22,625 research outputs found

    Bayesian comparison of latent variable models: Conditional vs marginal likelihoods

    Full text link
    Typical Bayesian methods for models with latent variables (or random effects) involve directly sampling the latent variables along with the model parameters. In high-level software code for model definitions (using, e.g., BUGS, JAGS, Stan), the likelihood is therefore specified as conditional on the latent variables. This can lead researchers to perform model comparisons via conditional likelihoods, where the latent variables are considered model parameters. In other settings, however, typical model comparisons involve marginal likelihoods where the latent variables are integrated out. This distinction is often overlooked despite the fact that it can have a large impact on the comparisons of interest. In this paper, we clarify and illustrate these issues, focusing on the comparison of conditional and marginal Deviance Information Criteria (DICs) and Watanabe-Akaike Information Criteria (WAICs) in psychometric modeling. The conditional/marginal distinction corresponds to whether the model should be predictive for the clusters that are in the data or for new clusters (where "clusters" typically correspond to higher-level units like people or schools). Correspondingly, we show that marginal WAIC corresponds to leave-one-cluster out (LOcO) cross-validation, whereas conditional WAIC corresponds to leave-one-unit out (LOuO). These results lead to recommendations on the general application of the criteria to models with latent variables.Comment: Manuscript in press at Psychometrika; 31 pages, 8 figure

    Bayesian optimization of the PC algorithm for learning Gaussian Bayesian networks

    Full text link
    The PC algorithm is a popular method for learning the structure of Gaussian Bayesian networks. It carries out statistical tests to determine absent edges in the network. It is hence governed by two parameters: (i) The type of test, and (ii) its significance level. These parameters are usually set to values recommended by an expert. Nevertheless, such an approach can suffer from human bias, leading to suboptimal reconstruction results. In this paper we consider a more principled approach for choosing these parameters in an automatic way. For this we optimize a reconstruction score evaluated on a set of different Gaussian Bayesian networks. This objective is expensive to evaluate and lacks a closed-form expression, which means that Bayesian optimization (BO) is a natural choice. BO methods use a model to guide the search and are hence able to exploit smoothness properties of the objective surface. We show that the parameters found by a BO method outperform those found by a random search strategy and the expert recommendation. Importantly, we have found that an often overlooked statistical test provides the best over-all reconstruction results

    Approximate Bayesian Computation in State Space Models

    Full text link
    A new approach to inference in state space models is proposed, based on approximate Bayesian computation (ABC). ABC avoids evaluation of the likelihood function by matching observed summary statistics with statistics computed from data simulated from the true process; exact inference being feasible only if the statistics are sufficient. With finite sample sufficiency unattainable in the state space setting, we seek asymptotic sufficiency via the maximum likelihood estimator (MLE) of the parameters of an auxiliary model. We prove that this auxiliary model-based approach achieves Bayesian consistency, and that - in a precise limiting sense - the proximity to (asymptotic) sufficiency yielded by the MLE is replicated by the score. In multiple parameter settings a separate treatment of scalar parameters, based on integrated likelihood techniques, is advocated as a way of avoiding the curse of dimensionality. Some attention is given to a structure in which the state variable is driven by a continuous time process, with exact inference typically infeasible in this case as a result of intractable transitions. The ABC method is demonstrated using the unscented Kalman filter as a fast and simple way of producing an approximation in this setting, with a stochastic volatility model for financial returns used for illustration
    corecore