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Abstract
Berth allocation is one of the crucial points for efficient management of ports. This problem is complex due to all possible
combinations for assigning ships to available compatible berths. This paper focuses on solving the Berth Allocation Problem
(BAP) by optimising port operations using an innovative model. The problem analysed in this work deals with the Discrete and
Dynamic Berth Allocation Problem (DDBAP). We propose a novel mathematical formulation expressed as a Mixed Integer
Linear Programming (MILP) for solving the DDBAP. Furthermore, we adapted a metaheuristic solution approach based on the
Bee Colony Optimisation (BCO) for solving large-sized combinatorial BAPs. In order to assess the solution performance and
efficiency of the proposed model, we introduce a new set of instances based on real data of the Livorno port (Italy), and a
comparison between the BCO algorithm and CPLEX in solving the DDBAP is performed. Additionally, the application of the
proposed model to a real berth scheduling (Livorno port data) and a comparison with the Ant Colony Optimisation (ACO)
metaheuristic are carried out. Results highlight the feasibility of the proposed model and the effectiveness of BCO when
compared to both CPLEX and ACO, achieving computation times that ensure a real-time application of the method.

Keywords Berth allocationproblem .Beecolonyoptimisation .Container terminal .Berth planning .Combinatorial optimisation

1 Introduction

During the last century, global trade and freight growth im-
pose new challenges and requirements for efficient manage-
ment of transport processes. Therefore, maritime transport is
one of the crucial points of intermodal transportation, con-
cerned with the difficulties of developing more efficient port
operations. This paper focuses on solving the Berth Allocation
Problem (BAP) by optimising port operations using an inno-
vative model. In the literature, this problem has been studied
by several researchers using different approaches. Basically,
the BAP is a complex operations research problem based on
the assignment of ships to berth areas along a quay [41].
Typically, ships arrive at a port in a specific time window,

and port operators indicate their available berths. Models ap-
plied to solve the BAP can be divided according to variables
related to space and time.

Spatial variables are related to the quay. According to Imai
et al. [27] and Bierwirth and Maisel [1], there are three different
cases of spatial variables: discrete layout (BAPD), continuous
layout (BAPC), and hybrid layout (HBAP). The BAPD is the
simplest and the most used model for berth planning. In this
model, a quay is divided into several berths with specific lengths,
and each berth can serve only one ship at a time. In the BAPC,
the quay is not divided into several berths, and each ship can be
served in any place without overlapping. In the HBAP, the quay
is similar to the BAPD, but ships can occupy a few or more
berths according to their length. Recently, Kovač et al. [32] have
solved the HBAP, formulated as the Minimum Cost Hybrid
Berth Allocation, by using four different metaheuristic ap-
proaches, i.e., Evolutionary Algorithms (EAs), Bee Colony
Optimisation (BCO), Variable Neighborhood Search (VNS),
and the General Variable Neighborhood Search (GVNS).

Temporal variables divide the BAP in two cases related to
the ships’ arrival time: Static arrival (SBAP) and Dynamic
arrival (DBAP) time [25]. In the SBAP, there are no expected
arrival times, so it is assumed that all ships are in the harbor at
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the beginning of the planning horizon, waiting to be anchored.
Thus, the ships’ arrival time puts a single constraint on the
berthing times, with the possibility of speeding up the specific
operations before the expected arrival time. In the DBAP,
arrival times are scheduled and assigned to each ship, in order
to avoid overlapping. Recently, Kramer et al. [34] have pro-
posed two novel formulations: a time-indexed formulation
and an arc-flow formulation for solving a big-size DBAP con-
sidering 250 ships and 20 berths instances in a reasonable
computation time. Generally, various models aim at
minimising the sum of the ships’ waiting time or the total
staying time for completing the activities, increasing the at-
tractiveness and efficiency of container terminal ports.

Another classification of BAP is formulated including the
synchronisation between the BAP and the Quay Cranes
Assignment Problem (QCAP), and it has been treated by sev-
eral authors in the literature ([21, 40, 58, 60, 61]).

The problem formulated in this work deals with the Discrete
and Dynamic Berth Allocation Problem (DDBAP). Generally,
container terminals are highly dynamic systems, and terminal
managers have to decide different port operations in short periods
[56]. The right decision-making in a short time basis is crucial for
port management optimisations. For this reason, an efficient op-
timisation algorithm that will provide an optimal berth assign-
ment solution in real-time is a current challenge. Umang et al.
[55] proposed a real-time formulation for solving the BAP with
stochastic arrival and handling time on a rolling planning horizon
aiming at minimising the total realised cost of the updated
berthing schedule.

Heuristics and metaheuristics are the most used approaches
for solving the DDBAP. Metaheuristics are general frameworks
used to build heuristic algorithms for NP-hard optimisation prob-
lems in reasonable computation time. In the literature, several
metaheuristic approaches were proposed, such as Genetic
Algorithms [18, 28, 53], Particle Swarm Optimisation [54],
Tabu Search [35] and Variable Neighborhood Search [23].

This paper proposes a novel mathematical formulation
expressed as a Mixed Integer Linear Programming (MILP)
for solving the DDBAP, in order to find an optimal berth
assignment for a given schedule. We applied a Swarm
Intelligence algorithm, the Bee Colony Optimisation (BCO),
since it resulted in being very effective in solving large-sized
combinatorial problems [6, 44, 52] and, to the best of our
knowledge, it has not been applied to the DDBAP yet. In order
to assess the performance of the model, we introduced a new
set of instances based on Livorno port real data. We compared
the exact solutions obtained for the proposed MILP formula-
tion by using CPLEXwith near-optimal solutions obtained by
the proposed BCO algorithm. Furthermore, we applied the
proposed model to a real case study (Livorno port in Italy),
and we compared the results obtained by the BCO with the
Ant Colony Optimisation (ACO) metaheuristic, another well-
known Swarm Intelligence algorithm.

The paper is organised as follows. Section 2 presents the
literature review related to the DDBAP. Section 3 introduces
the proposedMILP formulation, while Section 4 describes the
proposed metaheuristic based on the BCO algorithm for solv-
ing the DDBAP. Section 5 is devoted to a numerical applica-
tion for comparing BCO solutions with CPLEX exact ones.
Section 6 shows the application to a real case study and com-
pares results obtained by both BCO and ACO metaheuristics.
Finally, Section 7 gives concluding remarks and proposes
some future developments.

2 Literature review on the DDBAP

A brief introduction of BAP has already been presented in
Section 1, while in this section we aim to present a brief
state-of-the-art focused on the Dynamic variant of the
Discrete BAP. The most recent BAP survey paper in the lit-
erature is presented by Bierwirth and Maisel [2].

A state-of-the-art on the dynamic variants of the DBAP is
necessary for highlighting the contribution of the proposed
work. Since DDBAP is an NP-hard problem due to the for-
mulation structure and to the problem size [26, 27, 48], it is
necessary to apply heuristic or metaheuristic methods as a
resolution approach to obtain near-optimal solutions. A sum-
mary of proposed DDBAP mathematical formulations and
algorithm approaches is needed. Imai et al. [25] were the first
authors who addressed the DDBAP by using a Lagrangian
relaxation heuristic as a resolution approach for solving nu-
merical experiments. Hansen and Oğuz [22] implemented a
DDBAP equivalent Mixed Integer Program (MIP) correcting
and extending the model proposed by Imai et al. [25]. They
provided a VNS metaheuristic for solving large instances to
near optimality. Thereafter, Hansen et al. [23] extended the
mathematical formulation proposed by Hansen and Oğuz [22]
in terms of objective function, variables, and constraints intro-
ducing the Minimum Cost Berth Allocation Problem
(MCBAP) considering dynamic ships’ arrival and discrete
quay division with the aim to minimise ships’ waiting and
handling times. They proposed a VNS metaheuristic for solv-
ing the MCBAP medium and large size instances and demon-
strated that VNS outperformed other three metaheuristics, i.e.
Multi-Start, Genetic Algorithms (GAs) and Memetic search
algorithm (MA). Monaco and Sammarra [45] improved the
DDBAP mathematical formulation by Imai et al. [25] intro-
ducing a compact and stronger formulation dealing with the
same problem. They used a Lagrangian heuristic algorithm for
solving large-sized instances reaching near-optimal solutions
in a reasonable computation time. Issam et al. [29] extended
the Imai’s DDBAP mathematical formulation as a multi-
objective MILP including ships’ draft and greenhouse gas
emissions evaluation. Xu et al. [59] proposed a MILP formu-
lation for solving the DDBAP and the SDBAP considering
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water depth and tidal effect with the aim tominimise the ships’
completion time. They developed two heuristic algorithms to
solve the dynamic and static DBAP, respectively, and they
tested the model performance on numerical experiments.
Recently, Lassoued and Elloumi [38] proposed a MILP for-
mulation for optimising the DDBAP in bulk ports. They com-
pared the proposedMILP model with a real case study dataset
by using CPLEX solver on small instances.

The most applied algorithm approaches are GA-based
metaheuristics for solving large and real data instances.
Nishimura et al. [47] were the first who applied GAs to ad-
dress the DDBAP. Imai et al. [26] extended the formulation
proposed by Imai et al. [25] including service priority con-
straints and applying GAs metaheuristic as the solution ap-
proach. Han et al. [20] implemented a non-linear mathemati-
cal formulation to minimise the total turnaround time and to
improve the terminal operation efficiency by using GAs and a
hybrid optimisation strategy combining GA and Simulated
Annealing (GASA), respectively. Zhou et al. [62] proposed
a non-linear programming model considering ships’ total
waiting and service times as stochastic parameters. They used
a GAs and designed a greedy algorithm for improving ships’
assignment to available berths. Golias et al. [14] proposed a
MILP formulation with two objective functions for
minimising ships’ late departure costs and for maximising
ships’ early and timely departure benefits within a time win-
dow. Imai et al. [28] proposed a two-objective mathematical
formulation considering ships’ service quality and berths’
utilisation objective functions by minimising delay in ships’
departure and total service time, respectively. They applied
GAs and Subgradient Optimisation (SP) approaches for solv-
ing the DDBAP. Theofanis et al. [53] implemented a
linearised version of the DDBAP formulation proposed in
Imai et al. [26], and they compared two heuristics, i.e. GAs
and the Optimisation-Based GA (OBGA), on a small dataset.
Golias et al. [15] proposed a multi-objective combinatorial
optimisation problem considering ships’ priority for
minimising the total service time. They developed a GA-
based metaheuristic to solve large and real data instances.
Golias et al. [19] proposed an additional non-linear MIP for-
mulation for minimising ships’ emissions, waiting time, and
delayed departures by using a GA-based metaheuristic to
solve real data instances. Saharidis et al. [49] formulated a
bi-level optimisation problem introducing a hierarchy among
the different objective functions. They used an improved in-
teractive GA-based metaheuristic, i.e. the k-th best algorithm,
for solving real data instances. Golias et al. [16] proposed a
lamda-optimal based heuristic algorithm, namely the Defined
Neighborhood heuristic, for solving berth scheduling sub-
problems minimising the total weighted service time. They
also presented a GAs metaheuristic as an alternative solver
for the cases in which no-efficient objective optimiser is avail-
able to solve sub-problems. Golias and Haralambides [17]

proposed a non-linear DDBAP mathematical formulation for
minimising ships’ late departure total costs and waiting time,
and for maximising ships’ early departure total premiums si-
multaneously. They assumed different variable penalty/
premium costs functions based on contractual agreements be-
tween the liner shipping company and the terminal operator.
Additionally, they used a GA-based metaheuristic algorithm
to solve computational examples based on four different berth
scheduling policies. Golias et al. [18] proposed a bi-level bi-
objective optimisation problem for minimising the average
and range of total service times depending on ships’ arrival
and handling time uncertainties. They developed a GA-based
metaheuristic algorithm for solving big-sized numerical ex-
periments. Simrin and Diabat [51] proposed a non-linear
MIP for solving the DDBAP with the aim to minimise the
ships’ total handling and waiting times. Moreover, they
linearised the previous model and developed a GA
metaheuristic as a resolution approach for solving small and
large set of instances.

In the literature, other authors dealt with the DDBAP by
using different metaheuristic approaches. Cordeau et al. [4]
proposed two mathematical formulations considering both
discrete and continuous cases with the aim to minimise the
ships’ total weighted service time. They developed a Tabu
Search (TS) metaheuristic for solving discrete and continuous
cases for big-sized instances while they applied CPLEX solver
for small-sized instances. Buhrkal et al. [3] improved the
mathematical formulation by Cordeau et al. [4] by introducing
a Generalized Set Partitioning Problem (GSPP) mathematical
formulation. Lalla-Ruiz et al. [34] proposed a hybrid heuristic
combining a TS metaheuristic with an artificial intelligence
method, namely the Path Relinking algorithm, for solving
the DDBAP. They compared exact solutions of the GSPP
mathematical formulation proposed by Buhrkal et al. [2] and
near-optimal solutions of the TS metaheuristic proposed by
Cordeau et al. [4]. Furthermore, de Oliveira et al. [4] proposed
an alternative Clustering Search method using the Simulated
Annealing (SA) metaheuristic applied on the mathematical
formulation by Cordeau et al. [4]. Lin and Ting [42] proposed
two versions of the SA algorithm, i.e., with and without
restarting strategy, for solving the DDBAP by using the math-
ematical formulation by Buhrkal et al. [3]. They tested both
SA algorithms on several small and medium instances in the
literature. Lin et al. [43] proposed the Iterated Greedy (IG)
heuristic for solving the DDBAP minimising ships’ total ser-
vice time. Lee and Jin [39] dealt with the DDBAP considering
the optimisation between feeder ships schedule and terminal
operations in a container transhipment terminal. They pro-
posed a mixed integer programming model and a MA ap-
proach, i.e. the combination between GAs and TS.

Karafa et al. [31] proposed a modified version of the
DDBAP model proposed by Golias et al. [16] considering
ships’ handling time as a stochastic parameter. They
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formulated a bi-objective optimisation problem with the aim
to minimise the berth schedule risk and to maximise the berth
throughput by using an Evolutionary EA-based heuristic and a
simulation-based Pareto front pruning algorithm. Dulebenets
[9] proposed a non-linear MIP model for solving the DDBAP
with the aim to minimise the ships’ total weighted service
time. He developed a modified version of MA with a
Deterministic Parameter Control (MA-DPC) algorithm and
compared it with other four metaheuristics, i.e., MA, EA,
SA, and VNS algorithms by testing it on numerical instances.
Furthermore, Dulebenets et al. [13] proposed a MILP model
for solving the DDBAP minimising the ships’ total service
cost, including the total carbon dioxide emission cost. They
developed a Hybrid Evolutionary Algorithm (HEA) for solv-
ing a set of numerical instances. Dulebenets [10] proposed a
MILP for solving the DDBAP including service priority with
the aim to minimise the ships’ total weighted service cost. He
developed an Adaptive Evolutionary (AEA) metaheuristic
with a parameter control strategy to test the model effective-
ness through extensive numerical experiments. Dulebenets
et al. [12] proposed a MILP model aimed at minimising the
ships’ total weighted turnaround time and the ships’ total
weighted late departure. They improved the previous AEA
algorithm proposed by Dulebenets [12] with a Self-Adaptive
Evolutionary Algorithm (SAEA). Additionally, Dulebenets
[11] proposed a MILP model aiming at minimising the ships’
total weighted service cost. He developed an Adaptive Island
Evolutionary Algorithm (AIEA) which can execute simulta-
neously multiple EAs in parallel on its islands based on an
adaptive mechanism. Ting et al. [54] proposed a MIP model
for solving the DDBAP as a vehicle routing type problemwith
the aim to minimise the ships’ total service time. They devel-
oped a Particle Swarm Optimisation (PSO) metaheuristic al-
gorithm to test and validate their model through two different
size sets of benchmark instances in the literature. Lalla-Ruiz
and Voß [36] and Lalla-Ruiz and Voß [37] proposed a Partial
Optimisation Metaheuristic Under Special Intensification
Conditions (POPMUSIC) metaheuristic for solving the
DDBAP applying the mathematical formulation proposed by
Cordeau et al. [4]. They proposed two variants of POPMUSIC
metaheuristic, i.e. POPMUSIC and POPMUSIC-G, applying
different initial solution methods, i.e. Random-Greedy meth-
od and First-Come First-Served Greedy, respectively.
Recent ly, Nishi et al . [46] proposed a Dynamic
Programming-Based Matheuristic (DP-Math) based on
POPMUSIC metaheuristic to solve the DDBAP proposed by
Cordeau et al. [4]. They compared DP-Math metaheuristic
with GSPP and dynasearch algorithms on large scale in-
stances. Issam et al. [30] proposed a DDBAP mathematical
formulation with the aim to minimise the ships’ total staying
time at a container terminal. They developed a Modified
Sailfish Optimiser (MSFO) metaheuristic and compared
MSFO with other heuristic-based approaches in the literature

on a set of instances proposed by Cordeau et al. [4]. Wang
et al. [57] proposed a DDBAP mathematical formulation
minimising the ships’ total service time considering tidal ef-
fects. They developed a Levy-Flight (LF) metaheuristic to
solve the proposed model and compared LF with other state-
of-the-art exact and heuristic methods on large scale instances.

In Table 1, we report a summary of the state-of-the-art as an
extension of the survey presented by Kovač [32], in which
main differences in models and metaheuristic algorithms pro-
posed for solving the DDBAP are highlighted.

According to Table 1, the proposed mathematical formula-
tion can be classified as discrete (disc), and draft ships depen-
dent (draft) as a spatial attribute; dynamic (dyn), and due time-
dependent (due) as a temporal attribute; and position-
dependent handling time (pos) as a handling time attribute.
Among the above-mentioned authors, Zhou et al. [62], Han
et al. [20], Xu et al. [59], and Issam et al. [29] have considered
draft constraints in their mathematical formulations.
Accordingly, as highlighted by Sheikholeslami et al. [50],
we considered the compatibility between ships’ draft and
berths’ draft since it is relevant, especially for shallow ports
where tide effects and low-draft access (e.g., channel port
access) could influence the berth planning negatively.

Thus, considering the existing literature, the contribution of
this paper is summarised as follows:

1. A novel mathematical formulation expressed as a MILP
for solving the DDBAP was proposed. Additionally, we
introduced a new parameter that considers the berth
approaching/leaving time, to the best of our knowledge,
not considered in the literature yet.

2. A metaheuristic for solving the DDBAP, the BCO, was
proposed since there are few Swarm Intelligence algo-
rithms applied for solving the DDBAP in the literature.
Furthermore, a new set of benchmark instances, based on
Livorno port real data, for the DDBAP was introduced to
test the feasibility of the proposed optimisation model by
using an exact solver and the BCO.

3. An application to a real case study (Livorno port) consid-
ering a long-time horizon (from 1 up to 4 weeks) was
introduced.We compared the real monthly berth planning
with the solution obtained by the proposed BCO and an-
other well-known Swarm Intelligence method, the ACO,
to assess the effectiveness of the proposed approach.

3 Problem description and formulation

In this paper, we propose a novel mathematical formula-
tion for solving the DDBAP, formulated as a MILP. The
formulation was obtained starting from the Non-Linear
Mixed Integer Programming (NLMIP) model reported in
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Appendix 1 in order to provide an equivalent linear model
for algorithms comparison. In both formulations, the ob-
jective function minimises the total ships’ staying time.
Our model considers the following assumptions: the port,
at its initial state, is empty, and each ship corresponds at
least to one compatible berth due to the discrete distribu-
tion model of quays. Furthermore, compatibility between
ships and berths is related to geometric constraints, such as
length and draft. Ships arrive at the port in the harbor area
according to scheduled arrival times and arranged in chro-
nological order. Arrival, service, and total ships’ staying
times are related to a fixed time reference, while berth
approaching/leaving, handling, and waiting times are fixed
time intervals. Berth approaching/leaving, and handling
times are calculated as the average of observed values,
respectively. The warehouse capacity for the storage of

goods and/or containers is unlimited. The number and per-
formance of cranes are not considered. Finally, ships can
move freely within the port: priority and any additional
waiting times due to internal congestion have been exclud-
ed. The list of notations used for the MILP formulation is
reported in Table 2 including notations used in the NLMIP
(Appendix A).

All definitions, as depicted in Fig. 1, are given as follows:

& Arrival time: the arrival time of a ship to a given port in the
harbor area.

& Waiting time: the time spent by a ship, assigned to a
berth, in waiting for the previous ship to leave the
same berth.

& Berth approaching/leaving time: the total time necessary
for a ship to approach and leave its assigned berth. This

Table 1 Problems and metaheuristic algorithms for the DDBAP

Problem description Article Solution algorithm Problem dimension

# of ships # of berths Time horizon

disc | dyn | pos Golias et al. [15] GA 40 to 80 5 to 10 1 to 2 weeks

Golias and Haralambides [17] GA inter arrival time 5 1 week

Saharidis et al. [49] GA 50 5 to 10 1 to 2 weeks

Golias et al. [18] GA inter arrival time 4 to 5 1 week

Ting et al. [54] PSO 25 to 60 5 to 13 –

Lalla Ruiz et al. [35] TS 25 to 60 5 to 13 600 time units

Golias et al. [16] GA 40 to 80 5 1 to 2 weeks

Golias et al. [19] GA inter arrival time 5 –

Hansen et al. [23] VNS 10 to 200 10 to 20 –

Theofasis et al. [53] GA 20–25 per week 5 1 to 2 weeks

Golias et al. [14] GA 9 2 –

Imai et al. [28] GA 24 4 1 week

Simrin and Diabat [51] GA 30 to 80 10 to 30 –

Dulebenets [9] MA-DPC 6 to 16 2 to 4 2 weeks

Dulebenets et al. [13] HEA 11 to 90 2 to 6 –

Dulebenets [10] AEA 5 to 42 4 to 6 –

Dulebenets et al. [12] SAEA 5 to 100 2 to 8 –

Dulebenets [11] AIEA 6 to 85 2 to 6 –

Issam et al. [30] MSFO 60 13 –

disc | dyn | pos, stoch Karafa et al. [31] EA inter arrival time 5 1 week

disc | dyn, due | pos Lalla-Ruiz and Voß [36] POPMUSIC 40 to 55 5 to 7 600 time units

Lalla-Ruiz et al. [37] POPMUSIC-G 60 13 –

Nishi et al. [46] DP-Math 150 15 –

Cordeau et al. [4] TS 25 to 35 5 to 10 –

de Oliveira et al. [5] SA 60 13 –

Lin and Ting [42] SA 25 to 35 5 to 10 –

Lin et al. [43] IG 25 to 35 5 to 10 –

disc | dyn, due | fix Lee and Jin [39] MA 15 to 40 3 to 8 –

disc, draft | dyn | pos Han et al. [20] GA 7 2 –

disc, draft | dyn, due | pos Zhou et al. [62] GA 25 to 100 5 to 8 –
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time includes all mooring manoeuvres starting and
finishing at the harbor area.

& Handling time: the time spent by port operators for load-
ing or unloading goods of a ship, assigned to a berth.

& Service time: the sum of waiting, berth approaching/leav-
ing, and handling times of a ship assigned to a berth.

& Leaving time: the port leaving time is the sum of arrival
and service time of a ship assigned to a berth.

& Total staying time: the cumulative sum of arrival and ser-
vice times of all ships assigned to their respective berths.

3.1 The MILP mathematical formulation

In order to find the global optimal solution of the DDBAP
using an exact solver, we modelled the problem as a MILP
whose mathematical formulation is given as follows:

min ∑
i¼1

ns

tti
s:t:

ð1Þ

∑
j¼1

nb

xij ¼ 1;∀ j∈B ð2Þ

si ¼ twi þ tai ;∀i∈S ð3Þ
si≥ tai ;∀i∈S ð4Þ
si þM ⋅ 1−xij

� �
≥sk þ thk þ tbkj−M ⋅ 1−xkj

� �
;∀i∈S;∀k∈S;∀ j∈B; k > i ð5Þ

lsi ⋅xij≤ l
b
j ;∀i∈S;∀ j∈B ð6Þ

dsi ⋅xij≤d
b
j ;∀i∈S;∀ j∈B ð7Þ

tBi ≥ t
b
ij⋅xij;∀i∈S;∀ j∈B ð8Þ

tti ¼ tai þ thi þ tBi þ twi ;∀i∈S ð9Þ
xij∈ 0; 1f g;∀i∈S;∀ j∈B ð10Þ

The proposed MILP formulation (1)–(10) aims at
minimising the total staying time by the objective function
(1). Constraints (2) ensure the uniqueness of the assignment.
We define the leaving time si in constraints (3), while con-
straints (4) and (5) ensure that si must be consistent with all
previous arrival times. We introduce a large positive number
M in constraints (5) in order to avoid unfeasibility and to faster
reach the optimal solution. Constraints (6) and (7) ensure the
compatibility between the length and the draft of the ships
with respect to those of the berths. Constraints (8) evaluate

the berth approaching/leaving time auxiliary variables tBi

Table 2 List of notations used in problem formulations

Notation Description

Sets

S set of all ships, S = {1, 2,…,ns}, ordered according to the schedule

B set of all berths, B = {1, 2,…,nb}

Parameters

ns number of ships in the schedule

nb number of berths

lsi length of the i-th ship, i ∈ S
dsi draft of the i-th ship, i ∈ S
lbj length of the j-th berth, j ∈ B
dbj maximum acceptable draft of the j-th berth, j ∈ B
tai arrival time of the i-th ship, i ∈ S
thi handling time of the i-th ship, i ∈ S
tbij berth approaching/leaving time of the i-th ship to the j-th berth, i ∈ S, j ∈ B
M large positive number

Decision variables

xij binary decision variable of assignment of the i-th ship to the j-th berth; xij= 1 if the i-th ship anchored to the j-th berth;
xij= 0, otherwise. i ∈ S, j ∈ B

twij waiting time auxiliary variable of the i-th ship to the j-th berth, i ∈ S, j ∈ B
tWij waiting time of the i-th ship to the j-th berth, i ∈ S, j ∈ B
tBi berth approaching/leaving time auxiliary variable of assignment of the i-th ship, i ∈S
tsij service time of the i-th ship to the j-th berth, i ∈ S, j ∈ B
ttij total staying time of the i-th ship to the j-th berth, i ∈ S, j ∈ B
si leaving time of the i-th ship, i ∈ S
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related to the assignment of the i-th ship to the j-th berth,
allowed by the right-side term tbij⋅xij. Finally, constraints (9)
and (10) define the total staying time decision variables tti and
the binary nature of the decision variables xij, respectively.

4 The Bee Colony Optimisation approach

In order to face the complexity of the problem, we applied the
BCO metaheuristic proposed by Teodorović et al. [52] to
solve the DDBAP.

Generally, the BCO is based on bees’ natural collaborative
behaviour for solving the complex combinatorial optimisation
problem. We used, in this case, artificial bees for performing
the search process. Firstly, bees are located in the hive and
then they start to interact when the search process is undertak-
en. Each artificial bee undertakes a set of moves through
stages determining a partial solution of the problem. These
partial solutions remain until some other suitable ones have
been found. At each stage, bees’ movements are called for-
ward and backward step. During the forward step, they gen-
erate partial solutions through previous individual or collec-
tive experiences, while during the backward step, they return
to the hive for participating in the decision-making process. At
the end of the stages, we completed an iteration generating one
or more feasible solutions. The search process continues until
a fixed maximum number of iterations is reached. When

applied to the DDBAP, each bee (b) represents a solution,
i.e., a feasible assignment of ships to available berths. We
can represent an assignment matrix using a three-
dimensional structure, as shown in Fig. 2a.

The complete list of all parameters used for BCO is report-
ed in Table 3.

In the initialisation, we define the maximum number of
iterations (nk) and the number of bees (nbee). Each solution
is constructed through stages following a given time sched-
ule according to the dynamic nature of the problem. Thus,
the number of stages (G) is equal to the number of ships
(ns) in the schedule, and a stage represents a single ship-to-
berth assignment. As stated before, each stage is composed
of a forward and backward step. During a forward step,
each bee finds partial assignments of the ships to the
berths. All the partial solutions are identified observing
the constraints of the optimisation problem, and the asso-
ciated fitness value is given by the objective function (1).
During a backward step, each bee could improve its partial
solution or move to a better one. At the end of each itera-
tion, a bee constructs a feasible solution. Then, a new iter-
ation starts searching for new solutions until the maximum
number of iterations is reached. The flowchart of the pro-
posed method is shown in Fig. 2b. In Algorithm 1, we
reported the proposed BCO pseudo-code to better under-
stand the forward/backward process related to each itera-
tion k of the algorithm.

Fig.1 A space-time representation of the proposed DDBAP model
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Algorithm 1. Pseudo-code applied to solve the DDBAP

As a result, a path of the created artificial network corresponds
to a berth assignment found by a bee. At the end of each iteration,
all the possible solutions found are evaluated, referring to the
associated fitness value, and the best assignment is saved.
Then, a new iteration starts searching for new solutions until
the maximum number of iterations nk is reached [44]. We can
represent the decision space as an artificial network composed of
nodes and stages, as shown in Fig. 3a and b.

The roulette wheel selection [24], applied to the BCO al-
gorithm, is a common algorithm used to select an item pro-
portional to its probability. The main inspiration for its devel-
opment derives from the example of roulette used in gam-
bling. Each solution can be chosen, and the probability of
selection (the size of a roulette slot) depends on its fitness
value, which is one value of the objective function. In practice,
the size of the circular sector of the roulette associated with
each solution is determined by the ratio between the

Fig. 2 a Three-dimensional assignment matrix structure; b flowchart of the proposed method
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normalised value of the corresponding objective function and
the sum of the normalised values of the objective function for
all the solutions found. On the one hand, a solution with a
better value than the objective function is more likely to be
selected; on the other, there is a probability that it will be
eliminated following a subsequent search process. The prob-
ability that a partial or complete solution of b can be chosen by
any unengaged bee is equal to the following formulation:

pb ¼
Ob

∑
r¼1

nr
Or

;∀b∈R ð11Þ

The probability that the b-th bee, at the beginning of the
next forward step, remains loyal to its own total or partial
solution found in previous steps is represented as follows:

puþ1
b ¼ e−

Omax−Ob
uð Þ;∀b∈B;∀u∈G ð12Þ

The normalisation of Ob, related to the minimisation of the
objective function (1), is calculated by the following equation:

Ob ¼ Qmax−Qb

Qmax−Qmin
;∀b∈B ð13Þ

Table 3 List of Notations used in BCO algorithm

Notation Description

Sets

C set of all possible bees’ movements in the forward step, C = {1, 2,…,nc}

R set of recruiter bees, R = {1, 2,…,nr}

I set of all iterations, I = {1, 2,…,nk}

G set of all stages, G = {1, 2,…,ns}

Parameters

nc number of possible bees’ movements in the forward step

nr number of possible bees’ recruiters in the recruitment process

nk number of iterations

nbee number of bees

Decision variables

pub bee’s probability to follow the b-th constructive movements at step u, u∈G
Omax maximum normalised value of the objective function of partial or complete solution generated by the b-th bee

Ob normalised value of the objective function of partial or complete solution generated by the b-th bee, b ∈N
Or normalised value of the objective function of partial or complete solution generated by the r-th recruiter bee, r ∈ R
Qmax maximum value of the objective function of partial or complete solution generated by the b-th bee, b ∈N
Qmin minimum value of the objective function of partial or complete solution generated by the b-th bee, b ∈N
Qb value of the objective function of partial or complete solution generated by the b-th bee, b ∈N

Fig. 3 a Forward step and b Backward step
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The normalised value Ob represents the fitness value of
a partial or complete solution. According to Eq. (11)–(13)
and a random number generator, each artificial bee de-
cides whether to become an engaged follower or to con-
tinue exploring its own solution. If the random number
chosen is less than the calculated probability, the bee re-
mains faithful to its solution. Otherwise, if the random

number is greater than the probability, the bee becomes
unengaged. A higher Ob value corresponds to a better-
generated solution and to a greater probability that the
bee remains faithful to the solution discovered previously.
The higher the index value of the step u the higher the
probability that the bee remains faithful to its previously
found solution, according to Eq. (12).

Table 4 Results comparison
between CPLEX and BCO Instance Problem size CPLEX BCO Gap (%)

# of ships # of berths f [min] t [s] f [min] t [s]

R25–5 25 5 137,130 2.3 137,130 0.7 0.00

R25–10 25 10 139,051 1.5 139,051 1.2 0.00

R25–15 25 15 142,138 2.4 142,138 1.8 0.00

R25–20 25 20 143,725 2.7 143,812 2.3 0.06

R50–5 50 5 467,341 139.9 469,253 2.4 0.41

R50–10 50 10 460,408 189.2 460,656 4.4 0.05

R50–15 50 15 462,711 40.9 463,021 6.5 0.07

R50–20 50 20 469,892 125.6 470,264 8.6 0.08

R75–5 75 5 970,215 7200 973,526 4.9 0.34

R75–10 75 10 958,576 2143 958,997 9.5 0.04

R75–15 75 15 969,749 536.2 970,420 14.3 0.07

R75–20 75 20 969,021 7200 969,639 18.9 0.06

R100–5 100 5 1,650,677 7200 1,657,824 8.6 0.43

R100–10 100 10 1,643,871 2844.2 1,644,913 16.6 0.06

R100–15 100 15 1,638,401 7200 1,639,266 31.2 0.05

R100–20 100 20 1,641,994 7200 1,642,888 33.5 0.05

Notes. f denotes the ships’ total staying time in minutes. t denotes the average computation time in seconds.

Fig. 4 Container terminal quays considered in the Livorno port (Italy)
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5 Numerical application

In order to check the feasibility of the proposed optimisation
model, we compared the BCO with an exact solver for the
DDBAP as formulated above. We tested both algorithms on a
PC equipped with an Intel i7 2.4GHz CPU and 4 Gb of RAM.
The BCO algorithm was developed in C++, while CPLEX
was used as an exact solver for the MILP. We introduced a
new set of instances based on a Livorno port scheduling real
dataset considering 25, 50, 75, 100 ships and 5, 10, 15, 20
berths. Generated instances are available at the following
URL: https://bit.ly/37avUC7. The proposed benchmark
instances are obtained as follows: the arrival time is
considered as a fixed value for all instances, while all the
other parameters are assigned randomly from the real
dataset. Moreover, according to problem constraints, at least
one berth must be compatible with all ships in terms of length
and draft.

Concerning the BCO algorithm, we set nk = 1000, nbee =
10, nc = 1, nr = nbee, while computation times (t) are related to
the average CPU time over 10 runs. Regarding CPLEX, we
set the time limit for finding the global optimum equal to
7200 s. The results comparison is reported in Table 4.

We can observe that for small-sized instances, the exact
solution is achieved by both approaches. Furthermore, for
medium and large-sized instances, we can observe that results
in terms of the objective function gap give low values (0.41%
in the worst case). In contrast, the comparison in terms of CPU
time is relevant. The proposed BCO approach assures near-

optimal results in low computation time, thus, it could be used
for real-time applications in port management operations.
Accordingly, the proposed model could avoid data uncer-
tainties by updating the berth scheduling process in real-time.

6 Application to a real case and results

We applied the proposed method to the real case of the Livorno
port by monitoring and acquiring data referred to the container
terminals of Darsena Toscana (5 berths) and Sintermar (3
berths), as shown in Fig. 4. We used a time schedule of 28 days
referred to the berth planning of February 2016 and considered
a total of 140 container ships. Acquired data included arrival
times, staying times, ships’ length and draft, berths’ destination,
and status referred to a daily berthing planning and extended to
a monthly time schedule. In order to better evaluate the effec-
tiveness of the proposed method, we compared the obtained
results with the real schedule of the Livorno port and the Ant
Colony Optimisation (ACO) metaheuristic. The comparisons
were carried out executing 10 runs of the BCO algorithm.
The results of the comparison with the Livorno port assignment
are reported in Table 5 in terms of objective function value,
service time, and waiting time. We can observe that the per-
centage of improvement in terms of the total service time is 9%
over 4 weeks. This represents a significant result, considering
the wide schedule time interval observed.Moreover, we obtain-
ed a saving in terms of total waiting time of about 10 cumulated
days when compared to the real schedule.

Fig. 5 Comparison between observed and computed (a) ships’ total staying time (obj. function), (b) service time – monthly berth plan

Table 5 Comparison between
observed and computed times
considering 1000 iterations and
100 bees over 10 runs – monthly
berth plan

Observed (days) Computed (days) Improvement (%)
Min

Obj. function 2144 2015 6

Total service time 107 97 9

Total waiting time 12 2 82

A novel mathematical formulation for solving the dynamic and discrete berth allocation problem by using the...
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The optimisation of the total staying time improves the
performance of the container terminal and, consequently, of
the whole port for better ships’ management. The lower the
objective function, the greater the number of ships that the
port can serve for the same time interval, thus increasing the
volume of the handled goods.

Figure 5a shows a comparison between the observed and
computed total staying times. We can observe significant im-
provements in terms of service time (Fig. 5b) and waiting time
(Fig. 6a). The latter resulted to be about 80% lower than the
observed times. In Fig. 6b, we can highlight a resulting homo-
geneous distribution of the ships over the berths.

In the second comparison, we adapted the Ant Colony
Optimisation (ACO) to the DDBAP by developing it in C++
as the proposed BCO. The ACO is one of the most used and
known Swarm Intelligence method metaheuristics, firstly pro-
posed by Dorigo [7]. It is an algorithm based on the behaviour
of ants seeking a path between their colony and a source of
food, suitable to search for an optimal path in a graph. Further
details can be found in Dorigo and Gambardella [8]. We ap-
plied the ACO to the Livorno port schedule and executed 10
runs as the previous comparison. The results of the compari-
son are reported in Table 6. We can observe that the proposed
BCO found better results than ACO in terms of minimum and

average objective function value expressed in hours. In par-
ticular, we obtained a saving of 3.5 h in terms of minimum
value and about 3 h on average. Standard deviation values are
almost the same, which means that both metaheuristics are
characterised by high robustness.

Finally, the computation performance of the BCO in terms
of CPU time (seconds) are shown in Table 7 and Fig. 7. We
can assert that the obtained computation times, on average
4 min in the worst case, are compatible with real-time appli-
cations for container ports.

7 Conclusions

In this paper, we proposed a novel mathematical formulation
to solve the Discrete and Dynamic Berth Allocation Problem
(DDBAP). Starting from a Non-Linear Mixed Integer
Programming (NLMIP) we formulated the DDBAP as a
Mixed Integer Linear Programming (MILP) to find the global
optimum with an exact solver. The objective function mini-
mises the total ships’ staying time, introducing a new param-
eter related to the berth approaching/leaving time.Moreover, a
solution method based on the Bee Colony Optimisation
(BCO) was introduced for its capabilities in solving complex

Fig. 6 Comparison between observed and computed (a) ships’ waiting time and (b) the percentage of berths’ usage – monthly berth plan

Table 6 Comparison between ACO and BCO considering 1000
iterations and 100 ants/bees over 10 runs – monthly berth plan

Obj. function (hours) Improvement
(hours)

ACO BCO

Min 48,371.7 48,368.2 3.5

Avg 48,373.7 48,370.9 2.8

Std. dev. 1.61 1.75 −0.14

Table 7 Comparison of the BCO average CPU time (s) over 10 runs
varying the number of iterations and bees

No. Artificial bees No. Iterations

1 10 100 1000 10,000

1 3.31 3.41 4.28 6.86 13.83

10 3.35 4.86 6.78 27.72 230.30

100 4.69 9.24 27.26 222.60 2112.00
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problems. In order to check the feasibility of the proposed
optimisation model, we introduced a new set of instances
based on Livorno port (Italy) real data. We compared the
optimal solutions of the proposed MILP, obtained using the
exact solver CPLEX, with near-optimal solutions obtained by
the proposed BCO. Results highlighted the effectiveness of
the BCO in terms of near-optimal solutions (average gap of
0.12%) in a reasonable low computation time (on average
10.3 s). Furthermore, we applied the proposed model to the
real case of the Livorno port in Italy over a time horizon of
4 weeks (February 2016). We compared the proposed BCO
with another well-known Swarm Intelligence metaheuristic,
the Ant Colony Optimisation. Results highlighted the effec-
tiveness of the proposed approach in terms of average im-
provement obtained over 10 runs. We evaluated improve-
ments in terms of objective function value, service, and
waiting times. As a result, we obtained a saving of 10 cumu-
lative days when compared to the real berth assignment of the
Livorno port. Moreover, BCO resulted in beingmore effective
than ACO, obtaining an improvement of about 3 h on average.
Finally, computation performance highlighted the possibility
of a real-time application of the proposed model to support
port operators in the berth assignment task.

From a practical point of view, several benefits can be
achieved. It is possible to serve a greater number of ships in
a certain time interval by minimising the total staying time.
Thus, the port performance increases proportionally in terms
of volume of goods, economic benefits due to anchorage fees,
port taxes, possible freight surcharges, cost reduction of port
operators, and resource management. Other benefits can also
be referred to shipping companies. The reduction of waiting
time can result in different cost benefits, such as a reduction in
personnel costs, possible anchored surcharges, maintenance,
and fuel costs. Furthermore, non-monetizable costs such as
water noise and air pollution can be also reduced.

Further developments will concern the integration of the
proposed DDBAP model with the Quay Crane Assignment
Problem (QCAP) for container terminals and to include data
uncertainty, budget limit, and priority, in the mathematical
formulation. To this aim, the NLMIP formulation, reported
in Appendix 1, can serve as a basis to develop extended
non-linear models that embed other optimisation problems
in port management like the QCAP. Additionally, the com-
parison with other metaheuristic approaches would be consid-
ered in future research.

Funding Open access funding provided by Politecnico di Bari within the
CRUI-CARE Agreement.

Appendix 1. The NLMIP mathematical
formulation

According to the notations reported in Table 2 and the as-
sumptions presented in Section 3.1, the NLMIP formulation
aiming at minimising the total staying time is given as follows:

min ∑
i¼1

ns

∑
j¼1

nb

ttij⋅xij

s:t:
ð14Þ

∑
j¼1

nb

xij≤1;∀i∈S ð15Þ

∑
j¼1

nb

lsi ⋅xij≤ l
b
j ;∀i∈S ð16Þ

∑
j¼1

nb

dsi ⋅xij≤d
b
j ;∀i∈S ð17Þ

∑
j¼1

nb

lsi ⋅xij þ dsi ⋅xij≤ l
b
j ⋅xij þ dbj ;∀i∈S ð18Þ

Fig. 7 Computational time values
varying the number of iterations
and artificial bees
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tWij ¼ max 0; −tai þ ∑
1

k¼i−1
ttkj⋅xkj

� �
;∀i∈S;∀ j∈B; ta0 ¼ 0; th0 ¼ 0; tb0 j ¼ 0 ð19Þ

tsij ¼ tWij þ tbij þ thi ð20Þ
ttij ¼ tai þ tsij ð21Þ
twij ≥ t

W
ij ;∀i∈S;∀ j∈B ð22Þ

twij ≤M ⋅ 1− xij−x i−1ð Þ j
�� ��� �

;∀i∈S;∀ j∈B ð23Þ
x0 j ¼ 0;∀ j∈B ð24Þ
xij∈ 0; 1f g;∀i∈S;∀ j∈B ð25Þ

The objective function (14) minimises the total staying time.
Constraints (15) ensure the uniqueness of the assignment be-
tween the i-th ship and the j-th berth, i.e., a ship can only be
assigned to a single berth. Constraints (16)–(18) are related to
the compatibility between the length and the draft of the ships
with respect to those of the berths. The waiting times tWij are

calculated by constraints (19) and they are calculated as the max-
imum value between zero and the difference between the total
staying time of the (i-1)-th ship and the arrival time of the i-th
ship assigned to the same j-th berth. Constraints (20) and (21)
define the service time tsij and the total staying time, respectively.
Constraints (22) and (23) define the assignment of the waiting
time auxiliary variable introducing a large positive number M.
Accordingly, the waiting time auxiliary variables twij are the min-

imum value between the waiting times tWij andM. Consequently,

constraints (24) and (25) introduce three possible cases, referred
to the value of the decision variables xij:

1 xij = 1, x(i − 1)j = 1: twij is equal to the waiting time tWij accord-
ing to the constraints (22);

2 xij = 0, x(i − 1)j = 0: twij is equal to zero according to con-
straints (19);

3 xij = 1, x(i − 1)j = 0, or vice versa: twij is equal to zero, accord-
ing to the constraints (23).

Constraints (24) ensure that the decision variables in con-
straints (19) and (23) with the subscript i-1 are equal to zero
when i = 1. Finally, constraints (25) define the binary nature of
the decision variables.
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