680 research outputs found

    Metaheuristic approach for solving one class of optimization problems in transport

    Get PDF
    Problem dodele vezova obuhvata nekoliko važnih odluka koje je potrebno doneti da bi se dosegla maksimalna efikasnost luke. U luci, menadžeri terminala treba da dodele slobodne vezove brodovima koji su najavili dolazak...Berth Allocation Problem incorporates some of the most important decisions that have to be made in order to achieve maximum eciency in a port. Terminal manager of a port has to assign incoming vessels to the available berths, where they will be loaded/unloaded in such a way that some objective function is optimized. It is well known that even the simpler variants of Berth Allocation Problem are NP-hard, and thus, metaheuristic approaches are more convenient than exact methods, because they provide high quality solutions in reasonable computational time. This study considers two variants of the Berth Allocation Problem: Minimum Cost Hybrid Berth AllocationProblem (MCHBAP) and Dynamic Minimum Cost Hybrid Berth AllocationProblem (DMCHBAP), both with xed handling times of vessels. Objective function to be minimized consists of the following components: costs of positioning, speeding up or waiting of vessels, and tardiness of completion for all vessels. Having in mind that the speed of nding high-quality solutions is of crucial importance for designing an ecient and reliable decision support system in container terminal, metaheuristic methods represent the natural choice when dealing with MCHBAP and DMCHBAP. This study examines the following metaheuristic approaches for both types of a given problem: two variants of the Bee Colony Optimization (BCO), two variants of the Evolutionary Algorithm (EA), and four variants of Variable Neighborhood Search (VNS). All metaheuristics are evaluated and compared against each other and against exact methods integrated in commercial CPLEX solver on real-life instances from the literature and randomly generated instances of higher dimensions. The analysis of the obtained results shows that on real-life instances all metaheuristics were able to nd optimal solutions in short execution times. Randomly generated instances were out of reach for exact solver due to time or memory limits, while metaheuristics easily provided high-quality solutions in short CPU time in each run. The conducted computational analysis indicates that metaheuristics represent a promising approach for MCHBAP and similar problems in maritime transportation..

    Exact and Heuristic Methods for Integrated Container Terminal Problems

    Get PDF

    A novel mathematical formulation for solving the dynamic and discrete berth allocation problem by using the Bee Colony Optimisation algorithm

    Get PDF
    AbstractBerth allocation is one of the crucial points for efficient management of ports. This problem is complex due to all possible combinations for assigning ships to available compatible berths. This paper focuses on solving the Berth Allocation Problem (BAP) by optimising port operations using an innovative model. The problem analysed in this work deals with the Discrete and Dynamic Berth Allocation Problem (DDBAP). We propose a novel mathematical formulation expressed as a Mixed Integer Linear Programming (MILP) for solving the DDBAP. Furthermore, we adapted a metaheuristic solution approach based on the Bee Colony Optimisation (BCO) for solving large-sized combinatorial BAPs. In order to assess the solution performance and efficiency of the proposed model, we introduce a new set of instances based on real data of the Livorno port (Italy), and a comparison between the BCO algorithm and CPLEX in solving the DDBAP is performed. Additionally, the application of the proposed model to a real berth scheduling (Livorno port data) and a comparison with the Ant Colony Optimisation (ACO) metaheuristic are carried out. Results highlight the feasibility of the proposed model and the effectiveness of BCO when compared to both CPLEX and ACO, achieving computation times that ensure a real-time application of the method

    Disruption Response Support For Inland Waterway Transportation

    Get PDF
    Motivated by the critical role of the inland waterways in the United States\u27 transportation system, this dissertation research focuses on pre- and post- disruption response support when the inland waterway navigation system is disrupted by a natural or manmade event. Following a comprehensive literature review, four research contributions are achieved. The first research contribution formulates and solves a cargo prioritization and terminal allocation problem (CPTAP) that minimizes total value loss of the disrupted barge cargoes on the inland waterway transportation system. It is tailored for maritime transportation stakeholders whose disaster response plans seek to mitigate negative economic and societal impacts. A genetic algorithm (GA)-based heuristic is developed and tested to solve realistically-sized instances of CPTAP. The second research contribution develops and examines a tabu search (TS) heuristic as an improved solution approach to CPTAP. Different from GA\u27s population search approach, the TS heuristic uses the local search to find improved solutions to CPTAP in less computation time. The third research contribution assesses cargo value decreasing rates (CVDRs) through a Value-focused Thinking based methodology. The CVDR is a vital parameter to the general cargo prioritization modeling as well as specifically for the CPTAP model for inland waterways developed here. The fourth research contribution develops a multi-attribute decision model based on the Analytic Hierarchy Process that integrates tangible and intangible factors in prioritizing cargo after an inland waterway disruption. This contribution allows for consideration of subjective, qualitative attributes in addition to the pure quantitative CPTAP approach explored in the first two research contributions

    Models for the Discrete Berth Allocation Problem: A Computational Comparison

    Get PDF
    Maritime transportation is the backbone of international trade. Over 80 % of global merchandise trade is transported by sea. With an ever increasing volume of maritime freight, the efficient handling of both ships and containers has never been more critical. In this paper we consider the problem of allocating arriving ships to discrete berth locations at container terminals. This problem is recognized as one of the most important processes for any container terminal. We review and describe the three main models of the discrete dynamic berth allocation problem, improve the performance of one model, and, through extensive numerical tests, compare all models from a computational perspective. The results indicate that a generalized set-partitioning model outperforms all other existing models

    Barge Prioritization, Assignment, and Scheduling During Inland Waterway Disruption Responses

    Get PDF
    Inland waterways face natural and man-made disruptions that may affect navigation and infrastructure operations leading to barge traffic disruptions and economic losses. This dissertation investigates inland waterway disruption responses to intelligently redirect disrupted barges to inland terminals and prioritize offloading while minimizing total cargo value loss. This problem is known in the literature as the cargo prioritization and terminal allocation problem (CPTAP). A previous study formulated the CPTAP as a non-linear integer programming (NLIP) model solved with a genetic algorithm (GA) approach. This dissertation contributes three new and improved approaches to solve the CPTAP. The first approach is a decomposition based sequential heuristic (DBSH) that reduces the time to obtain a response solution by decomposing the CPTAP into separate cargo prioritization, assignment, and scheduling subproblems. The DBSH integrates the Analytic Hierarchy Process and linear programming to prioritize cargo and allocate barges to terminals. Our findings show that compared to the GA approach, the DBSH is more suited to solve large sized decision problems resulting in similar or reduced cargo value loss and drastically improved computational time. The second approach formulates CPTAP as a mixed integer linear programming (MILP) model improved through the addition of valid inequalities (MILP\u27). Due to the complexity of the NLIP, the GA results were validated only for small size instances. This dissertation fills this gap by using the lower bounds of the MILP\u27 model to validate the quality of all prior GA solutions. In addition, a comparison of the MILP\u27 and GA solutions for several real world scenarios show that the MILP\u27 formulation outperforms the NLIP model solved with the GA approach by reducing the total cargo value loss objective. The third approach reformulates the MILP model via Dantzig-Wolfe decomposition and develops an exact method based on branch-and-price technique to solve the model. Previous approaches obtained optimal solutions for instances of the CPTAP that consist of up to five terminals and nine barges. The main contribution of this new approach is the ability to obtain optimal solutions of larger CPTAP instances involving up to ten terminals and thirty barges in reasonable computational time
    corecore