302 research outputs found

    Variable selection procedures and efficient suboptimal mask search algorithms in fuzzy inductive reasoning

    Get PDF
    This paper describes two new suboptimal mask search algorithms for Fuzzy inductive reasoning (FIR), a technique for modelling dynamic systems from observations of their input/output behaviour. Inductive modelling is by its very nature an optimisation problem. Modelling large-scale systems in this fashion involves solving a high-dimensional optimisation problem, a task that invariably carries a high computational cost. Suboptimal search algorithms are therefore important. One of the two proposed algorithms is a new variant of a directed hill-climbing method. The other algorithm is a statistical technique based on spectral coherence functions. The utility of the two techniques is demonstrated by means of an industrial example. A garbage incinerator process is inductively modelled from observations of 20 variable trajectories. Both suboptimal search algorithms lead to similarly good models. Each of the algorithms carries a computational cost that is in the order of a few percent of the cost of solving the complete optimisation problem. Both algorithms can also be used to filter out variables of lesser importance, i.e. they can be used as variable selection tools.Peer Reviewe

    Pre-processing, classification and semantic querying of large-scale Earth observation spaceborne/airborne/terrestrial image databases: Process and product innovations.

    Get PDF
    By definition of Wikipedia, “big data is the term adopted for a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications. The big data challenges typically include capture, curation, storage, search, sharing, transfer, analysis and visualization”. Proposed by the intergovernmental Group on Earth Observations (GEO), the visionary goal of the Global Earth Observation System of Systems (GEOSS) implementation plan for years 2005-2015 is systematic transformation of multisource Earth Observation (EO) “big data” into timely, comprehensive and operational EO value-adding products and services, submitted to the GEO Quality Assurance Framework for Earth Observation (QA4EO) calibration/validation (Cal/Val) requirements. To date the GEOSS mission cannot be considered fulfilled by the remote sensing (RS) community. This is tantamount to saying that past and existing EO image understanding systems (EO-IUSs) have been outpaced by the rate of collection of EO sensory big data, whose quality and quantity are ever-increasing. This true-fact is supported by several observations. For example, no European Space Agency (ESA) EO Level 2 product has ever been systematically generated at the ground segment. By definition, an ESA EO Level 2 product comprises a single-date multi-spectral (MS) image radiometrically calibrated into surface reflectance (SURF) values corrected for geometric, atmospheric, adjacency and topographic effects, stacked with its data-derived scene classification map (SCM), whose thematic legend is general-purpose, user- and application-independent and includes quality layers, such as cloud and cloud-shadow. Since no GEOSS exists to date, present EO content-based image retrieval (CBIR) systems lack EO image understanding capabilities. Hence, no semantic CBIR (SCBIR) system exists to date either, where semantic querying is synonym of semantics-enabled knowledge/information discovery in multi-source big image databases. In set theory, if set A is a strict superset of (or strictly includes) set B, then A B. This doctoral project moved from the working hypothesis that SCBIR computer vision (CV), where vision is synonym of scene-from-image reconstruction and understanding EO image understanding (EO-IU) in operating mode, synonym of GEOSS ESA EO Level 2 product human vision. Meaning that necessary not sufficient pre-condition for SCBIR is CV in operating mode, this working hypothesis has two corollaries. First, human visual perception, encompassing well-known visual illusions such as Mach bands illusion, acts as lower bound of CV within the multi-disciplinary domain of cognitive science, i.e., CV is conditioned to include a computational model of human vision. Second, a necessary not sufficient pre-condition for a yet-unfulfilled GEOSS development is systematic generation at the ground segment of ESA EO Level 2 product. Starting from this working hypothesis the overarching goal of this doctoral project was to contribute in research and technical development (R&D) toward filling an analytic and pragmatic information gap from EO big sensory data to EO value-adding information products and services. This R&D objective was conceived to be twofold. First, to develop an original EO-IUS in operating mode, synonym of GEOSS, capable of systematic ESA EO Level 2 product generation from multi-source EO imagery. EO imaging sources vary in terms of: (i) platform, either spaceborne, airborne or terrestrial, (ii) imaging sensor, either: (a) optical, encompassing radiometrically calibrated or uncalibrated images, panchromatic or color images, either true- or false color red-green-blue (RGB), multi-spectral (MS), super-spectral (SS) or hyper-spectral (HS) images, featuring spatial resolution from low (> 1km) to very high (< 1m), or (b) synthetic aperture radar (SAR), specifically, bi-temporal RGB SAR imagery. The second R&D objective was to design and develop a prototypical implementation of an integrated closed-loop EO-IU for semantic querying (EO-IU4SQ) system as a GEOSS proof-of-concept in support of SCBIR. The proposed closed-loop EO-IU4SQ system prototype consists of two subsystems for incremental learning. A primary (dominant, necessary not sufficient) hybrid (combined deductive/top-down/physical model-based and inductive/bottom-up/statistical model-based) feedback EO-IU subsystem in operating mode requires no human-machine interaction to automatically transform in linear time a single-date MS image into an ESA EO Level 2 product as initial condition. A secondary (dependent) hybrid feedback EO Semantic Querying (EO-SQ) subsystem is provided with a graphic user interface (GUI) to streamline human-machine interaction in support of spatiotemporal EO big data analytics and SCBIR operations. EO information products generated as output by the closed-loop EO-IU4SQ system monotonically increase their value-added with closed-loop iterations

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    Advances in Evolutionary Algorithms

    Get PDF
    With the recent trends towards massive data sets and significant computational power, combined with evolutionary algorithmic advances evolutionary computation is becoming much more relevant to practice. Aim of the book is to present recent improvements, innovative ideas and concepts in a part of a huge EA field

    Contribuição para as técnicas de detecção de falhas em placas de circuito impresso utilizando a transformada rápida de wavelet

    Get PDF
    Orientador: Yuzo IanoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Muitos trabalhos foram desenvolvidos na área de visão computacional aplicados à detecção de falhas em placas de circuito impresso (PCI's), visando reduzir a possibilidade de ocorrência de defeitos de fabricação. Nesse trabalho, a partir de modelos de layouts de referência e de teste de PCI's - sem componentes, estudou-se a aplicação de uma técnica de subtração de imagem para a detecção de falhas desses layouts de placas de circuito impresso utilizando a Transformada Rápida de Wavelet (FWT) durante o processamento de imagem. Assim, desenvolvendo as equações da Transformada de Wavelet Discreta (DWT), pode-se comparar a eficácia dessa técnica de processamento de imagem utilizando simulações lineares em MATLAB. Foram obtidos resultados significativos na redução do tempo de processamento e eficácia de classificação de imagem, indicando vantagens no uso desse tipo de técnica de processamento de imagem nos casos simuladosAbstract: Various concentrated work has been developed in the area of computer vision applied to detection of failures on printed circuit boards (PC's), aiming at reducing the possibility of the occurrence of the fabrication defects. In this research, based on PCI's - without mounting reference and test layout models, the objective is to study is the application of an image ubtraction technique to the failure detection of those bare printed circuit boards layouts using the Fast Wavelet Transform (FWT) during the image processing. By developing the Discrete Wavelet Transform (DWT) equations, one may compare the efficiency of this image processing technique using linear simulations developed in MATLAB. Significative results were obtained regarding the reduction of the image processing time and image classification efficiency, thus indicating advantages in using this technique in the simulated casesMestradoTelecomunicações e TelemáticaMestre em Engenharia Elétric

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Fifth Conference on Artificial Intelligence for Space Applications

    Get PDF
    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration

    Reinforcement Learning and Bandits for Speech and Language Processing: Tutorial, Review and Outlook

    Full text link
    In recent years, reinforcement learning and bandits have transformed a wide range of real-world applications including healthcare, finance, recommendation systems, robotics, and last but not least, the speech and natural language processing. While most speech and language applications of reinforcement learning algorithms are centered around improving the training of deep neural networks with its flexible optimization properties, there are still many grounds to explore to utilize the benefits of reinforcement learning, such as its reward-driven adaptability, state representations, temporal structures and generalizability. In this survey, we present an overview of recent advancements of reinforcement learning and bandits, and discuss how they can be effectively employed to solve speech and natural language processing problems with models that are adaptive, interactive and scalable.Comment: To appear in Expert Systems with Applications. Accompanying INTERSPEECH 2022 Tutorial on the same topic. Including latest advancements in large language models (LLMs

    Simple low cost causal discovery using mutual information and domain knowledge

    Get PDF
    PhDThis thesis examines causal discovery within datasets, in particular observational datasets where normal experimental manipulation is not possible. A number of machine learning techniques are examined in relation to their use of knowledge and the insights they can provide regarding the situation under study. Their use of prior knowledge and the causal knowledge produced by the learners are examined. Current causal learning algorithms are discussed in terms of their strengths and limitations. The main contribution of the thesis is a new causal learner LUMIN that operates with a polynomial time complexity in both the number of variables and records examined. It makes no prior assumptions about the form of the relationships and is capable of making extensive use of available domain information. This learner is compared to a number of current learning algorithms and it is shown to be competitive with them
    corecore