaJ1le canbe empty 

,'~-~~~~~ltBJU'lt=~~ati~~~~~~~~~~~~;,:,, 
A group of ~ource ~let;nents th~t related to a transformatio~ 
A group <>f""sult eJeuiehts that is a resultQfthe tt:a!tst'onnation 
Abstract class that is the parent for RelationLink and 
TransformLink 
Link that represent the transformation of instance of source 
metamodel to instance of result metamodel or from group of 
instances. 
Abstract class that represent the relation among instances in the 
source group or instance in the result group 
Relation for instances in the source group. Stereotype is a string that 
show the type of relationship 
Relation for instances in the result group. Stereotype is a string that 
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M~ppin~State~ent 
G11ardStatement 
ActionStatement 

Source 
Reslllt 

i SourceGroupl+goup 
~-~ 
1 _______ -- -- o .. n 

show the type of relationship 
Abstract class representing statements that explain the 
transfonnation 
St~tem.ent that explain the mappin~ of S()urceto r~sult 
Optional stat~eilt.that ~resent the>conditio11 Ilia 'lra!Jsfo~tii>n 
Optional statement that represent additional task other than the 
transfoflllationin .. the mappin~ statement 

,. ··.·· ·•>~~~~~··~·~·~·~·m~t,·~ .. ~·•~A~t.4~t,<~t~.~~~·~lilm~t• ... 
to ti.e ~fonn tl) a result element · · · ·· · · · · 
Parent class for SourceGroup and SourceEle~ent 
Parent class for ResultClroup and ResultElement 

Soutte +source transform to 

instance oj-/' 
,/ 

: SourceMetamodel i :unk ~~~r---- -----------·--r-· 

~I 
j 

I 

... L __ _ 

MappingStatemert ' !GuardS tat 
ement 

-~ 
ActtOnStatl 

ement 1 

. ----i 
~ 

Figure 5.2.76: Design meta model 

From the experience in designing the transformations prior to writing transformation 
programs, a conclusion can be made that the designs are very helpful. It helps in identifYing I) 
the incompleteness of source and target metamodel, 2) the condition for the transformation, and 
3) the mapping from source element to result element. The design will also give a hint to users 
on the complexity of the transformation and help the user to choose the best transformation base 
on the design. 

5.2.3 OCL metamodel 
This project chose to use the metamodel provided by OMG in order to make the project 

results widely applicable. Besides the metamodel provided by OMG, there are two other 
metamodels for OCL which has been proposed in [61], and in [62]. 
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When implementing the transformation, we realised that the metamodel provided by 
OMG is not sufficient to be used in the transformation. This is not a surprise because the 
metamodel is intended to explain the abstract syntax of OCL and not to be used in 
transformation. 

Elements that are lacking in the metamodel are the connection between OCL metamodel 
and UML metamodel. In this project, a subset of Class diagram metamodel is taken from OMG 
UML specification document. A relationship is created from Constraint element in UML 
metamodel to OCLExpression element from OCL metamodel. This relationship means a UML 
constraint consists of OCL expression. 

In their metamodel, Richters and Gogolla [61] also make the same relationship but not 
directly. Constraint (from package Core) consists of a Boolean expression (from package Data 
Types) that is written in OCL expression (from package OCL). In [62] a simpler approach is 
taken where OCL expression is directly associated with elements of UML class metamodel that 
is the context of the OCL expression. Compare to how it is done in [61] and [62], the solution in 
this project is simpler and does not change the UMLand OCL metamodel taken from OMG. 

Other changes that are done in OCL metamodel are the addition of elements that 
represent standard library operations in OCL. OCL has a lot of operations for each type and it is 
represented as a hierarchy of elements as shown in Figure 5.2.2, 4.3.6, 4.3.7, 4.3.8, 4.3.9 and 
4.4.3. From Figure 5.2.2, operations from certain types such as operations for Integer, Boolean 
and Real are better represented as enumerations. 

Expressions that fall under lterator expression are also being represented as sub
elements of lteratorExpression element. The hierarchy of iterator expression is shown in Figure 
4.3 .15. This representation of iterator expression is also the same as the representation used in 
(61]. Another important change that is also taken from [61] is representing @pre as an attribute 
of type Boolean in PropertyCallExpression. 

From the changes that are made to the OCL metamodel, a conclusion can be made that 
an abstract syntax sometimes is not sufficient to be used as a model for transformation. 
Transformation requires more detail while abstract syntax only represents abstractly the 
language construct of a language. 
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OCLExpresston :~_expression Constraint 
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~eftOperan~~~~~:. I ~-~eft0Pe;:~1'6tble 
i ~ghtOpemnd : Integer i j ~ghtOperand : Double 
~~ntegerOperatoc: lntegerOp~~ator_l f~IOpemtoc: Rea!Operetor 
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Figure 5.2.77: Metamodel for OCL standard library operation 

5.2.4 Summary of transformation 
This project has sufficiently transformed OCL expression to PVS. As discussed in 

Section 3, elements from UML class model are transformed into PVS language construct. Parts 
of OCL metamodel that are intentionally not transformed because of time constraints are OCL 
state expression (FR02.1 ), message expression (FR02.2), message type (FRO 1.14) and element 
type (FRO 1.15). 

Other OCL expressions have been successfully transformed into PVS expressions except 
for iterate expression, iterator expressions (any and isUnique), and some standard library 
operations for String, Collection, Set, Sequence, Ordered Set and Bag type. Table 5.2.2 is a 
summary of the successful transformation. The most difficult transformation is the 
transformation of post conditions. It is difficult because axioms that represent the post conditions 
include a function application expression that calls the function created for preconditions and 
body clause. 

Class 
Property 
Operation 
Derive clause 

Table 5.2.19: Successful transformation 

Record 
.EIIemEifit of the class Jilcord 
Function type, constant or variable 
Override expression 
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Initial clause 
Body clause 

Pre condition 
Post condition 
Property call expression 
Navigation call expression 
Operation call expression 
Variable expression 
Type expression 
Numeric, Integer, Real literal and operation 
Boolean operation 
Void type 
Invalid type 
Any type 
Set type 
Ordered set and sequence type 
Bag type 
If expression 
Let expression 
Iterator expression (forall, exists and one) 

Override expression 
Expression depending on the expression in 
OCL 
Condition in IF expression 
Axiom 
Record accessor expression 
Record accessor, set, bag or sequence 
Function application expression 
Expression that uses the variable 
Expression that is the name of a type 
Numeric expression 
Boolean expression 
Constant called undefined of type any 
Constant called invalid of type any 
A theory with a new type Clllled any 
Set 
Sequence 
Bag 
IF expression 
LET expression 
Binding expression 

Iterate expression is transformed into a recursion function but there exist a problem with 
termination condition of the recursion function. Iterate expression will iterate through all the 
elements in a collection. To transform this into PVS, a function is needed where it returns the 
size of the collection or it checks if the current element is the last element. This function will be 
used in terminating the recursion. Since there is no such function for Set, Sequence or Bag, 
transformation of iterate expression to recursion function is incomplete. 

As mentioned earlier, some of the standard operation for collection and OCL any type 
fail to be transform because there is no similar functions in PVS. In PVS, sets, sequences and 
bags is a function but the type of domain and range for the function is different for set, sequence 
and bag. Set is a function from some type to Boolean, sequence is a function from natural 
number to some type and bag is a function from some type to natural number. Because of this 
difference, function supported by each type is different. 

Different from PVS, OCL sets, sequence, ordered sets and bags are a subtype of 
collection type and thus it must be the same except for special characteristic of each type. For 
example all elements in a set must be unique and sequence is an ordered bag. Because the basic 
of each type is the same, some operation can be use with all types of collection. Although this 
feature makes it easier for OCL, it makes it more difficult to get the exact match between OCL 
collection types and PVS collection types. Thus transforming OCL collection to PVS collection 
is also difficult especially for operations that can be used for all types of collection. For this 
purpose, a new library for collections that is similar to the one in OCL is needed. 

The new library will have four theories for collection, set, bag and sequence. Each 
theory will introduce a new type and have functions similar to what is in OCL standard library 
for collection, set, sequence and bag. Set, sequence and bag type is a subtype of collection. For 
ordered set, there are two options, I) create a new theory or 2) use sequence theory because 
conceptually sequence and ordered set are similar. 
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By having new libraries that is similar to the collection type in OCL, transformation 
from OCL collection type to PVS collection type will be straighter and complete. 

It will also be very interesting to compare our solution in representing OCL undefined 
value with the solution taken in [50] and [51]. [50] translates OCL undefined value in various 
ways: 

• Restricting the domain of partial function so that it becomes a total function 
• Recursive function must have termination proof and a ranking function 
• Only use PVS FORALL to represent the use ofOCL for All and alllnstace operation 
• Assume all attributes are defined. 

The solution proposed in [51] is by creating a lifted type for every type created and the lifted 
type contains the undefined value. Our solution is different from both [50] and [51]. We create a 
constant of type any to represent undefined value. Any is a t) pe that represents base type for all 
PVS types created to represent UML classes. 

Another interesting finding in this project is the representation of object-oriented (00) 
concept in PVS. Unlike B or Object-Z, PVS does not directly have the concept of object, 
encapsulation or inheritance that is in B and Object-Z. In transforming OCL to PVS, the 
importance of transforming UML class model has been identified and justified and thus the 00 
concept will also need to be represented in PVS. The 00 concept and how it is represented in 
PVS is shown in Table 5.2.3. 

Object 
Properties (State) 
Behaviour 

Class 
Encapsulation 

Inheritance 

Polymorphism 

Table 5.2.20: Representation of 00 concept in PVS 

Constant of type record 
Element of a record or variable 
Function type (behaviour with argument), constant or 
variable 
PVS record type 
Private properties represented as variable, public properties 
as clement of record. Behaviour with arguments as function 
type, private behaviour without arguments as variable and 
public behaviour without arguments as constant 
I) Subclass will be a subtype of the type that represents the 
super class. 2) create a record with both the properties from 

super class .and subclass 
Create a constant of type function that is being override 

A conclusion can be made that the transformation from OCL to PVS is sufficient to 
cover the important 00 concept and OCL expression but it is still not complete. Parts that are 
not complete are mostly related to OCL standard libraries for various types (Any, Collection, 
Set, Sequence, Ordered Set, Bag and String), iterator expressions and iterate expression. The 
main problem is PVS has a strong typed language and PVS string, set. sequence and bag type 
although exist but they are just not similar to the one in OCL. PVS functions need to be created 
for iterator and iterate expressions. 
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The transformation program is developed in cycles using a modified Spiral model. In the 
first cycle, metamodel for PVS is created and transformation of main OCL expression and 
element of UML class model is done in the second cycle. Transformation in the third cycle 
concentrated on OCL collections, while in the fourth cycle transformations were applied to the 
remaining OCL types and operations. Before the implementation of each transformation cycle, 
the design and test specification for each transformation is created. 

The advantages of using an iterative and evolutionary scheme are I) the implementation 
is divided into well planned cycle and each cycle will produce workable deliverables, 2) the 
project is more flexible in its definition of completeness where the project can stop its 
implementation in any cycle and declare it complete based on the current situation and 3) the 
objectives of each cycle is also flexible where at the start of each cycle the objective for that 
cycle is refined and evaluated to make sure that the objectives can be achieved at the end of each 
cycle. 

Luckily in this project all objectives set for all the cycles had been met and objectives of 
each cycle that is refined at the beginning of each cycle does not change much than the one that 
is identified during the requirement phase. 

The project also mention about using Test Driven Development (TDD). The benefits of 
using TDD are the implementation is more controlled as the implementation will only try to pass 
the test being specified, and the test can be used to verify the design and transformation program. 
If the design and transformation program does not represent what is being specified in the test 
specification, it is considered as incorrect. 

This project uses Epsilon Transformation Language (ETL) and Epsilon Comparison 
Language (ECL) that runs in Eclipse. Eclipse is easy to use while ETL and ECL are suitable and 
sufficient for the transformation of metamodel to metamodel. However a problem is encountered 
during the comparison of a transformation that results in calling an operation. For example, 
consider the transformation of the floor operation in OCL. It is transform into floor operation in 
NumericExpr element in PVS metamodel. ECL cannot compare the result of the transformation 
because it can't compare call to operations. 

But this is not a critical issue because there are other ways in transforming problems like 
the example given above. Instead of representing PVS floor operation as an operation for 
NumericExpr, it can be represented as an element in the metamodel. OCL floor operation will be 
transform into this element and this makes it easier to compare. 

5.2.6 Testing process 
The testing process that is employed for the transformation in this project is different 

from traditional testing process that is used in testing computer software. Software is tested 
starting from individual modules (testing in the small) and move up to testing the whole software 
(testing in the large). 

It starts with unit testing, which is normally done by the programmers of the unit. After 
all units pass their individual tests, the unit is integrated with other modules and the integration 
is tested. There are three most common strategies in integrating units of software which is top-
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down, bottom-up and big bang. After all the units are integrated and they can function properly 
as one complete system, system testing is done to check the non-functional property of the 
software and to find abnormities cause not by functional errors. The final test will be acceptance 
testing where the software will be test by clients/end user at the developers' site (alpha testing) 
and at the clients/end users' site (beta testing). 

For this project, the transformation was tested by comparing the source and target model 
using a comparison program. Test will also be done in checking whether the target model can 
generate a correct PVS specification. Compare to traditional software testing, testing 
transformation is more of a black box testing than a white box testing because transformations 
seldom have complex structures that requires white box testing. 

From this project it is also realise that it is very difficult to have a unit test on each 
individual transformation rule and integration test for the integration of transformation rule. Unit 
testing is if not impossible then it is very difficult because the nature of the test data itself, which 
in this case is a model. It is just easier to test the transformation as a whole than testing small 
parts of the model. Testing of individual rules may also lead to the testing of other rules making 
testing rules in isolation an impossible task. 

Integration testing is impossible for this project because the order of transformation is 
not in the control of the user but in the control of the transformation engine (Epsilon). Without 
this control the user can never be certain which rule will be tested first. Integration testing is also 
impossible because there is no structure between transformation rules like the one exists in 
software. For software, a hierarchy of module can be created that usually starts from the main 
module and the main module will call other modules. This does not exist in transformation rule 
and the execution of the transformation is more adhoc and depends on the model being tested. 

Testing transformation is more similar to system level testing where testing is done to all 
the transformation rules at once. However, test to check the property of the transformation is not 
done quantifiably in this project. For software, quantifiably testing the property of software 
usually requires the used of tools such as simulators but such tools for testing transformation is 
still under research. 

For this project the testing process is not so difficult. There are plenty ofUML and OCL 
CASE (Computer Aided Software Engineering) tools that can generate source model for testing 
the transformation. The only task that requires a lot of work in the testing process is creating the 
comparison program. Comparison rules must be created for each transformation rules and the 
complexity of comparison rules depends greatly on the transformation rules. Most complex 
transformation need equally complex comparison program. 

I Next Chapter: Summary, conclusion and future work 
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This project is part of an effort to provide powerful theorem proving support for proving 
properties about OCL constraints. To do this, the chosen technique is to transform OCL to a 
formal language using a model transformation language, and to run the result of the 
transformation in a theorem prover. For this project the PVS specification language was chosen 
as the formal language. 

The transformation rules are written in Epsilon Transformation Language (ETL) using 
Eclipse as the IDE (Integrated Development Environment). The transformation is done in an 
iterative and evolutionary scheme fitting the Spiral methodology that was chosen at the 
beginning of the project. The implementation was divided into 4 cycles (iterations). The first 
cycle created a basic PVS metamodel that is refined iteratively during consecutive cycles. 
Transformation of UML models, OCL expressions, constraints and OCL basic types are 
transformed in the second cycle. Third cycle implements the transformation of OCL iterator 
expressions, iterate expression, tuple type and collection types. The final cycle is the 
transformation of OCL Void, Invalid and Any type. There was suppose to be a fifth cycle but 
due to time limitation transformation in the fifth cycle was not implemented. 

A design language was created to assist in designing the transformation. The design 
language was created by first creating its abstract syntax and concrete syntax. The abstract 
syntax was created iteratively during the implementation of the transformation. The project 
chose to use UML collaboration diagram as the concrete syntax because of tool limitations. 

During each cycle, transformation rules were tested using two methods; comparison 
using rules written in Epsilon Comparison Language (ECL) and syntax checking of PVS 
specification generated from PVS model. All the transformations passed the tests using the first 
method but there is a possibility of errors when testing using the second method. The errors exist 
because the PVS model generated from the transformation have the possibility to create PVS 
specification with syntax errors. 

Research been done on topics related to the project. namely model transformation 
technologies, OCL and UML verification, and formal language. From the studies two hypothesis 
have been identified. The hypothesis was revisited at the end of the project and the status of the 
hypothesis was discussed. The project also discussed the status of functional and non-functional 
requirements, changes made to OCL metamodel, interesting findings from the transformation, 
and the testing process. 

Numerous problems were encountered during the implementation phase. Most of them 
happened in the third cycle during the transformation of collection types. Part of transforming a 
type is the transformation of standard library operations for the type. Standard operations for 
Strings, Set, Ordered Set, Sequence, Bag, and Any type failed to be transformed (see Chapter 4 
for the successful/unsuccessful transformation). The main problem is although similar type 
exists in PVS, it is not completely the same as the one in OCL. The main difference is OCL 
types, especially collections, support different operations and may have different semantics. A 
solution has been proposed in Chapter 5 to create a more accurate representation of OCL types 
inPVS. 

Most of the non-functional requirements (NFR) were only partially achieved. The PVS 
model generated from the transformation is correct but the correctness of the PVS specification 
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is uncertain. Traceability is difficult for some of the transformation rule because some rules 
transform multiple elements in the source metamodel to multiple elements in the target 
metamodel. Simplicity is not guaranteed because it depends on the complexity of the OCL 
expression being transformed. The used of nested records to represent classes does not help in 
reducing type checking because it may generate PVS expression that requires type checking. 
Also the transformation does not use any language constructs provided by PVS to simplify type 
checking such as judgement or coercion. Determinism is the only NFR that the project met. 

A conclusion can be made that PVS is currently not the most suitable formal language to 
represent OCL. Higher-order logic used in PVS is suitable to represent OCL First-order logic, 
but what makes PVS non-suitable for representing OCL is because of the incompatible types. 
Providing libraries that is more similar to types in OCL will result in a more complete 
representation. 

6.1 Future Work 

What this project achieved is only part of the work required in verifying OCL using 
model transformation technique. The transformation rules we have produced can be improved to 
have a more complete transformation and to create transformation rule that fully meet the NFRs. 
Two transformation rules that need to be improved are the transformation of UML and OCL 
constraints on operations. Transformation rule for UML need to include transformation of OCL 
constraints (initial clause, derive clause. pre condition, post condition. body clause and 
invariants). 

As mentioned earlier, for a complete representation of OCL in PVS, new libraries for 
String, Collection, Set, Sequence, Bag and OCLAny. These new libraries will have all the 
operations in OCL standard library for each type. A library will also be created to represent a 
Heap. The Heap theory will contain a bag that contains all constants created for each type and 
the bag will be return by the alllnstance operation. 

Depending on the technique chosen to represent the new libraries in the PVS 
metamodel, a detailed metamodel of the library will be added to the current PVS metamodel. 
There are two ways to do this, one is by creating and adding the representation manually and the 
second choice is by creating separate metamodel for each library and write a merging program 
that will merge the metamodels. 

A merging program will also need to be created to merge the source models. Currently 
the transformation has two source models, UML model and OCL model. Both models should be 
merged so that the constraints in OCL model can be related to their context in the UML model. 

The final item of future work is the most important. Transformation rule need to be 
written for the transformation of PVS model (generated from model-to-model transformation) to 
a PVS specification. These transformation rules can be written in XML Stylesheet Language 
(XSL) or Model-toText language such as Epsilon Generation Language (EGL) [15] or 
MOFScript. 

Page 94 of 111 



Transforming OCL to PVS: using theorem proving support for analysing model 
constraints 

REFERENCE 

Lukman Ab. Rahim 

[I] Pressman, R. Software Engineering: A Practitioner's Approach 6'" International 
Edition, McGraw Hill, 2005. 

[2] UMLX Subproject, http://dev.eclipse.org/viewcvs/indcxtech.cgi/gmt
home/subprojects/UMLX/index.html, viewed on 20/05/2007. 

[3] Czarnecki, K. and Helson, S. Classification of Model Transformation Approaches, 
Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the Context of 
the Model Driven Architecture, USA, 2003. 

[4] OMG. MOF QVT Final Adopted Specification, www.omg.org/docs/ptc/05-11-
0l.pdf, viewed on 13/05/2007. 

[5] Jouault, F. and Kurtev, I. On the Architectural Alignment of ATL and QVT, 
SAC'06, ACM, 2006. 

[6] The VIATRA 2 Model Transformation Framework, 
http://dev.eclipse.org/viewcvs/indextech.cgi/gmt
home/subprojectsNIATRA2/doc/viatratut October2006.pdf. viewed on 21105/2007. 

[7] Marcos et. a!. AMW: A Generic Model Weaver, Proceedings of the Jeres Journees 
sur l'Ingenierie Dirigee par les Modeles, 2005. 

[8] Marcos, F and Jouault, F. Model Transformation and Weaving in the AMMA 
Platform, Pre-proceedings of the Generative and Transformational Techniques in 
Software Engineering (GTTSE 05), Workshop, 2005. 

[9] Allilaire, F., Bezivin, J., Bruneliere, H., Jouault, F. Global Model Management in 
Eclipse GMT/AM3, Eclipse Technology Exchange Workshop (eTX) at ECOOP'06, 
2006. 

[10] Bezivin et. a!. First Experiments with the ATL Model Transformation Language: 
Transforming XSLT to XQuery, OOPSLA'06 Workshop, 2003. 

[II] Jouault, F. Loosely Coupled Traceability for A TL. ECMDA-TW'OS Proceedings, 
2005. 

[12] Bezivin et. a!. The ATL Transformation-based Model Management Framework, 
http://www .sciences. univ-nantes. fr/info/recherche/V ie/R R/R R -IRIN2 003-08. pdf, viewed 
on 12/05/2007. 

[13] Kolovos, D., Paige, R., and Polack, F. Eclipse Development Tools for Epsilon, 
http://www.eclipsecon.org/summiteurope2006/presentations/ESE2006-

Page 95 of Ill 



Transforming OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman Ab. Rahim 

EclipseModelingSymposium9 DevelopmentToolsforEpsilon.pdf, viewed on 
14/05/2007. 

[14] Kolovos, D., Paige, R., Polack, F and Rose, L. Update Transformation in the Small 
with the Epsilon Wizard Language, Journal of Object Technology Volume 2, ETH 
Zurich, 2003. 

[15] Kolovos, D., Paige, R., and Polack, F. The Epsilon Object Language (EOL), LNCS: 
ECMDA-FA'06, Springer, 2006, page 128-142. 

[16] Kolovos, D., Paige, R., and Polack, F. Model Comparison: A Foundation for Model 
Composition and Model Transformation Testing, GaMMa'06, ACM, 2006, page 13-19. 

[17] Kolovos, D., Paige, R., and Polack, F. Merging Models with the Epsilon Merging 
Language (EML ), http:/ /www-users.cs.york.ac. ukl-dkolovos/publications/models06-
eml.pdf, viewed on 14/05/2007. 

[18] Kolovos, D., Paige, R., and Polack, F. On-Demand Merging of Traceability Links 
with Models, http:/ /modelbased.nct/ecmda-
traceabi lity/images/papers/2 dkolovos. traceabi I ity06.camcra- ready. pdf. viewed on 
14/05/2007. 

[19] Balogh, A. and Varro, D. Advanced Model Transformation Language Constructs in 
the VIATRA2 Framework, Proceedings ofSAC'06, ACM, 2006, page 1280-1287. 

[20] VIATRA project. The VIATRA2 Model Transformation Framework (Project Plan 
for an Eclipse GMT Subproject), http://dev.eclipse.org/viewcvs/indextech.cgi/gmt
home/subprojectsNIA TRA2/doc!Viatra2 ProjectPlan.pdf, viewed on 21/05/2007. 

[21] Nipkow, T., Paulson, L., and Wenzel, M. Isabelle/HOL: A Proof Assistant for 
Higher-Order Logic (LNCS2283-Tutorial), Springer, 2002. 

[22] Schneider, S. The B-Method: An Introductuin, Palgrave, 2001. 

[23] Diller, A. Z: An Introduction to Formal Methods, John Wiley & Sons, 1990. 

[24] Spivey, J. Understanding Z: A specification language and its formal semantics, 
Cambridge University Press, 1988. 

[25] Owre, S., Rushby. and Shankar, N. PVS: A Prototype Verification System, In 
Proceedings of CADE (LNAI 607), Springer, 1992, page 748-752. 

[26] Owre, S. PVS Introduction, http://pvs.csl.sri.com/introduction.shtml, viewed on 

30/05/2007. 

Page 96 of Ill 



Transforming OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman Ab. Rahim 

[27] Schumann, J. Automated Theorem Proving in Software Engineering, Springer, 
2001. 

[28) Gordon, M. and Melham, T. Introduction to HOL: A theorem proving environment 
for higher order logic, Cambridge University Press, 1993. 

[29) Isabelle's Logics, http://www.cl.cam.ac.uk/research/hvg/lsabelle/logics.html, 
viewed on 01106/2007. 

[30] Jacky, J. The way of Z: Practical programming with formal methods, Cambridge 
University Press, 1997. 

[31] Potter, B., Sinclair, J. and Till, D. An Introduction to Formal Specification and Z, 
Prentice Hall, 1991. 

[32] Woodcock, J. and Davies, J. Using Z: Specification, Refinement and Proof, Prentice 
Hall, 1996. 

[33] Kim, S. and Carrington, D. A Formal Mapping between UML Models and Object-Z 
Specifications, ZB 2000: Formal Specification and Development in Z and B (LNCS 
1878), Springer Verlag, 2000. 

[34] LeDang, H. and Souquieres, J. Contribution for Modelling UML State-Charts in B, 
Third International Conference on Integrated Formal Methods (LNCS), Springer Verlag, 
2002. 

[35] Traore, I. An Outline ofPVS Semantics for UML Statecharts, Journal of Universal 
Computer Science, volume 6, Springer, 2000, page 1088-1108. 

[36] Traore, I. and Aredo, D. Enhancing Structured Review with Model-based 
Verification, IEEE Transactions On Software Engineering, volume 30, 2004. 

[37] Snook, C. and Butler, M. UML-B: Formal Modelling and Design Aided by UML, 
ACM Transaction on Software Engineering and Methodology, Volume 5, ACM, 2006. 

[38] Simmonds, C. and Bastarrica, J. A Tool for Automatic Model Consistency 
Checking, ASE'OS, ACM, 2005, page 431-432. 

[39] Sourrouille, J. and Caplat, G. Constraint Checking in UML Modelling, SEKE'02, 
ACM, 2002, page 217-224. 

[40] Malgouyres, H. and Motet, G. A UML Model Consistency Verification Approach 
Based on Meta-modelling Formalization, SAC'06, ACM, 2006, page 1804-1809. 

[41] Kotb, Y. and Katayama, T. Consistency Checking ofUML Model Diagrams Using 
XML Semantics Approach, WWW 2005, ACM, 2005, page 982 and 983. 

Page 97 of Ill 



Transforming OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman Ab. Rahim 

[42] Truong, N. and Souquieres, J. Verification of Behavioral Element ofUML Models 
Using B, SAC'05, ACM, 2005, page 1546-1552. 

[43] Toval, A., Saez, J., and Maestre, F. Automated Property Verification in UML 
Models, http://users.ecs.soton.ac.uk/-mal/avocs03/proceedings/02.pdf, viewed on 
05/06/2007. 

[44] Mostefaoui, F. and Vachon, J. Verification of Aspect-UML Models using Alloy, 
AOM'07 Workshop, ACM, 2007, page 41-48. 

[45] The Alloy Analyzer, http://alloy.mit.edu/index.php, viewed on 11/06/2007. 

[46] Eshuis, R. and Wieringa, R. Verification Support for Workflow Design with UML 
Activity Graphs, ICSE'02, ACM, 2002, page 166-176. 

[47] Beato, E., Barrio-Solorzano, M., Cuesta, C. UML Automatic Verification Tool 
(TABU), SAVCBS'04, ACM, 2004. 

[48] Schinz, I., Toben, T., Mrugalla, C. and Westphal, B. The Rhapsody UML 
Verification Environment, http:/ /www-omega.imag.fr/doc/d I 000312 l!WP22-312-V l
ruve2004.pdt~ viewed on 05/06/2007. 

[49] Gogolla, M., Richters, M. and Bohling, J. Tool Support for Validating UMLand 
OCL Models through Automatic Snapshot Generation, Proceedings of SAICSIT, 2003, 
page 248-257. 

[50] Kyas eta!. Formalizing UML Models and OCL Constraints in PVS, 
www.wisdom.weizmann.ac.il/-kugler/SFEDL04.pdf, viewed on 23/04/2007. 

[51] Brucker, A. and Wolff, B. A Proposal for a Formal OCL Semantics in 
Isabelle/HOL, TPHOLs'02, LNCS 2410, Springer, 2002, page 99-114. 

[52] Roe, D., Broda, K. and Russo, A. Mapping UML Models Incorporating OCL 
Constraints into Object-Z, http://www
ala.doc.ic.ac.uk/research/technicalreports/2003/DTR03-9.pdf, viewed on 05/06/2007. 

[53] Marcano, R. and Levy, N. Transformation Rules of OCL Constraints into B Formal 
Expression, http://www4.in.tum.de/-csduml02/3l.pdf, viewed on 18/04/2007. 

[54] Marcano, R. and Levy, N. Using B Formal Specification for Analysis and 
Verification of UML/OCL Models, se2c.uni.lu/tiki/se2c-bib _download.php?id=877, 
viewed on 18/04/2007. 

[55] Ledang, H. and Souquires, J. Integration of UMLand B Specification Techniques: 
Systematic Transformation from OCL Expression into B, APSEC'02, IEEE, 2002. 

Page 98 of Ill 



Transforming OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman Ab. Rahim 

[56] Distefano, D., Katoen, J. and Rensink, A. Towards Model Checking OCL, 
http://www.dcs.qmul.ac.ukl-ddino/papers/ouml2k.pdf, viewed on 05/05/2007. 

[57] OMG. Object Constraint Language: OMG Available Specification Version 2.0 
(formal/06-05-01 ). 

[58] Lamari. Towards an Automated Test Generation for the Verification of Model 
Transformations, SAC'07, ACM, 2007, page 998-1005. 

[59] Baudry, B., Fleurey, F. and Steel, J. Validation in Model-Driven Engineering: 
Testing Model Transformations, 
http://www.fleurey.com/weblog/attachments/issre04 submission.pdf, viewed on 
13/06/2007. 

[60] Lin, Y., Zhang, J. and Gray, J. A Testing Framework for Model Transformation, 
http://www.gray-area.org/Pubs/transformation-testing.pdf, viewed on 13/06/2007. 

[61] Richters, M. and Gogolla, M. A Metamodel for OCL, www.db.informatik.uni
bremen.de/publications/Richters 1999 UML.ps.gz, viewed on 14/05/2007. 

[62] Warmer, J. and Kleppe, A. The Object Constraint Language: Getting Your Models 
Ready for MDA, 2"d Edition, Pearson Education, 2003. 

[63] Boehm, B. A Spiral Model of Software Development and Enhancement, 
http://www.sce.carleton.ca/faculty/aj ila/ 41 06-5006/S piral %20Model%20 Boehm. pdf, 
viewed on 22/06/2007. 

[64] Owre, S., Shankar, N., Rushby, J. and Stringer-Calvert, D. PVS Language 
Reference, SRI International, http://pvs.csl.sri.com/doc/pvs-language-reference.pdf, 
viewed on 21102/2007. 

[65] Bezivin, J. From Object Composition to Model Transformation with the MDA, 
Proceedings of TOOLS-39, IEEE, 200 I. 

[66] Object Management Group (OMG). MDA Guide Version 1.0.1 (omg/2003-06-01), 
OMG, 2003. 

[67] Jussila et.al. Model Checking Dynamic and Hierarchical UML State Machines, 
http://modeva.itee.uq.edu.au/accepted papers/paper 4 8.pdf. viewed on 06/05/2007. 

[68] OMG. Unified Modelling Language: Superstructure Version 2.1.1 (formal/06-05-
01 ). 

Page 99 of Ill 



Transforming OCL to PVS: using theorem proving support for analysing model 
constraints 

Lukman A b. Rahim 

Appendix A: Description of design features use in 
categorising transformation language 

Desi2n Features Descrip_tion 
Transformatio LHS/RHS LHS/RHS of rules. Can represented using 
n combination of variables, patterns or logic. 
Rules LHS/RHS Syntactic RHS and LHS may or may not be separated 

Separation 
Bidirectional Rule may_ be executed in both direction 
Parameterization Rules can have parameters to control 

configuration and tuning 
Intermediate Some transformation approaches have 
Structures intermediate structure (no direct transformation 

between source and tarBet) 
Rule Application Scoping Rules can be applied to certain parts of the 

model 
Relationship between Source & Some language will only allow new model to be 
Target created as a result of transformation while 

others allow in-place transformation or update 
existing target 

Rule-Application Strategy Transformation rules can be applied using 
deterministic, non-deterministic or interactive 
strategy. 

Rule Form Scheduling can be in the form of explicit or 
Scheduling implicit. Explicit form can be external or 

internal where external there is a clear 
separation of rules and scheduling logic. 
Internal allow rules to call other rules. Implicit 
form does not allow human intervention 

Rule Selection Rule selection can be either explicit condition 
(guards), non-deterministic or interactive. 
Conflict resolution algorithm may also be 
provided 

Rule Iteration Include recursion, looping or fixpoint 
Phasing Transformation process may be organised in 

several phases and scheduling of rule will base 
on the phases 
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Rule Modularity Allow rules to be group into packages or 
Organisation Mechanism modules 

Reuse Mechanism Rules can be reuse using inheritance or logical 
composition (rules calling other rules) 

Organisational Rules can be source-oriented, target -oriented or 
Structure independent. Source means rules are organise 

base on source model, target base on target 
model or independent of source or target model. 

Tracing Storage Location Traceability information can be stored in a 
separate model, source model or target model 

Control Traceability can be done manually or automatic 
Directionality Transformation may be unidirectional or 

bidirectional. Bidirectional can be achieve by 
providing bidirectional rules or using 
complementary pairs of unidirectional rules. 
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Appendix B: UMLIOCL translation to B in [54] and [37] 

UML/OCL Marcano & Levv translation [54] 
Class Abstract machine 
Class instance Abstract variable of tvoe set 
Attribute Abstract variable typed as total function. the total function 

is from class instance to attribute typed 
Associations A variable of type relations between associated classes 
Prooertv call exoression Image of total function that reoresent the attribute 
Navigation call Image of binary relation that represent the association 
exoression 
Invariants Predicates added in !NV ARIANT section of the abstract 

machine that represents the context of the invariant. The 
invariant range of over all instance of the context 

Preconditions Predicates in PRE section of B operation 
Post conditions Predicates in THEN section of B operation 

Operations on OCL basic types and collections are map into equivalent B operator or 
expressiOns. 

UML Butler & Snook translation [371 
Package Abstract machine 
Class Variable that is part of a set 
Instance Set 
Attribute Variable of type function from instance to attribute type 
Association Similar to attribute except that the range is the supplier end 

of the function 
Association Multiolicities See figure 1 
Inheritance Variable that is oart of suoer class 
States Enumerated set of tvoe class 
Transition Operation transit from source state to target state 
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Figure 1: Translation of association multiplicities 1371 
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Appendix C: UML/OCL translation to Object-Z in [52] 

UML class Object-Z class with the same name 
Attributes Variable of the same name declared in the state 

schema. 
Constant attributes Variable of the same name declared in a axiom 
Attribute with multiplicities more than A sequence of the same type as the attribute 
I declared in the state schema 
Operation Operation schema with a parameter adorned 

with'?' and return adorned with'!' 
Visibility Public attributes/operations are included in the 

class visibility list 
Association A variable declared in the state schema with 

the same name as the association end or name 
of the class (if no association end). Association 
ends with cardinality more than one will create 
a sequence 

Aggregation Similar to mapping of association with the 
compound class construct containing a variable 
of type power set of part class 

Composition A variable declared in state schema with 
Object-Z notation that denotes unshared 
containment 

Association class Object-Z class with the same name and 
variables declared in state schema to represent 
association ends. 
Variable of type association class will be added 
to class in the association 

Inheritance Used Object-Z inheritance notation 
Invariants Predicates in state schema 
Pre and post conditions Predicates in operation schema. All variables in 

post conditions will be adorned with prime 
symbol to denote value after change except for 
variable with lajpre. 

Result keyword Replace with return value name 
Collection->size() #Collection 
Collection->count( object) #{c:Collection I c-object} 
Collection->includes( object) object c Collection 
Collection->includesAII(parameter) parameter Collection 
Collection->isEmpty() Collection-o 
Collection->notEmpryO Collection<>o 
Collection->sum( feature) L:c:Collection.c.feature 
Collection->select( e[expression) { e[expression} 
Collection->reject( e[expression) { e[~expression} 
Collection ->collect( e[ expression) I e:collection[expression} 
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Collection->forAll( elexpression) e:Collection.expression 
Collection->exists( e[expression) e:Collection.expression 
OCL initial clause Class initial schema 

Lukman Ab. Rahim 

OCL basic types (integer, real, and Boolean) are map into its equivalent types in Object
z and String are map into sequence of characters. Basic type literals may be used freely 
in Object-Z syntax. 

Concrete collection types (set, sequence and bag) are map into its equivalent form in 
Object-Z. Operations specific to set (union, intersection, minus, symmetricDifference, 
including, and excluding) and specific operations to sequence (first, last, at, append, and 
prepend) are map to semantically similar operators or expressions in Object-Z. 
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Collection: :excludesAll() Standard Library FR02.8 
Collection:any() Iterator Expression FR02.9 
Cl5llectio!l::exist0 .. · .. Iterator Expression FR02.9 
Col1e~ioll:.:forAl10 . · Iterator Expression FR02.9 
Crillection::isUniqueQ lterator Expression FR02.9 
Collection::one() Iterator Expression FR02.9 
Collection: :iterate() Iterate Expression FR02.10 
Collection: :count() Standard Library FR02.8 
Collection: :sum() Standard Library FR02.8 
Collection: :product() Standard Library FR02.8 
Set::= Standard Library FR02.8 
Set: :asSequence() Standard Library FR02.8 
Set::asBag() Standard Library FR02.8 
Set::asOrderedSet() Standard Library FR02.8 
Set:: select() lterator Expression FR02.9 
Set::reject() Iterator Expression FR02.9 
Set::collect() Iterator Expression FR02.9 
Set: :collectNested() Iterator Expression FR02.9 
Set::sortedBy() lterator Expression FR02.9 
Set::- Standard Library FR02.8 
Set: :intersection() Standard Library FR02.8 
Set:: symmetri cDifference() Standard Library FR02.8 
Set: :union() Standard Library FR02.8 
Set::excluding() Standard Library FR02.8 
Set: :including() Standard Library FR02.8 
Set: :count() Standard Library FR02.8 
Set: :flatten() Standard Library FR02.8 
Bag::= Standard Library FR02.8 
Bag: :asOrderedSet Standard Library FR02.8 
Bag::asSetQ_ Standard Library FR02.8 
Bag: :as Sequence() Standard Libr!l!Y_ FR02.8 
Bag: :select() Iterator Expression FR02.9 
Bag::reject() .· . lterator•Expression FR02.9 
.Ba!i;:collect() ··· · ·· • ltetator Expression FR02.9 
Set::coll!lCtNe$ted() ·.··• ·· Ite~ator Expression FR02.9 
Set::sortedBy() Iterator Expression FR02.9 
Bag::intersection() . Standard Library FR02.8 
Bag::union() Standard Libr!i!Y_ FR02.8 
Bag: :excluding() Standard Library FR02.8 
Bag::including() Standard Library FR02.8 
Bag: :flatten() Standard Library FR02.8 
Bag: :count() Standard Library FR02.8 
Sequence::= Standard Library FR02.8 
Sequence: :asBag() Standard Library FR02.8 
Sequence: :asSet() Standard Library FR02.8 
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Seguence: :asOrderedSet() Standard Library FR02.8 
Sequence: :select() Iterator Expression FR02.9 
Sequence: :reject() Iterator Expression FR02.9 
Sequence::collect() Iterator Ex]Jfession FR02.9 
Set: :collectNestedQ_ Iterator Expression FR02.9 
Set:: sortedB y() Iterator Expression FR02.9 
Sequence: :union() Standard Library FR02.8 
Seguence::excludin_g() Standard Library FR02.8 
Sequence: :including() Standard Library FR02.8 
Sequence::append() Standard Libr~ FR02.8 
Sequence:: prepend() Standard Library FR02.8 
Sequence: :at() Standard Library FR02.8 
Sequence: :first() Standard Library FR02.8 
Sequence: :last() Standard Library FR02.8 
Sequence:: subsequence() Standard Library FR02.8 
Sequence: :count() Standard Library FR02.8 
Sequence::flatten() Standard Library FR02.8 
Sequence: :index Of() Standard Library FR02.8 
Sequence: :insertAtQ Standard Library FR02.8 
OrderedSet::appendO Standard Librazy FR02.8 
OrderedSet::prepend() · ·· Standard Librazy FR02;8 
OrderedSet: :in~ertAt() · Stimdard Library FR02.8 
OrdereclSet: :subOrderedSet() Standard Librazy FR02.8 
OrderedSet: :at() Standard Library FR02.8 
OrderedSet: :index Of() Standard Library FR02.8 
OrderedSet: :first() Standard Librazy FR02.8 
Ordered Set:: last() Standard Librazy FR02.8 
self Variable Expression FR02.4 
result Variable Expression FR02.4 
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Appendix E: Model Transformation Approaches 

Table 21: Definition of elements if model transformation approaches 

Platform Independent 
Model (PIM) 

Platform Model 

Platform 
(PSM) 

Marks 

Mapping 

Patterns/Templates 

Marking 

PIT\.1 

Model from platform independent point of view. Contains 
no platform specific information, thus allow the model to be 
use with different 
Model of the platform chosen to be "l'l'll"u 

that make the 
wuu"• that contains 

is used in a particular platform. PSM is a model from . . . 

Annotations on a PIM model that indicates how an element 

Specification of the transformation that is written in a 
transformation 
Parameterized models that specify particular kind 

"l"ldl0"'''''''"''{''''' 

Metamodel Transformation 

st>•·•'lfi:• .,,,,, ,,., 
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Model Merging 
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