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Summary (English)

The introduction of a standardized logistical unit for all modes of transport
has proved a major technological innovation. Since its inception in 1956, con-
tainerization has made enormous inroads into the carriage of traditional break
bulk cargoes which are now transported on specialized vessels through special-
ized container terminals. The revolutionary homogenization of heterogeneous
cargoes has resulted in massive increases in the size of vessels and terminals, a
trend that continues until now. The related developments of globalization, mega
container vessels, hub-and-spoke network con�gurations, increased service fre-
quencies, slow steaming, severe competition between terminals and others create
new challenges for the container terminals that need to achieve higher opera-
tional e�ciency with limited resources. In an environment of scarce �nancial
and spatial resources, improvements in operations planning often present supe-
rior cost e�ciency in comparison to solutions engaging capacity expansions by
new investments.

Planning container terminal operations is not an easy task since it involves mul-
tiple interdependent problems. These problems have attracted the attention
of many researchers in the �eld of operational research and have been studied
for more than few decades. Traditionally, planning problems are being solved
hierarchically. However, hierarchical solutions can be poor, misleading or even
infeasible for later stages. Integration of the relevant problems has emerged
as a possible approach. This thesis deals with optimization of integrated con-
tainer terminal problems for seaside and yardside operations. More speci�cally,
it addresses the berth allocation, quay crane assignment, quay crane schedul-
ing, operational stowage planning, transfer vehicle assignment and scheduling
problems that modern container terminals are confronted with.
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The general goal of the thesis is to increase the modeling, methodological and
computational knowledge on a set of integrated container terminal problems.
The main contributions are summarized in individual chapters in which prob-
lems are formulated as mathematical models and solved by a spectrum of exact
and heuristic methods. The study approach starts with integrated seaside oper-
ations and expands gradually to cover the integrated seaside-and-yardside prob-
lems. Some of the thesis chapters cover state-of-the-art problems and present
new solution methods, improvements on the available formulations, and im-
proved computational results, while others focus on novel problems and present
new results along with benchmarks generated. The methodological contribu-
tions of the thesis cover domains of both deterministic and stochastic problems
for integrated container terminal problems. The computational results suggest
that the methods constitute improvements with respect to solution quality and
computational time. Managerial conclusions for the studied problems are also
provided in the relevant chapters of the thesis.
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Chapter 1

Introduction and
Motivation

In the preface of "The Box" (Levinson, 2008), it is stressed that the history of
the shipping container is humbling. Careful planning and thorough analysis have
their place, but they provide little guidance in the face of changes that alter an
industry's very fundamentals. Levinson (2008) notes that containerization is the
cutting edge of maritime freight transport history. Bringing a uniform unit for all
modes of transport, containers ("The Box") helped to integrate all entities in the
shipping network. This integration also includes container terminals1 which are
special type of harbors that are accustomed to handle containers. The general
aim of this thesis is to increase the knowledge on container terminal planning
problems and supply a better guidance for further applicability of optimization
methods to increase the e�ciency of operations.

Bene�ting from rapid globalization, the container shipping network has been
steadily growing. In 2014, a container volume of 170 million Twenty Equivalent
Units (TEUs) is expected to be transported around the globe through this net-
work (UNCTAD, 2015). In the following years, the global container throughput
is expected to have a growth rate of over 6% and it is reported that this value
is outperforming world Gross Domestic Product (GDP) growth continuously
(UNCTAD, 2015). This shows that there is a modal shift from bulk to con-

1Container terminals and terminals will be used interchangeably in this thesis
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tainerization which means that a wider range of goods is placed in containers,
and transported through container terminals consequently. The same report
points out that leading container terminals handle more than 30 million TEUs
annually, therefore we can note the increasing volumes as one of the factors that
makes operations planning more complex and important for container terminals.

Liner shipping companies have adapted to this trend by increasing the capacity
of their �eet, deploying container vessels of over 19.000 TEUs. Capacity is, how-
ever, not enough. A reliable service requires the goods to arrive on time, and it is
here where container terminals face another challenge with the increasing vessel
sizes. First, the infrastructure of container terminals is under strong pressure
since larger vessels require longer berths with deeper water depths and more
equipment for loading/unloading operations. Second, the larger vessels create
tremendous peak of workloads at the terminals. Summing up, the increase in
vessel capacity is another factor that makes the e�cient planning more complex
and important for container terminals.

It is not only the size of the vessels is increasing, they also sail slower in the open
sea (Psaraftis and Kontovas, 2010). Note that the design speed of the recently-
born mega-vessels is around 19 knots which is slower than their predecessors (See
Triple-E guidelines as an example). This points out that the shipping industry
intends to keep the slow-steaming principle. There are two major consequences
of slow-steaming for container terminals. First and foremost, considering the
short transit time promise of the liner shipping companies with more times spent
in the open sea, there is a clear expectation on the reduction of the time spent
at container terminals for each container. Second, liner shipping companies,
or alliances that they form, operate at higher frequencies to compensate the
capacity losses due to slow-steaming. This results in more frequent vessel visits
which means heavier workloads for the terminals.

The importance of container terminals in the entire shipping network can be
better understood with Figure 1.1. According to Notteboom (2006), a survey
data (which is made in 2004) show the sources of unreliability in the major East-
West container transport trade. Survey results show that over 85% of causes for
unreliability is due to port systems. The biggest portion is the congestion and
resulting waiting times before/after loading/unloading at ports (65.5%). The
second biggest portion is poor port productivity (20.6%). Such data support
that the e�ciency expectations of liner shipping companies are not perfectly
met by port operators.

The need for the e�cient planning is not only imposed by customers. There is
an intense competition between container terminals. The biggest four terminal
operators (Hutchison Port Holdings (Hong Kong), PSA International (Singa-
pore), DP World (United Arab Emirates), APM Terminals (the Netherlands))
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Figure 1.1: Sources of liner schedule unreliability (survey data of East Asia �
Europe relations, Notteboom (2006)

control the 26.7% of all World tra�c. The competition between top tier termi-
nals is more intense. Jiang, Chew, and Lee (2015) stress that terminals of the
same region compete to attract more cargo and gain a higher share of the mar-
ket. It is noted that the cargo �ow shifts in Asian ports are more in�uenced by
this competition (Jiang et al., 2015). Competitive advantage can be achieved
by making investments on terminal resources such as extending the berthing
and storage area, increasing the number of equipment or renovating the current
equipment, etc. Investments, however, are at a very high cost and there is no
guarantee of an improvement in the service quality because there is a limit to
the number of equipment that can be deployed to a vessel and ine�cient man-
agement of these new investments can bring more congestion and deterioration
in the overall performance. In this sense, increasing the e�ciency without any
investment on the infrastructure gives a serious competitive advantage in the
market.

As a key node in the maritime transport network, container terminals are in
active business with the other entities in the network. A container terminal,
as an entity, has a "system" and an "environment". The system corresponds
to the controllable container terminal business involving many complex oper-
ations which will be detailed in the following sections. A large proportion of
the content in this thesis deal with problems arising in the container terminal
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system. The environment is the exogenous system that a�ects operations and
cannot be controlled by the container terminal. The environment (such as the
information �ow between liner shipping company and terminal, weather, vessel
arrival times, etc.) brings a degree of uncertainty into operations planning. This
makes e�cient planning an even more complicated task. This thesis will also
address problems arising from this uncertainty.

Considering all of these challenging prospects while doing the required business,
container terminals aim at utilizing all resources and coordinating activities in
the best possible way at the same time. Practitioners, researchers, and develop-
ers of decision support tools have been devoted to solve these challenges. These
e�orts seek cost-e�cient, reliable and robust solutions to various problems of
the container terminals. With respect to research papers focusing on these
problems, there is an increasing trend in the number of papers (See reviews on
Operations Research (OR) methods to solve container terminal problems; Vis
and de Koster (2003), Steenken, Voÿ, and Stahlbock (2004), Stahlbock and Voÿ
(2007), Kim and Lee (2015)). All related studies regarding thesis problems will
be detailed in the following sections.

Methods presented in this thesis can be updated to adapt to new situations
including operational or tactical changes such as varying vessel arrival sched-
ules, equipment renewal with respect to numbers or technicalities, new safety
restrictions, new operational rules, etc. They can provide better planning for
critical resources in the terminal. A better cost calculation will be supplied
for higher quality input to contract planning with customers. The details of
contributions will be explained later in this chapter. The thesis focuses on new
methods and/or improvements on existing methods which span through a vast
spectrum of OR literature. The methods developed in this thesis might also
help for building more e�cient decision support tools for container terminals.

1.1 Container terminals around the globe

In order to get into details of operations, the container terminals around the
World are reviewed brie�y. The top 20 container terminals accounted for approx-
imately 45.7% of world container port throughput in 2014 (UNCTAD, 2015).
These terminals showed a 4.5% increase in throughput compared to 2013, the
same as the estimated increase for 2013. Figure 1.2 illustrates container termi-
nals with di�erent handling volumes in the World with respect to 2012 statistics.
Figure 1.2 shows that many of the leading container terminals are in developing
economies, many of which are in Asia, the remaining few big terminals are in
developed countries in Europe and North America.
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World's Largest Container Ports, 2012

Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University
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Figure 1.2: World's leading container terminals Rodrigue (2013)

Container terminals should be evaluated not only with container handling vol-
umes but also by the hinterlands they are connected to and their target business
models. Signifying the importance of Asian and Western European manufactur-
ing zones, the leading positions of the terminals in these regions can be easily
understood. Traditionally these terminals mainly handle import and export con-
tainers. Export containers are the ones which are stowed aboard a vessel for
export, while import containers are unloaded from the vessel and transported
to hinterland area. Terminals in Asian provinces (like Shenzhen, Ningbo, Qing-
dao, etc.) mostly load full export containers to Western Europe, while unload
empty/less-value-loaded containers. Regarding the target business models, the
hub-and-spoke system has been initiated in shipping networks where mega con-
tainer vessels visit a limited number of transhipment terminals (hubs) while
small vessels (feeders) connect the remaining relatively small terminals (spokes)
in that region to respective hubs. Container terminals like Singapore rises as the
most popular transhipment terminal with a transhipment percentage of more
than 80% of the overall handling volume.

Such trends do not only a�ect the leading container terminals on the main ocean
routes. Relatively small terminals are also in�uenced by the increase in the trade
volumes, larger vessel sizes and hub-and-spoke system. As a result, all container
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terminals should focus on improving operations and try to stay competitive in
the market. The productivity of a container terminal does not only determine
its competitiveness and attractiveness, it also a�ects the entire network in which
the terminal is involved. Thus the e�cient operations planning should be the
aim of any types of terminal.

1.2 Technicalities of container vessels and con-
tainer terminals 2

Container vessels are ships that are designed for transportation of the containers.
Nowadays, container terminals are called by numerous container vessels. The
classi�cation of these vessels is usually made according to their capacity and size.
We refer reader to Pacino (2012) for di�erent vessel and container types. The
layout of a container vessel is presented in Figure 1.3. Containers are (un)loaded
from/to positions (slots) of the vessel. Figure 1.3a illustrates the bays (holds)
which are ordered through the entire vessel length. Each bay has a number of
stacks and tiers. Figure 1.3b illustrates the bay-layout where tiers are vertical
indexing of positions in each bay, while stacks (rows) are horizontal indexing of
positions through the bays of a vessel. There are hatch covers which are metallic
blocks and they separate containers on-deck and below-deck.

Bay

(a) Side-view of a container vessel

(b) Bay layout (Kim et al., 2004)

Figure 1.3: A container vessel

2Inspired by Meisel (2009a); Kemme (2013); Carlo, Vis, and Roodbergen (2014a,b)
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A container terminal has been divided mainly into four operation areas in terms
of functionality to serve the vessels.

• Quayside (seaside) area: the area where vessels are berthed and containers
are (un)loaded from/to the vessel
• Transport area: the area where containers are transported from/to the vessel
• Yard area: the area where containers are stored for inbound or outbound
transport
• Truck, train and gate area: the borders of terminal where containers are trans-
ported in/out of the system

Figure 1.4 illustrates these functional areas and equipment alternatives that can
be used in these areas (Meisel, 2009b).

Figure 1.4: Schematic side view of a container terminal (Meisel, 2009b)

The quayside (seaside) area is composed of the berth where vessels moor, and
the (un)loading equipment. The berth is the interface between the vessel and
the container terminal. Berths with di�erent lengths and con�gurations are
used in terminals. The physical berth con�guration is mostly decided in the
construction stage of container terminals. With respect to the physical layout,
there are mainly three types of berths namely discrete, continuous and hybrid.
In discrete layout, the quay is partitioned into a number of berths in which
only one vessel can be �t (berthed) at the same time. This type of partitioning
can either be due to the construction of the quay (Figure 1.5a) or it can be a
decision by the authorities. In continuous layout, a vessel can berth at any point
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along the quay (Figure 1.5b). This is mostly a single shore line around 0.5-2
km of length. In hybrid layout, the terminal uses discrete and continuous types
together (Figure 1.5c). A special version of hybrid layout is intended berths in
which two opposing berths exist, and they can be used simultaneously to handle
a vessel (Figure 1.5d).

Figure 1.5: Di�erent berth layouts (Meisel, 2009c)

Terminals operate a number of equipment with di�erent characteristics. The
very details of each equipment will not be explained in the thesis. We refer the
reader to Stahlbock and Voÿ (2007), Meisel (2009b), Bose (2011) for further
explanation for di�erent equipment types. Instead the most popular equipment
types will be explained.

Regarding the equipment used in seaside operations, Quay Cranes (QCs) so
called Ship-to-Shore gantry cranes (STS cranes) are mostly used for (un)loading
operations of containers onto(from) vessels. QCs of various size and specialties
are used in modern terminals and the QC technologies have been improving
continuously. (See further information on QCs in Stahlbock and Voÿ (2007),
Kemme (2013)). Depending on their length, vessels may be served by up to
six QCs simultaneously. Recently container terminals mostly use rail-mounted
gantry QCs which move in a rail-mounted system. For this reason, QCs cannot
overtake each other. In order to deploy a QC to a vessel, all other QCs, which
are between the berthing position of the vessel and the respective QC, must
be moved. There are also mobile harbor cranes which are more �exible with
respect to movements. Rail-mounted gantry QCs are, however, more e�cient
compared to them (Kemme, 2013). By being faster, rail-mounted gantry QCs
can make more moves per hour. QCs also di�er in their reach, one of the biggest
super Post-Panamax QCs has an outreach of 25 stacks across the vessel bays.
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A QC starts loading a container by locking it with the spreader. Then it moves
the container to the required vessel position (slot) and it is unlocked, there
are twistlocks under each container that help to lock containers to each other.
Some vessels are equipped with cell guides which help to position containers.
Meanwhile, a gang starts the lashing operations on a group of containers with
respect to the lashing pattern. After QC loads the container, it moves back
to quay and picks the next container. There are some technical improvements
so that the handling speed of QCs is increased. Some QCs are equipped with
two trolleys and are called Dual Trolley QCs. One of the trolleys works on the
quayside and the other loads the container on the vessel. There is a platform
in the middle where each container is being exchanged. Another advancement
in QC operations is the dual-cycling (Goodchild and Daganzo, 2006). In this
mode of operation, after a QC loads a container from the quay to the vessel,
instead of returning directly to the quay, it unloads another container from the
vessel onto the quay. This doubles the number of containers carried during a
QC cycle.

Containers are transported from/to vessel to/from yard through the transport
area by using various equipment (transfer vehicles). These equipment are cate-
gorized as passive or active depending whether the equipment has a container-
lifting device (Kemme, 2013). As active transport equipment (that can lift up
containers from the yard), Straddle Carriers (SCs), forklift trucks, reachstack-
ers and Automated Lifting Vehicles (ALVs) are extensively used, while popular
passive transport equipment are terminal trucks (chassis systems), multi trailers
and Automated Guided Vehicles (AGVs) (Wiese, Suhl, and Kliewer, 2011). Ac-
tive transport equipment help to decouple QC and transport operations. With
the use of active transport equipment, a QC can (un)load a container without
the involvement of the transport vehicle and the transport vehicle does not have
to wait for the QC to drop the container. This setting might require container
bu�er areas (Vis, de Koster, and Savelsbergh, 2005) or additional lanes under
the QC. The quayside area in front of QC is divided into multiple lanes. There
are usually four lanes in front of the QC, two of them for container pickup/drop,
one for placing the gearbox and one spare for safety reasons. Additionally, active
transport equipment mostly travel into yard blocks to pickup the containers. For
this reason, transport times for each container are higher compared to passive
transport equipment (Carlo et al., 2014a).

A comparison between automated and manned equipment is also relevant. With
respect to required driver resource, AGVs and ALVs which are used as trans-
port equipment in highly automated terminals, are unmanned equipment, while
SCs, forklift trucks, reachstackers, terminal trucks require a driver on board.
For unmanned equipment, the technological advances to prevent deadlock and
congestion are actively used. However, such transport equipment are more vul-
nerable to disruptions (failure, breakdown, control problem, etc.) due to highly
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automated characteristics. (See Vis (2006a) for a literature survey on plan-
ning problems of AGV-based terminals). There is also a distinction between
the use of the driving lanes of the yard. Automated vehicles require to use
pre-determined routes to travel and their moving direction is mostly decided
beforehand, while manned vehicles are more free to use the area and this gives
a higher �exibility of movement.

Descriptions given thusfar cover a single terminal. Recently many container
terminals around the World contain multiple terminals to serve the vessels.
Especially with the increasing volumes of transhipment, two related vessels can
be berthed at di�erent terminals. Therefore there could be a signi�cant need
for inter-terminal transportation which should be conducted by the container
terminal (Lee, Jin, and Chen, 2012). Such transport operations are mostly
performed by yard trucks.

The yard area is composed of the yard in which containers are temporarily
stacked and yard equipment to handle the containers in the yard. A yard usually
has an import/export container stock area, empty container stock area(s) and
refrigerated (i.e. reefer) container area(s). Reefer containers require plugs for
electricity needs, while empty containers require service operations (washing,
repair, etc.). Hence these containers are mostly separated from the others.
In the yard, there can also be some facilities (sheds) for operations such as
repair, packing, controlling, etc. A typical yard layout consists of multiple
rectangular blocks. Each yard block consists of a number of bays; and each bay
has several rows. Containers can be stacked in vertical tiers mostly up to �ve-
seven containers heights. The layout is similar to the con�guration of a vessel
presented in Figure 1.3.

There are two dominating equipment types that are used for stacking; the gantry
(yard) crane (GC) and Straddle Carriers (SC). GCs are used for stacking and
moving containers to input/output (I/O) point, i.e., where the transfer vehicle
and the yard crane exchange containers. SCs pick up the container directly from
the yard and transport it to the QC. Terminals, that use GCs, have a yard area
which is more compact, blocks are very close to each other and there is no driving
lane in the blocks. This layout type is called block stack (Brinkmann, 2011),
another layout type is linear stack in which SCs can enter in the yard block to
pickup or drop containers and tiers are at most 4-container heights because of
the technical properties of the SCs (Brinkmann, 2011). There are two main yard
con�gurations for the block stack layout and they are presented in Figure 1.6.
One of them is parallel (Asian), the other is perpendicular (European) depending
on the alignment of containers with respect to the quay. In Figure 1.6a, passive
transport vehicles enter the lanes between blocks and they wait in front of the
bay that required container will be picked up (Indirect Transfer System) while
GC travels to bay that container is stacked and moves the container to(from)
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the passive transport vehicle. In Figure 1.6b, I/O points are located at both
ends of the blocks (Carlo et al., 2014b). Most commonly AGVs are used to
(un)load containers on the seaside, while transfer trucks are used for gate area
(Direct Transfer System). A detailed comparison of two layouts can be found
in Carlo et al. (2014b).

Figure 1.6: Di�erent yard layouts for block stack (Carlo et al., 2014b)

There are two types of GCs, rubber-tyred gantry cranes (RTGCs) and rail-
mounted gantry cranes (RMGCs). RTGCs can move within and between blocks
which gives a higher �exibility for stacking, but rotating the RTGCs is time-
consuming process which should be planned e�ciently. On the contrary, RMGCs
are embedded into the rails and can only work in one block. There are normally
multiple RMGCs which work in each block. E�cient planning of stacking oper-
ations can be achieved by cooperative scheduling of multiple GCs in the same
block. There are two types of GC con�gurations, namely passing and non-
passing. The passing GCs con�guration has multiple GCs of di�erent heights
that allows GCs to overtake each other. The non-passing con�guration does not
allow GCs to pass over each other. The cooperative planning of stacking can
increase the e�ciency of operations in both settings (Carlo et al., 2014b).

Wiese et al. (2011) have shown that RTGCs are used in 63.2% of all terminals,
mainly in Asian continent, while SCs are used in 20.2% of all terminals, mainly
in European ports. The remaining equipment for stacking and transport are
sparse, RMGCs are used in around 8.8% of terminals studied. With respect to
new technologies, ALVs, which are active versions of AGVs, are in use. They
can perform the transport to the transfer point where container is exchanged
to the yard block. The latest trend in SC is the twin-load technology which is
used in DP World Southampton.
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Finally there is the truck, train and gate area (a part of the landside) which
links the terminal with the hinterland operations. Arriving trucks should �rst
obtain a clearance in the gate where containers are checked for documentation
and current loads. Recently many container terminals manage arrival of trucks
with booking systems. If SCs are in use, there is an area where SCs can pick
up containers from the trucks.

1.3 Decision problems in container terminals

Container terminals are complex logistics systems that have many operations
and these operations are interacting due to the continuous container and infor-
mation �ow between them. When a vessel arrives at the terminal, it is moored
to a berthing position, meanwhile QCs, which will work on that vessel, are
mobilized to this berthing position. The quayside is dedicated for (un)loading
operations. Then QCs (un)load containers in a given order, while required con-
tainers should be retrieved from/to the quay aligned with this order. Vehicles
transport the required export containers to respective QCs that will load that
container to given position. A similar �ow is observed for import containers
with a reverse directions of operations. Here the yard functions as the tem-
porary storage area for these containers. Decision problems correspond to the
managerial decisions about these operations.

The planning of operations (i.e. solution to a decision problem) is usually made
in advance. Each problem has a planning horizon which is the length of time
the problem covers ahead. The planning horizon strongly depends on the prob-
lem characteristics and it is very important to understand the range of planning
horizon in order to make e�cient planning. With respect to the length of plan-
ning horizon, decision problems can be classi�ed into strategic, tactical, and
operational planning problems. Figure 1.7 illustrates various decision problems
of each class and direct link between problems.

1.3.1 Strategic problems in container terminals

Strategic problems are mostly related to the design features of the terminal,
such as the berth, yard layout or location, the selection of equipment types, etc.
The decisions made for these problems are very costly and time-consuming to
change. The planning horizon of these problems is considered to be the lifespan
of the investment. Mostly trade lane economics and regional market demands
de�ne a typical solution. Some of these problems will be explained brie�y:
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Design of the yard layout: The problem deals with determining the layout
type (parallel or perpendicular), the outline of the yard, the number of aisles
between blocks/bays and the size of blocks (de Castillo and Daganzo, 1993).

Selection of equipment: The problem deals with determining the speci�c
equipment investments and the technical properties of these equipment. The
solutions to these problems also determines the automation level of the terminal
(Vis, 2006b; Carteni and de Luca, 2012).

1.3.2 Tactical problems in container terminals

Tactical problems consider a planning horizon of months, or at least many weeks.
These problems deal with aspects which are not easy to change such as storage
management (e.g. allocation of empty container areas), maintenance plans, yard
and berth template design, increasing/decreasing vehicle �eet size, etc. Some of
the problems will now be detailed:

Fleet Size Problems: These problems deal with determining number of trans-
port equipment in the terminals. Depending on required overall workload, ter-
minals can determine required number of �eet (Vis et al., 2005; Vis, de Koster,
Roodbergen, and Peeters, 2001). The primary objective of studies in this �eld
is the minimization of the �eet size.

Service Allocation Problem (SAP): In this problem, a service is referred to
a liner shipping string that has a visit (port call) to the studied terminal. Such
strings are mostly cyclic and vessels of the string visit the port frequently. The
service allocation problem deals with dedicating speci�c blocks of the yard for
each service (Cordeau, Gaudioso, Laporte, and Moccia (2007)). The objective
is to minimize the yard reorganization (housekeeping) which is re�ected by the
number of reshu�es. This problem is also called yard template design problem.
A variant of the SAP focuses on container types (export, import, transhipment,
empty and reefer containers) for each vessel rather than di�erent liner shipping
strings.

Berth Template Design Problem: The motivation of this problem is similar
to the SAP. The main di�erence is the focus on seaside operations rather than
the yardside. Berth template has been generated to �nd a set of berth-windows
for cyclic calling vessels so as to maximize the service objective (Moorthy and
Teo, 2006). This problem is also called tactical berth scheduling problem. Imai,
Yamakawa, and Huang (2014) extend this problem into a more strategic content
in which the terminal chooses vessels to be served (has the �exibility not to
choose some) and determines berth template design for selected vessels.
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1.3.3 Operational problems in container terminals

Operational planning problems seek higher utilization of key resources such as
the quay, QCs, transport equipment, yard space and equipment. Most of these
problems are highly constrained due to the industrial settings. The majority
of the problems aim at minimizing the dwell time of containers in the terminal
and/or minimizing the cost of operations including equipment use, labor, etc.
The planning horizon for operational problems di�ers from days to seconds.
Details of each problem will be explained:

Stowage Planning Problem (SPP): This problem determines the exact po-
sition (slot) of each export container in the vessel by considering various stability
measures (such as trim, draft, metacentric height, etc.) and physical properties
(supporting containers from below, IMO restrictions, lashing patterns, line of
sight, etc.) of the vessel. Traditionally the SPP is solved by liner shipping com-
panies because each vessel visits multiple terminals along a string and stability
must be ensured for each port visit. What is more, the traditional objective of
this problem includes minimizing overstowage which can be obtained by con-
sidering the entire string (Ambrosino, Sciomachen, and Tanfani, 2004; Pacino,
Delgado, Jensen, and Bebbington, 2011). There are two types of overstowage
namely stack and hatch overstowage. A container X overstows a container Y
in a stack, if X is stored above Y and the discharge port of X is after the one
of Y, such that X must be removed in order to unload Y (stack overstowage).
If container Y is under the hatch, all containers over the hatch must be re-
moved (Pacino et al., 2011). There are a few studies that consider the SPP
as the complete responsibility of the terminal (Imai, Sasaki, Nishimura, and
Papadimitriou, 2006). Recently a variant of the SPP has been suggested as a
container terminal problem by considering the �exibility of speci�c container
assignment with respect to the class-based stowage plans (Monaco, Sammarra,
and Sorrentino, 2014). The literature on the SPP will be detailed in Chapter 5.

Berth Allocation Problem (BAP): The BAP deals with determining the
berthing position (along the quay) and the berthing start time for each vessel
in the planning horizon with respect to physical and operational constraints.
Physical constraints require that all vessels must be berthed within the bound-
aries of the quay, and di�erent vessels cannot be at the same berthing position
at the same time (Monaco and Sammarra, 2007). There are various operational
constraints for the problem such as; all vessels must be berthed and processed
within the planning horizon; the availability of some berthing positions might
di�er due to time windows (Cordeau, Laporte, Legato, and Moccia, 2005); dif-
ferent equipment might be of use (Umang, Bierlaire, and Vacca, 2013); there
could be some priorities assigned to each vessel (Imai, Nishimura, and Papadim-
itriou, 2003) or some of the vessels can have favorite berthing areas determined
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with berth template problem (Giallombardo, Moccia, Salani, and Vacca, 2010),
etc. In order to solve such a problem, the information about the vessel's length,
draft, the expected time of arrival, and the projected handling time should be
known a priori. The BAP also considers di�erent quay partitioning types namely
discrete (Buhrkal, Zuglian, Ropke, Larsen, and Lusby, 2011), continuous (Imai,
Sun, Nishimura, and Papadimitriou, 2005), hybrid layouts (Imai, Nishimura,
Hattori, and Papadimitriou, 2007). Considering that many vessels constantly
arrive and leave the terminals, the restriction on the berthing times are also
studied in the literature. The static BAP assumes all vessels are available to
berth at the start of the planning horizon (Dai, Lin, Moorthy, and Teo, 2008),
while dynamic BAP imposes vessel arrival times as the earliest berthing start
time (Imai, Nishimura, and Papadimitriou, 2001). The goal of BAP is to pro-
vide fast and reliable services to vessels. This is re�ected in the literature by
various objective functions such as minimization of the sum of the waiting and
handling times of vessels, the workload of terminal resources and the number of
vessels rejected to be served at a terminal, etc. The literature on the BAP and
variants will be detailed in Chapter 2 and 3.

Quay Crane Assignment Problem (QCAP): The QCAP determines the
number of QCs and/or the speci�c QCs to work on each vessel. The QCAP can
be solved to the vessel and/or bay level. Each vessel has technical properties
such as length (number of bays), width, stability considerations (Ursavas, 2016)
that are relevant for the QCAP. The minimum number of QCs that can serve a
vessel simultaneously is a function of its length, and the reach span of QCs might
a�ect its technical availability for some larger vessels. In addition to technical
properties, the number of containers to be (un)loaded in the terminal and the
expected departure time of the vessel directly a�ect the number of QCs assigned
to the vessel. Another operational property is the contracts between liner and
terminals, these contracts ensure a number of moves per hour for each vessel and
this sets a lower bound on the number of QCs assigned to the vessel (Legato,
Gulli, and Trun�o, 2008). Considering the fact that QCs are mounted in rail,
they cannot overtake each other. For this reason, the index of QCs assigned to
a vessel should be consecutive (Park and Kim, 2003). By determining speci�c
QCs to serve each vessel, movements of QCs can be arranged for all vessels that
are berthed simultaneously. Such movements mostly referred as the crane setup
which is a common objective to minimize in the QCAP (Turkogulari, Taskin,
Aras, and Altinel, 2016). The literature on the QCAP and variants will be
detailed in Chapter 2, 3 and 4.

Quay Crane Scheduling Problem (QCSP): Given a QC assignment for
the vessel, the QCSP determines a schedule of a set of tasks. There are various
precedence relations among tasks and these precedence relations are mostly
imposed by the stowage plan. Each position must be handled once by one QC
and a QC can handle one position at a time. The complete work schedule of
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a QC holds the starting time of (un)loading for each position and the order of
(un)loading between positions. A solution to QCSP holds the work schedule
of all QCs assigned to that vessel, it avoids overtaking of QCs, and it ensures
safety measures of bay di�erence between consecutive QCs. The term task has
various interpretations in the literature. It can be related to the handling of
groups of containers within a bay, all containers within a bay, or all containers
within a connected area of bays (See Meisel and Bierwirth (2011), Bierwirth
and Meisel (2014) for papers of each task de�nition). Various operational and
physical restrictions such as time window of operations (Meisel, 2011), moving
times between bays (Legato, Trun�o, and Meisel, 2012), ready times (Moccia,
Cordeau, Gaudioso, and Laporte, 2006), scheduling in intended berths (Vis and
Anholt, 2010; Chen, Lee, and Cao, 2011) are also studied. The most common
objective function of the QCSP is minimizing the makespan of operations.

Loading/Unloading Sequencing Problem: After a work schedule, which
holds the sequence of ship-bays that each QC will work, is made, the sequence
of (un)loading speci�c containers is determined in this problem. In the other
words, this problem deals with determining the order of positions that each QC
will (un)load. This problem is highly constrained due to physical positions of
the slots (Kim et al., 2004). It is noted that solving this problem for outbound
containers is harder compared to inbound containers due to requirements of the
stowage plan (Kim and Lee, 2015). This problem can be considered as a variant
of the disaggregated QCSP where each task is de�ned by a single container. The
literature on the loading and unloading sequencing will be detailed in Chapter 5.

Vehicle Dispatching and Routing Problem (VDRP): The management of
transport vehicles in the yard can improve the e�ciency of a container terminal
signi�cantly. Considering the fact that average cycle time for one QC is around
40 seconds, vehicles should ensure that the QC is never idle. The yard is mostly
large enough that transfer time of containers will be measured by minutes. For
this reason, e�cient dispatching and routing of vehicles should ensure a higher
utilization for (un)loading operations. There are two fundamental problems;
vehicle dispatching (assignment) determines which vehicle will transport each
speci�c (or a group of) container(s) (Bish, Chen, Leong, Nelson, Ng, and Simchi-
Levi, 2005) while vehicle routing determines the paths to be taken, and the
related scheduling of each vehicle to pick up and drop a container (Kim and Kim,
1999b,c). Vehicle dispatching problem can be formulated in a static or dynamic
environment like the BAP. The static version sees the containers as a set of
available resource to handle, while the dynamic version is more of a real-time
problem in which the ready time of each vehicle and container is a constraint
on the problem. The dispatching alternatives can be enlarged by pooling all
vehicles for each QC. This means that a vehicle can serve to di�erent QCs in
consecutive orders (Bose, Reiners, Steenken, and Voÿ, 2000). Vehicle routing
problems are most commonly considered together with dispatching problems
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(See Stahlbock and Voβ (2008) and Carlo et al. (2014a) for extensive reviews).
Advances in vehicle technologies such as twin loads (Grunow, Günther, and
Lehmann), dual-cycling (Nishimura, Imai, and Papadimitriou, 2005) are actively
studied in the VDRP. The common objective functions are minimization of
(un)loading time (both makespan and/or travel times), idle time of both QCs
and vehicles, lateness, etc.

Storage (Yard) Allocation Problem (SYAP): The SYAP deals with the as-
signment of yard storage space to individual containers (or a group of containers)
for temporary storage until the next rehandle. There are di�erences in the SYAP
with respect to container types such as export (Kim, Park, and Ryu, 2000), im-
port (Sauri and Martin, 2011), transhipment (Lee, Chew, Tan, and Han, 2006)
because each container type has di�erent characteristics. The export contain-
ers should mainly be stacked with respect to a stowage plan, expected loading
sequence and the results of the SAP (Chen, 1999). In the contrary, import con-
tainers arrive in batches and the pickup times for the hinterland transport are
usually unknown so probabilistic modeling (Sauri and Martin, 2011) and segre-
gation methods (Kim and Kim, 1999a) are more common. The consideration of
the details of the storage location is also diverse in the literature. SYAP studies
focus on yard block (Zhang, Liu, wah Wan, Murty, and Linn, 2003; Moccia,
Cordeau, Monaco, and Sammarra, 2009), sub-block (Jiang, Lee, Chew, Han,
and Tan, 2012), bay (Lee, Jin, and Jiang, 2011) or individual slot (Kang, Ryu,
and Kim, 2006) levels. Both hierarchical and integrated approaches are studied
with respect to details of storage location, the hierarchical approach �rst focuses
on a block then it is followed by the speci�c slot within that block (Park, Choe,
Kim, and Ryu, 2011). In some of the problem de�nitions, not only the container
locations but also individual containers are grouped. The most common group-
ing method for containers is with respect to speci�c vessels (Lee and Jin, 2013).
The common objective function of such problems includes minimization of the
storage yard operations cycle time that includes the time to store, retrieve, and
reshu�e containers.

Yard Crane Deployment/Scheduling Problem (YCDP, YCSP): Con-
sidering that there are multiple yard cranes (YCs) available to serve a yard
block area, the YCDP deals with assigning YCs to yard areas with respect to
workloads. The YCDP mostly considers RTGCs which can move to di�erent
blocks of the yard (Zhang, wah Wan, Liu, and Linn, 2002; Cheung, Li, and Lin,
2002). The YCSP shedules the pickup and stacking operations for each YC. The
YCSP (i.e. routing of GCs) is mostly speci�c for yard layout types (parallel or
perpendicular), the number of YCs in each bay, various passing properties of
YCs, etc. (see Carlo et al. (2014b) and Luo, Wu, Halldorsson, and Song (2011)
for extensive reviews on stacking operations). Many operational problems such
as di�erent ready times (Ng and Mak, 2005), safety distance requirements (Wu,
Li, Petering, Goh, and de Souza, 2015) are addressed in the YCSP literature.
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The common objectives of the YCDP and YCSP are the minimization of the
total delays of YC workload, the average waiting time of equipment.

Blocks Relocation Problem (BRP) / Reshu�ing Problems: Stacking
containers on top of each other is an e�cient way of utilizing the limited area
of the yard. In this setting, containers on top of each tier are available for
direct retrieval. However, due to the unpredictable (un)loading sequences or
di�erent vessel orders, yard equipment usually require to retrieve containers
that are buried beneath other containers (See Lehnfeld and Knust (2014) for an
extensive review on stacking problems). To reach the containers in lower tiers,
many containers on top of them should be reshu�ed. This reshu�ing problem
can be addressed before the loading operations start (namely pre-marshalling;
Lee and Hsu (2007)) or along with the operations (namely BRP; Jovanovic
and Voÿ (2014)). The main aim of these problems is to reduce the number of
unproductive moves to achieve the reshu�ing operations.

Terminal Hinterland Operation Problems: Import/Export containers ar-
rive/leave the terminal through the hinterland which uses trucks or trains to
connect the terminal to the inland region. In the case of a rail system, a variant
of the VDRP should be solved to bring containers to trains. The interface with
trucks is managed through the gate. Scheduling gate operations with respect
to truck arrivals (Chen, Govindan, and Yang, 2013a) and evaluating impact of
truck schedules on stacking operations (Asperen, Borgman, and Dekker, 2011)
are problems that have been addressed in the literature. Another important
aspect is about the modeling and comparison of di�erent train loading poli-
cies with varying the storage area strategies (Ambrosino, Caballini, and Siri,
2013). The common objective of hinterland problem is to minimize the waiting
times for yard transport and stacking equipment with respect to the hinterland
operations.

1.4 Integrated container terminal problems

The problems described in the previous section are traditionally solved hierar-
chically by the researchers and practitioners. In the hierarchical planning ap-
proach, the solution of a problem is an input for the next stage problem. This
relationship follows the direction of physical container �ow which is discussed in
Section 1.3. In hierarchical planning, the solution of a decision problem can be
misleading, poor or even infeasible for the subsequent problems since the plan-
ners do not consider the interdependencies between decision problems. In order
to overcome such obstacles ad-hoc modi�cations of plans are made during their
executions (Meisel, 2009d). These modi�cations might reduce the reliability
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of terminal services and thus, reduce the satisfaction of the customers (Meisel,
2009d).

There are strong motivations to integrate these problems and solve them as one
problem. One of them is that many of these problems share common resources,
integrating relevant problems will ensure a higher utilization of the limited re-
sources. It will also bring a better information �ow to the next distinct problem
so that uncertainties will be relatively reduced for the next stage problems.
Planners can also formulate more realistic cost tradeo�s by integrating di�erent
problems with di�erent cost components. Since terminals aim at a cost reduc-
tion in the overall system, integrating relevant problems will help planners to
have a better understanding of the cost structure. It should be noted that inte-
grated problems are harder to solve and it is not easy to re�ect all the details
of each problem.

Various decision problems spanning from seaside to yardside are integrated in
the literature. Figure 1.8 illustrates the integrated problems in a rectangle
with subproblems involved. It shows that there are many integrated problems
with overlapping subproblems and most of the integrated problems are still
operational problems. These integrated problems are now brie�y described with
their motivations, the di�erent aspects of the integration and the commonly used
objective functions. Integrated problems mostly inherit decision variables of the
problems that are integrated.

Figure 1.8: Various integrated problems
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Berth and Yard Template Design: The tactical decisions related to berth
and yard management can be integrated regarding the relationship that vessels
which are berthed with a deviation from the berth template will require more
handling in the yard. In the contrary, a di�erentiation from the yard template
will make the berthing time of a vessel longer since the transportation times from
yard to vessel will change. Zhen, Chew, and Lee (2011a) consider the violation
of vessels' expected turnaround time intervals and the yard cost. These two
problems are then solved in an integrated approach. Lee and Jin (2013) focus
on this integrated problem and adopt a proactive strategy by designing the
calling schedule of the feeders with respect to yard template. Robenek, Umang,
Bierlaire, and Ropke (2014) focus on bulk ports where yard locations and berths
are specialized for di�erent cargo types with special equipment. The integrated
problem becomes signi�cantly important since there is direct a link between
equipment type of the yard and the berth.

Berth Allocation and quay Crane Assignment Problem (BACAP):
The number of QCs assigned to a vessel has a direct impact on the processing
time which is an important input for the BAP. In parallel, the berthing position
will restrict the movement of remaining QCs which are not assigned to that
vessel. Hence integrating these two problems has a strong contribution to the
planning. This integration is not only applicable for operational problems of the
BAP and QCAP. The tactical berth allocation problem (Giallombardo et al.,
2010) covers the assignment of berthing positions and QCs to shipping lines for
the longer planning horizons. Chapter 2, 3 review studies in the literature for
this problem.

Berth Allocation and quay Crane Assignment and Scheduling Prob-
lem (BACASP): Incorporating the QC scheduling into the above mentioned
integrated problem will help to obtain a better estimation of the processing
time of each vessel and a more accurate planning of QC operations (i.e. a bet-
ter estimation of the setup times and non-crossing requirements). Meisel and
Bierwirth (2013) integrate these problems in an interactive hierarchical fashion.
Rodriguez-Molins, Salido, and Barber (2014b) focus on the BACASP with the
detailed scheduling of the holds where authors aim at minimizing total waiting
time. Recently, Turkogulari et al. (2016) also consider a variant of the BACASP
where authors formulate a deep integration problem and they solve it to opti-
mality by using a decomposition method. The traditional objective function
of such a problem includes time-dependent cost components such as lateness,
earliness, makespan, etc. and QC operation costs. Chapter 4 presents a review
of papers relevant to this problem.

Quay Crane Assignment and Scheduling Problem (QCASP): The num-
ber of QCs to work for the vessel(s) (a component of the QCAP) directly a�ects
the work schedule of each QC (i.e. the QCSP). Depending on the available
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number of QCs in the berth, scheduling QCs will give a better working time es-
timate which helps for a better QC assignment. The problem de�nition covers a
single-vessel (Al-Dhaheri, Jebali, and Diabat, 2016) or multiple-vessel planning
(Diabat and Theodorou, 2014). In some of the papers, the QCAP is trans-
formed into a QC-to-bay assignment problem hence QC scheduling is incorpo-
rated (Theodorou and Diabat, 2014). Many operational constraints such as;
safety margins between QCs (Unsal and Oguz, 2013), vessel priority (Fu, Dia-
bat, and Tsai, 2014), vessel stability (Al-Dhaheri et al., 2016) are discussed in
the context of the QCASP.

Quay Crane Scheduling and Vehicle Dispatching/Scheduling Prob-
lem: The QCSP uses the ready times of containers in front of the QC which
will load them. These ready times are a function of transport vehicle sched-
ules which are decided by the VDSP. In the unloading process, e�cient solving
of the VDRP is vital for QC scheduling, because a QC has to drop an un-
loaded container on a passive transport equipment before it can continue its
work (Kaveshgar and Huynh, 2015; Cao, Shi, and Lee, 2010a). Chen, Langevin,
and Lu (2013b) consider both loading and unloading operations and they assume
that vehicles are shared among di�erent vessels, so that an e�cient routing of
vehicles prevents starving of the QCs. Tang, Zhao, and Liu (2014) also consider
both (un)loading operations so trucks may go back to yardside with inbound
containers. A common objective is to minimize the makespan of the opera-
tions with a given set of vessels, another objective is minimizing the delay of
operations or the idle time of the equipment.

Quay Crane Scheduling and Yard Management Problem: The QCSP
problem can be integrated to the yard storage problems. Considering that the
yard stacks containers of multiple vessels, the congestion of YCs and transport
vehicles will a�ect the ready time of containers. Wang and Kim (2009) note that
each block has a limited number of moves that YCs in that block can perform
per unit time. This limit and overall load of each YC are studied as a bound on
the QCSP. Integrating these problem will control the number of blocks which
are assigned to each speci�c QC because the yard section, which is dedicated,
can go beyond the schedule. Recently He, Huang, Yan, and Wang (2015) fo-
cus on energy consumption aspects of this integrated problem including the YC
scheduling. The common objectives are combination of various cost components
such as QC makespan, the total traveling distance of YCs, the expected delay
time from interference, and the uniformity of workload among blocks. Another
rich QCSP is introduced by Choo, Klabjan, and Simchi-Levi (2010) where au-
thors consider yard congestion in the QCSP, the problem de�nition is more like
a consideration rather than an integration.

Load/Unload Sequencing and Vehicle Dispatching/Scheduling Prob-
lem: The loading sequence directly a�ects the transfer time of each vehicle
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because containers can be scattered over a wide area in the yard so that planner
should make an e�cient route to load them all (i.e. the VDRP). In parallel, the
ready times of each container in the loading/discharging list determine which
vehicles would be available for the pickup and delivery operations (See Jung and
Kim (2006) and Shin and Lee (2012) for applications of this problem). Common
objectives include the minimization of makespan of operations, idle time of ve-
hicles, etc. Chapter 5 presents a literature review of papers which are relevant
to this problem.

Vehicle Dispatching/Scheduling and Storage Yard Allocation Prob-
lem: Optimizing the storage location to match a particular transfer schedule
will o�er improvements in reducing the idle times of vehicles, while optimiz-
ing the vehicle dispatching for alternative storage allocation will give a higher
�exibility to determine a better storage yard allocation. Bish, Leong, Li, Ng,
and Simchi-Levi (2001) introduce such a problem for import container with the
aim of minimizing the unloading time (See a variant for import containers Lee,
Cao, and Shi (2009b) and an extension of both (un)loading operations Lee,
Cao, Shi, and Chen (2009a)). Kozan and Preston (2006) focus on the transfer
of export containers from the storage area to the vessel, while Bish (2003) inte-
grate scheduling of QCs with assumption that a set of vehicles is pooled among
vessels.

Vehicle Dispatching/Scheduling and Yard Crane Scheduling Prob-
lem: For loading operations of export containers, the synchronization of vehi-
cle scheduling and YC scheduling will reduce the transfer time of all containers
and it will also reduce the idle time of equipment (Cao, Lee, Chen, and Shi,
2010b). Li, Goh, Wu, Petering, de Souza, and Wu (2012) consider vehicle wait-
ing times in the YC scheduling problem, this problem, however, does not present
an integration method.

Storage (Yard) Allocation and Yard Crane Deployment/Scheduling
Problem: The workload of a YC is a function of storage allocation decisions
made for each container type, so e�cient deployment of YCs can be achieved by
obtaining a better understanding of optimal storage space allocation. Han, Lee,
Chew, and Tan (2008) focus on high-low workload balancing protocol with the
objective of minimizing the YC operating costs by designing a non-shared sub-
block allocation plan with respect to speci�c containers. The integration can
be further improved by dynamically assigning sub-blocks to incoming containers
(Jin, Lee, and Cao, 2016), while Won, Zhang, and Kim (2011) study this problem
with/without allowing YC movements between blocks.
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1.4.1 Collaborative container terminal problems

Containers terminals are in active business with liner shipping companies that
operate the vessels, and trucking companies that transport the containers from/to
container terminal. An interesting research avenue is expanding to the collabora-
tive problems which integrate decision problems of terminals and their partners.
The literature in these problems are less in numbers compared to integrated con-
tainer terminal problems. Each collaborative problem holds decisions regarding
the terminal and the other party.

Collaborative problems with liner shipping companies are mainly related to
seaside operations of the terminal. The tactical problems such as berth template
design, service allocation, and integration of these problems are collaborative
problems since they consider the priorities of the shipping liner and adjust the
available terminal resources with respect to these requirements. Recently Wang,
Liu, and Qu (2015) improve the level of collaboration for the existing tactical
berth allocation problem by proposing two new collaborative mechanisms which
are based on the utilities associated with the operations start days of each liner
string and inventory cost of transshipment containers.

The collaboration between two parties can also be achieved by integrating the
BAP with the preference of ship arrival times. Whenever the decisions about
vessel arrival time is incorporated into the BAP and variants, the collaboration
realizes. In the literature, there are di�erent ways of setting this relationship.
Golias, Saharidis, Boile, Theofanis, and Ierapetrito (2009) consider the amount
of emissions produced hourly by each vessel in idle mode for berthing and they
plan the vessel arrivals accordingly. Meisel and Bierwirth (2009) impose a cost
of earliness if the vessel arrives earlier than an Expected Arrival Time (EAT).
This is a re�ection of the speedup cost for the liner shipping company. Another
way is to integrate the speed optimization problem of the vessels to the BAP.
The speed optimization problem (Reinhardt, Plum, Pisinger, Sigurd, and Vial,
2016) determines the sailing speed of the vessel in a leg and it a�ects both the
bunker consumption and the duration of the sailing in the leg. The bunker
cost can then be easily incorporated into the BAP objectives. Golias, Boile,
Theofanis, and Efstathiou (2010) incorporate the bunker cost for all vessels in
transit to their next port of call, while Du, Chen, Quan, Long, and Fung (2011)
focus on the leg from their current positions to the terminal for which the BAP
is solved (See Wang, Meng, and Liu (2013) for an improved approximation
that can handle general fuel consumption more e�ciently). Alvarez, Longva,
and Engebrethsen (2010) propose new berthing policies with respect to the
uncertainty of operations and the speed optimization. Recently Venturini, Iris,
and Larsen (2016) focus on solving the complete BAP with speed optimization
problem between all legs of port visits where authors assume a string holds a
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sequence of known port calls.

Another collaboration between terminal and shipping company can be achieved
by integrating the BAP with ship routing and scheduling problem. Pang, Xu,
and Li (2011) solve tramp shipping routing problem by considering berthing
time clash avoidance with di�erent vessels in a given terminal. In a later study,
authors consider a deep integrated version of this problem with the transhipment
possibility (Pang and Liu, 2014).

The other interface of the terminal is with truck companies through gates of
the terminals. Gate congestion problems can be solved by integrating decisions
about the truck arrivals. Recently, there are many studies that focus on gate
management problems. However, the number of studies that focus on collabora-
tive planning problem is still limited. Phan and Kim (2016) solve subproblems
of determining the optimal schedules for trucks and estimating the expected
truck waiting times. These problems are solved iteratively with an improved
feed-back fashion. Phan and Kim (2015) have a negotiation framework for the
appointment system. This framework allows each trucking company to make
its decision on the application of appointment time.

1.5 Research Scope and Contributions

This thesis aims at increasing the knowledge on various sets of integrated con-
tainer terminal problems. It follows the promising research trend to develop
new models and algorithms to the integrated problems. It starts with the quay-
side operations then it investigates possible integration between quayside and
yardside problems. All of the studied problems are operational decision making
problems. The organizational structure of the thesis is illustrated by Figure 1.9
where each rectangle refers to variants of integrated problems with coverage of
functional area(s) and problem settings. It is also shown in this �gure that the
�rst three chapters are about the quayside problems, while the last two chapters
are about quayside and yardside problems.

The integration of quayside problems started with the involvement of the most
important quayside resources namely the berth and QCs. Park and Kim (2003)
presented the �rst problem which was about simultaneous allocation of vessels
to the berthing area and determining the number of QCs to work on each vessel
(i.e. the BACAP), along with the scheduling of these QCs with the results of the
BACAP (i.e. a variant of BACASP). Since then the BACAP has been proven
to be an important problem which obtains signi�cant cost savings compared
to hierarchical solutions of its subproblems (Vacca, Salani, and Bierlaire, 2013).
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Berth Allocation/Quay Crane Assignment 

Stowage Planning/Load Sequencing/Vehicle Dispatching and Scheduling

Chapter 2: Exact Methods

Chapter 3: Exact and Heuristic Methods

Berth Allocation/Quay Crane Assignment and Scheduling

Chapter 4: Exact Methods

Chapter 5: Literature Review

Chapter 6: Exact and Heuristic Methods

DETERMINISTIC

STOCHASTIC

DETERMINISTIC

Figure 1.9: A schematic diagram of thesis organization

Many researchers have focused on di�erent aspects of the BACAP and published
important �ndings. However, the number of studies that focuses on the exact
methods to solve the BACAP is still limited. In this thesis, the Chapter 2
in Figure 1.9 focuses on variants of the BACAP and proposes generalized set
partitioning problem (GSPP) formulations to solve the problem. The GSPP
formulations are built on the well-performing models for the BAP by Buhrkal
et al. (2011). The existing formulations on the BACAP are also improved with
modeling enhancements which will be detailed in Chapter 3. Considering that
there is a limited time for solving the BACAP, a heuristic method which solves
the problem e�ciently in short computational time is also required, such a
method will be detailed in Chapter 3. These two chapters in general aim at
increasing the theoretical knowledge on the BACAP and its variants.
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The thesis is built in a way that the integration enlarges step by step by including
one problem at each step. Looking at the Figure 1.9, the assignment of speci�c
QCs and scheduling of these QCs in a primitive fashion are integrated into a
variant of the BACAP in the next step (i.e. a variant of BACASP). Such an
addition makes the problem harder to solve mainly due to the non-overtaking
requirements of QCs, but that makes it more realistic because terminals have
to plan the physical movement of QCs along with their assignments in daily
operations (Liu, Wan, and Wang, 2006). The BACASP has mainly been studied
with the deterministic inputs. However these problems are strongly in�uenced
by the vessel arrival and processing times which are unknown parameters by the
time of the planning. Hence analyzing the BACASP will be more valuable if the
uncertainty in inputs is also considered. In Chapter 4, not only the integration
is enlarged but also the decision making under uncertainty is visited. Regarding
the novelty of the problem and formulations, we have chosen to come up with
exact methods for this problem.

Finally, we investigate potentials for innovative integration of terminal prob-
lems. This is achieved by taking the integration beyond the seaside operations
and including the yardside transport decisions as shown in Figure 1.9. It is
known that optimization of load sequencing along with transport vehicle dis-
patching and scheduling is an integrated problem which has proven its positive
contribution (Kim et al., 2004; Jung and Kim, 2006). With this thesis, the in-
novative aspect materializes by integrating stowage planning into this problem.
In particular, we wish to utilize the �exibility that exists while determining de-
tailed operative stowage plan with respect to a given class-based stowage plan
which is supplied by the liner shipping company. The �exibility is that liner
shipping company supplies a stowage plan with container classes for each slot.
The terminal can then decide the stowage plan by means of speci�c containers
and determine the loading sequence along with transport vehicle assignment
and scheduling. This integration is studied in the last rectangle in Figure 1.9.
Due to the novelty of the problem de�nition, we �rst review the literature re-
lated to this problem in Chapter 5. Then novel formulations for the problem
are presented in Chapter 6.

This thesis attempts to solve these integrated container terminal problems by
using a span of OR methods. Some of the methods are exact which aim at
�nding optimal solutions for the studied problem otherwise present strong upper
and lower bounds, while some others are heuristic methods that try to obtain
an e�cient solution in a relatively rapid fashion. As examples of exact solution
methods, a variant of Benders decomposition (Laporte and Louveaux, 1993) and
black-box solvers for the Integer linear Programming (IP) formulations (IBM,
2015) are used, while a variant of a large neighborhood search heuristic is used as
the heuristic method (Ropke and Pisinger, 2006). The problems of the BACAP
and BACASP usually have multiple days of planning horizon, while the time
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unit is mostly measured by hours. The problems related to assignment and
scheduling of vehicles mostly limited hours with minutes as the unit of time.
Therefore, the selection of the solution method and/or running time limits of
these methods are inspired by the planning horizon of each problem.

With this thesis, we aim at increasing the methodological and computational
knowledge about container terminal problems, however, the question still re-
mains how well container terminals can utilize such valuable information. This
thesis inherits observations from the collaborating container terminals in order
to formulate new problems or test new methods for some problems. The pre-
sented work cannot be used by terminals directly, but some of the knowledge
can be added to the decision support tools for planners, and it might help them
make better �nal plans.

1.5.1 Thesis Contributions

The thesis is funded by the project "The Danish Maritime Cluster (DMC) �
a skill development project" (Danish: Danmarks Maritime Klynge (DMK) �
et maritimt kompetenceudviklingsproject). The contributions of the thesis are
both methodological and and computational. In the following, major contribu-
tions of the thesis are �rst listed, then the remaining chapters are detailed where
the contributions along with an overview of the dissemination are discussed for
each chapter.

The thesis has the following major contributions:

1. Improved knowledge (new best upper and lower bounds, formulations,
properties, heuristics, etc.) on the state-of-the-art integrated container
terminal problems

2. Optimization of integrated container terminal problems under input un-
certainty and analysis of the e�ects of such uncertainties in the decision
making

3. A new integrated container terminal problem which helps to obtain cost
reduction compared to hierarchical solutions

4. Flexible solution methods which can solve similar problems with interme-
diate modi�cations

The outline of the thesis with detailed contributions of each chapter are now
explained.
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Chapter 1, Introduction and Motivation, of this thesis motivates the prob-
lem at hand and reports the background of the container terminal operations.
An extensive list of integrated problems is presented along with the motivation
of integration and signi�cant state-of-the-art studies. It also reviews the collab-
orative container terminal problems which are interesting research avenues for
future studies.

Chapter 2, Integrated Berth Allocation and Quay Crane Assignment
Problem: set partitioning models and computational results presents
novel set partitioning formulations and various column reduction methods for
variants of the BACAP. The literature about the OR methods on the BACAP
is quite diverse. We study variants of a well-acknowledged problem (Meisel
and Bierwirth, 2009) and compare our results with the available benchmark.
We believe that this chapter is also a positive step towards the convergence of
problem de�nitions of the BACAP in the literature. Computational results show
that the proposed models signi�cantly improve the best upper and lower bounds
of the current state-of-art optimal approaches. We also present a property
which shows that minimum cost QC assignment can be achieved by means of a
combination of some QC numbers. This property might help to obtain a useful
QC assignment in a rapid fashion and it can be of use for future studies. The
�exibility of the formulations and the performance of reduction methods are also
discussed for similar problems. We show that the model is very e�ective for the
classical BAP with a �ne discretization of the berthing space. In this chapter,
we also address di�erent QC assignment policies namely time-variant and time-
invariant depending on the allowance to change the number of QCs assigned to
a vessel when the vessel is berthed. We show that there is an additional cost of
time-invariant QC assignment policy and we quantify this di�erence. The work
has been disseminated as follows:

� C. Iris, D. Pacino, S. Ropke, A. Larsen, "Integrated Berth Allocation and
Quay Crane Assignment Problem: Set partitioning models and computa-
tional results", Transportation Research Part E: Logistics and Transporta-
tion Review, 2015, 81, pp. 75-97, published (Iris et al., 2015b).

� C. Iris, D. Pacino, S. Ropke, A. Larsen, "Integrated Berth Allocation-
Quay Crane Assignment Problem: Reformulations, Improved Constraints
and Computational Results", The 4th International Conference on Com-
putational Logistics (ICCL), 2013, Copenhagen, presented.

� C. Iris, D. Pacino, S. Ropke, A. Larsen, "Improved Models to Integrated
Berth Allocation-Quay Crane Assignment Problem: A Computational
Comparison and Novel Solution Approaches", The 3rd International Con-
ference on Logistics and Maritime Systems (LOGMS), 2013, Singapore,
presented.
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Chapter 3, Improved formulations and an adaptive large neighbor-
hood search heuristic for the integrated berth allocation and quay
crane assignment problem presents novel valid inequalities and variable �x-
ing methods for the BACAP. Additionally, an Adaptive Large Neighborhood
Search (ALNS) heuristic which is based on a destruction-construction cycle is
presented for the studied problem. Comparative tests have shown that ALNS
can produce high quality solutions both with respect to computational time
and solution quality. The construction methods presented in this chapter can
be used as a part of other heuristics for such problems. To assess the per-
formance of insertions/removals of vessels and behaviour of the heuristic with
di�erent parameters, a number of computational tests are performed. Results
are communicated for instances of Meisel and Bierwirth (2009). The work has
been disseminated as follows:

� C. Iris, D. Pacino, S. Ropke, "Improved formulations and an adaptive large
neighborhood search heuristic for the integrated berth allocation and quay
crane assignment problem", 2015, under review (Iris, Pacino, and Ropke,
2015a).

� C. Iris, D. Pacino, S. Ropke, A. Larsen, "Hybrid Heuristic Approaches for
Tactical Berth Allocation Problem", Conference of the International Fed-
eration of Operational Research Societies (EURO/IFORS), 2014, Barcelona,
presented.

Chapter 4, A two-stage stochastic programming approach to berth and
quay crane scheduling problem under uncertainty focuses on planning
seaside operations under uncertainty. Many terminals denote that the infor-
mation about the exact arrival times and container loads of vessels is sparse.
Talks with large and medium scale terminals have shown us that planners de-
cide the berthing, QC assignment and scheduling plans for approximately 3-4
days of planning horizons. Di�erent terminals can handle di�erent numbers
of vessels in these intervals, however one thing is clear that the exact arrival
time of each vessel and the processing time of operations are uncertain by the
time of planning. A stage-wise stochastic programming formulation �ts very
well for such a problem. We formulate, to the best of our knowledge, the �rst
traditional two-stage stochastic programming model that focuses on berth and
QC scheduling problem. We solve the problem with two exact methods one by
solving the deterministic equivalent of the stochastic problem and the other by
using a variant of Benders decomposition. Computational results reveal that the
decomposition approach performs better as the number of scenarios increases
and it is competitive with the deterministic equivalent of the stochastic pro-
gramming model. The novelty also lies in the tests that analyze the value of
information for this problem. The stochastic solution helps to obtain important
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savings for terminal operators for many instances except very large scale ones
where subproblems become computationally intractable. Contributions have
also been achieved with the modeling of the problem. Apart from traditional
cuts of Benders decomposition, various valid inequalities for the berth and QC
assignment problem are presented. This study is conducted during the external
research stay at National University of Singapore and container terminals in
Singapore have given feedback on the problem de�nition. The work has been
disseminated as follows:

� C. Iris, J.G. Jin, D.H. Lee, S. Ropke, "A two-stage stochastic programming
approach to berth and quay crane scheduling problem under uncertainty",
2016, under review, (Iris, Jin, Lee, and Ropke, 2016a).

� C. Iris, J.G. Jin, D.H. Lee, "Quayside Operations Planning Under Un-
certainty", European conference for Operational Research (EURO), 2015,
Glasgow, presented.

Chapter 5, A survey on the Ship Loading Problem reviews the literature
on the e�cient ship loading process where stowage planning along with loading
sequencing and scheduling are integrated to improve the e�ciency of the ship
loading operations. We formally introduce this problem with the name of Ship
Loading Problem (SLP). The study shows that, aside from yard equipment
dispatching and scheduling, the number of studies on the optimization of loading
operations is limited. Many works have appeared in the past two decades on
stowage planning, yet very few focus has been given to the interface of stowage
planning with the terminal operations, and those that do, often look at the
problem solely from the terminal point of view. This study also emphasizes the
need for a public benchmark for the SLP, which could then also be used for its
subproblems. The work has been disseminated as follows:

� C. Iris, D. Pacino, "A survey on the Ship Loading Problem", Compu-
tational Logistics, Lecture Notes in Computer Science, Vol. 9335, pp.
238-251, published (Iris and Pacino, 2015).

� C. Iris, D. Pacino, "A survey on the Ship Loading Problem", The 6th
International Conference on Computational Logistics (ICCL), 2015, Delft,
presented.

Chapter 6, Formulations for ship loading problem with transfer vehicle
assignment and scheduling studies the problem introduced in Iris and Pa-
cino (2015) and formulates mathematical models for the problem. The potential
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savings of stowage planning with respect to terminal operations have studied
by Monaco et al. (2014). In this study, we analyze the integration of transfer
vehicle assignment and scheduling to this problem. We formulate a mathemat-
ical model to solve the problem and a number of valid inequalities to improve
the formulation. Then we suggest a method to obtain the new bounds for the
mentioned problem. Computational results show that the enhancements on the
model signi�cantly improve the performance of the formulation and the deep in-
tegration of these problems signi�cantly helps to obtain cost savings compared
to the hierarchical solution methods. The formulations are also converted to
solve similar problems with intermediate modi�cations. A large benchmark is
generated for the problem which can be used for various problems related to
the SLP. The problem has been studied with a collaborating terminal in Den-
mark. The methods have also been analyzed on the collaborating terminal data
and promising results have been obtained. Due to con�dentiality, hypotheti-
cal benchmark results will be communicated in the thesis. The work has been
disseminated as follows:

� C. Iris, D. Pacino, S. Ropke, "Formulations for ship loading problem with
transfer vehicle assignment and scheduling", Technical report, 2016. (Iris,
Pacino, and Ropke, 2016b).

The thesis covers the research projects that have been led by Cagatay Iris (the
candidate). There are also other supplementary research outcomes during the
PhD period. The candidate is actively involved in these supplementary projects
but is not the �rst author of the disseminations. These supplementary research
papers are related to the thesis topics, but they are not detailed in the thesis.
They are as follows:

� J.G. Jin, C. Iris, "A column generation approach to the robust integrated
berth allocation and quay crane assignment problem", Technical report,
2016.

� G. Venturini, C. Iris, A. Larsen, "Multiple-port berth allocation and speed
optimization problem: models and computational results", Technical re-
port, 2016.
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1.6 Conclusion

Mega container terminals have grown to a size where they are called by approx-
imately 60 vessels every day, and they handle more than 30 million TEUs each
year. Focusing in Denmark, the largest terminal, that we have, has reached the
important edge of 1 million TEUs per year and is called by a mega-container
vessel once per week. These volumes are expected to be growing in the fu-
ture (UNCTAD, 2015). The increasing volumes and complexity of operations
have made the job of planners even harder. They alone cannot easily make
the best operational plan under these settings, hence they usually rely on some
optimization methods to solve these problems.

Traditionally, planning problems have been solved hierarchically depending the
information �ow between them. However, hierarchical solutions can be poor,
misleading or even infeasible for some next stages, so integrating relevant ter-
minal problems has caught the attention of researchers in the �eld. Integrated
container terminal problems, hence, have been receiving more and more atten-
tion in the recent years. The work in this thesis contributes to the OR liter-
ature on optimization of integrated container terminal problems and has been
disseminated in peer-reviewed journals, conferences and technical reports. The
contributions cover modeling, methodology, and computational results. There
are �ve research chapters in the thesis, and they are concerned with integrating
seaside and yardside operational problems addressing to berth allocation, quay
crane assignment, quay crane scheduling, operational stowage planning, transfer
vehicle assignment and scheduling problems faced by container terminals.

The integration of terminal problems in this thesis starts from seaside prob-
lems and enlarges step by step, in the end it covers the integration of seaside
and yardside problems. The �rst problem is the integrated berth allocation
and quay crane assignment problem which determines the berthing position,
berthing start/end time for each vessel, and the number of QCs that will be
operating on each vessel at each time period during the berthing interval. Plan-
ners try to minimize operating costs of QCs and penalty costs due to early/late
berthing start/end times. There is a tradeo� between these costs and this trade-
o� is investigated with the operational constraints of the problem in Chapter 2
and Chapter 3. The problem de�nition is also diversi�ed with respect to the
properties of the QC assignment and the partitioning of the berthing area. The
size of the instances that are solved corresponds to a realistic problem settings.
We show that di�erent berth space partitioning methods a�ect the solution
quality, a �ner discretization is harder to solve but terminals can better utilize
the complete berthing space. Results also present a comparison about the QC
assignment policies, and the time-invariant QC assignment is shown to be easier
to solve but results in higher costs. Chapter 2 presents novel models that aim
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at obtaining an optimal solution to the problem, while Chapter 3 points out im-
provements on the existing formulations and presents a heuristic method which
has acceptable running times for the problem. The integration is deepened in
Chapter 4 by incorporating speci�c QC assignment and scheduling into a vari-
ant of the previous problem. The problem studied in this chapter considers
the uncertainty in vessel arrival and processing time with the use of scenarios.
The problem is decomposed into a master problem which is a berth scheduling
problem, and subproblems which are speci�c QC assignment and scheduling
problems of each scenario. The size of instances is diversi�ed for large and small
terminal scales and results show that the performance of the solution methods
highly depend on the size of the instance. Results also show that solving the
problem by considering the uncertainty is extremely important to be able to
design a reliable terminal operation.

The next problem focuses on an integrated problem which is composed of sea-
side and yardside problems. We integrate problems which are related to the
loading operations of the vessel. The loading operation is strongly bounded by
the stowage plan which points out the exact position of each container on the
vessel. In Chapter 5 and 6, the terminal utilizes the �exibility of making the
detailed operative stowage plan with respect to a given class-based stowage plan
of the liner shipping company. The �exibility is in selecting the "best" container
with respect to terminal logistics for each position by ful�lling the requirement
of the class-based stowage plan. Deciding the "best" container with respect to
terminal logistics is a problem of load sequencing, transfer vehicle dispatching
and scheduling. The objective is to minimize the penalty cost of �nishing the
loading operations later than an expected time and the cost of operating trans-
fer vehicles during loading operations. Results from a number of formulations
show that the integrated problem pays o� compared to the hierarchical solution
method. Additionally working hours, and consequently, operating costs of trans-
fer vehicles are signi�cantly reduced with the help of integration. It is noted
in Minsaas and Psaraftis (2016) that reducing energy consumption of transport
vehicles contributes to a more environmentally friendly terminal. Finally such
a �exible loading strategy will better help the terminal to �nish loading as soon
as possible, and this would eventually help to reduce the time that vessel spend
at the terminal, consequently transit times for the liner shipping company. As a
result, a solution to such a problem will contribute to the Win-Win-Win quest
for terminals, liners and the environment in the long run.
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1.7 Future Work

In the following we outline some possible future research directions related to
problems and methodology.

1.7.1 Problem De�nitions

The integrated problems of Chapter 2 and 3 can be extended to handle addi-
tional details such as assignment of speci�c QCs and their schedules. Park and
Kim (2003) show that the assignment of speci�c QCs is a shortest path problem
where decisions about berthing and QC assignment in numbers (BACAP) is pre-
processed to the speci�c QC assignment and scheduling problem. This shortest
path problem can be solved by dynamic programming. The deep integration
can be studied by integrating this shortest path problem into the BACAP (See
properties which show that QC scheduling problem can be solved in polynomial
time for special cases in Turkogulari et al. (2016)). Such e�orts cover integrating
new problems into the BACAP. Instead, variants of the BAP with tidal e�ects,
setup times of QCs, QC properties can be studied in the content of solution
methods of Chapter 2 and 3.

Chapter 4 focuses on the planning quayside operations under uncertainty which
is already a complicated problem. Rather than focusing on an additional prob-
lem, we can incorporate the unexpected QC breakdowns with certain realization
probabilities into the scenario tree. A possible breakdown of a QC will not only
increase the processing time of a vessel, it will also a�ect the movement of all
QCs around it. The problems studied thusfar are operational problems. A pos-
sible future research direction could aim at focusing on tactical berth allocation
problem (Giallombardo et al., 2010) under uncertainty. Zhen (2015) focuses on a
variant of tactical berth allocation problem under uncertainty where QC assign-
ments are not considered. In this respect, formulations and methods presented
in Chapter 4 can be modi�ed to cover tactical planning properties.

Finally we note future research directions regarding the SLP. Chapter 6 studies
a variant of the problem where loading sequence and yard handling decisions are
�xed for the SLP. The �rst obvious extension is to optimize the loading sequenc-
ing problem within the SLP. This is expected to bring su�cient improvements
because large container vessels have many rows in each bay in which QC can
load containers with di�erent sequences. Another possible extension is to pool
the transfer vehicle for each QC. In the current problem de�nition, vehicles are
dedicated to work on a speci�c QC throughout the loading period. If the pool-
ing is allowed, e�cient routing of vehicles between QCs will reduce the loading
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time. Alternatively, e�ects of dual cycling can be studied on the SLP. The
aspects noted thus far are all terminal related. This problem can be further
expanded to the decision making problems of shipping liner. Christensen, Pa-
cino, Fonseca, and Psaraftis (2015) focus on the vessels' cargo-mix, in particular
�nding what cargo composition is needed for a vessel to maximize its utilization
on a given service. Depending on the e�ciency of loading operations for each
container, a feedback loop based integration can be achieved between the two
problems.

1.7.2 Extensions of Methods

We now brie�y note possible ways to extend or improve the methods presented
in this thesis. The improvements can be achieved in the solution quality and/or
the computational times of the method. Both improvements are useful since
better solutions will bring cost reductions and e�cient use of resources, while
faster methods will allow us to evaluate the decision problems more often. De-
pending on the problem de�nition, the planning horizon can be short enough
that reducing the computational time of the methods will help to evolve to the
real-time decision making.

There are many ways to improve the performance of solution methods of Chap-
ter 2. The �rst the natural extension is to generate variables dynamically using
delayed column generation and solve the set partitioning formulations via a
branch-and-price algorithm. Another alternative is analyzing the optimality
properties of the set partitioning formulations then reducing and/or ranking
the set of columns with these properties (See Rezanova and Ryan (2010) for an
example on train driver recovery problem).

Chapter 3 presents various valid inequalities for the BACAP. The �rst possible
extension is to use these inequalities in a Branch-and-Cut algorithm where the
relaxed problem is solved. With respect to the ALNS, additional destroy and
repair mechanism can be suggested and tested. In the heuristic, the detailed
allocation of QC numbers to periods are made by utilizing the Corollary 1 (Iris
et al. (2015b)) and a variant of it. This subproblem is an assignment problem
which can be solved rapidly by using a set partitioning formulation. This set
partitioning problem can be embedded into the repair structure of the ALNS.
Once every time the repair method is called, that formulation could be solved.
Such a math-heuristic might perform well because the computational results
show that weak ALNS solutions are mostly lacking high quality QC number
assignments.

The performance of solution method (i.e. the integer L-shaped) in Chapter 4
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depends on various factors. The �rst possible improvement is to use the in-
teger L-shaped method in a Branch-and-Cut fashion (Laporte and Louveaux,
1993) rather than the traditional method in which master problem is solved
to optimality in each iteration. Regarding the fact that solving the master
problem to optimality at each iteration is computationally very hard, such a
method would bring contribution to the results. Recently Boland, Fischetti,
Monaci, and Savelsbergh (2015) use the proximity search as a tactical tool to
drive Benders decomposition (proximity Benders) and use it a heuristic method
to solve two-stage stochastic programming problems, the results are promising.
Another future research direction could be applying the proximity Benders for
our problem.

Finally we denote future research direction on the solution methods of the SLP.
The �rst potential improvement is to implement a heuristic that utilizes the
presented formulations of Chapter 6. The lower bounding model which is very
e�cient with respect to computational time can be used in a math-heuristic
framework. In order to have this framework, it is required to use a neighbor-
hooding structure. Possible neighborhooding methods can be obtained from
Kim et al. (2004). Another possible solution extension is to decompose the SLP
and generate an intelligent feedback loop between the subproblems.
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Chapter 2

Integrated Berth Allocation
and Quay Crane

Assignment Problem: set
partitioning models and
computational results

Most of the operational problems in container terminals are strongly intercon-
nected. In this chapter, we study the integrated berth allocation and quay crane
assignment problem in seaport container terminals. We will extend the current
state-of-the-art by proposing novel set partitioning models. To improve the per-
formance of the set partitioning formulations, a number of variable reduction
techniques are proposed. Furthermore, we analyze the e�ects of di�erent dis-
cretization schemes and the impact of using a time-variant/invariant quay crane
allocation policy. Computational experiments show that the proposed models
signi�cantly improve the benchmark solutions of the current state-of-art optimal
approaches.1

1C. Iris, D. Pacino, S. Ropke, A. Larsen, "Integrated Berth Allocation and Quay Crane
Assignment Problem: Set partitioning models and computational results", Transportation
Research Part E: Logistics and Transportation Review, 2015, 81, pp. 75-97, published
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2.1 Introduction

Fierce global competition in production and trade has forced all entities in
supply chains to optimize their logistics operations. The never ending quest for
shorter lead times and reduced cost for logistics cost requires extremely e�cient
logistics systems. In 2013, the worldwide container trade accounts for about 22%
of the 6.7 billion tons of dry-cargo trade, and all loads are being transported by
vessels via container terminals (UNCTAD (2014)). Recent statistics show that
total container trade volumes reached 160 million Twenty-foot Equivalent Units
(TEUs) in 2013 with a growth of 4.6% (UNCTAD (2014)). These statistics
suggest that logistics e�ciency heavily relies on e�ective container terminal
operations. Due to the increasing importance of container terminals and high
complexity of their operations, the need for optimization has become evident in
recent years. This can also be perceived by the increase of scienti�c literature
where operations research techniques are applied to container terminals (see
Stahlbock and Voÿ (2007) for a survey).

Recent advances in the modeling of container terminal problems have pushed
the focus towards integration issues. Conventional hierarchical optimization of
sequential operations is known to have possible disadvantages, that may result
in infeasible, suboptimal or poor solutions. This is because decisions made in
earlier steps were made without considering the resultant knock-on e�ects in
the following stages. This chapter focuses on two important problems on the
quayside of terminal operations: the Berth Allocation Problem (BAP) and the
Quay Crane Assignment Problem (QCAP). The �rst problem allocates berthing
positions and times for vessels, while the second determines the number of quay
cranes (QCs) to be assigned for the load and discharge operations. These two
problems are mutually dependent. The number of available QCs depends on
where and when the vessel is berthed. Concurrently, the berthing time depends
on the processing time of the vessel, which in turn depends on the number of
cranes assigned. An integration of those two problems was �rst introduced by
Park and Kim (2003).

The goal of our work is to solve the integrated Berth Allocation and quay Crane
Assignment Problem (BACAP), where a berthing time and position for each
vessel is assigned during a given planning horizon. A solution to the problem also
includes the assignment of QCs, by factoring in marginal productivity losses due
to crane interference, and processing times depending on the berthing position
of the vessel. An objective is to propose a method that solves instances to
optimality. When instances cannot be solved to optimality, tight upper and
lower bounds on the objective should be generated. Such bounds can be used
to evaluate the performance of future and past heuristics.
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An important factor in berth and QC management is the use of policies for
the assignment of QCs to vessels. Hence why this chapter analyses two main
policies: time-invariant and time-variant QC assignment. The �rst policy de-
cides how many QCs to assign to a given vessel, and this number cannot change
throughout the stay at berth. The second relaxes this assumption and allows
the number of assigned QCs to vary during the ship's stay at port. In both
cases the number of QCs assigned lies within a given interval speci�ed by the
contract between the terminal and the shipping companies. Both variants of
the BACAP are modeled in this chapter using a Generalized Set Partitioning
(GSPP) formulation. Furthermore, a set of column reduction techniques are
presented which help to limit the number of feasible columns generated and to
provide better bounds.

The literature on the BAP distinguishes between discrete and continuous ver-
sions of the problem with respect to the berth partitioning. In the former
version, vessels can only berth at prede�ned sections of the quay, while this re-
striction does not apply to the latter version. The work proposed in this study
addresses optimal approaches for the continuous case; Where the berth space is
discretized in the same manner as Meisel and Bierwirth (2009), Meisel and Bier-
wirth (2013) and Turkogullari, Taskin, Aras, and Altinel (2014), with berthing
at integer points (e.g. every 10 meters). Three discretization techniques are
tested in this paper however only one of the them guarantees optimal solutions
to the original problem.

In order to validate and evaluate our models, we present a comparison with the
BACAP state-of-the-art results by Meisel and Bierwirth (2009). In Meisel and
Bierwirth (2009) a compact mathematical model, which can optimally solve
some instances of up to 20 vessels, is presented. For larger instances (30, 40
vessels), the model cannot generate integer upper bounds. In the same paper,
these upper bounds are generated using di�erent heuristic approaches.

This chapter presents three major contributions: 1) Novel generalized set par-
titioning formulations that can solve more instances than previous models. 2)
Improved upper and lower bounds to almost all instances, bounds that will be
of use when testing new algorithms for the problem. 3) Techniques for reducing
the number of variables in the model, techniques that can be useful for problems
that use a similar modeling approach.

The chapter is organised as follows: First, a literature review is presented in
Section 2.2. In Section 2.3, the problem de�nition and mathematical models
proposed by Meisel and Bierwirth (2009) are given. The proposed GSPP mod-
els and column reduction techniques are presented in Section 2.4. Extensive
computational results are presented and discussed in Section 3.6. The chapter
is concluded by Section 2.6.
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2.2 Literature Review

The importance of container terminal problems has been revealed by many
academic studies where authors illustrate recent trends and point out gaps in
the literature (see Stahlbock and Voÿ (2007) for a general review). As re-
gards the integrated quayside problems, recent surveys of Bierwirth and Meisel
(2010), Bierwirth and Meisel (2014) focus on berth allocation and QC planning
problems (assignment and scheduling) in container terminals. Authors classify
berth allocation problems according to spatial, temporal, processing time, and
performance indicator attributes. Integration of berth allocation and QC assign-
ment is classi�ed as deep, hierarchical or through a feedback loop. Most papers
present compact formulations with deep integration. The BAP remains the
main problem and the additional problem is either the assignment or scheduling
of QCs. Recently, Meisel and Bierwirth (2013) integrated three of the main
seaside terminal planning problems, i.e. BAP, QCAP (in numbers and speci�c
QC assignment) and the quay crane scheduling problem (QCSP).

The BAP is classi�ed as static or dynamic with respect to whether the arrival
time of the vessels imposes a bound on the berth start time. One of the �rst
models for dynamic BAP was presented by Imai et al. (2001) and was succes-
sively improved by Imai et al. (2005) for the continuous berth allocation case.
The latter presents a two-stage heuristic approach which uses discrete berthing
solutions and reallocates them in a continuous manner. Cordeau et al. (2005)
proposed a Tabu Search (TS) for the dynamic discrete BAP and a continuous
variant. A well performing simulated annealing approach is proposed by Kim
and Moon (2003) for the continuous BAP.

2.2.1 BACAP literature - BAP, QCAP properties

A list of relevant literature for the BACAP is summarized in Table 2.1, in
which information about the problem structure, objective function and solution
approaches are presented. The studies are listed in chronological order of pub-
lication year. In the pioneering paper for the BACAP, Park and Kim (2003)
presented a model for the problem. The model supports time-variant QC assign-
ments and is solved by using lagrangian relaxation-based heuristics. Afterwards
a dynamic programming method assigns the speci�c QCs to vessels. With re-
spect to spatial attributes, some papers focus on discrete berth allocation in
the BACAP (Imai, Chen, Nishimura, and Papadimitriou (2008), Giallombardo
et al. (2010), Vergados, Schaeren, Dullaert, and Raa (2013)). However, con-
tinuous berth layout in the BACAP has also attracted many researchers (see
Table 2.1). Di�erent extensions appear in the literature surrounding the berth
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allocation properties of BACAP. Meisel and Bierwirth (2009) considered the
marginal productivity losses due to the QC interference. Experiments with dif-
ferent levels of congestion show the strong impact of the QC-interference on the
cost function. The handling time which depends on the berthing position is
modeled by Meisel (2009a). Another extension is the modeling of operational
constraints of QCs. Giallombardo et al. (2010) proposed a QC pro�le scheme
in which the authors include the e�ects of shifts, the interference of QCs, the
priority of vessels and various real-life constraints. They proposed a two-stage
heuristic. In the �rst stage, QC pro�les are assigned to each vessel. In the
second stage, authors solve the remaining BAP via a TS heuristic. The BA-
CAP is also studied by Blazewicz, Cheng, Machowiak, and Oguz (2010). They
considered the problem as a parallel machine scheduling problem and seek to
minimize the makespan.

Problem variations can also be found with respect to the QC assignment. The
two main policies are the time-variant and time-invariant QC assignment. In
the time-invariant version, authors mostly solve the QC assignment problem
�rst and then solve the BAP (Liang, Huang, and Yang (2009), Chen, Lee,
and Cao (2012), etc.). Another modeling aspect is whether individual QCs
are assigned or the number of QCs to serve each vessel is determined. Imai
et al. (2008) considered the assignment of speci�c QCs through detailed QC
movement constraints. This ensures the assignment of speci�c QCs, however,
the relationship between the number QCs deployed and the processing time
could be improved. In another example, Chen et al. (2012) made speci�c QC-to-
vessel assignment and this facilitates the calculation of QC requirements. They
proposed valid inequalities that link the berth scheduling and QC assignment
better and some valid inequalities are in the form of non-crossing constraints.

2.2.2 BACAP literature - Objective function properties

In terms of cost function, we see variations in the modeling of the BACAP. The
most popular objective (see Table 2.1) is the composition of berthing costs (QC
costs) and time-dependent penalty costs (Chang, Jiang, Yan, and He (2010),
Raa, Dullaert, and Schaeren (2011), Meisel and Bierwirth (2009), etc.). Total
weighted service time is another popular objective of the formulations (Liang
et al. (2009), Yang, Wang, and Li (2012), etc.). As mentioned in Section 2.2.1,
the deviation from expected berthing position may be embedded in the objective
with a cost (Chang et al. (2010), Raa et al. (2011), Turkogullari et al. (2014)).
Instead of being in the objective, the deviation from expected berthing position
might be modeled to a�ect the processing time (as in Meisel and Bierwirth
(2009)). Then the model becomes harder to solve, because the processing time
of a vessel would not only depend only on the load of vessel which is mostly
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a parameter, it would also depend on a decision variable which is the berthing
position.

2.2.3 BACAP literature - Solution techniques

The solution approaches are clustered in novel mathematical models, exact
methods and heuristic/analytic methods in Table 2.1. Most of the papers pro-
pose novel mathematical models for the variants of BACAP. Raa et al. (2011)
enrich current models by taking vessel priorities, preferred berthing positions
and QC-assignment-dependent handling times into account. The proposed BA-
CAP model is solved using a rolling horizon approach.

2.2.3.1 Exact Methods

Several authors use set partitioning formulations to solve di�erent quayside plan-
ning problems. The �rst use of GSPP aimed at solving the BAP (Christensen
and Holst (2008)), where the authors proposed a branch-and-price algorithm.
The approach can be used to solve both discrete and continuous BAP. For
instances of up to 35 vessels, optimal solutions can be found for the discrete
BAP, while a gap of 8.3% is obtained for the continuous version. Buhrkal et al.
(2011) generated columns a priori and solved the same GSPP model for the
discrete case with an IP solver. The approach clearly improved the state-of-
the-art and solved the BAP up to 60 vessels to optimality. A recent study by
Saadaoui, Umang, and Frejinger (2015) also focuses on the discrete BAP in
which 10 berths are considered. They solve a linear programming (LP) relax-
ation of GSPP model using column generation. When the column generation
terminates, they impose the integrality constraints again and resolve the GSPP
with the active pool of columns. The framework solves instances of 120 vessels
with an average optimality gap of 0.20%. Umang et al. (2013) proposed a GSPP
model to solve a more complicated variant of BAP with hybrid berth layout in
bulk ports. The model, with a priori generated columns, can solve instances up
to 40 vessels to optimality. Robenek et al. (2014) formulated a GSPP model for
the integrated berth allocation and yard assignment problem in bulk ports. The
problem considers the cargo types on the vessel which a�ect the storage location
in the yard and consequently the berth allocation. They solve the problem with
a branch-and-price algorithm. The instances include 10 cargo locations in the
yard and 10 berths are available with di�erent equipment. The authors solve
instances with 10, 25, and 40 vessels with average optimality gaps of 0.37%,
4.11% and 3.76%, respectively. The branch-and-price is only run for instances
of 10 vessels. Due to the time complexity, instances with 25 and 40 vessels are
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solved with the column generation and the integrality constraints are imposed
in the last stage of column generation to obtain an upper bound.

Vacca et al. (2013) establish the �rst decomposition method for BACAP and
it is based on the model by Giallombardo et al. (2010). The authors suggest
a QC pro�le which holds productivity losses due to QC interferences, vessel
priorities and QC assignment for each shift. The authors have implemented
a branch-and-price scheme and several accelerating techniques. The approach
obtains the optimal results for 10 and 15 vessels and an average gap of 2.95%
is obtained for 20 vessels and 5 berths in three hours of time limit.

An exact method to solve the BACAP with continuous (but discretized for each
50 meter) berth layout is presented by Turkogullari et al. (2014). The authors
solely consider a time-invariant QC assignment policy. They �rst formulate a
mathematical model to solve BACAP. The model generates optimum solutions
up to 60 vessels where there are 24 berthing sections. In addition to that, the
authors propose a cutting plane algorithm to solve the BACAP with speci�c
QC-to-vessel assignment by using the optimum solutions of original BACAP
model. It is noted that cutting plane algorithm can convert each optimum
BACAP solution to the optimum solution of BACAP with speci�c QC-to-vessel
assignment for the instances which are tested.

Chen et al. (2012) have proposed a Benders decomposition method over the
berth-level model proposed by Liu et al. (2006). The authors model a reduced
version of the BACAP, where the berthing position of each vessel is given, thus
leaving the berthing start/end times, speci�c QC-to-vessel assignment and the
positions of QCs as the only decisions to make. The model is decomposed into a
master problem and a sub-model, and the results show that the decomposition
technique is faster than the original formulation.

In this study, we present exact methods to solve variants of the BACAP (pre-
sented in Meisel (2009e) and Meisel and Bierwirth (2009)). Let us now clarify
the di�erences between the BACAP de�nition used in this paper and that of
Vacca et al. (2013) and Turkogullari et al. (2014). The problems considered in
Christensen and Holst (2008), Buhrkal et al. (2011) and Saadaoui et al. (2015)
do not take QC assignment into account, while Chen et al. (2012) assume a par-
tial berth assignment is given. In Vacca et al. (2013), the authors formulate the
BACAP with discrete berth allocation, QC moves from one vessel to another
are only allowed at the end of the working shifts (restricted time-variant QC
assignment). The authors do not consider berthing position dependent process-
ing times, and there are also some di�erences due to the QC pro�le de�nition
and the objective function formulation. In Turkogullari et al. (2014), the prob-
lem is solely considered for time-invariant QC assignment case of the BACAP.
The marginal productivity losses due to the QC interference are not taken into
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account. The same is true for the berthing deviation dependent processing
times and speeding up option. In their paper, the authors also focus on speci�c
QC-to-vessel assignment problem.

2.2.3.2 Heuristic Algorithms

There are also heuristic/analytic approaches which try to solve BACAP. The
most popular metaheuristic used to solve BACAP is genetic algorithms (GAs).
Imai et al. (2008), Liang et al. (2009), Yang et al. (2012) etc. test various GA
con�gurations which are speci�c for the de�ned problem. In the paper by Liang
et al. (2009), three di�erent chromosome structures are used to prioritize vessels,
to allocate berth, and to assign QC numbers. Chang et al. (2010) formulate
the chromosome as a composition of four-dimensional indice pertaining to the
arrival sequence, berthing position, berthing time and number of QCs for vessels.
Meisel and Bierwirth (2009) propose three heuristics to solve the problem. They
conclude that squeaky wheel optimization (SWO) along with local re�nements
does slightly better than TS. They also show that SWO and TS are better than
the First Come First Served-based heuristic. Vergados et al. (2013) propose a
Constraint Programming (CP) model with a tailored branching heuristic within
a Large Neighborhood Search framework. The model includes QC-to-vessel
assignment considering gang (a team of operators that work on QCs) allocations.

The work presented in this chapter builds on the model presented by Meisel
and Bierwirth (2009). The literature survey and Table 2.1, show that the model
incorporates many relevant constraints and includes several aspects of the prob-
lem in its objective function. We therefore believe that the model is a good
starting point for the studies carried out in our study.

2.3 Modeling the BACAP: Meisel and Bierwirth
(2009) Model

Before going into the details of the solution approach, let us introduce the BA-
CAP. We do so by presenting the formulation proposed by Meisel and Bierwirth
(2009) and its time-invariant QC assignment version. We propose an extension
to this model that allows modeling problems where the number of QCs assigned
to a vessel cannot change during the vessel's stay at the berth.

The objective of the BACAP is to �nd the best berthing position and time for
upcoming vessels by ful�lling the QC requirement of each vessel. A solution for
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each vessel determines the berthing position, the berthing start, end times and
the number of QCs that are operating on the vessel at any given time. The time
horizon is discretized. Any discretization can be used but it is useful to think
of a discretization into whole hours. The berthing position is determined by a
continuous variable, but the data used with the model ensures that ships are
berthed at integer positions.

An example of a BACAP plan can be seen in Figure 2.1 that shows the berthing
plan in a time/space diagram. In this example, three ships are berthed in the
harbor. Each vessel is represented by a rectangle that shows the time and space
occupied by the vessel. The smaller rectangles indicate the assignment of QCs
to vessels, each small rectangle represents one QC. Each ship has an upper and
lower limit on the number of cranes that can be assigned to it. These bounds
are determined by contracts between the vessel owner and the port and by the
size of the ship. A limited number of QCs are available in the harbor and this
determines the maximum number of cranes that we can assign in any time slot.
The symbols used on the Figure 2.1 will be explained in the following section.

Figure 2.1: Berth-time diagram of BACAP.

The objective function is a combination of time-dependent costs and QC assign-
ment costs. The time dependent costs can be attributed to the berthing start
and end times while the QC dependent costs are a function of how many QCs
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are assigned to each vessel. If a vessel is berthed before its Expected Time of
Arrival (ETA), a speed-up cost occurs for each rushed time unit. Delay costs
depend on how many time units have passed from the Expected Finishing Time
(EFT). An ulterior penalty cost incurs if the berthing end time is beyond the
Latest Finishing Time (LFT). An example of the cost structure of vessel 1 can
be seen in Figure 2.2. The �gure shows that during the vessel's stay, between its
start (s1) and end time (e1), QC operations costs are distributed along periods
depending on the number of QCs operating. Since the vessel start time is four
periods earlier than its ETA (ETA1), speed-up costs occur. In the same man-
ner, we must pay delay costs due to the vessel`s end time being later than the
EFT (EFT1). Finally, since operations go beyond the LFT (LFT1), a one-time
penalty is added to the cost.

Figure 2.2: Cost structure of BACAP for Vessel 1 in Figure 2.1.

2.3.1 Time-variant model

Let us now introduce the model proposed by Meisel and Bierwirth (2009). Ta-
ble 6.1 presents the mathematical notation.
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Table 2.2: BACAP mathematical notation

Parameters and sets:

V Set of all vessels to be served, V ∈ {1, 2, .., N}, where N is the number of
vessels to be planned

L Length of the quay
T Set of 1 hour periods, T ∈ {0, 1, .., H − 1}, where H is the end of planning

horizon
li Length of vessel i ∈ V
b0i Desired berthing position of vessel i ∈ V
mi Quay crane capacity demand of i ∈ V given as QC-hours
rmini Minimum number of QCs agreed to serve vessel i ∈ V simultaneously
rmaxi Maximum number of QCs agreed to serve vessel i ∈ V simultaneously
Ri Feasible range of QCs assignable to vessel i ∈ V , where Ri = [rmini , rmaxi ]
ETAi Expected arrival time of vessel i ∈ V
ESTi Earliest time of arrival of vessel i ∈ V when it is speed up
EFTi Expected �nishing time of vessel i ∈ V
LFTi Latest �nishing time of vessel i ∈ V without any penalty cost
c1i Speed up cost of vessel i ∈ V on its journey to catch a berthing time

earlier than ETAi
c2i Cost of exceeding the expected �nishing time EFT i for vessel i ∈ V
c3i Penalty cost by exceeding LFT i for vessel i ∈ V
c4 Cost rate per QC-hour of operations
α Interference exponent for the QCs. Only qα e�ective QC hours are

obtained when assigning q QCs to a ship for one hour
β Berth deviation factor. A ship i placed at position bi needs

(1 + |b0i − bi|β)mi e�ective QC hours. |b0i − bi| is the deviation from desired
berthing position

M A large positive number
Q Available number of QCs

Decision variables:

bi ∈ Z+ Berthing position of vessel i ∈ V
si ∈ Z+ Time of starting the handling (berthing start time) of vessel i ∈ V
ei ∈ Z+ Time of ending the handling (berthing end time) of vessel i ∈ V
rit ∈ B 1; if there is any QC assignment to vessel i in period t, 0 otherwise
ritq ∈ B 1; if there is exactly q QC assigned to vessel i in period t, 0 otherwise
∆bi ∈ Z+ Deviation from desired berth if vessel i is in position b, ∆bi = |b0i − bi|
∆ETAi ∈
Z+

Required speedup to reach start-time si by vessel i, where
∆ETAi = |ETAi − si|

∆EFTi ∈
Z+

Tardiness of vessel i ∈ V when operations are �nished later than expected
�nishing time, ∆EFTi = |ei − EFTi|

ui ∈ B 1; if �nishing time of vessel i ∈ V exceed latest �nishing time, 0 otherwise
yij ∈ B 1; if vessel i is berthed below vessel j in berth area, i.e. bi + li ≤ bj , 0

otherwise
zij ∈ B 1; if handling of vessel i ends no later than handling of vessel j starts in

berth area, 0 otherwise

Time invariant decision variables:

piq ∈ B 1; if q QCs are assigned to vessel i, 0 otherwise
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min
∑
i∈V

(c1i∆ETAi + c2i∆EFTi + c3iui + c4
∑
t∈T

∑
q∈Ri

ritqq) (2.1)

subject to∑
t∈T

∑
q∈Ri

qαritq ≥ (1 + ∆biβ)mi ∀i ∈ V (2.2)

∑
i∈V

∑
q∈Ri

qritq ≤ Q ∀t ∈ T (2.3)

∑
q∈Ri

ritq =rit ∀i ∈ V,∀t ∈ T (2.4)

∑
t∈T

rit =ei − si ∀i ∈ V (2.5)

(t+ 1)rit ≤ei ∀i ∈ V,∀t ∈ T (2.6)

ritt+H(1− rit) ≥ si ∀i ∈ V,∀t ∈ T (2.7)

∆bi ≥bi − b0i ∀i ∈ V (2.8)

∆bi ≥b0i − bi ∀i ∈ V (2.9)

∆ETAi ≥ETAi − si ∀i ∈ V (2.10)

∆EFTi ≥ei − EFTi ∀i ∈ V (2.11)

Mui ≥ei − LFTi ∀i ∈ V (2.12)

bj +M(1− yij) ≥bi + li ∀i, j ∈ V, i 6= j (2.13)

sj +M(1− zij) ≥ei ∀i, j ∈ V, i 6= j (2.14)

yij + yji + zij + zji ≥ 1 ∀i, j ∈ V, i 6= j (2.15)

si, ei ∈{ESTi, . . . H} ∀i ∈ V (2.16)

bi ∈{0, 1, . . . L− li} ∀i ∈ V (2.17)

∆ETAi,∆EFTi ≥0 ∀i ∈ V (2.18)

ritq, rit, ui, yij , zij ∈{0, 1} ∀i, j ∈ V,∀t ∈ T, ∀q ∈ Ri i 6= j (2.19)

The objective function (6.1) is a minimization of the overall cost which has two
major components. The �rst, is based on the vessels' time at port (speed-up
cost, delay cost, and penalty cost). The second, is linked to the QC assignments
in which the number of QCs used is multiplied by the cost rate per QC-hour.
Constraint (3.2) ensures that every vessel receives the required QC capacity,
taking into account productivity losses by QC interference, and increased QC
demand due to deviation from the expected berthing position. Constraint (3.3)
enforce restrictions so that the assigned QC number cannot exceed the available
number of QCs in the terminal. Constraint (3.4) links the ritq and rit variables:
if any q QCs are assigned to vessel i in period t, then operations are ongoing
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on the vessel which should therefore stay at berth. Constraints (3.5), (3.6)
and (3.7) link the rit variables with the arrival and departure variables. The
constraints guarantee that the rit variables are only set to one when t ∈ [si, ei]
and that operations are not preemptive. Constraint (3.8)-(3.12) determine the
deviation from the expected berthing place, the required speed-up for vessel to
reach si, the tardiness of the operations, and sets ui to one if the ship departs
after LFTi. Constraint (3.13) and (3.14) are used to set the variables yij and
zij . These variables are used in constraint (3.15) to avoid that ships overlap in
time or space. De�nition of domains (3.16) and (3.17) ensure that start-time
and end-time of operations are between the ETAi and the end of the planning
horizon. The berthing position of vessel i is restricted by the berth and the
vessel length. Constraints (3.18) and (4.7) de�ne the domains of the remaining
variables.

2.3.2 Time-invariant model

In the model presented in Section 2.3.1 the number of QCs assigned to a vessel
can change over time. However, some terminals may opt not to change the
number of QCs throughout the vessel`s stay at port, in order not to create
additional congestion of QC rescheduling, and therefore we propose a variant
of the model where the number of QCs assigned to a vessel is �xed throughout
the vessel's stay. Mind that the number of cranes to assign is still a decision
variable. This problem has been studied in academic literature and is named
time-invariant BACAP (Turkogullari et al. (2014), Yang et al. (2012), Meisel
(2009e), etc.). To model the time-invariant QC assignment we add the binary
decision variable piq which is one i� q QCs are assigned to vessel i. The time-
invariant QC assignment is then enforced by the following constraints:

∑
q∈Ri

piq = 1 ∀i ∈ V (2.20)

ritq ≤ piq ∀i ∈ V,∀t ∈ T, ∀q ∈ Ri (2.21)

piq ∈ {0, 1} ∀i ∈ V,∀q ∈ Ri (2.22)

Constraint (2.20) ensures that exactly one QC number is chosen for each vessel
i. Constraint (2.21) links the ritq and piq variables. If q QCs are assigned to
vessel i (piq = 1), ritq is either one or zero. We have to allow ritq = 0 since
there are some periods t where the vessel is not at berth. If piq equals zero
the corresponding ritq are forced to zero through the entire planning horizon.
Constraint (3.5) guarantees avoiding preemption by preventing any zero values



2.4 Generalized Set Partitioning Formulations 53

for ritq within the berthing interval. Constraint (2.20), along with Constraints
(3.5-3.7), ensure that only a �xed number of QCs is used without preemption
in operations.

2.4 Generalized Set Partitioning Formulations

In this section, we present GSPP reformulations for the time-variant and time-
invariant BACAP. These models are based on models for the berth allocation
problem presented by Christensen and Holst (2008) (see also Buhrkal et al.
(2011)). The addition of QC decisions is, to the best of our knowledge, novel.
The proposed models contain a large number of variables and it is tempting to
use column generation to solve them. However, in this paper we use the simpler
approach of generating all variables a priori (as it also was successfully done in
Buhrkal et al. (2011)).

2.4.1 Time-Invariant GSPP Model

In the time-invariant GSPP model, a column represents a feasible assignment
of a single vessel to a position in time and space (recall Figure 2.1), as well
as an assignment of QCs for the berthing period. In addition to the already
introduced notation, we introduce some additional notation. The set of columns
(assignments) is denoted by Ω. We de�ne three matrices (aij),(bpj) and (qtj),
all containing |Ω| columns. Matrix (aij) contains a row for each vessel. Each
element aij is binary and it is 1 i� column j represents an assignment of vessel
i ∈ V . Each element of (aij) contains exactly one non-zero element. Binary
matrix (bpj) contains a row per (berth, time) position. The entry bpj is one i�
position p ∈ P is occupied in the assignment that variable yj represents. The
matrix (qtj) contains a row per time unit. An element qtj indicates the number
of QCs that are assigned to vessel j in time period t. Since we are modeling
the time-invariant version of the problem, each column contains zeroes and one
or more copies of a number q̃ which indicate the number of QCs used in the
assignment that the variable represent. Each column j has a cost cj . This cost
is easily calculated from the vessel index, the (berth, time) position and the
QC allocation. In the GSPP model, the berth dimension is discretized into S
berth cells. Each vessel can occupy multiple cells when the discretization is �ne
enough. We let P be the set of (berth, time) positions that a ship can occupy.
This set contains H · S elements. The decision variables of the models are
denoted yj , j ∈ Ω, they are binary and indicate whether column (assignment) j
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should be used in the solution. The model is:

min
∑
j∈Ω

cjyj (2.23)

subject to ∑
j∈Ω

aijyj = 1 ∀i ∈ V (2.24)

∑
j∈Ω

bpjyj ≤ 1 ∀p ∈ P (2.25)

∑
j∈Ω

qtjyj ≤ Q ∀t ∈ T (2.26)

yj ∈ {0, 1} ∀j ∈ Ω (2.27)

The objective function (2.23) minimizes the sum of the costs for the selected
variables. Constraint (2.24) guarantees that all vessels are served. Constraint
(2.25) restricts each berth/time position to be used at most once. Constraint
(2.26) ensures that we do not use more QCs than are available at the container
terminal.

We illustrate the model with a small example containing two vessels, the �rst
with a length of one and the second with a length of two berth units. Vessels
1 and 2 have a requirement of 2 and 4 QC hours, respectively. In this example
we disregard that interference and a bad positioning can increase QC capacity
demand. Furthermore, Vessel 1 has {rmini , rmaxi } = {1, 2}, and vessel 2 has
{rmini , rmaxi } = {3, 5}. The earliest berthing start times (ESTi) for the two
vessels are 1 and 2. Additionally, we assume that there are two berthing spaces,
three planning periods, and six QCs available to serve the vessels. For the �rst
vessel, all feasible solutions are presented in Table 2.3, while for the second,
only a small portion is illustrated. The �rst two rows indicate which vessel the
column is representing. The next six rows represent the 6 available time/space
positions and indicate which position each assignment occupies. The last three
rows indicate how many QCs are used in each time period by the assignment.
The 15 columns with heading yj indicate 15 possible assignments for vessel 1
and 2 while the column RHS gives the right hand side of each constraint. The
last column simply indicates the mathematical representation (symbol) of the
columns in the model. Note that some of the columns presented in Table 2.3
might be removed by the column reduction techniques which will be discussed
later.

The simple structure of the model is convenient, but its drawback is that the
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Table 2.3: Structure of assignment matrix for given example

j= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 RHS

Vessel 1 1 1 1 1 1 1 1 1 1 1 = 1
aijVessel 2 1 1 1 1 1 = 1

Space1/Time1 1 1 ≤ 1

bpj

Space1/Time2 1 1 1 1 1 1 ≤ 1

Space1/Time3 1 1 1 1 1 ≤ 1

Space2/Time1 1 1 ≤ 1

Space2/Time2 1 1 1 1 1 1 ≤ 1

Space2/Time3 1 1 1 1 1 ≤ 1

Time 1 1 1 2 2 ≤ 6

qtjTime 2 1 1 1 1 2 2 3 4 5 ≤ 6

Time 3 1 1 2 2 3 4 5 ≤ 6

model can contain many variables (dependent on choice of planning horizon and
discretization of the berth space). This model also handles the case where the
number of QCs assigned to a vessel vary from time-period to time-period. This
variant can be represented by allowing the entries in each column of the (qtj)
matrix to take more than two values.

Modeling the time-variant QC assignment this way, however, will increase the
number of variables dramatically, therefore we have not pursued this direction.
Instead, a di�erent modeling approach for the time-variant number of QCs is
presented in Section 2.4.2.

2.4.2 Time-variant GSPP Model

As for the time-invariant model, a column for the time-variant GSPP formu-
lation represents a feasible assignment of a single vessel to a berth with its
expected processing time. The di�erence, compared to the model from Section
2.4.1, is on how the processing times and QC assignment are handled. The exact
number of QCs to serve the vessel in each period is not embedded in the col-
umn representation. Alternatively, since we know the minimum and maximum
number of QCs that can serve a vessel in parallel (rmini , rmaxi ), we can calculate
the minimum and maximum processing time for a given ship at a given position
(recall that position impacts processing time though the β parameter). Then,
we proceed to generate an assignment for each possible processing time. The
set of columns is again denoted by Ω. We de�ne two matrices (aij), (bpj) which
contain |Ω| columns. aij and bpj are interpreted in the same way as in Section
2.4.1. ΩB(b, i) is the set of columns that places the start of ship i in berth b (so
a column will only occur in one of the sets ΩB(b, i) even if it takes up several
berths). ΩT (t, i) is the set of columns (assignments) that represent a placement
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of ship i that occupies time period t. Each column j has a cost value cj . This
cost includes the cost components which are related to the timing of the vessel
(too early/too late), but leaves out the component related to the number of QCs
used (see (6.1)), since this information cannot be deduced from the information
in the column. There are two sets of decision variables: yj determines if the
column j is used or not, while ritq is a binary variable that is 1 if q cranes are
assigned to vessel i at time t. The additional parameters and notations that are
not listed in Section 2.3 and 2.4.1 are as follows:

Additional set notations for GSPP model:

P : Set of positions: a position is a pair (berth, time slot), P ∈ {0, 1, .., H · S}
B: Set of berthing spaces, B ∈ {1, 2..., S}
ΩB(b, i): The set of columns representing a placement of ship i in berth b.
ΩT (t, i): The set of columns representing a placement of ship i that occupies time
period t.

Additional parameters:

ti,b: Minimum time (number of time periods needed to serve ship i in berth b):

ti,b =
⌈

(1+β∆bib)mi
(rmaxi )α

⌉
t̄i,b: Maximum time (number of time periods needed to serve ship i in berth b):

t̄i,b =
⌈

(1+β∆bib)mi
(rmini )α

⌉
∆bi: The absolute distance of berthing place b from desired position of vessel i:
∆bi = |b0i − b|
Decision variables:

yj ∈ {0, 1}: 1 if column j (a certain ship/position/duration combination) is used, 0
otherwise
ritq ∈ {0, 1}: 1 if q cranes are assigned to ship i at time t, 0 otherwise

Hence, the mathematical model can be formulated as:

min
∑
j∈Ω

cjyj + c4(
∑
∀i∈V

∑
∀t∈T

∑
q∈Ri

qritq) (2.28)

subject to
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∑
j∈Ω

aijyj = 1 ∀i ∈ V (2.29)

∑
j∈Ω

bpjyj ≤ 1 ∀p ∈ P (2.30)

∑
i∈V

∑
q∈Ri

qritq ≤ Q ∀t ∈ T (2.31)

∑
t∈T

∑
q∈Ri

qαritq ≥
∑
b∈B

(1 + ∆biβ)
∑

j∈ΩB(b,i)

yj

 ∀i ∈ V (2.32)

∑
q∈Ri

ritq =
∑

j∈ΩT (t,i)

yj ∀i ∈ V, t ∈ T (2.33)

yj ∈ {0, 1} ∀j ∈ Ω (2.34)

ritq ∈ {0, 1} ∀i ∈ V, t ∈ T, q ∈ Ri (2.35)

The objective (2.28) is formulated as a sum of column costs (which include
speedup, lateness and penalty costs) and QC assignments costs. Constraint
(2.29) and (2.30) are the same as (2.23)-(2.27). Constraint (2.31) guarantees
that at most Q QCs are used in each time period. The next two constraints
(2.32) and (2.33) link the columns used and the QC assignment variables in
terms of berthing time and position. Constraint (2.32) ensures that enough
QC capacity is assigned to each vessel. The left hand side of constraint (2.32)
measures the number of e�ective QC hours assigned to the vessel and takes
the interference factor into account. The right hand side calculates how many
e�ective QC hours are necessary and takes the berthing position into account.
Constraint (2.33) imposes that QCs are only assigned to a vessel when it is
at port. This constraint also imposes that at most one QC assignment policy
can be applied (

∑
q∈Q̄ ritq ≤ 1 where Q̄ ∈ {1, 2..., Q}) for each vessel in each

period. What is more, constraint (2.33) guarantees that the QC assignment is
non-preemptive in the periods between the column start and end interval.

In the time-variant model, not only the number of constraints, but also the
number of columns is higher compared to the time-invariant model. In the
time-invariant GSPP, we typically generate rmaxi − rmini columns for each ship
and position (berth/time) combination. For the time-variant case it is t̄i,b− ti,b.
Since the QC requirements (mi) are rather high in the instances, we typically
have t̄i,b − ti,b > rmaxi − rmini and the time-variant GSPP thus needs a larger
number of columns.

The GSPP models o�er some modeling advantages compared to compact mod-
els like the one presented in Section 2.3.1. GSPP models allow the handling
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of many types of constraints implicitly while generating the feasible columns.
Also various objective functions can easily be handled as long as they can be
decomposed into a cost per column.

2.4.3 Discretization policies

The complexity of GSPP and the number of columns vary by using di�erent
discretization policies of the continuous berth space. In the original data set
proposed by Meisel and Bierwirth (2009), the length of the berth is 100 units
(1000m: 100x10m segments). In this study, three approaches are proposed to
test the performance of the formulations:

• Berth Length of 1: In this representation, we have 100 berthing spaces
(S) where each of them has a 1 unit of length (ls : 10m in real-life).
This formulation directly corresponds to the version studied by Meisel
and Bierwirth (2009).

• Berth Length of 2: In this version, we have 50 berthing spaces (S) where
each of them has 2 units of length (ls : 20m in real-life). This representa-
tion results in a smaller model but the solution quality is decreased since
we cannot use the quay space as e�ciently as in the BL=1 approach. This
discretization is inspired by the distance between bollards at the port.

• Dynamic (Hybrid) Discretizing: In this approach, we let the discretiza-
tion length be dependent on the speci�c vessel. The policy is derived from
the observation that the berthing of the optimal solution for vessel i usu-
ally lies around its desired berthing position (b0i ). Hence, we do a �ner
discretization for 5 berthing spaces around the desired berthing position,
for the rest of the berth length, a discretization of 2 is used. This policy
usually results in around 55 berthing spaces depending on whether b0i is
close to the start or the end of the berth.

The di�erent discretization policies are tested in Section 2.5.3 for both the time-
variant and time-invariant case.

2.4.4 Column Reduction Strategies and Valid Inequalities

for set partitioning models

The number of necessary columns may be very large when dealing with a high
number of vessels and a �ne discretization. Hence, in this section we propose



2.4 Generalized Set Partitioning Formulations 59

some rules for eliminating columns that cannot be part of the optimal solution.
This decreases memory consumption and makes the model easier to solve.

In each column reduction technique, an upper bound (UB) z̄ is required for
the value of the objective function (6.1). By having this bound, we can decide
whether to keep a column or simply remove it. The upper bound can be obtained
using a heuristic for the BACAP, for now it is simply assumed that an upper
bound is known.

2.4.4.1 Preprocessing-1: Simple redundancy

Given the upper bound z̄ on the objective value, a simple but nevertheless useful
preprocessing rule is to remove columns with cost cj > z̄. This applies to both
GSPP models. But for the time-variant version, a better bound can be obtained
since cj does not include the QC component. To do so, we calculate a lower
bound (LB) on the costs of the QC assignments. First, the minimum number
of crane hours needed (θ) is calculated by (2.36).

θ =
∑
i∈V

rmini

⌈
mi(

rmini

)α
⌉

(2.36)

Given a vessel, the shortest possible processing time (when rmini vessels are

assigned) can be calculated with
⌈

mi
(rmini )

α

⌉
, we then multiply this with the

ship's minimum number of required QCs. This is obviously a lower bound on
the number of QC hours needed for the ship and it is easy to calculate. Using θ,
we calculate a lower bound on the QC component of the objective using z = c4θ
and all columns with cj + z > z̄ can be removed.

2.4.4.2 Preprocessing-2: Contribution regarding Lower Bound (LB)

The second preprocessing procedure is based on calculating a lower bound on
the total objective by selecting the �best� column for each ship. For each ship
we calculate the increased lower bound caused by selecting a column j instead of
the vessel's best column. If that lower bound is greater than the upper bound,
column j can be discarded. In the following, the idea is explained in more
detail. We �rst describe the procedure for the time-invariant case, since this is
the simplest.
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Let Ω(i) be the columns corresponding to vessel i, then we can calculate σi, the
lowest column cost for columns representing ship i by:

σi = min
j∈Ω(i)

{cj} (2.37)

A lower bound on the overall objective is then:

z2 =
∑
i∈V

σi (2.38)

Let τ(j) be the vessel associated with column j, then any column j for which
z2 + cj − στ(j) > z̄ can be removed. The left hand side (LHS) computes the
lower bound on the objective if column j is used instead of the best column for
ship τ(j).

The preprocessing rule also works for the time-variant GSPP, but in this case it
can be improved since cj does not contain the QC component. Let ε(i, d,∆b) be
a lower bound on the number of QC hours needed to serve ship i when berthed
∆b units away from the desired position and having a stay of d time units at
port. With this we can calculate an improved lower bound φ(j) for column j's
contribution to the objective function:

φ(j) = cj + c4ε(τ(j), d(j),∆b(j)) (2.39)

where d(j) and ∆b(j) are the duration of the port stay and the deviation from
best berth position for column j, respectively. We now use φ(j) to de�ne the
lowest contribution σi for each ship i:

σi = min
j∈Ω(i)

{φ(j)} (2.40)

and we compute the lower bound on the total objective as before: z2 =
∑
i∈V σi.

A column can now be eliminated if z2 + φ(j)− στ(j) > z̄.

What remains, is to describe how we calculate the lower bound ε(i, d,∆b). When
a vessel is placed ∆b positions away from the desired position, we have to put in
(1+∆bβ)mi raw crane hours to serve the vessel. To minimize the number of QC
hours needed, we have to spread the work evenly during vessel's stay interval
to avoid high interference factors. We would have to work for d1 hours with x
QCs and for d2 hours with x+ 1 QCs. A method to calculate the ε function is
presented in Algorithm 5.

The idea behind the procedure is identifying available capacity gaps in given
processing times. By knowing the processing time of a given vessel i, we can
calculate how many periods corresponds to which number of QCs in a solution.
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Algorithm 1: Approximation of ε

1 Require: i, rmini , rmaxi , d(j), (1 + β∆b(j))mi

2 if (d(j)(rmini )α ≥ (1 + β∆b(j))mi)
3 return d(j)rmini ;
4 else
5 Find q ∈ {rmini , ..., rmaxi } such that
d(j)qα ≤ (1 + β∆b(j))mi ≤ d(j)(q + 1)α

6 p = d(j);
7 while (p ≥ 0) do
8 δ = p(q + 1)α + (d(j)− p)(q)α;
9 if (δ ≥ (1 + β∆b(j))mi)

10 result = p(q + 1) + (d(j)− p)q;
11 end if
12 p = p− 1;
13 end while
14 return result;

Since it is a lower bound calculation procedure, the result shows the least amount
of QC hours required in the given circumstances. We can now calculate q. If q
was allowed to be fractional we would need to solve it by (2.41).

d(j)q̂α = (1 + β∆b(j))mi ⇒ q̂α =
(1 + β∆b(j))mi

d(j)

q̂ =

⌊(
(1 + β∆b(j))mi

d(j)

)1/α
⌋

(2.41)

Theorem: The number of quay crane hours calculated using the Algorithm
(5) is a lower bound on the number of QC hours needed to serve vessel i when
berthed ∆b units away from the desired position and having a stay of d time
units at the port.

Proof:

See Appendix (A.1) for proof �

Corollary: There is always a QC assignment plan which only includes q̂ or
q̂+ 1 number of QCs for each period (in which vessel i is at port), and this plan
satis�es total QC requirement of vessel i (i.e. (1 + ∆bβ)mi) and minimizes the
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total number of QC hours needed to serve vessel i when berthed ∆b units away
from the desired position.

Proof:

Proven Theorem guarantees Corollary, see Appendix (A.1) for proof of Theorem
�

2.4.4.3 Probing-1: Feasible assignment set �xing

We classify the next two methods as probing methods since they �x the value of
one variable to one and analyze the immediate consequences. If as a consequence
the lower bound rises above the upper bound then the corresponding variable
can be eliminated. These methods are explained using the notation for the
time-variant GSPP, but they work just as well for the time-invariant version.

The procedure goes through all variables yj and iteratively �xes them to one.
Fixing a variable to one usually implies that many other variables (columns) are
becoming infeasible due to the overlap in berth/time space. Let I(j) be the set
of infeasible columns when column j is used. A lower bound for the total cost
when having selected j is:

z3(j) = φ(j) +
∑

i∈V \τ(j)

(
min

j′∈Ω(i)\I(j)
{φ(j′)}

)
(2.42)

the formula uses the cost lower bound of column j and adds the best cost of the
remaining ships' columns. Taking into account that columns infeasible with the
selection of column j are not included in the calculation, we have that if z3(j)
turns out to be greater than z̄ then column j can be removed.

2.4.4.4 Probing-2: Vessel pairs �xing

The second probing method extends the previous method by considering pairs
of vessels when computing lower bounds. The method starts by pairing vessels.
First the variable that assigns ship j with lowest φ(j) is found. Among these
N assignments the ones that overlap the most in time/berth space are selected
to form the �rst pair. These assignments are removed from the set of available
assignments and another pair is formed by selecting the ones with most overlap
among the remaining assignments. This continues until all vessels are paired up
(or one vessel remains). Now that vessels have been paired up, we can compute
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a lower bound on the contribution of each vessel pair. For a vessel pair {i1, i2}
this is done by (2.43).

z(i1, i2) = min
j1∈Ω(i1),j2∈Ω(i2)\I(j1)

{φ(j1) + φ(j2)} (2.43)

i.e. by selecting an assignment j1 for vessel i1 and an assignment j2 for vessel
i2 that minimizes φ(j1) + φ(j2) and do not overlap. Let P be the set of pairs
and assume N is even. A lower bound for the total objective is

z4 =
∑

{i1,i2}∈P

z(i1, i2) (2.44)

we again go through all j ∈ Ω and �x yj to one, iteratively. Fixing yj to one
has several e�ects. The ship τ(j) corresponding to column j is part of exactly
one pair from P. Since j is �xed we may have to redo our choice for that pair.
This amounts to �nding the best assignment j′ for the other ship in the pair
while ensuring that assignments j and j′ do not overlap. For the other pairs we
check if the best assignment for that pair overlaps with j. If not, we go on and
use the best assignment, if there is an overlap we search for the best assignment
pair that does not overlap with j.

Let i be the ship that was paired up with τ(j) then we can write the lower
bound obtained by �xing yj = 1 formally as:

z4(j) = φ(j) + min
j′∈Ω(i)\I(j)

{φ(j′)}

+
∑

{i1,i2}∈P\{i,τ(j)}

(
min

j1∈Ω(i1)\I(j),j2∈Ω(i2)\(I(j)∪I(j1))
{φ(j1) + φ(j2)}

)
(2.45)

We can eliminate yj whenever z4(j) > z̄. The two probing algorithms are
rather time consuming, but the running time can be kept at a reasonable level
by careful implementation. The two simpler preprocessing routines are also
executed before running the probing methods in order to reduce the set of
available columns.

2.4.4.5 Valid inequality based on φ(j)

The computed φ(j) bounds give rise to a simple inequality that eliminates some
non-optimal solutions from the solution space:∑

j∈Ω

φ(j)yj ≤ z̄ (2.46)
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Constraint (2.46) ensures that the sum of all lower bounds of columns cannot
be larger than the upper bound. The inequality can cut away feasible integer
solutions, but only those that have an objective greater than the upper bound.
It is likely that a black-box solver will be able to generate cover inequalities
from the inequality since it is a knapsack constraint.

2.4.4.6 Reduction of ritq variables

Finally, the time-variant version of GSPP may be improved with respect to
variables ritq. There can be no QC assignment before the EST of vessels and
assignment of QCs have to be within the given interval Ri =

[
rmini ; rmaxi

]
.

Constraints (2.47) and (2.48) eliminate QC assignments that do satisfy these
requirements.

ritq = 0 ∀i ∈ V, q /∈ Ri, t ∈ T (2.47)

and

ritq = 0 ∀i ∈ V, q ∈ Ri, t ∈ T : t < ESTi (2.48)

The preprocessing and probing described above remove some yj variables. This
can force some ritq to zero. We let it be up to the preprocessing routines of the
black-box IP solver to eliminate such ritq variables.

2.4.5 Discussion of solution methods

In this paper we generate the complete models (2.23-2.27 for the time-invariant
case and 2.28-2.35 for the time-variant case) using the columns that are left
after the column reduction techniques presented in Section 2.4.4. These models
are then solved by CPLEX.

Since the models contain a large number of columns, an alternative solution
approach would be to solve the LP relaxation of the models using a column
generation algorithm and obtain integer solutions using a branch-and-price al-
gorithm. Such an approach has been used for related problems by, for example,
Vacca et al. (2013) and Robenek et al. (2014). A simpler alternative to branch-
and-price is to solve the integer model in the last iteration using the columns
generated while solving the LP relaxation of the complete model using a column
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generation algorithm. Such an approach is used by Saadaoui et al. (2015), but
it is not guaranteed to obtain an optimal solution when the problem is solved
in this way.

It is not clear if a branch-and-price approach would be advantageous for the
size of BACAP instances currently used in the literature (see e.g. Meisel and
Bierwirth (2009)) since CPLEX in general is very good at solving GSPP as long
as the model �ts into memory. However for larger instances branch-and-price
algorithms will be competitive considering that at some point the number of
generated columns for the complete models simply becomes too large to �t in the
memory (see Saadaoui et al. (2015), for evidence of this for the BAP). The most
interesting research direction related to branch-and-price algorithms is perhaps
to use model 2.23-2.27 to solve the time-variant case (see comments at the end
of Section 2.4.1) since we expect that the LP relaxation of the time-variant
version of model 2.23-2.27 would be tighter than that of 2.28-2.35. Generating
all columns for this model variant (2.23-2.27) is out of the question for all but the
smallest instances, but its LP relaxation could be solved using column generation
and a branch-and-price algorithm would therefore be feasible.

2.5 Computational Results

We compare our results to those that can be obtained by the model presented
by Meisel and Bierwirth (2009). All models are solved by using the CPLEX
12.6 solver. The column generator and reduction techniques are implemented
in C++. In order to have a fair comparison, the model presented by Meisel and
Bierwirth (2009) is run for 10 hours using our computer and CPLEX version.
The best result from the original and our re-implementation are reported. All
tests are run on a 32 core AMD Opteron at 2.8Ghz and 132Gb of RAM. All
running times are measured in seconds. The running times are reported for
both the column generation and solver times. Due to memory restrictions only
5 threads are active per experiment.

2.5.1 Benchmark instances and running conditions

The benchmark is provided by Meisel and Bierwirth (2009). The data set in-
cludes three main vessel types (namely Feeders, Medium, and Jumbo vessels).
Furthermore each vessel type di�ers in technical speci�cations and cost values.
The generation of these instances is based on empirical data. The benchmark
consists of 30 instances, and contains ten instances of 20, 30, and 40 vessels,
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respectively. We consider a container terminal with a quay of length L=1000
meters with 10 QCs available. The planning horizon is one week (168 hours),
and planning operations are based on working hours. It should be noted that
the planning horizon is set as a hard constraint by the benchmarks.

The vessels' speci�cations and parameters regarding the arrival and �nishing
time and the cost values can be obtained from Meisel and Bierwirth (2009).
The interference coe�cient (α) is set to 0.9, and the increase in the QC-hours
needed due to berthing deviation is set to 0.01 (Meisel and Bierwirth (2009)).

The complete column generation procedure works as follows: First, all feasible
columns are generated, and after that the two preprocessing techniques are
applied. The probing methods described in Section 2.4.4.4 are run last, since
they are the most time consuming and therefore it is bene�cial to reduce the
set of columns as much as possible before running them.

The models based on Meisel and Bierwirth (2009) (time-variant and time-
invariant versions) are rerun with the same conditions reported in their paper.
CPLEX 12.6 is run with a time limit of 36000 seconds using the options: empha-
size optimality and aggressive cut generation. It is observed that the compact
models require the aggressive cut generation option since the computation for
the root node relaxation takes only little time, and most of the time is spent on
branching for an integer solution.

For the set partitioning formulations, we observed that the best results were
obtained by setting the MIP emphasis parameter to discover hidden feasible
solutions and by turning on local branching heuristic. Another strategy that is
applied to overcome the problem of �nding an integer initial solution is to warm-
start the models. Such solutions are also necessary for providing an upper bound
for the column reduction strategies. Section 2.5.2 explains how the warm start
solutions are found.

2.5.2 Upper bound and warm start strategies

Warm starts (and consequently the upper bounds) are obtained by solving a
simpler version of the GSPP model. For the time-invariant GSPP, modeling
each berth with a length of 4 units provides a warm start for all versions of
time-invariant models (berth length of 1 (BL=1), berth length of 2 (BL=2),
and dynamic discretization). This simpler model is solved with a time limit of
15 minutes and, in most cases, the model can be solved to optimality.

For the time-variant version one can use the solution from the time-invariant
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model as long as the discretization policy is kept the same, e.g. the solution
to the time-invariant GSPP (BL=1) is not an upper bound for the dynamic-
discretized time-variant GSPP. The time-invariant version of the model, which
will generate a warm start, is run with a time limit of 20 minutes (not including
the time to obtain BL=4 results). The additional runtime depends on the
computational time generating the upper bound of the time-invariant case. In
small and medium scale instances, the upper bounds obtained from the time-
invariant models perform quite well. However, for large scale instances, BL=1
time-invariant models do not perform well. Hence, for the BL=1 versions the
upper bound is selected among the time-invariant version with a berth length
of 2 or dynamic discretization.

2.5.3 Computational Results

We present results for both the time-invariant and time-variant versions of the
GSPP models and compare the results with those provided by the model of
Meisel and Bierwirth (2009). Moreover we analyze the impact of the three
berth discretizations and the column reduction techniques.

The performance of GSPP models are presented in Tables 2.4-to-2.7. In each
table, the �rst column, "#", indicates instance ID. The columns denoted "Z"
show the best upper bounds obtained, while "LB" reports the best lower bounds
found. The gap (G) is calculated between upper and lower bounds. In Tables
2.4 and 2.7, the "TC" and "TOPT " are the time spent (in seconds) generating
columns and the time spent solving the mathematical model, respectively. The
column "R−+" illustrates whether the optimal solution is found in the root node
relaxation. If yes, there is a "+", otherwise a "-". The column RLB reports the
lower bounds obtained in the root node. It should be noted that if the instance is
solved to optimality in the root node, there is no root node LB. Additionally, the
number of nodes in the branch and bound (B&B) tree is presented in "#nodes
B&B" columns. The following four columns show the e�ect of the column
reduction techniques. The column under column reduction section named | Ω |
shows the number of columns generated. After that, the number of columns
left is reported in each cell. Column | Ω1 | shows the number of columns left
after the the two simple preprocessing steps, while | Ω2 |and | Ω3 |, shows the
number of columns left after the probing methods 1 and 2, respectively. The
two columns ("UB TOPT " and "ZUB") report the upper bound used as a warm
start solution and the length of time we spent computing this upper bound.
Di�erent from Table 2.7, Table 2.4 (for the time-invariant case) contains results
that show the performance without using the preprocessing steps in the last four
columns.
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2.5.3.1 Time-Invariant GSPP results

The computational results for the time-invariant version of the GSPP are shown
in Table 2.4 and 4.3. There is a clear tradeo� between the number of columns
and solution quality.

Table 2.4 shows the results for a berth length of 1 unit (ls : 10m in real-life,
BL=1) which is the original problem studied in Meisel (2009e). In this case,
the GSPP formulation produces optimal results for all small and medium scale
instances (N = 20, 30 vessels). For large scale instances (N = 40 vessels), only
four instances cannot be solved to optimality within the 10 hour time limit. For
small and medium scale instances, the runtime (TOPT ) is always less than 13
minutes, and the optimal solution is often found in the root node. This is clearly
not the case for the instances with large scale instances.

Note that the column generation time (TC) is small for any type of instance. In
most small and medium scale instances, it is less than 10 seconds. The number
of generated columns can be reduced signi�cantly using the proposed rules. For
small scale instances, simple preprocessing can, on average, reduce 77% of the
columns, while for medium and large scale instances the reduction drops to 58%
and 20% respectively. The main reason for the drop in e�ectiveness is the qual-
ity of upper bounds obtained for each class of instance and the complexity of the
analyzed instances. The results also reveal that the second probing algorithm
is more e�ective than the �rst, and can reduce the number of columns even
further. In total 85% of all columns are removed on average in the small scale
instances, while for medium and large scale instances the number is 70% and
28% on average, respectively. The upper bounds computed initially (as warm
start) are relatively tight and only two upper bounding models cannot be solved
to optimality within 15 minutes. There is an average of 7% of optimality gap
(see GUB column for each instance size in Table 2.4). Model with small time
limits also outperforms SWO heuristic for 8 instances of 10 large scale instances
(see SWO (ZH)best column in Table 2.5). These results show that the perfor-
mance of GSPP formulations for small time limits is also strong. The results of
GSPP (BL=1) without any probing (but including the two simple preprocessing
methods) are presented in the last columns of Table 2.4. For this experiment
there is no clear winner, but one can argue that the extra complexity involved
in the probing algorithms does not pay o� here.

Table 2.5 summarizes results for the time-invariant BACAP. For this problem,
the known upper and lower bounds have been improved for all instances. The
GSPP (BL=1) results outperform BL=2 and dynamic discretization results for
all instances except #21, #23. For instance #23, BL=2 and dynamic discretiza-
tion policies both present best upper bound, while for instance #21, dynamic
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discretization performs the best. The dynamic discretization policy still �nds
the optimum solutions of original problem (BL=1) for 14 out of 30 instances.
We can conclude that �ner discretization outperforms other discretization meth-
ods for most of the instances. The last column of Table 2.5 presents the results
of squeaky wheel optimization (SWO) heuristic which is proposed by Meisel
(2009e) for BACAP with time-invariant QC assignment (BL=1 version).

Table 2.5: Results of GSPP, SWO heuristic-BACAP-TI (Meisel (2009e))

GSPP (BL=1) GSPP (BL=2) GSPP (Dynamic) SWO

N # Z LB G Z LB G Z LB G (ZH)best

20

1 89.0 89.0 0.0% 92.8 92.8 0.0% 91.4 91.4 0.0% 89.0

2 56.2 56.2 0.0% 56.2 56.2 0.0% 56.2 56.2 0.0% 56.2

3 85.7 85.7 0.0% 87.7 87.7 0.0% 85.7 85.7 0.0% 89.8

4 81.8 81.8 0.0% 94.4 94.4 0.0% 81.8 81.8 0.0% 81.8

5 59.2 59.2 0.0% 60.4 60.4 0.0% 60.4 60.4 0.0% 59.2

6 59.2 59.2 0.0% 62.8 62.8 0.0% 59.2 59.2 0.0% 59.2

7 75.2 75.2 0.0% 77.0 77.0 0.0% 77.0 77.0 0.0% 75.8

8 61.4 61.4 0.0% 68.4 68.4 0.0% 61.4 61.4 0.0% 61.4

9 79.0 79.0 0.0% 79.0 79.0 0.0% 79.0 79.0 0.0% 79.0

10 101.0 101.0 0.0% 102.5 102.5 0.0% 102.0 102.0 0.0% 105.0

Gav 0.0% Gav 0.0% Gav 0.0%

(Topt)av 126 (Topt)av 36 (Topt)av 76

30

11 143.2 143.2 0.0% 143.2 143.2 0.0% 143.2 143.2 0.0% 148.0

12 92.0 92.0 0.0% 92.0 92.0 0.0% 92.0 92.0 0.0% 93.4

13 110.0 110.0 0.0% 110.0 110.0 0.0% 110.0 110.0 0.0% 111.2

14 107.4 107.4 0.0% 112.4 112.4 0.0% 107.6 107.6 0.0% 115.8

15 168.4 168.4 0.0% 170.8 170.8 0.0% 170.8 170.8 0.0% 175.8

16 121.6 121.6 0.0% 121.8 121.8 0.0% 121.6 121.6 0.0% 126.6

17 109.4 109.4 0.0% 109.4 109.4 0.0% 109.4 109.4 0.0% 114.6

18 135.0 135.0 0.0% 143.0 143.0 0.0% 136.2 136.2 0.0% 144.4

19 176.2 176.2 0.0% 179.8 179.8 0.0% 176.2 176.2 0.0% 180.8

20 139.8 139.8 0.0% 141.0 141.0 0.0% 139.8 139.8 0.0% 139.8

Gav 0.0% Gav 0.0% Gav 0.0%

(Topt)av 410 (Topt)av 107 (Topt)av 234

40

21 247.0 233.1 5.6% 250.6 250.6 0.0% 246.8 246.8 0.0% 293.2

22 178.4 178.4 0.0% 185.4 185.4 0.0% 180.6 180.6 0.0% 193.8

23 269.0 247.8 7.7% 268.6 268.6 0.0% 268.6 264.2 1.7% 331.4

24 307.0 283.8 7.6% 310.6 303.8 2.2% 307.0 292.5 4.7% 366.0

25 164.6 164.6 0.0% 168.2 168.2 0.0% 165.8 165.8 0.0% 171.6

26 258.2 258.2 0.0% 265.2 265.2 0.0% 258.2 258.2 0.0% 278.4

27 205.4 205.4 0.0% 216.8 216.8 0.0% 206.6 206.6 0.0% 235.8

28 300.1 267.5 10.9% 314.8 282.6 10.2% 313.1 272.1 13.1% 412.4

29 227.6 227.6 0.0% 235.2 235.2 0.0% 229.4 229.4 0.0% 255

30 210.1 210.1 0.0% 224.4 224.4 0.0% 217.0 217.0 0.0% 284.2

Gav 3.2% Gav 1.2% Gav 1.9%

(Topt)av 21032 (Topt)av 11565 (Topt)av 14160

The performance of the GSPP (BL=1) can be compared with a modi�ed ver-
sion of the model by Meisel and Bierwirth (2009) (presented in Section 2.3.2).
Table 4.3 shows the results from this model. Upper and lower bounds, gaps,
computational times, and the number of nodes in the B&B tree are presented.



70
Integrated Berth Allocation and Quay Crane Assignment Problem: set

partitioning models and computational results
ht

T
a
b
le
2
.4
:
G
S
P
P
(B
erth

L
en
g
th
=
1
,
F
ix
ed

Q
C
)-O

rig
in
a
l
P
ro
b
lem

w
ith

F
ix
ed

Q
C
n
u
m
b
er

C
o
m
p
u
ta
tio

n
a
l
R
esu

lts
o
f
G
S
P
P

P
erfo

rm
a
n
ce

o
f
C
o
lu
m
n
R
ed
u
ctio

n
U
B
G
en
era

to
r

R
esu

lts
w
ith

p
ro
b
in
g
d
isa

b
led

#
Z

L
B

G
1

T
C

T
O
P
T

R
−+

R
L
B

#
N
o
d
es

|
Ω
|

|
Ω

1
|

|
Ω

2
|

|
Ω

3
|

U
B

Z
U
B

Z
L
B

G
2

T
O
P
T

B
&
B

T
O
P
T

1
8
9
.0

8
9
.0

0
.0
%

2
1
4
2

+
-

-
3
1
6
2
7
8

1
0
2
4
7
1

8
8
5
9
8

6
2
6
7
7

2
1

9
7
.4

8
9
.0

8
9
.0

0
.0
%

9
0

2
5
6
.2

5
6
.2

0
.0
%

<
1

<
1

+
-

-
3
3
8
4
3
8

1
9
1
3
3

1
5
7
8
5

6
8
7

2
7

5
7
.4

5
6
.2

5
6
.2

0
.0
%

2
6

3
8
5
.7

8
5
.7

0
.0
%

1
1
8
6

+
-

-
2
5
2
6
1
8

9
4
0
8
3

8
4
5
3
6

7
1
2
8
7

2
8

8
8
.9

8
5
.7

8
5
.7

0
.0
%

1
1
6

4
8
1
.8

8
1
.8

0
.0
%

1
1
6
0

+
-

-
3
9
0
6
2
4

1
0
6
9
7
0

9
9
8
0
9

7
9
1
3
8

4
7

9
4
.4

8
1
.8

8
1
.8

0
.0
%

1
4
8

5
5
9
.2

5
9
.2

0
.0
%

1
3
1

+
-

-
2
7
5
2
3
8

2
9
8
8
7

2
4
4
8
7

2
0
4
7
1

1
5

6
1
.6

5
9
.2

5
9
.2

0
.0
%

2
3

6
5
9
.2

5
9
.2

0
.0
%

<
1

7
+

-
-

3
0
5
4
8
5

2
7
4
4
6

2
1
6
7
2

1
1
5
4
4

2
5

6
7
.6

5
9
.2

5
9
.2

0
.0
%

5
4

7
7
5
.2

7
5
.2

0
.0
%

1
5
9

+
-

-
3
3
0
6
3
9

5
8
4
4
1

5
1
4
4
2

2
6
4
3
4

2
6

7
7
.6

7
5
.2

7
5
.2

0
.0
%

1
6
1

8
6
1
.4

6
1
.4

0
.0
%

1
1
0
0

+
-

-
3
5
9
7
0
3

6
1
2
0
0

5
4
2
2
7

4
8
8
6
2

3
1

7
2
.2

6
1
.4

6
1
.4

0
.0
%

1
1
7

9
7
9
.0

7
9
.0

0
.0
%

1
1
5
2

+
-

-
2
8
6
6
8
3

9
1
3
9
9

8
4
5
3
3

6
6
4
6
9

2
7

8
9
.0

7
9
.0

7
9
.0

0
.0
%

1
7
9

1
0

1
0
1
.0

1
0
1
.0

0
.0
%

2
2
8
2

-
9
7
.6

1
4
8
0

3
5
9
3
2
0

1
3
2
7
0
6

1
2
6
4
9
9

1
1
5
1
1
0

4
8

1
0
6
.1

1
0
1
.0

1
0
1
.0

0
.0
%

3
4
9

G
a
v

0
.0
%

R
a
v

7
7
%

1
2
%

3
1
%

G
U
B

9
%

1
1

1
4
3
.2

1
4
3
.2

0
.0
%

6
4
1
8

+
-

-
4
9
6
3
4
0

2
5
0
9
9
9

2
3
1
6
1
6

2
0
2
5
3
0

6
3

1
5
1
.4

1
4
3
.2

1
4
3
.2

0
.0
%

5
0
6

1
2

9
2
.0

9
2
.0

0
.0
%

1
8
4

+
-

-
5
2
3
2
3
3

1
0
0
5
8
6

8
8
3
4
8

5
5
4
8
3

3
6

9
5
.0

9
2
.0

9
2
.0

0
.0
%

1
4
0

1
3

1
1
0
.0

1
1
0
.0

0
.0
%

2
1
4
3

+
-

-
4
8
3
0
1
0

1
2
2
0
1
7

1
1
0
3
9
9

9
5
6
3
5

2
5

1
1
2
.8

1
1
0
.0

1
1
0
.0

0
.0
%

1
4
1

1
4

1
0
7
.4

1
0
7
.4

0
.0
%

3
1
6
1

+
-

-
4
6
7
6
6
1

1
6
4
9
4
9

1
5
4
6
4
3

1
1
2
7
5
2

5
0

1
1
7
.2

1
0
7
.4

1
0
7
.4

0
.0
%

2
4
4

1
5

1
6
8
.4

1
6
8
.4

0
.0
%

5
6
2
1

+
-

-
4
7
7
7
3
3

2
8
3
0
7
8

2
7
3
2
7
4

2
4
8
6
7
7

7
6

1
8
1
.8

1
6
8
.4

1
6
8
.4

0
.0
%

7
5
3

1
6

1
2
1
.6

1
2
1
.6

0
.0
%

3
1
6
9

+
-

-
5
3
2
0
2
6

1
8
1
7
2
1

1
6
7
0
6
8

1
0
2
0
0
7

7
1

1
2
2
.8

1
2
1
.6

1
2
1
.6

0
.0
%

3
7
6

1
7

1
0
9
.4

1
0
9
.4

0
.0
%

3
1
1
9

+
-

-
4
6
7
0
8
5

1
4
2
5
7
9

1
3
0
4
9
3

9
2
7
0
7

4
5

1
1
4
.0

1
0
9
.4

1
0
9
.4

0
.0
%

1
3
4

1
8

1
3
5
.0

1
3
5
.0

0
.0
%

8
5
5
6

-
1
3
1
.9

1
5
8

5
0
8
5
0
0

2
5
1
6
7
3

2
4
0
4
4
4

2
3
3
0
7
9

7
0

1
5
0
.2

1
3
5
.0

1
3
5
.0

0
.0
%

4
6
5

1
9

1
7
6
.2

1
7
6
.2

0
.0
%

1
5

7
4
8

-
1
7
4
.3

3
2
5
9

5
0
6
3
0
0

3
1
2
0
2
6

3
0
2
9
5
2

2
7
2
1
1
4

7
7

1
8
9
.4

1
7
6
.2

1
7
6
.2

0
.0
%

8
9
0

2
0

1
3
9
.8

1
3
9
.8

0
.0
%

1
1

4
7
5

+
-

-
4
8
7
9
4
5

2
3
8
2
1
8

2
2
4
0
5
4

1
6
3
8
9
1

6
3

1
4
5
.8

1
3
9
.8

1
3
9
.8

0
.0
%

4
5
1

G
a
v

0
.0
%

R
a
v

5
8
%

7
%

2
0
%

G
U
B

6
%

2
1

2
4
7
.0

2
3
3
.1

5
.6
%

1
1

3
6
0
0
0

-
2
2
0
.9

1
1
7
4
1
8

7
6
8
1
0
4

6
1
4
6
5
5

6
0
5
1
7
4

5
7
7
5
3
0

2
9
0

2
5
3
.2

2
4
6
.8

2
4
2
.8

1
.6
%

3
6
0
0
0

2
2

1
7
8
.4

1
7
8
.4

0
.0
%

1
0

5
3
2

+
-

-
6
1
1
0
2
3

4
0
3
9
7
6

3
8
6
3
7
6

2
9
5
9
9
1

8
3

1
8
9
.0

1
7
8
.4

1
7
8
.4

0
.0
%

8
2
1

2
3

2
6
9
.0

2
4
7
.8

7
.7
%

2
1

3
6
0
0
0

-
2
4
2
.0

3
4
1
3
7

7
2
0
9
5
2

6
1
6
8
7
9

6
0
8
8
5
8

5
8
9
4
2
1

4
1
7

2
8
1
.6

2
6
8
.0

2
4
7
.4

7
.7
%

3
6
0
0
0

2
4

3
0
7
.0

2
8
3
.8

7
.6
%

3
2

3
6
0
0
0

-
2
7
2
.7

3
6
5
0
4

6
5
7
4
1
5

6
3
4
4
3
7

6
2
5
9
9
4

6
0
1
1
1
3

9
0
0

3
2
6
.8

3
0
9
.8

2
8
3
.6

8
.4
%

3
6
0
0
0

2
5

1
6
4
.6

1
6
4
.6

0
.0
%

7
1
0
1
2

-
1
5
8
.8

4
9
5
3

5
3
5
3
0
0

3
5
8
3
5
4

3
3
5
8
6
8

3
0
9
8
4
9

8
8

1
7
6
.4

1
6
4
.6

1
6
4
.6

0
.0
%

1
2
7
7

2
6

2
5
8
.2

2
5
8
.2

0
.0
%

2
3

3
1
5
2
3

-
2
3
6
.4

1
1
8
7
0
8

6
7
5
8
1
9

5
9
6
0
3
1

5
8
6
4
8
5

5
5
2
3
9
7

8
7
9

2
7
8
.9

2
5
8
.2

2
5
8
.2

0
.0
%

3
3
6
6
9

2
7

2
0
5
.4

2
0
5
.4

0
.0
%

1
0

1
2
0
6

-
1
9
8
.8

2
9
0
9

6
1
5
0
9
2

4
7
4
7
3
1

4
5
9
6
7
2

4
2
7
3
9
8

8
5

2
2
0
.2

2
0
5
.4

2
0
5
.4

0
.0
%

1
5
2
3

2
8

3
0
0
.1

2
6
7
.5

1
0
.9
%

3
5

3
6
0
0
0

-
2
5
6
.4

2
7
2
0
0

6
9
8
7
8
3

6
3
1
2
2
7

6
2
7
2
4
1

6
1
2
6
2
1

9
0
0

3
2
0
.2

2
9
9
.5

2
7
0
.6

9
.7
%

3
6
0
0
0

2
9

2
2
7
.6

2
2
7
.6

0
.0
%

2
6

8
0
7
7

-
2
1
2
.1

3
4
2
2
7

6
7
3
0
9
0

5
0
1
8
5
8

4
9
3
1
0
0

4
5
4
0
7
4

1
3
2

2
4
1
.4

2
2
7
.6

2
2
7
.6

0
.0
%

3
6
2
9

3
0

2
1
0
.1

2
1
0
.1

0
.0
%

3
1

2
0
9
6
6

-
1
9
6
.0

1
0
8
3
5
9

6
7
8
0
7
2

5
2
3
9
7
0

5
0
8
4
9
9

4
6
3
5
7
3

5
5
9

2
3
5
.6

2
1
0
.1

2
1
0
.1

0
.0
%

2
5
4
0
0

G
a
v

3
.2
%

R
a
v

2
0
%

2
%

7
%

G
U
B

7
%

G
1

=
[
Z
−
L
B

Z
],
G

2
=

[
Z
w
.P
r
o
b
e
r −
L
B
w
.P
r
o
b
e
r

Z
w
.P
r
o
b
e
r

],
(R
a
v
)
i

=
[ |Ω
|−
|Ω
i |

|Ω
|

],
G
U
B

=
[
Z
U
B
−
Z
w
.P
r
o
b
e
r

Z
U
B

],
G
a
v

=
[ ∑

i∈
n
G

1

n
].



2.5 Computational Results 71

Results show that even for the small scale instances, there are two cases in
which no integer solution was found. In this benchmark, only �ve instances are
solved to optimality. The GSPP formulation solves all the instances to optimal-
ity in much shorter times. For medium and large scale instances, there are only
two instances in which an upper bound is obtained and the lower bounds are
signi�cantly worse than those from the GSPP formulation.

Table 2.6: Reformulation of compact model-BACAP-TI

# Z LB G TOPT #Nodes # Z LB G #Nodes # Z LB #Nodes

1* 89.0 86.2 3.1% * 2769450 11* 150.4 108.3 27.9% 1557183 21* X 116.4 762709

2 56.2 56.2 0.0% 7397 383896 12* X 74.1 - 1205386 22* X 97.5 438579

3* X 67.6 - * 2605595 13* X 88.3 - 1408812 23* X 142.5 745119

4* X 68.7 - * 2166910 14* X 85.3 - 1284386 24* X 139.4 415411

5 59.2 59.2 0.0% 4151 466141 15* X 97.3 - 1427223 25* X 115.9 824894

6 59.2 59.2 0.0% 105 5428 16* X 96.2 - 1500854 26* X 102.4 433046

7* 75.2 75.1 0.16% * 1748332 17* X 87.9 - 1311279 27* X 133.4 947127

8 61.4 61.4 0.0% 12057 876111 18* 135.7 106.5 21.5% 1694085 28* X 140.8 721192

9 79.0 79.0 0.0% 4464 385267 19* X 118.0 - 1019351 29* X 123.0 792108

10* 101.0 90.5 10.4% * 4744212 20* X 105.1 - 1135501 30* X 128.6 905548

G = [Z−LB
Z

], * represents that 10h time-limit has been reached

Finally, the performance of dynamic discretization which shows promising re-
sults is evaluated in detail. Dynamic discretization models have less columns
than the BL=1 case, but more than the BL=2. Since discretization is one in 5
units around the desired berthing position, and two for the rest, the number of
columns is closer to the GSPP (BL=2). On average, the number of columns is
44% less than the BL=1 case. For small and medium instances, the computa-
tional time needed to reach optimality is reduced by 50%, and 54% compared
to BL=1 case (TGAP =

TOPT.Dynamic−TOPT.BL=1

TOPT.BL=1
). The results show that, with

dynamic discretization, optimal solutions can be obtained for all but 3 instances
(#23, #24, #28). It is observed that for instances (#21, #23), which are not
solved to optimality in the BL=1, dynamic discretization obtains a lower objec-
tive value in 10 hours of computational time.

Figure 2.3 illustrates the gap between each discretization policy and the best
known solution for each instance. Apart from instance (#21, #23), BL=1
discretization presents the best upper bounds for each instance. Dynamic dis-
cretization performs better than BL=2 case in all instances (in some instance
they found identical solutions).
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Figure 2.3: Gap (%) from best known solution for BL=1, BL=2 and dynamic
discretized BACAP- Time-Invariant QC policy

2.5.3.2 Time-Variant GSPP results

Tables 2.7 and 2.8 present the results of the time-variant version of the GSPP
formulation (see, Section 2.4.2). As before, we �rst present results for a berth
length of 1 unit. Afterwards, we present summary of results for di�erent dis-
cretization policies and solution approaches.

The results from the BL=1 case are reported in Table 2.7. This problem corre-
sponds to the one solved by Meisel and Bierwirth (2009). The results in Table
2.7 show that only one of the small instances cannot be solved to optimality. For
medium instances, the average gap is less than 2%, while for large instances it
is around 15%. It should be noted that the standard deviation of the optimality
gap for large instances is high.

The column reduction techniques remove a larger fraction of the columns com-
pared to the time-invariant case, but the number of surviving columns has nev-
ertheless increased by a factor of 2.8 on average. Overall, all four reduction tools
have deleted 90% of the columns in the small instances, while 72% and 27% are
reduced for medium and large scale instances, respectively. The computational
time to generate the columns remains acceptable for small and medium scale
instances, for large scale instances the average time is 10 minutes.

Compared to the time-invariant case the complexity of the model has increased
and it becomes reasonable to see that the quality of the warms start solutions
have decreased. For several large scale instances, the model faces memory issues.
Six of them ran out of memory and were rerun using only one thread (which
reduces memory usage).
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Integrated Berth Allocation and Quay Crane Assignment Problem: set

partitioning models and computational results

We can conclude that the GSPP model can solve the problem considered in
Meisel and Bierwirth (2009) to optimality, or near optimality, for instances with
20 or 30 vessels. For larger instances the performance is more erratic and only
a subset of those instances can be solved reasonably well. In the following the
performance of the time-variant GSPP model is compared with the compact
model proposed by Meisel and Bierwirth (2009). Table 2.8 summarizes the
results. In addition to the upper and lower bounds of the compact model, the
best results from the heuristic procedures described in Meisel and Bierwirth
(2009) are presented. Additionally, the results from the time-variant GSPP
model and the Meisel and Bierwirth (2009) model with warm-start solutions are
presented in Table 2.8. Results show that there are only four instances which
are solved to optimality by the compact model, while 13 instances are solved to
optimality by the BL=1 discretized GSPP model. The compact model performs
very poorly on the medium and large scale instances in terms of producing
upper bounds, and the lower bounds are consistently outperformed by the GSPP
model. When warm-starts are imposed on Meisel and Bierwirth (2009) model,
eight instances are solved to optimality, and four instances resulted in a better
upper bound compared to the GSPP models. We also observe that the upper
bounds produced by all versions of the GSPP models often improve upon the
best known upper bounds produced by the state-of-the-art heuristics. We hope
that the improved upper and lower bounds will be helpful in evaluating future
heuristics and exact methods for the problem.
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Table 2.8 also helps to compare performance of di�erent discretization methods.
Since BL=1 discretization solves many of small and medium scale instances to
optimality, BL=1 outperforms dynamic and BL=2 discretization for all such
instances except instance #16, for which dynamic discretization presents the
best upper bound. For small and medium scale instances, dynamic discretization
continuously outperforms BL=2. For large scale instances, comparison is more
interesting. BL=1 discretization performs better for three out of ten instances.
While, BL=2 outperforms the other two methods in �ve instances, and dynamic
discretization does the same with two instances.

2.5.3.3 Results for the berth allocation problem

The GSPP model, tested until now, can also solve the BAP by simply �xing
the QC assignment decisions. This would result in a model similar to the one
presented by Buhrkal et al. (2011). The latter, however, has only been tested for
the discrete variant of the problem, where each berth holds exactly one vessel.
Here we show how such models perform on the continuous variant. This problem
is a special case of the BACAP.

We changed the same set of instances to include the number of QCs assigned
(and consequently the processing time) as a parameter. The required change
in the benchmark is achieved by replacing rmini , rmaxi in each data set with

ri =
⌈
rmini +rmaxi

2

⌉
. Hence, the generation of columns will be based on the single

value of the ri parameter. The time-invariant version of GSPP without the
knapsack constraints (constraint (2.26)) will be used for this experiment. The
rest of the parameters are kept the same. We use the instances from Meisel and
Bierwirth (2009) and solely test the BL=1 discretization. Column reduction
techniques were not applied and no upper bounds were computed a-priori.

The results are summarized in Table 2.9. Each row corresponds to 10 instances,
the �rst column reports the instance size, while the next shows the average opti-
mality gap (all instances were solved to optimality). The next column shows the
average time needed to generate the model, then follows the time for solving the
IP model and the last column shows the average number of columns generated.
For the two last columns the number in square brackets indicates the standard
deviation (σN ) and coe�cient of variation (σN/µ).
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Table 2.9: Results for the BAP without quay crane decisions

N Gav Tc TOPT | Ω |
20 0.00% 3 131 [40,0.30] 141391 [17472,0.12]

30 0.00% 5 340 [143,0.42] 215967 [9128,0.04]

40 0.00% 6 893 [541,0.60] 286668 [25173,0.08]

The results show that the GSPP model is able to handle the �ne discretization
very well and the application of the model to the standard BAP can be taken
further than what was done by Buhrkal et al. (2011). It seems likely that even
larger instances could be solved within a couple of hours, but we have not tested
this. We also conducted tests with the BL=2 discretization and the dynamic
discretization. For the 40 ship instances the average solution costs were 2.8%
and 1.71% higher than those from the BL=1 discretized model, respectively.
Meanwhile the average running time was 209 seconds for BL=2 models and 606
seconds for dynamic discretized models. Based on the results, we recommend
using the BL=1 model for instances of this size or smaller.

2.6 Conclusions and suggestions for future work

In this study, we have proposed novel GSPP formulations for the BACAP con-
sidering both time-variant and time-invariant QC assignment policies. The pro-
posed models solve the problem introduced in Meisel and Bierwirth (2009).
Computational results show that the performances of both the time-variant and
time-invariant GSPP formulations are strong with respect to both upper and
lower bounds. In particular, the GSPP formulation can provide optimal so-
lutions in relatively short computation times for the small and medium sized
instances. For these instance sizes, all instances could be solved to optimality
for the time-invariant case, while 13 out of 20 instances could be solved for
the time-variant case. For large scale instances, the objective value and lower
bounds have been improved. We believe that the improved bounds would be
useful in the evaluation of new heuristics to solve such instances. Note that both
upper and lower bounds have been improved compared to the state-of-the-art
results for all 60 instances when the results of compact model with warm start is
also taken into account, and for 56 of 60 instances otherwise. This chapter also
discusses the e�ects of time-variant and time-invariant QC assignment policy
for terminals. We show that there is an additional cost of time-invariant QC
policy and we quantify this di�erence, although for arti�cial instances.

The GSPP model has also been used to solve classical berth allocation problems
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with a �ne discretization of the berthing space, and the results show that the
model is very e�ective.

The presented set partitioning models contain many variables and therefore
several variable reduction methods are proposed and evaluated. These novel
column reduction techniques for the BACAP can reduce the number of columns
by up to 90% for some benchmarks. By using the proposed reduction techniques,
in most cases, we create models that can be handled in the memory available
in current computers, however this is not always the case. We believe that the
reduction techniques can be generalized to other variants of the berth allocation
problem.

A convenient property of the proposed solution method is that most of the work
is done by a black-box IP solver (in this case CPLEX). This means that the
solution approach will automatically bene�t from new developments in solver
techniques and will also bene�t from future hardware improvements that are
supported by the underlying IP solver (for example a far more massive paral-
lelism).

Future research could be directed towards including more constraints in the
model, if that is deemed necessary to apply the model in a particular port or
it could be directed at designing improved solution methods. Since a major
limitation of the proposed model is the rapid growth in the number of variables
with increase in problem size, a natural extension of the current work is to
attempt to generate variables dynamically using delayed column generation and
solve the model using a branch-and-price algorithm.



Chapter 3

Improved formulations and
an adaptive large

neighborhood search
heuristic for the integrated
berth allocation and quay
crane assignment problem

This chapter focuses on the integrated berth allocation and QC assignment
problem. A number of inequalities to improve state-of-the-art formulations and
an adaptive large neighborhood search (ALNS) are presented. The ALNS has
various operators that work on time, berth and quay crane assignment levels.
Computational results reveal that the valid inequalities and the variable �xing
techniques improve many of the best known bounds in the literature, and the
ALNS outperforms the state-of-the-art heuristics for many instances.1

1C. Iris, D. Pacino, S. Ropke, "Improved formulations and an adaptive large neighborhood
search heuristic for the integrated berth allocation and quay crane assignment problem", 2015,
under review
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3.1 Introduction

Recent statistics show that World container port throughput is increased by an
estimated 5.6% to 651.1 million Twenty-foot Equivalent Units (TEUs) in 2013
UNCTAD (2014). The same report illustrates that large container terminals
can process more than 30 million containers a year. These high volumes have
increased the need for more e�cient container terminal operations. Due to
the increased number of operations and the interconnection between them, the
complexity of planning has also increased tremendously. In this respect, the use
of operations research techniques became more popular (see following reviews
on container terminal problems and operations research: Steenken et al. (2004),
Stahlbock and Voÿ (2007), Bierwirth and Meisel (2010), Bierwirth and Meisel
(2014)).

The productivity of a container terminal heavily relies on the e�cient use of
its resources. Focusing on quayside operations, Quay Crane (QC) management,
and the usage of the berthing area are among some of the most important con-
tainer terminal planning problems. The optimization of vessels' berthing po-
sitions and their respective QC assignments are two problems that are mostly
covered as two separate cases in the literature. These problems are however
linked. The vessel's handling time primarily depends on the number of contain-
ers to be handled and the number of assigned QCs. Berth allocation, which
heavily depends on the handling time of the vessel, is thus a function of the
QC assignment. Additionally, the QC assignment problem of each vessel re-
quires information about the berthing start and end time which are outcomes
of the berth allocation. Due to these bidirectional links, integrating these two
problems will result in a better planning of the terminal operations.

In the literature, the integrated problem in which only the number of QCs is a
decision variable is called Berth Allocation and quay Crane Assignment Prob-
lem; BACAP (Meisel and Bierwirth (2009); Giallombardo et al. (2010), etc.),
when determination of the speci�c QC assignment is involved, the problem is
called Berth Allocation and quay Crane Assignment (Speci�c) Problem; BA-
CASP (Turkogullari et al. (2014); Imai et al. (2008); Liu et al. (2006)).

In this chapter, we consider the BACAP as introduced in Meisel and Bierwirth
(2009) where the berthing start/end time, berthing position and the number of
QCs to work at each time period are decided for each vessel. It is assumed that
the number of QCs can change within vessel`s berthing interval (time-variant
BACAP). Additionally, it is assumed that there is a decrease in the available
QC hours due to interference between QCs. It is also assumed that there will
be an increase in the QC hours required to serve a vessel when it is not berthed
at its desired berthing position. This increase is due to the rearrangement of
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QC operations for that speci�c vessel and the rehandling of containers which
are already positioned according to the desired position.

The BACAP naturally lends itself towards a description in a two dimensional
space. One dimension is spatial (i.e. the quay partition) which could be discrete
(Cordeau et al. (2005)), continuous (Lee, Chen, and Cao (2010a)), or hybrid.
The other dimension is temporal (i.e. the planning horizon) which could be
static (Park and Kim (2003)), dynamic (Imai et al. (2008)), or cyclic (Jin, Lee,
and Hu (2015), Imai et al. (2014)). Figure 4.1 shows this representation where
the vertical axis represents the spatial dimension and the horizontal axis the
temporal dimension. In this representation, a vessel is a rectangle whose time
dimension is dependent on the number of assigned QCs at each time unit. In
this chapter, the spatial dimension is considered to be a continuous berth, where
we assume that a vessel can berth at any 10-meter point along the quay (i.e. the
quay is discretized for each 10 m). The temporal property is dynamic, because
the arrival time of each vessel imposes a bound for the berthing start time, and
we assume that all parameters are known in advance (see Golias, Portal, Konur,
Kaisar, and Kolomvos (2014) for a berth scheduling problem under uncertainty).

The contribution of this chapter is mainly two-fold. First, we introduce novel
valid inequalities and variable �xing methods that improve the state-of-the-art
compact model (Meisel and Bierwirth (2009)). Some of these inequalities focus
on the vessels' berthing orders, while some others reformulate new bounds on
variables. With small changes, these inequalities can also be used for similar
problems. Secondly, we present, to the best of the authors knowledge, the
�rst Adaptive Large Neighrborhood Search (ALNS) algorithm for the BACAP.
ALNS was �rst proposed by Ropke and Pisinger (2006), (see also Pisinger and
Ropke (2007)), and has been used for various problems and has proved its
e�ciency on the complex optimization problems (see Coelho, Cordeau, and
Laporte (2012), Muller, Spoorendonk, and Pisinger (2012), etc.).

Computational results reveal that the performance of the model from Meisel
and Bierwirth (2009) has been signi�cantly increased with the addition of our
inequalities. The results also show improvements on the bounds presented in
Iris et al. (2015b). The performance of each individual family of inequalities is
also discussed. The proposed ALNS outperforms the state-of-the-art heuristics
of Meisel and Bierwirth (2009), both with respect to the quality of the solutions
and the computational performance in many instances. New best upper and
lower bounds are found for all instances.

The remainder of this chapter is organized as follows. In Section 6.2, we present
a brief literature review for the BACAP and its variants. In Section 3.3, we
present a formal de�nition of the BACAP. The mathematical model proposed
by Meisel and Bierwirth (2009), valid inequalities and variable �xing methods
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for this formulation are described in Section 6.4. In Section 3.5, we present
an ALNS for the BACAP. Computational results are discussed in Section 3.6.
Finally, we present conclusions and future research directions in the last section.

3.2 Literature Review

The BACAP has attracted many researchers in the �eld. Extensive reviews on
BACAP and BACASP literature can be found in Bierwirth and Meisel (2010),
Bierwirth and Meisel (2014), Carlo, Vis, and Roodbergen (2013), Iris et al.
(2015b) in which the authors cluster papers according to problem structure,
objective function characteristics and solution methods. One of the �rst works
on BACAP is presented in Park and Kim (2003). The authors solve the BACAP
in a �rst stage with a subgradient optimization strategy. The results are then
used in a second stage to solve the BACASP with dynamic programming. Meisel
and Bierwirth (2009) present a di�erent BACAP model. The authors propose
various heuristics (tabu search (TS), �rst-come-�rst-served (FCFS) heuristics,
and squeaky wheel optimization (SWO)) to solve this problem.

Another paper, presented by Liang et al. (2009), determines the berthing posi-
tions, berthing start/end times and number of QCs to serve each vessel. They
assume a discrete berth allocation (i.e. vessels �t into discrete berths) and a
time-invariant QC allocation policy (i.e. the number of QC operating on a ves-
sel does not change in time). They solve the problem with a hybrid genetic
algorithm. Giallombardo et al. (2010) have focused on a variant of BACAP
called the tactical berth allocation problem (TBAP). This problem uses the
concept of QC pro�les. A QC pro�le includes the number of QCs assigned to a
vessel along the time steps that the vessel is berthed at the port. This pro�le
also holds some real-world requirements imposed by some terminals such as; QC
movements only at shift changes, vessel priorities in terms of the number of QCs,
etc. The authors solve the problem via a two-stage heuristic algorithm which
combines tabu search and dual bound properties. Vacca et al. (2013) focus on
the formulation of Giallombardo et al. (2010) and they propose the �rst exact
decomposition framework for this variant of the BACAP. Lalla-Ruiz, González-
Velarde, Melián-Batista, and Moreno-Vega (2014) also focus on this TBAP for-
mulation, and implement a genetic algorithm to solve the problem. Finally, Iris
et al. (2015b) formulate various set partitioning formulations and column reduc-
tion techniques for the BACAP and its variants (time-variant/time-invariant QC
allocation, �ner/hybrid berth discretization, etc.). The authors improve almost
all known bounds for the instances presented by Meisel and Bierwirth (2009).

Liu et al. (2006) is one of the �rst papers on BACASP. The authors assume that
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the berthing position for each vessel is known in advance (i.e. one important
component of BAP is given as a parameter) and they determine vessel berthing
start/end times, the number of QCs to assign to each vessel and which speci�c
QC would be assigned. They propose two greedy heuristics to solve this prob-
lem. Imai et al. (2008) presents a novel mathematical model which formulates a
complete BACASP. They consider a discrete berth partition where every vessel
can �t in exactly one berth. And they do not consider the relationship between
the handling time and the number of cranes assigned to a vessel. The authors
propose a genetic algorithm to solve the problem. Ursavas (2014) also focus on
a BACASP with discrete berths. The author considers time-variant QC allo-
cation, proposes a bi-objective mathematical model and implements a decision
support system. Turkogullari et al. (2014) also formulated a model for the BA-
CASP. The authors emphasize that for large scale instances the model is not
e�ective. Hence, they propose a post-processing cutting plane algorithm over
the results of a BACAP solution. Experiments show that the largest instances
can be solved to optimality with this method. Their main assumption lays in
the fact that the number of QCs assigned to a vessel cannot be changed over
time (time-invariant BACAP, see also Iris et al. (2015b)). Rodriguez-Molins
et al. (2014b) have focused on a BACASP with both time-variant/invariant QC
allocation. The time-variant QC version is designed to assign the QCs for spe-
ci�c holds. The authors have proposed a Greedy Randomized Adaptive Search
Procedure (GRASP) heuristic and showed that the algorithm outperforms tra-
ditional heuristics like FCFS, etc. Recently, Li, Sheu, and Gao (2015a) have
focused on a BACASP in which QC coverage ranges are also considered. The
authors present a novel mathematical model which has many BACAP consider-
ations from Meisel and Bierwirth (2009) model. They also propose a heuristic
algorithm based on spatio-temporal con�icts analysis.

3.3 Problem Description

The BACAP studies in this chapter aims at �nding a berthing start time and
position for each vessel in the planning horizon. Moreover, the berthing end
time is calculated as a function of the number of assigned QCs in each time
period. We consider a continuous berth and discretize time in units on one
hour.

Figure 4.1 shows an example BACAP solution in a time/quay diagram. In this
example, seven vessels are berthed. Each vessel is represented by a rectangle
showing the time and space occupied by the vessel. The smaller rectangles in
gray indicate the vessels' QC assignments, each representing one QC. Every
berthed vessel has an upper and lower limit on the number of assignable QCs
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(rmini , rmaxi ). These values are determined by contracts between vessel operators
and the terminal, and by the size of the ship. A limited number of QCs are
available in the berth and this determines the maximum number of QCs that
can be assigned at any point in time. Every vessel has also a berthing start
(si) and end time (ei) on the horizontal axis. The vertical axis includes the
berthing position of each vessel (bi), and each vessel has a desired berthing
position parameter (b0i ). The deviation from desired berthing position is ∆bi.
There are also variables regarding the QC assignment (ritq) and vessel ordering
(zij). The example is further explained in the next section.

b2

b1

b01
∆b1

s1 s3 e1s2

b6

r49=r4(10)=...=r4(20)=1

9 20
e417

r6(17)2=r6(18)2=1
r6(19)1=r6(20)1=r6(21)1=1

100

300
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rmin5 =1

rmax5 =3
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z67=1

Berth [m]

Time [hours]

Figure 3.1: Example of BACAP Meisel and Bierwirth (2009)

There are two considerations about the utilization of resources in the terminal
in Meisel and Bierwirth (2009). The authors argue that the assigned number of
QC for each vessel cannot be completely used due to the interference between
QCs. This means when q QCs are assigned to a vessel, the productivity is qα

QC-hours, where α is an exponent of interference (0 ≤ α ≤ 1). Another aspect
which is considered is the increase in the horizontal transportation when the
vessel is not berthed at its desired berthing position. This means that there is
an increase in the QC hours needed to carry-out the work (i.e. ful�ll the QC
capacity requirement) on a vessel. This increase is proportional to the distance
of the berthing position from its desired position.
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Meisel and Bierwirth (2009) consider a combination of time-dependent costs
and QC assignment costs for the objective function. The time-dependent costs
are entailed to the berthing start and end time, while QC dependent cost is a
function of how many QCs are assigned to a given vessel. The model includes
three time-dependent cost components: speedup cost, delay cost and penalty
cost. It is assumed that vessels can speedup in the open sea and berth earlier
than the Expected Time of Arrival (ETA). For each time unit earlier than ETA,
a speedup cost must be paid. It is, however, assumed that a �xed Earliest Start
Time (EST) for each vessel exists. The problem does not allow any berthing
start time before EST, since it is not feasible with respect to the maximum
speed of a vessel. The problem also penalizes lateness for each vessel. If a vessel
�nishes its operations and departs (berthing end time) after Expected Finishing
Time (EFT), there is a cost of lateness for each late time period. Moreover,
if the berthing end time is later than the Latest Finishing Time (LFT), a one-
time penalty cost is added to the cost function. There exists a trade-o� between
accelerating the handling time (which is also a function of the berthing position)
of a vessel and the corresponding number of QCs assigned to the vessel. Finally,
the cost of operating all assigned QCs of a vessel is also added to model.

3.4 Mathematical Model: Meisel and Bierwirth
(2009) Model

The list of notations, i.e. parameters, decision variables used in the model, are
listed in Table 6.1.



86
Improved formulations and an adaptive large neighborhood search heuristic

for the integrated berth allocation and quay crane assignment problem

Table 3.1: BACAP mathematical notation

Parameters and sets:

V Set of vessels to be served, V ∈ {1, 2, .., N}, where N is the number of
vessels to berth

T Set of time periods (1 hour), T ∈ {0, 1, .., H − 1}, where H is the planning
horizon

L Length of the quay given in 10s of meters
li Length of vessel i ∈ V in 10s of meters
b0i Desired berthing position of vessel i ∈ V
mi Quay crane capacity demand of vessel i ∈ V (i.e. total QC-hours needed)
rmini Minimum number of QCs agreed to serve vessel i ∈ V simultaneously
rmaxi Maximum number of QCs agreed to serve vessel i ∈ V simultaneously
Ri Set of number of QCs assignable to vessel i ∈ V , where

Ri ∈ {rmini , ..., rmaxi }
ETAi Expected time of arrival of vessel i ∈ V
ESTi Earliest starting time of vessel i ∈ V
EFTi Expected �nishing time of vessel i ∈ V
LFTi Latest �nishing time of vessel i ∈ V
c1i Speedup cost of vessel i ∈ V on its journey to catch a berthing time earlier

than ETAi
c2i Cost of exceeding the expected �nishing time EFTi for vessel i ∈ V
c3i Penalty cost by exceeding LFTi for vessel i ∈ V
c4 Cost rate per QC-hour of operations
α Interference exponent for the QCs. Only qα e�ective QC hours are

obtained when assigning q QCs to a ship for one hour
β Coe�cient of increase in the QC capacity demand with deviation from

desired berthing position. A vessel i placed at position bi needs
(1 + |b0i − bi|β)mi e�ective QC hours

M A large positive number
Q Available number of QCs

Decision variables:

bi ∈ Z+ Berthing position of vessel i ∈ V
si ∈ Z+ Berthing start time of vessel i ∈ V
ei ∈ Z+ Berthing end time (time when the handling ends) of vessel i ∈ V
rit ∈ B 1; if vessel i ∈ V is at berth being processed in period t, 0 otherwise
ritq ∈ B 1; if there is exactly q QCs assigned to vessel i in period t, 0 otherwise
∆bi ∈ Z+ Deviation from desired berthing position when vessel i is in position bi,

∆bi = |b0i − bi|
∆ETAi ∈
Z+

Earliness of vessel i to reach start-time si, where ∆ETAi = |ETAi − si|

∆EFTi ∈
Z+

Tardiness of vessel i ∈ V when operations are �nished later than expected
�nishing time, ∆EFTi = |ei − EFTi|

ui ∈ B 1; if �nishing time of vessel i ∈ V exceed latest �nishing time, 0 otherwise
yij ∈ B 1; if vessel i ∈ V is berthed below vessel j ∈ V in berth area, i.e.

bi + li ≤ bj , 0 otherwise
zij ∈ B 1; if handling of vessel i ∈ V ends no later than handling of vessel j ∈ V

starts in berth area, 0 otherwise
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Let us now introduce the mathematical model:

min
∑
i∈V

(c1i∆ETAi + c2i∆EFTi + c3iui + c4
∑
t∈T

∑
q∈Ri

ritqq) (3.1)

subject to∑
t∈T

∑
q∈Ri

qαritq ≥(1 + ∆biβ)mi ∀i ∈ V (3.2)

∑
i∈V

∑
q∈Ri

qritq ≤Q ∀t ∈ T (3.3)

∑
q∈Ri

ritq =rit ∀i ∈ V,∀t ∈ T (3.4)

∑
t∈T

rit =ei − si ∀i ∈ V (3.5)

(t+ 1)rit ≤ei ∀i ∈ V,∀t ∈ T (3.6)

ritt+H(1− rit) ≥si ∀i ∈ V,∀t ∈ T (3.7)

∆bi ≥bi − b0i ∀i ∈ V (3.8)

∆bi ≥b0i − bi ∀i ∈ V (3.9)

∆ETAi ≥ETAi − si ∀i ∈ V (3.10)

∆EFTi ≥ei − EFTi ∀i ∈ V (3.11)

Mui ≥ei − LFTi ∀i ∈ V (3.12)

bj +M(1− yij) ≥bi + li ∀i, j ∈ V, i 6= j (3.13)

sj +M(1− zij) ≥ei ∀i, j ∈ V, i 6= j (3.14)

yij + yji + zij + zji ≥1 ∀i, j ∈ V, i 6= j (3.15)

si, ei ∈{ESTi, . . . H} ∀i ∈ V (3.16)

bi ∈{0, 1, . . . L− li} ∀i ∈ V (3.17)

∆ETAi,∆EFTi ≥0 ∀i ∈ V (3.18)

ritq, rit, ui, yij , zij ∈{0, 1} ∀i, j ∈ V,∀t ∈ T, ∀q ∈ Ri i 6= j
(3.19)

The objective (6.1) is the minimization of the overall cost of operations. It
includes speeding costs (proportional to the number of time periods for which
a vessel is early), tardiness cost (proportional to the number of time periods
a vessel departs later than EFT), a one time penalty cost for �nishing later
than LFT, and costs related to QC assignments. The QC assignment cost is a
function of the number of QCs and the cost rate per QC-hour. Constraint (3.2)
guarantees that the number of e�cient QC hours assigned to a vessel meets the
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required QC capacity when the deviation factor is taken into account. Con-
straint (3.3) ensures that the number of QCs used in each period cannot exceed
the available number of QCs. Constraint (3.4) guarantees that when a vessel
is at berth it will be served by a number of QCs. This constraint ensures the
assumption that there are no idle periods when the vessel is at port. Con-
straint (3.5) represents that the port-stay of a vessel (the right hand side) is
equal to the number of periods that the vessel is at berth. Constraint (3.6)
and (3.7) set the berthing start and end time. The berthing end time is limited
by the planning horizon. The deviation from the expected berthing position is
calculated by Constraint (3.8) and (3.9). Constraints (3.10)-(3.12) determine
the required speedup time needed to reach si, the tardiness of the operations,
and whether a penalty must be paid due to vessel delays. Constraint (3.13) and
(3.14) help to link the variables yij and zij . Constraint (3.13) ensures that if
yij has a value of one, the berthing position (which corresponds to the fore of
vessel) of vessel j ∈ V is larger than aft of vessel i ∈ V . Constraint (3.14) links
the vessels if they follow a predecessors relationship in the time frame. If zij
has a value of one, the berthing start time for vessel j ∈ V is later than the
berthing end time for vessel i ∈ V . Constraint (3.15) ensures either one vessel
should be positioned before or after the other at the berth, if not, the berthing
intervals should not overlap. Domains of berthing start and end time variables
are illustrated in (3.16). Finally, Constraints (3.18) and (4.7) set the integer and
binary properties of the respective decision variables. A constraint that assigns
at most one QC-assignment plan for each time unit and for each vessel can be
added (

∑
q∈Ri ritq ≤ 1 ∀i ∈ V,∀t ∈ T ). The validity of this constraint is evi-

dent since it makes sure that there is at most one kind of QC assignment plan
for a certain vessel (i.e. one of rmini , rmini + 1, .., rmaxi − 1, rmaxi ) for each period
when the vessel is at berth. This constraint is dominated by Constraint (3.4),
so the LP relaxation will not be improved, but CPLEX can generate useful cuts
out of this constraint.

3.4.1 Valid Inequalities and Variable Fixing Methods for

BACAP

In order to make the mathematical model more e�cient, we propose a novel set
of valid inequalities, Lower Bounds (LBs) and variable �xing methods. In the
remainder of this chapter, we refer to this enhanced model as BACAP+.

Before describing the inequalities in details, let us formalize the minimum and
maximum processing time of a vessel. The minimum processing time can be
obtained when there is no deviation from the desired berthing position, and the
maximum number of QCs is assigned to the vessel for every time unit during its
berthing interval. In (6.19), δimin is the minimum processing time required to
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ful�ll the QC capacity demand of vessel i. In (3.21), the maximum processing
time, δimax, is composed of the maximum possible deviation from desired posi-
tion, and the minimum number of QC assignments for that vessel. Since we do
not allow preemption in operations, the use of rmini , rmaxi in the denominators
is reasonable.

δimin =

⌈
mi

(rmaxi )
α

⌉
∀i ∈ V (3.20)

δimax =

⌈
mi(1 + βmax(L− bi0, bi0))(

rmini

)α
⌉

∀i ∈ V (3.21)

3.4.1.1 Bounds on si

We formulate a class of valid inequalities that aim at improving the lower bound
of the si (berthing start time) variables. If vessel i is berthed earlier than vessel
j, the berthing start time of vessel j (sj) should be equal-to or greater-than
the minimum ending time of vessel i (ei). Otherwise, the EST still limits the
starting time of vessel j.

(ESTi + δimin)zij + ESTj(1− zij) ≤ sj ∀i, j ∈ V, i 6= j (3.22)

3.4.1.2 Bounds on processing time

The bounds on the processing time can also be tightened by Constraint (3.23)
by using the precalculated δimin and δimax values.

δimin ≤
∑
t∈T

rit ≤ δimax ∀i ∈ V (3.23)

3.4.1.3 Decomposition of si and ei

In this family of valid inequalities, we improve the link between the QC assign-
ment and the berthing start/end time variables. We observe that reformulating
berthing start and end times variables for each time period can help to obtain
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a better link with the QC assignment variables. We propose a new intermedi-
ate binary decision variable denoted Startit. If operations on vessel i starts at
period t, the variable is one, and it is zero otherwise. We propose seven inequal-
ities ((3.24)-(3.30)) to improve the formulation. First, we guarantee that there
can only be one berthing start period for each vessel (Constraint (3.24)), and
this period cannot be before EST (Constraint (3.25)). Then, the link between
Startit and si is formulated in Constraints (3.26)-(3.27). Constraint (3.28) guar-
antees that if a period is a starting period, then the previous period cannot hold
any QC assignment. We can also formulate an alternative version of Constraint
(3.28). If a given period is a berthing start period, all previous periods should
hold no QC assignment. If that period is not a starting period, no informa-
tion can be derived for previous periods. Constraint (3.29) presents this link.
Finally, Constraint (3.30) guarantees that if there is a period in which there
is a QC assignment for a given vessel (rit = 1), then either it is the starting
period (Startit = 1) or the QC operations have already been continuing from
the previous period (rit−1 = 1).

∑
t∈T

Startit = 1 ∀i ∈ V (3.24)

Startit = 0 ∀i ∈ V,∀t ∈ T : {t < ESTi} (3.25)

∑
t∈T

tStartit = si ∀i ∈ V (3.26)

ri0 = Starti0 ∀i ∈ V (3.27)

rit−1 + Startit ≤ 1 ∀i ∈ V,∀t ∈ T : {t > ESTi} (3.28)

∑
t′∈{ESTi,..,t−1}

rit′ + (Startit− 1)H ≤ 0 ∀i ∈ V,∀t ∈ T : {t > ESTi} (3.29)

rit ≤ rit−1 + Startit ∀i ∈ V,∀t ∈ T : {t ≥ ESTi} (3.30)

We also use a symmetrical formulation for the end of operations, where Endit =
{0, 1} is the auxiliary binary variable which is one if operations of vessel i end
at period t, and zero otherwise. The di�erence from the previous inequalities
is in the linking constraints. In Constraint (3.37), we guarantee that if a QC
assignment exists in one period for a vessel (rit−1 = 1), then either the next
period is the ending period (Endit = 1), or there are still QC operations going
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on the vessel for the next period (rit = 1). Constraints (3.31)-(3.36) can be
interpreted in the same way as Constraints (3.24)-(3.29).

∑
t∈T∪{H}

tEndit = ei ∀i ∈ V (3.31)

∑
t∈T∪{H}

Endit = 1 ∀i ∈ V (3.32)

Endit = 0 ∀i ∈ V,∀t ∈ T ∪ {H} : {t < ESTi + δimin} (3.33)

riH−1 = EndiH ∀i ∈ V (3.34)

rit + Endit ≤ 1 ∀i ∈ V,∀t ∈ T ∪ {H} : {t > 0} (3.35)

∑
t′∈{t,..,H}

rit′ + (Endit−1)H ≤ 0 ∀i ∈ V,∀t ∈ T ∪{H} : {t > ESTi} (3.36)

rit−1 ≤ rit + Endit ∀i ∈ V,∀t ∈ T ∪ {H} : {t > 0} (3.37)

3.4.1.4 Tightening the Big-M values

Constraint (3.7) in the original formulation can be tightened by reformulating
Big −M which is H. We know that it cannot be higher than H − δimin. We,
thus, replace Constraint (3.7) with Constraint (3.38) in the BACAP model.

ritt+ (H − δimin)(1− rit) ≥ si ∀i ∈ V,∀t ∈ T (3.38)

3.4.1.5 Set-partitioning inequalities

Iris et al. (2015b) formulate a generalized set partitioning problem (GSPP)
formulation for the BACAP. The authors also propose two preprocessing (or col-
umn reduction methods) to reduce the number of columns. Each column/variable
in the formulation by Iris et al. (2015b) corresponds to an assignment of a ves-
sel to a berthing position and a berthing start and end time. After column
reduction, we can go through all columns for a single vessel (i) and record earli-
est and latest berthing start (MinSi, MaxSi) and end time (MinEi, MaxEi).
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Similarly, we can collect minimum and maximum possible berthing positions
(MinBi, MaxBi). With these parameters, we bound the decision variables in
Meisel and Bierwirth (2009). Technically speaking, these constraints are not
valid inequalities since they can cut away feasible integer solutions. This is
because the column reduction methods in Iris et al. (2015b) were based on
objective value considerations. However, the constraints do not cut away the
optimal solution and therefore they do not alter the exactness of the model. The
collected data provide us better bounds on si, ei and it allows us to eliminate
many of the rit and ritq variables. Then we can write following inequalities:

MinSi ≤ si ≤MaxSi ∀i ∈ V (3.39)

MinEi ≤ ei ≤MaxEi ∀i ∈ V (3.40)

MinBi ≤ bi ≤MaxBi ∀i ∈ V (3.41)

rit = 0 ∀i ∈ V,∀t ∈ T : {t > MaxEi || t < MinSi} (3.42)

Constraints (3.39), (3.40), (3.41) bound the berthing start time, end time and
berthing position of vessel i, respectively. Constraint (3.42) can eliminate QC
assignment variables when period t is greater than maximum feasible berthing
end period or smaller than minimum feasible berthing start period for vessel i.

3.4.1.6 Fixing zij and yij variables

By considering minimum and maximum processing times, and the bounds ob-
tained in Section 3.4.1.5, we can �x and tighten some of the zij , yij variables.

zij = 1 ∀i, j ∈ V : {i 6= j ∧ MinSj ≥MaxEi} (3.43)

yij = 1 ∀i, j ∈ V : {i 6= j ∧ MaxBi + li ≤MinBj} (3.44)

Constraint (3.43) shows that if the minimum berthing start time of vessel i is
greater-than or equal-to the maximum berthing end time of vessel j, then vessel
i is always berthed earlier than vessel j (zij=1). Constraint (3.44) works in the
same way for the yij variables.
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We can also state that vessel j cannot be berthed later than vessel i if and
only if the earliest known berthing start time of vessel i (MinSi) added to the
minimum processing times of vessel i and j is larger than the known maximum
berthing end time of a vessel j. This means that these two vessels should either
overlap on time or vessel j should end its berthing earlier than the berthing
start time of vessel i. Figure 3.2 illustrates two alternatives that include two
vessels which hold the aforementioned condition, and these vessels must be at
berth at the same time. This relation can be formulated with Constraint (3.45).

zij = 0 ∀i, j ∈ V : {i 6= j ∧ MinSi + δimin + δjmin ≥MaxEj} (3.45)

Constraints similar to (3.45) can be formulated for the yij variables, but the
bounds obtained for minimum and maximum possible berthing position are not
strong enough to justify their use.

Berth

Time
MinSi MaxEi MaxEj

δimin

(a) (b)

MinSj

δjmin
Time

MinSi MaxEj MaxEi

δimin

δjmin

Berth

δjmin δjmin

Figure 3.2: Di�erent scheduling alternatives for Constraint (3.45)

3.4.1.7 Bounds on ∆bi

The last two inequalities focus on the objective function. We should note that
these constraints are not valid inequalities, but adding them to the model does
not invalidate the exactness of the model. Let us assume that an upper bound
of z̄ is known for this problem. We can calculate the minimum number of QC

hours needed to serve all vessels, θ =
∑
i∈V r

min
i

⌈
mi

(rmini )
α

⌉
. We can extract a

LB on the overall cost as shown in Iris et al. (2015b) (See B.2 for the complete
algorithm to obtain the LB). This lower bound on the objective is called z1

and zero deviation is assumed for all vessels in order to calculate the z1 (i.e.
∆bi = 0 ∀i ∈ V in z1).
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We adjust z1 by adding the approximated QC operations cost with respect to
the deviation from the desired position (

∑
i∈V (c4(1 + β∆bi)mi)). In order to

not include QC costs twice, we subtract the minimum cost of QC operations
obtained by c4θ. It follows that the resulting approximation of the objective
function must be less or equal-to the upper bound value, and this forms Con-
straint (3.46).

z1 + c4

(∑
i∈V

(1 + β∆bi)mi − θ

)
≤ z̄ (3.46)

The term (1+β∆bi)mi is the number of �pure� QC hours that we need to spend
on vessel i given a deviation of ∆bi from the desired position. However, if we
are using more than one QC per hour the actual number of QC hours needed
increases because of the interference exponent α. The actual number of QCs
used per hour will be determined by the model, but it can never be less than
rmini . Assuming that we use the minimum number of QCs we can �nd for how
many hours (x) we need to operate rmini QCs in order to �nish the task by
solving following equation.

x
(
rmini

)α
= (1 + β∆bi)mi ⇒ x = (1 + β∆bi)mi/

(
rmini

)α
In order to know how many QC hours we at least need to spend on vessel i
given a deviation of ∆bi we therefore compute

((1 + β∆bi)mi/
(
rmini

)α
)rmin

since x measured for how many hours we need to use rmin QCs. This means
that we can improve the inequality to (3.47).

z1 + c4

(∑
i∈V

(
(1 + β∆bi)mi

rmini(
rmini

)α
)
− θ

)
≤ z̄ (3.47)

The (3.47) is a strengthening of (3.46) if α < 1 and rmini > 1 for all i ∈ V .
The only decision variable in Constraint (3.47) is ∆bi and this constraint will
be used in BACAP+.
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3.4.1.8 Bound on time-dependent objective part

Finally, we know that the minimum cost of QC operations is c4θ, we can set a
bound on the objective function for the remaining cost components which are
dependent on the vessel berthing start and end times. The sum of speedup,
lateness and penalty costs should be less than upper bound on overall objective
subtracted by LB from QC assignment costs. This is achieved with Constraint
(3.48).

∑
i∈V

(c1i∆ETAi + c2i∆EFTi + c3iui) + c4θ ≤ z̄ (3.48)

3.5 Adaptive Large Neighborhood Search (ALNS)
heuristic for BACAP

ALNS (Ropke and Pisinger (2006)) extends the Large Neighborhood Search
(LNS) of Shaw (1998). ALNS is a search algorithm based on a destruction and
construction principle. Once an initial solution is found, part of the candidate
solution is destroyed by an operator, while keeping the remaining part �xed. A
new solution is then found by repairing the destroyed part with a repair oper-
ator. These two steps are iterated until some termination criterion. The main
di�erence between ALNS and LNS is that ALNS has multiple destroy/repair
operators and the selection of operators is dynamically managed as the search
progresses.

In order to e�ciently search the solution space, we generate all candidate as-
signments for each vessel a priori and apply our ALNS on top of all candidate
assignments of all vessels. Each assignment holds a feasible solution of a single
vessel. For each vessel i ∈ V , each assignment j holds a cost cj , a berthing
position, berthing start and end time, and a QC plan. The QC plan includes
the information on how many time units each number of QCs will be used in
that assignment. Iris et al. (2015b) have proved that there are always two QC
numbers which can form a QC plan with minimum cost, these two values are
stored in the assignment. The assignment does not give any information about
the speci�c time in which these number of QCs will be used. For example, a QC
plan might hold that the assignment will use 3 QCs for 4 time units and 4 QCs
for 5 time units. The cost of an assignment includes the time-dependent cost
components (speedup, lateness, penalty costs), and the cost of QC plan. Since
we generate all related information about berthing start/end times and berthing
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position a priori, the time-dependent cost component of an assignment can be
calculated easily. The cost of QC plan can be calculated with the information
which is held in the assignment (recalling above example; (3·4+4·5)·c4).

A candidate solution for the BACAP (X) is a set of assignments that satis�es
all the constraints presented in Section (6.4). A candidate solution also contains
a detailed QC assignment plan which is the number of QCs that will work on
each vessel in each period. An optimal solution is a candidate solution with
minimum Z(X) where Z(X) accounts for objective function value of candidate
solution X. The set of assignments of vessel i will be denoted by Ωi, while the
set of all assignments is denoted by Ω.

The outline of the BACAP ALNS is presented in Algorithm 2. The search
requires an initial solution which could be generated by a heuristic or a mathe-
matical model. In this paper, we obtain an initial solution with a construction
heuristic. The ALNS attempts to improve this initial solution by removing a
subset of assignments from the solution (Note that there is only one assignment
of each vessel in a solution) and by inserting new assignments of removed ves-
sels back into the solution sequentially. Since the problem is a minimization
problem, if the new solution has an objective value lower than current best so-
lution, it is labeled as the best solution (line 7). Whenever all vessels which were
removed are reinserted in the current solution, there is an acceptance criterion
(line 9) which decides whether the new assignment will be accepted. This proce-
dure continues until a certain termination criterion is met. In order to promote
well-performing operators, the weight (i.e. selection probabilities consequently)
of each operator is updated periodically (line 11).

The ALNS has been applied successfully to many optimization problems. In
the area of container terminal optimization, Cordeau, Laporte, Moccia, and
Sorrentino (2011) have proposed an ALNS for yard assignment problem in a
car transshipment terminal. The problem studied in Cordeau et al. (2011) has
properties that are related to the BAP, hence our approach uses some similar
operators (see also Hansen, Oguz, and Mladenovic (2008)). The authors point
out the e�ciency of the algorithm on real-life instances. Gharehgozli, Laporte,
Yu, and de Koster (2015) have proposed an ALNS for the twin crane scheduling
problem in container terminals. The authors have showed the e�ciency of the
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algorithm on a large set of instances.

Algorithm 2: BACAP ALNS

Input : An initial solution X, φ ∈ {1, .., N}, initial operator
weights

1 Xbest ← X
2 while termination criteria is not met do
3 X̄ ← X
4 Select and apply one operator to remove assignments of φ vessels

from X̄
5 Select and apply one operator to reinsert assignments of φ

removed vessels back into X̄
6 if Z(X̄) < Z(Xbest) then
7 X ← X̄, Xbest ← X̄
8 else
9 if X̄ satis�es the acceptance criterion then

10 X ← X̄

11 adjust operator weights

12 return Xbest

The main components of BACAP ALNS are operators, adaptive search engine,
adaptive weight adjustments, acceptance and termination criterion.

• Operators: To guarantee a diversi�ed search, we propose four destroy and
two insertion operators. Details of operators will follow in this section.

• Adaptive Weight Adjustment: Each operator i is assigned a weight (wi)
and a score (πi). After each δ iterations, all weights are recalculated. The
weight of each operator is updated by considering the score of operator
in the last δ iterations and the current weight value. Initially, all weights
are equal to one. While, the scores of all operators are updated after each
iteration, and every δ iterations they are all set to zero again. The score
of each operator is updated as follows:

πi =


πi + σ1 if Condition 1

πi + σ2 if Condition 2

πi + σ3 if Condition 3

πi if Condition 4

where Condition 1: operator i obtains a new best solution of all iterations,
Condition 2: operator i results in a solution which is improving the cur-
rent objective function, Condition 3: operator i does not yield a better
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objective value, however the acceptance criterion accepts it, Condition 4:
the acceptance criterion rejects the solution. The higher operator per-
formance results in a better score. At end of each iteration, we update
the scores of both destroy and repair operators. After scores have been
summed up for δ iterations, the weights can be updated. The weight of
operator i is updated in following way:

wi =

{
wi if Ψi = 0

(1− η)wi + ηπi
Ψi

if Ψi 6= 0

Let us assume that wi is the weight of operator i, and Ψi is the number
of times that the operator is used for the last δ iterations. If the operator
is not used, the weight is kept the same, otherwise it is updated. Finally,
η ∈ [0, 1] is the reaction factor which re�ects the balance between previous
weight and its updated value (Ropke and Pisinger (2006)). A low reaction
factor makes the weights evolve in a slow and steady fashion.

• Adaptive Search Engine: The selection of which operator to apply is man-
aged by a roulette-wheel technique. The weight of each operator is used
to obtain the selection probability of that operator. If there are m oper-

ators, operator i would have a selection probability of wi/
m∑
j=1

wj . These

probability values are used to generate cumulative probability distribution
(CDF) with all operators. A uniform random number from the range [0,1)
is drawn and and the inverse of the CDF for that number points out which
operator should be selected.

• Accepting Criteria: Simulated Annealing (SA) has been the most popu-
lar acceptance criterion technique for ALNS (see e.g. Ropke and Pisinger
(2006), Muller et al. (2012), Coelho et al. (2012)) and it is also used in
this study. We accept the new solution s′ over the current solution s
if s′ is better than s. Otherwise, it is accepted with the probability of
e−(f(s′)−f(s))/T . The term f(s) represents objective function value (de-
�ned by (6.1)) for solution s. Here, T is the temperature which is updated
by multiplying a cooling factor µ (0 < µ < 1) at each iteration. Starting
from initial temperature, Tstart, the temperature is reduced. Instead of
specifying a cooling rate parameter, we calculate Tstart, Tend by using the
initial solution obtained by the algorithm. We assume that the start tem-
perature is ϕ% of the initial solution while the ending temperature is ξ%
of initial solution. Then, the cooling factor becomes a parameter which
guarantees the convergence from starting temperature to ending temper-
ature after ε iterations. To further diversify the search, temperature T
is reheated back to start temperature (Tstart) every ε iterations. This
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means that depending on the maximum number of iterations (cmax), the
algorithm is reheated

⌊
cmax
ε

⌋
times.

• Termination Criterion: The algorithm terminates once a number of iter-
ation (cmax) is reached. Selection of each parameter will be discussed in
Section 3.6.1.

In the next subsection, we present the construction heuristic which generates
the initial solution. Afterward, we introduce the operators used in the ALNS
heuristic.

3.5.1 Construction Heuristic

Initially, we generate all assignments (Ω), then we select an assignment for each
vessel. The initial solution is generated with a greedy approach. First, a random
vessel order has been generated, and all assignments of each vessel are sorted in
increasing cost order. The assignments of vessels in this order are placed into
the solution one by one in a feasible way. If an assignment for a vessel cannot
be inserted, the next assignment for that vessel is attempted. Further details of
this method will be presented in Section 3.5.3.

3.5.2 Destroy Operators

In this study, destroy operators work at time, berth, QC and cost levels. Given
the chosen destroy operator and a candidate solution X, the operator attempts
to add the selected assignment to a destroy list, and it continues until φ assign-
ments are added to this list.

Once the destroy list, which is a list of assignments to be taken out of candi-
date solution, is compiled, the algorithm removes these assignments from the
candidate solution. This results in a partial solution Xp in which φ vessels are
missing. This Xp will be the input for repair operator.

Some destroy operators select an assignment with a probability p (p is a param-
eter) in order to introduce some randomness in the selection. This is performed
by drawing a random number q in (0, 1] and comparing it with p. If q ≤ p,
the current assignment is added to the destroy list; otherwise the next selected
assignment is considered and the value of p is increased if necessary.
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The number of assignments to be removed (φ) is determined by generating a
random integer between φu/2 and φu. The value φ must satisfy 2 ≤ φ ≤ φu,
where φu is the upper bound for the number of assignments that is intended to
be destroyed. We determine φu by dividing the size of the instance (e.g. 20, 30
or 40) to a parameter φr.

If we choose to remove assignments that are not sharing same resources (like
berth, QC), we might not gain anything when reinserting them. Therefore we
now propose a set of removal operators based on di�erent relatedness measures.

3.5.2.1 Shaw Removal

This removal operator was proposed by Shaw (1998). The operator returns a
destroy list (D) and a partial solution (Xp). The general idea is to remove
assignments that are related, as we expect it to be reasonably easy to shu�e
related assignments around and thereby create new, perhaps better, solutions.
The BACAP requires a special de�nition of relatedness. We de�ne the related-
ness measure M(i, j) for assignments of i and j to be:

M(i, j) = a|bi − bj |+ b|si − sj |+ c|ei − ej |

M(i, j) consists of three components: berthing position, berthing start time
and berthing end time. The lower value of M(i, j) points a higher relatedness.
The steps of the removal can be seen in Algorithm 3. The procedure initially
chooses a random assignment to remove (line 1). Then, the relatedness vector
is generated for all other assignments in the candidate solution with respect
to selected assignment and these assignments are sorted in descending order of
relatedness (line 2).

After we generate the sorted list, we use the determinism parameter p ∈ (0, 1]
(line 7) to decide whether to put an assignment into the destroy list. In this
operator, the parameter p is randomly generated between 0.6 and 1.0 which
gives a relatively high probability of removal for the selected assignment, and
p is updated to 1.0 if the number of remaining assignments in a candidate
solution is equal to number of assignments that is needed to be put into destroy
list (line 11). This increase is to ensure that exactly φ assignments will be in
the destroy list in the end. The weights of each factor (a, b, c) are parameters
for the algorithm which will be tuned in Section 3.6.1.1.

All of the assignments in the destroy list are removed from the candidate solution
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(line 13) and resource availabilities (berth, time, QCs) are updated.

Algorithm 3: Shaw Removal

Input : X, p ∈ (0, 1], φ ∈ {1, .., N}
1 Select an assignment i in X randomly
2 Sort assignments with relatedness to i and generate sorted list
3 counter=0
4 while |D| < φ do
5 Select the assignment j in the sorted list, draw a random number

q in (0, 1]
6 counter++
7 if q ≤ p then
8 Add j to the destroy list: D = D

⋃
{j}

9 else
10 if (φ− |D| = N − counter) then
11 p = 1

12 Go to next assignment in the sorted list

13 Remove all assignment in D from the candidate solution X
14 Xp ← X
15 return Xp, D

3.5.2.2 Cost and Time-Relatedness Removal

This operator �rst sorts the assignments, which are in the candidate solution, in
a decreasing cost order. Then it selects the highest cost assignment i and puts
it in the destroy list. Afterward, it searches for time related assignments of the
selected assignment i. Two assignments are time related if they occupy di�erent
berth positions at the same time. All time related assignments of i are added
to the destroy list. If φ assignments are not added to destroy list yet, then
the next most costly assignment is added to destroy list and its time related
assignments which are not in the destroy list are also added one by one. This
procedure continues until φ di�erent assignments are collected in the destroy
list. The motivation for using the time relatedness is to increase the likelihood
of generating available QC capacity for high cost vessels.
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3.5.2.3 Cost and Berth-Relatedness Removal

This removal operator is very similar to the one presented in Section 3.5.2.2.
The only di�erence is the use of berth-relatedness (assignments that share the
same berthing positions at di�erent times) instead of time-relatedness. This
operator would bring �exibility to reinsert the vessels closer to their desired
positions. Moreover, vessels that are placed closer to desired position require
less QC capacity demand (i.e. shorter processing time).

3.5.2.4 Random Removal

First an assignment is randomly selected and put into the destroy list. Then
we randomly select new assignments. When a new assignment is randomly
selected (after the �rst one), it is checked whether it is time-related with any
of the assignments in the destroy list. If it is time-related, it is immediately
put into the destroy list. Otherwise, like line 7 of Algorithm 3, the operator
decides whether to put the assignment into the destroy list. In this operator,
the parameter p is randomly generated between 0.6 and 1.0 once and updated
as in line 10-11 of Algorithm 3.

3.5.3 Insertion Operators

After the destroy operator is executed, we are left with a partial solution. In
this partial solution, there are already N − φ assignments with �xed berthing
positions, start and end times, and QC plans. We di�erentiate between the
insertion operator and the insertion list, because the insertion list is an input
for the insertion operator. The insertion operator uses the order of vessels in
the insertion list in order to insert them back into the partial solution. In this
study, the insertion list is generated by randomly permuting the corresponding
vessels of the assignments in the destroy list.

Since the problem is highly constrained we may end up in situations where there
are some vessels that cannot be inserted into the current partial solution. This
may happen in any insertion methods. We see such solutions as feasible but we
add a high penalty for each unassigned vessel to the objective function in order
to make it very attractive to reject such solutions. Two insertion operators have
been suggested.
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3.5.3.1 Basic Greedy Insertion

In order to apply this method, the insertion list (I), all assignments of the
vessels in insertion list (Ωk ∀k ∈ I), the partial solution (Xp) and a determism
factor (p) are required. All assignments of each vessel are sorted in increasing
cost order. The operator tries to insert one assignment (i) for each vessel (k).
Algorithm 4 illustrates the steps for the basic greedy insertion.

Algorithm 4: Basic greedy insertion

Input : I,Xp, φ =| I |, p ∈ (0, 1],Ωk : ∀k ∈ I
1 for k = I1 → Iφ do
2 i = 0
3 Draw a random number q in (0,1]
4 if (q > p) then
5 i→ i+ 1, go to 3
6 else
7 if (fOverlap(i, Xp)=false ∧ fQCcapacity(i, Xp)=enough)

then
8 Add i to partial solution Xp

9 Make detailed QC_Assignment
10 Remove vessel k from insertion list: I = I − {k}
11 else
12 i→ i+ 1, go to 3

13 X ← Xp

14 return X

The vessels in the insertion list are considered one by one. Algorithm 4 �rst
selects the assignment of the �rst vessel in the insertion list. Here, we impose a
randomness for accepting each assignment (line 4). There are three conditions to
insert an assignment into the partial solution. The determism parameter should
support the insertion of the assignment, the assignment should not overlap with
any of already inserted assignments in the partial solution, and there should be
enough QC capacity to insert this assignment into the partial solution.

The control of overlapping (fOverlap(i, Xp)) is fairly easy, because the partial
solution includes all information about the berthing positions and the berthing
intervals. The assignment i can be checked whether it overlaps with any assign-
ments in the partial solution Xp in time and berth space. If it does not overlap,
the function takes a "false" value.

The control of QC capacity availability for QC assignment (fQCcapacity(i,
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Xp)) requires some computational e�ort. Iris et al. (2015b) have proved that
there is always an optimum f1 numbers of q̂ QCs and f2 numbers of q̂ + 1 QCs
which minimizes the cost of QC assignment plan and ful�ll the QC requirement
(i.e.

∑
i∈V (1 + β∆bi)mk) with interference of α (see Corollary 1 in Iris et al.

(2015b)). The values of f1, f2 and q̂ are calculated by the algorithm in B.1.
Note that, f1, f2 presents for how many periods q̂, q̂+1 QCs will be used. Hence,
f1 + f2 should be equal to the processing time of that assignment. The values
of q̂, f1, f2 are stored in the assignment. With the values of f1, f2 and q̂, we can
control whether there is enough QC capacity for each period when the vessel
will be at berth.

Since the number of QCs that will work on each vessel in each period is not
kept in the assignment, we have to make a detailed QC plan with the available
information (line 9). The detailed QC plan works with the principle of �as
much as possible�. We make this detailed QC plan period by period (from
si → si + processi). For each period of assignment's berthing interval, we
�rst try to assign q̂ + 1 QCs in that period. If there is not enough free QCs
to assign q̂ + 1 QCs for that period, we assign q̂ QCs instead. If we already
assigned f2 numbers of q̂ + 1 QCs for that vessel, we just assign q̂ QCs in the
remaining periods. This procedure continues until the whole berthing interval
is covered and detailed QC plan for that vessel is �nalized. The aim is to assign
q̂ + 1 QCs as early as possible when there is free QC capacity. We also update
free QC capacities every time a detailed QC plan is made, this is to evaluate
next assignments accurately. Then we remove the corresponding vessel from
insertion list. This procedure continues until all vessels in the insertion list have
been inserted into the partial solution.

We illustrate the detailed QC plan with a small example. Assume that the vessel
that will be inserted has {rmink , rmaxk } = {3, 5}. In this example, we disregard
that the interference and a bad position can increase QC capacity demand which
is 18 QC-hours. We assume that the attempted assignment does not overlap
with any assignments in the partial solution. What is more, the assignment has
a processing time of 5 periods. For the berthing interval of the assignment, we
have the following number of QCs available:

Periods 1 2 3 4 5

QC Availability 5 3 5 5 4

The attempted assignment has a q̂ value of 3 (
⌊

18
5

⌋
) which will be used for

2 periods, and q̂ + 1 (4) QCs will be used for 3 periods (3 · 2 + 4 · 3 = 18).
The available QC capacities approve the use of QC plan which is stored in the
assignment. The detailed QC plan starts with the �rst period, and assigns 4
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QCs to this period. The next period only has 3 available QCs, so 3 QCs are
assigned to period 2, and so on. In the �nal period, since we have already
assigned 4 QCs in 3 periods, we assign 3 QCs in that period. The complete
algorithm results in following detailed QC plan:

Periods 1 2 3 4 5

QC plan 4 3 4 4 3

Two versions of this insertion operator are used in the ALNS algorithm. One
version assumes a deterministic insertion (p = 1), the other is the stochastic
version where a randomly generated parameter p (between 0.25 and 1.0) is
used.

3.5.3.2 Smarter Greedy Insertion

The operator presented in the previous section can be improved by considering
an alternative QC plan. The basic greedy operator uses the values of q̂, q̂ + 1
which form a minimum cost QC plan for a given assignment i of vessel k (q̂ =⌊(

(1+β∆bi)mk
processi

)1/α
⌋
). High values of q̂, q̂+1 can violate the available QC number

in a period, and this results in an infeasible QC plan. In such conditions, the
basic greedy approach directly skips to the next assignment (which are ordered
with increasing cost). The smarter greedy insertion reevaluates the assignment
and makes an alternative QC plan for the considered assignment for each time
period t.

We illustrate the conditions with another small example. Assume that the vessel
that will be inserted has {rmink , rmaxk } = {2, 6}. In this example, we assume that
the same conditions holds as the previous example (α = 1.0, β = 0), and QC
capacity demand is 18 QC-hours. For the berthing interval of the assignment,
we have the following number of QCs available:

Periods 1 2 3 4 5

QC Availability 7 6 2 3 4

In the basic greedy operator, the attempted assignment has a q̂ = 3 (
⌊

18
5

⌋
). We

cannot make a detailed QC plan based on q̂, q̂+ 1, since the period 3 has only 2
available QCs. The smarter greedy insertion detects this and tries to insert this
assignment with an alternative QC plan. Let QCtavailable be the QC availability
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in period t. The smarter greedy insertion �rst obtains the maximum possible
QC number (QCtpossible) that can be assigned in time period t which is

QCtpossible = min{QCtavailable, rmaxk }

Then using QCtpossible, the algorithm can determine the maximum number of ef-
fective QC hours that can be obtained in the berthing time interval, considering
the interference factor. In our example, the calculation is 61 + 61 + 21 + 31 + 41

(21) which is adequate to meet the QC capacity demand (18). What is more,
there are at least rmink (2) available QCs in each period during the berthing
interval of the assignment. This means that an alternative QC plan is feasible
for this assignment.

The alternative QC plan starts by sorting the periods in the berthing interval
with increasing QCtpossible. The QC plan is done in an iterative fashion, pro-
cessing one time period at a time, in the sorted order. The algorithm maintains
a variable QCneeded that indicates the number of QC hours that need to be pro-
vided in the remaining time periods. It starts out at the value of QC capacity
demand (i.e. (1 +β∆bi)mk) and the value is decreased after each assignment of
QCs. By using QCneeded and the remaining number of time periods (premain)
until the berthing end time for that assignment, the algorithm compute a target
value for the necessary number of QC in each remaining time period

Target =

⌈(
QCneeded
premain

) 1
α

⌉

This value seeks to distribute the needed QC hours evenly over the remaining
periods. It may happen that Target is less than rmink so we must use Target∗ =
max(Target, rmink ). Similarly it may not be possible to assign Target∗ QCs in
the period, because some QCs may be occupied by other vessels. Therefore the
actual number assigned is obtained in the following way for each t being the
time period under consideration:

QCtassign = min{Target∗,QCtpossible}

After the number of QCs to assign for each period is determined, QCneeded is
updated.

QCneeded = QCneeded −
(
QCtassign

)α
Due to the ordering of the time periods, the algorithm will �nd a feasible inser-
tion if possible. Recalling the above example, we will show how the algorithm
makes the updated QC plan. Sorting in the order of increasing QCtpossible, it
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yields the time period ordering 3,4,5,2,1 and the following table shows the as-
signment of the above mentioned variables in each iteration with QCtassign being
the �nal assignment of QCs in period t.

Iteration Time period (t) QCneeded Premain Target∗ QCtpossible QCtassign

1 3 18 5 4 2 2
2 4 16 4 4 3 3
3 5 13 3 5 4 4
4 2 9 2 5 6 5
5 1 4 1 4 6 4

The updated QC plan (QCtassign) is potentially more costly compared to the
QC plan stored in the assignment since it may use more QCs. Therefore it
makes sense to investigate the following assignments to see if one is feasible and
has lower cost. As soon as the algorithm reach an assignment whose stored cost
is the same or higher than the assignment produced using the smarter greedy
insertion described above the search can stop since the remaining assignments
will have the same or a higher cost.

This procedure is applied for all vessels in the insertion list one by one, and
continues until all vessels are added into the solution. Two versions of this
insertion operator are used in the ALNS algorithm. One is a deterministic
smarter insertion (p = 1), the other is a stochastic version where a randomly
generated parameter p (between 0.25 and 1.0) is used (See Appendix B.3 for the
complete operator).

3.6 Computational Results

We compare our results to those that have been obtained in Meisel and Bierwirth
(2009) and Iris et al. (2015b). All mathematical models and ALNS are run on
a 32 core AMD Opteron at 2.8Ghz and 132Gb of RAM computer. All running
times are measured in seconds.

3.6.1 Data and experimental settings

The benchmark, which includes 30 instances, has been obtained from Meisel and
Bierwirth (2009). The size of an instance is de�ned with the number of vessels
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(20, 30, or 40 vessels), 10 instances of each size are included in the benchmark.
In each instance, there are three vessel types (namely Feeders, Medium, and
Jumbo) and each of these vessel types di�ers in technical properties, and costs
(See Meisel and Bierwirth (2009) for details). The quay wall length is 1000
meters which is 100 berthing positions (10-meter segmented) and 10 QCs are
available on the quay. The planning horizon is to 168 working hours (one week),
and all planning and assignment operations are based on working hours. The
interference coe�cient (α) is 0.9, and the increase in the QC-hours needed due
to berthing deviation (β) is 0.01.

All models are solved by using CPLEX 12.6.1 solver. We have run the mathe-
matical models under the conditions presented in Meisel and Bierwirth (2009)
and Iris et al. (2015b). All models are run with a computational time limit of
10 hours. All cores are used when solving the models. In order to have a fair
comparison, the models presented by Meisel and Bierwirth (2009) and Iris et al.
(2015b) are rerun. Each model has been initiated with a warmstart solution
which is the result of the ALNS heuristic for one run.

The ALNS algorithm is implemented in C++, and it uses only one thread. The
heuristic is attempted 10 times on each instance and we report best, average
and worst solution for each instance. The termination criterion is a maximum
number of 270000 iterations for each run.

3.6.1.1 Parameter tuning

First, a set of representative tuning instances is generated. The tuning set
consists of 15 instances and it is generated randomly. The tuning instances are
di�erent from the instances used in the following sections. We �rst introduce
the parameters that will be tuned. We start with the removal parameters. The
Shaw removal has three parameters (a, b, c). The number of vessels to destroy is
managed by φr, this parameter φr will be also tuned. The SA is controlled by
three parameters, ϕ, ξ, ε. The weight-adjustment is made with four parameters;
σ1, σ2, σ3 and η. Finally, the update interval of the weights (δ) should also be
tuned.

We use a hierarchical procedure for tuning the parameters. First, a phase of
parameter settings, which consist of the two reasonable values for each pa-
rameter, is decided. We analyze all combinations of these parameters in this
phase. Since there are 12 parameters to tune, the �rst phase runs 212 dif-
ferent parameter settings. This phase results in an initial parameter setting
for the ALNS. The �rst parameter setting results are improved in the sec-
ond phase. In second phase, each parameter is tested for four values, while
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the rest of the parameters are �xed in the best value obtained in the �rst
phase. For the parameters, which we believe are more important (φr, ϕ, ξ, ε),
we impose �ve values to test in the second phase. For each parameter set-
ting, we run the ALNS ten times. This process continues until all param-
eters have been tuned. The setting that shows the best average objective
value is chosen. The complete tuning phase results in a parameter vector of:
(a, b, c, φr, ϕ, ξ, ε, σ1, σ2, σ3, η, δ)=(0.01, 2.0, 0.01, 4, 0.05, 0.0005, 30000, 2, 5, 10,
0.8, 1000).

Because of the fact that the parameter tuning aims at obtaining the best pa-
rameter setting with respect to objective function, we may give a compromise
on the runtime of the algorithm. We note that some of the parameters directly
a�ect the runtime of the algorithm. For these parameters, we have made an
ad-hoc analysis of di�erent values where we analyze the performance of the al-
gorithm with respect to both runtime and objective function. The results show
that φr which controls how many vessels to remove/insert from/to solution at
each iteration is the most in�uential parameter on the runtime. Di�erent values
of φr are tested on the tuning instances, average objective function and aver-
age runtime for each setting are presented in Table 3.2. The results show that
φr can be updated to 6 instead of 4, because the average objective with 4 is
slightly better compared to 6 case. But, there is a meaningful decrease in the
computational time.

Table 3.2: Parameter φr vs. Solution Quality

φr 3 4 5 6

Avg. (1) 176.41 175.88 176.35 175.89

Avg. Tk 203.5 150.2 113.0 103.0

3.6.2 Results for improved formulations

Before presenting the results for BACAP, BACAP+ models, let us analyze the
performance of valid inequalities and variable �xing methods. Table 3.3 presents
the average performance of the linear programming (LP) relaxation LBs for each
instance size. There are two main parts in Table 3.3. The �rst part presents the
results which include CPLEX presolver and cutting planes. These options are
then disabled, and the LBs are reevaluated. For each column in Table 3.3, we
present the gap between the LB and the upper bound obtained by the warmstart
solution. We also report the CPU times in the parenthesis, these are the times to
obtain the LBs. If additional time is required to generate a parameter that will
be used in an inequality, this time is also added to CPU time. The �rst column
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(N) speci�es the instance size, the second column (GR) presents the average
gap of LBs for the original formulation (BACAP without enhancements).

The columns V1, V2, ...,Θ present the results of the formulation with the active
inequalities. V1 refers to the valid inequalities (3.22), and V2 refers to (3.23). V3

includes the valid inequalities about start and end decomposition (3.24-3.37).
V4 covers the set partitioning inequalities (3.39-3.42). V5 have the variable �xing
inequalities (3.43-3.45). The families of inequalities which are about objective
function are clustered into a larger group. As a result, V6 has the objective
function dependent inequalities (3.47-3.48). The symbol Θ corresponds to all
sets of inequalities. Note that valid inequalities (3.38) have been considered as
part of the original formulation.

The �rst important observation from Table 3.3 is that the performances of the
inequalities are not that strong when presolver and cutting planes are disabled.
But when these two CPLEX options are activated, CPLEX generates very useful
cuts and the average integrality gap is reduced for each set of instances. Another
important observation is that including all inequalities results in better LBs and
this proves the contribution of the inequalities.

Let us now analyze the details of each set of inequalities with respect to the
gaps. The performances are evaluated for the case in which CPLEX presolver
and cutting planes are kept active. The results show that for small scale in-
stances, the performance of the inequalities is erratic. For medium and large
scale instances, the contribution is more clear. In general, by adding all inequal-
ities, the gap is reduced by 27% in average (case Θ, last column). If we look at
one inequality class at a time, we can observe that valid inequalities V3 and V1

perform better than the rest in the average. Individual results for each instance
show that each family of inequalities has signi�cant contribution on di�erent
instances. Although the gaps seem to be similar for V1, V2, V5, V6, each family
of inequalities contributes to di�erent instances.

It should be noted that inequalities V4, V5 require to run the two prepro-
cessing methods (Iris et al. (2015b)) to obtain the bounds used in these con-
straints. For this reason, the computational time to generate these bounds (e.g.
MinSi, MaxEi, MaxBi, etc.) are added to LP relaxation time. In Iris et al.
(2015b), the authors also propose two probing methods to further improve the
LBs. However, the high computational times to obtain these bounds with the
probing methods did not justify their use in the BACAP+ formulation.
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for the integrated berth allocation and quay crane assignment problem

The LB obtained with one type of inequality is sometimes worse than the one
which is obtained with the original BACAP formulation (e.g. Instance 3, V1).
This is explained by the fact that CPLEX uses a heuristic separation procedure
for the cuts, which leads to the generation of a di�erent set of inequalities. With
the help of Table 3.3, we justify to use all inequalities in the BACAP+ model.

The results of BACAP, BACAP+ and GSPP models are presented in Table 3.4.
In this table, the column "N" shows the number of vessels (instance size), "#"
indicates the instance ID. The columns named "Z" show the best upper bounds
obtained, while "BLB" report the best LBs found within the time limit. The
optimality gap (G = Z−BLB

Z ) is calculated between the upper and lower bounds.
The columns "Tc" show the time spent to solve the mathematical model, while
"RLB" reports the LBs which are used in Table 3.3.

In Table 3.4, "BACAP Model" results are obtained from Meisel and Bierwirth
(2009) paper. The "BACAP with warmstart" presents the rerun results for
Meisel and Bierwirth (2009) model with a warmstart solution. The "BACAP+"
indicates results for default CPLEX settings, while "BACAP+ (Cuts&Opt.
Emph)" presents the BACAP+ results with CPLEX option of emphasize opti-
mality and aggressive cut generation. Finally, the "GSPP" presents the results
of reruns of the GSPP models which are presented in Iris et al. (2015b). All
mathematical models analyzed in this paper (BACAP, BACAP+, GSPP) start
with the same warmstart for each instance.

The original results in Meisel and Bierwirth (2009) presented optimal solutions
for four instances, and the model cannot generate any integer solutions for
almost all medium and large scale instances.

The results show that for small and medium scale instances BACAP+ formu-
lations can solve all instances with less than 2% of optimality gap. For large
scale instances (N = 40 vessels), no instance can be solved to optimality within
the 10 hour time limit. However, each instance results in a better optimality
gap compared to the BACAP with warmstart. For instances which both the
BACAP+ model and the original BACAP model �nd the optimal solutions, BA-
CAP+ always needs less computational e�ort. Additionally, almost all upper
and lower bounds in the literature have been improved by BACAP+models with
the warmstart. The BACAP+ model also remains competitive with the GSPP
model. In average, the BACAP+ model performs better in small, medium and
large scale instances. However, the number of instances which are solved to
optimality is higher for the GSPP mdel. In Table 3.4, we write gaps or com-
putational times, which are meaningfully better compared to other results, in
bold font.

The comparison of di�erent CPLEX settings is also relevant. The results show
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that the average gap is reduced with "emphasizing optimality" and "aggressive
cut generation" settings. With these settings, CPLEX obtains the same or
better optimality gaps compared to the default settings in 27 out of 30 instances.
BACAP+ with the new settings also obtains a better root node LB compared
to the default settings in many instances. However, the number of optimal
solutions does not change with the new settings.

3.6.3 Results for ALNS

In Table 3.5, we present the computational performance of ALNS compared to
the best known upper bounds and two state-of-art heuristics: Squeaky Wheel
Optimization (SWO) and Tabu Search (TS) from Meisel and Bierwirth (2009).
The ALNS algorithm is run 10 times for each instance. The average, best, and
worst objective values, all relevant gaps, average run times, and the time for
generating all assignments are reported for each instance.

In Table 3.5, column "Z∗" shows the best upper bound known in the literature.
Then next seven columns report the results for the ALNS. The table also includes
the results of SWO and TS of Meisel and Bierwirth (2009).

The average gap is calculated using the average cost and Z∗ (average gap =
average cost−Z∗
average cost ), while the best gap is calculated in a similar way (best gap =

best cost−Z∗
best cost ). The "ALNS-[23] gap" is the gap between the best result among

SWO and TS and the average ALNS result ( average cost−best SWO/TS cost
average cost ). The

negative value of this gap shows how better the ALNS performs compared to
Meisel and Bierwirth (2009) best results. While, Tk1 is the average computa-
tional time of ALNS and Tk2 is the computational time for SWO or TS heuristics.
Tc is the time to generate the set of assignments (Ω) which is considered as part
of the ALNS.
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The results show that the average gaps of the ALNS from the best-known so-
lution for small, medium, and large scale instances are 1.6%, 2.86%, and 5.07%
respectively. These results support that the ALNS heuristic obtains good results
in short computational times. If we look at individual instance, there are �ve
instances for which ALNS obtains the optimal solutions. For the majority of
the instances, the ALNS is able to �nd the best known heuristic solution. The
improvement from average solution to best solution is 1.27% in average.

The results also show that average gaps of ALNS are mostly better than the
heuristics presented in Meisel and Bierwirth (2009). In particular, the ALNS
results are better than the best results of SWO/TS heuristics for medium and
large scale instances. For small scale instances, the best results of SWO/TS is
better than the ALNS. The average ALNS results are better or equal compared
to best of SWO/TS results in 22 of 30 instances. When the best solution of
ALNS is compared to the best solutions of SWO/TS, ALNS is better for 29 of
30 instances. The results also show that ALNS is stronger as the instance size
increases.

Showing that ALNS mostly obtains better upper bounds compared to SWO
and TS heuristics, we should also emphasize that these bounds are mostly ob-
tained in comparable computational times (Note that SWO and TS results were
obtained using a 2.4 GHz Pentium IV which must be assumed to be slower com-
pared to our computer). We also report the time to generate the set of assign-
ments which is at most 1.2 seconds. In average, ALNS consistently outperforms
SWO both with respect to optimality gap and computational time. The same
comment holds for TS except TS obtains a better gap for small scale instances.

The computational time and the optimality performance tradeo� of ALNS is
strongly a�ected by the number of iterations and the parameter φr (which con-
trols how many vessels to be removed/reinserted at every iteration). For this
reason, we do further tests that aim at pointing out the performance of the
heuristic for di�erent values of the two parameters. For the remaining param-
eters, the parameter tuning results are used. All further performance analyses
are done using the average results over 10 runs.

Figure 3.3 illustrates the average gap (a) and the average computational time
(b) for di�erent number of iterations. The results are clustered for each instance
size. The average gap of all instance sizes converge strongly after approximately
450000 iterations. The average computational time linearly increases as the
number of iteration increases. The best average gaps obtained are approximately
4.7%, 2.7%, and 1.5% for large, medium and small scale instances. Figure 3.3
supports the selection of 270000 iterations as the termination criterion, since
the gap improvements are minimal after this value and the computational times
are also reasonable.
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Figure 3.3: Analysis of number of iteration

Figure 3.4 illustrates the average gap (a) and the average computational time
(b) for di�erent values of the φr parameter. This removal parameter adversely
a�ects the number of vessels that will be removed/inserted at every iteration.
The higher value of φr results in less number of vessels to be removed, and
vice versa. Figures 3.4a and 3.4b are drawn for each instance size. Figure 3.4a
shows that the least average gap is obtained for φr values of 6 for large, 4 for
medium and 2 for small scale instances. Figure 3.4b points out that the average
computational time decreases as the value of φr increases. With the help of the
two sub�gures, we can state that the tradeo� between computational time and
optimality performance of ALNS has a break-even point at φr of 6.

Finally, we also identify how well each insertion operator performs if they are
used as the only insertion operator. We report the average increase in the
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Figure 3.4: Analysis of φr

average solution cost (%) for di�erent combinations of the insertion operators
in Table 3.6.

Table 3.6: Impact of insertion operators on the ALNS performance

Greedy insertion Smarter Greedy insertion Increase in the average cost

deterministic stochastic deterministic stochastic (%)

1 0 0 0 2.81

0 0 1 0 1.70

1 1 0 0 2.96

0 0 1 1 1.85
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The �rst observation from Table 3.6 is that each combination increases the av-
erage objective value. This means that the use of all insertion methods together
has a contribution to the ALNS algorithm. The results also show that the use of
deterministic smarter greedy insertion as the only insertion method, yields the
least amount of increase in the average objective value and the smarter greedy
insertion consistently outperforms the basic greedy insertion method in both
deterministic and deterministic+stochastic versions.

3.7 Conclusions

In this chapter, we have proposed a number of families of valid inequalities and
variable �xing methods in order to improve the state-of-the-art BACAP formu-
lations. Additionally, we have presented an ALNS heuristic to solve the problem
more e�ciently. The results show that both inequalities and the heuristic im-
prove the state-of-the-art results. The inequalities and ALNS can easily be used
for related research problems with some modi�cations.

The minimum and maximum processing time and bounds presented by Iris et al.
(2015b) have been used e�ciently to formulate the inequalities. We should
note that the average gaps of BACAP+ model are consistently better than
gaps of GSPP and BACAP models for each instance size. Compared to other
formulations in the literature, the BACAP+ model improves (or at least �nd
the same) upper bounds for all, except two instances. The best LBs obtained
by BACAP+ model are mostly better than GSPP models of Iris et al. (2015b).

The ALNS heuristic uses di�erent destroy and repair methods which diverse
the search space e�ciently. Comparative tests on instances have shown that
our heuristic can produce high quality solutions compared to other heuristics
presented in the state-of-the-art both with respect to computational time and
solution quality.

The problem formulation can also be extended to cover more complex QC plan-
ning. In this respect, a future research direction could be the modi�cation of
the ALNS to solve the BACASP.
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Chapter 4

A two-stage stochastic
programming approach to

berth and quay crane
scheduling problem under

uncertainty

This work focuses on three important problems that deal with bottleneck oper-
ations on quayside, namely Berth Allocation Problem, Quay Crane Assignment
and Scheduling Problems. The state-of-art studies mostly rely on determin-
istic vessel arrivals, known vessel loads and they mostly assume that uniform
quay crane operations are maintained. However, in reality, these parameters are
mostly random. In this study, we model the integrated berth and quay crane
scheduling problem under uncertainty as a two-stage stochastic programming
problem, we also present a decomposition algorithm to solve it. Results show
that our formulation and decomposition approach e�ciently solve the problem
and the value of stochastic information is important for the problem. 1

1C. Iris, J.G. Jin, D.H. Lee, S. Ropke, "A two-stage stochastic programming approach to
berth and quay crane scheduling problem under uncertainty", 2016, under review
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4.1 Introduction

Accounting for about 23% of 6.8 billion tons of dry cargo trade, World container-
ized trade is transported via container terminals. The recent statistics also show
that the global containerized trade have increased by 5.3% and reached 171 mil-
lion TEUs in 2014 (UNCTAD (2014)). These statistics reveal the increasing
volumes in container terminals and such an increase breeds congestions and un-
certainties in the operations. In this respect, the e�cient use of resources in
the terminal has attracted many researchers in the recent years (see following
review for application of operations research in terminal operations: Stahlbock
and Voÿ (2007)).

The performance of a container terminal heavily relies on how e�cient its quay-
side resources, which are mainly berth and quay cranes (QCs), are used. In the
literature, each of the resources has been considered in a number of problem de�-
nitions. The usage of the berthing area is among of the important problems. The
optimization of vessels' berthing positions and berthing time is formulated by
Berth Allocation Problem (BAP), while QC management is mainly formulated
by Quay Crane Assignment and Scheduling Problem (QCASP). In a version of
QCASP, only the number of QCs that will be assigned to each vessel along its
berthing interval is decided. In another version, it is also investigated which
QCs will be working on each vessel for each period and the complete schedule of
QCs is also made by considering many operational constraints. In conventional
studies, berth and QC related problems are addressed separately. However,
the number of QCs assigned to each vessel directly a�ects the berthing interval
which is a major component of BAP. As a result, integration of these problems
became very relevant.

The quayside operations are interface between the liner shipping company and
terminal operators. The �ow of information between these two parties might
fail or some delays might occur. There are many sources of uncertainties in
the planning of quayside operations which is already a complicated problem
composing of many subproblems such as BAP, QCASP, etc. The state-of-art
studies mostly rely on forecasted, deterministic vessel arrivals, and they mostly
assume that processing times are known for each vessel. In the daily operations,
the decisions about the berthing order of vessels and QC assignment are actually
made prior to knowing the exact vessel arrival times which are a�ected by some
unpredictable or uncontrollable factors (weather, congestion, lack of information
�ow, exact container load on the vessel, breakdowns of QCs, etc.).

In this chapter, we focus on modeling the integrated berth and quay crane
scheduling problem under uncertainty. It is assumed that the number of QCs
assigned to a vessel cannot change over time. Additionally, it is assumed that
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the berthing positions are known for each vessel in advance. This means we do
not determine the berthing position for each vessel, but we schedule the berthing
order with respect to given berth allocation. The problem is formulated as a
two-stage stochastic programming problem and resulting formulation is solved
both by using a Benders decomposition variant approach and a black-box integer
programming (IP) solver.

Observations from terminal operations show that the exact arrival time of each
vessel and the processing time (if q number of QCs are assigned to given vessel)
are two stochastic parameters. We assume that these stochastic parameters
realize simultaneously and they are unknown by the time of planning. Although,
there are scenarios with certain realization probabilities, and these scenarios hold
information about the stochastic parameters.

The contribution of this chapter is mainly three-fold. We formulate, to the best
of our knowledge, the �rst traditional two-stage stochastic programming model
that focuses on berth and QC scheduling problem. The stochasticity is re�ected
by parameters which strongly a�ect the decisions made by practitioners. Sec-
ondly, we propose a stage-wise decomposition approach to solve this problem.
We present valid inequalities to strengthen the formulation. The computational
results reveal that the decomposition approach performs better as the number
of scenarios increases and it is competitive with the deterministic equivalent of
the stochastic programming model. We also provide results that show the value
of information for this problem, and it helps to obtain important savings for
terminal operators.

In section 2, we present a literature review on the relevant problems. In sec-
tion 3, we introduce the problem in the mathematical form and present the
two-stage stochastic programming model. The model will be explained stage-
wise. In section 4, we present the L-shaped method, which is based on Benders
decomposition, to solve the problem. We also suggest some valid inequalities
for master problem and accelerating strategies in this section. Computational
results are discussed in section 5. Finally, we present the conclusion and the
future research potential in the last section.

4.2 Related literature

The integrated problems in the quayside operations have been attracting many
studies recently. The papers in this �eld have been extensively reviewed in
Bierwirth and Meisel (2010), Bierwirth and Meisel (2014), Carlo et al. (2013),
Iris et al. (2015b).
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The integrated Berth Allocation and quay Crane Assignment and Scheduling
Problem (BACASP) has been �rst studied by Park and Kim (2003). The authors
solve the integrated berth allocation and QC assignment problem in the �rst
stage by using a subgradient optimization strategy. The QC assignment in
the �rst stage only deals with the number of QCs to assign each vessel in each
period. The results from the �rst stage are then used in the second stage to solve
the speci�c QC assignment and scheduling problem. A dynamic programming
technique is used to solve this problem. Imai et al. (2008) present one of the
�rst mathematical models which formulates a complete BACASP. The authors
propose a genetic algorithm to solve the problem. Meisel and Bierwirth (2013)
also focus on BACASP in which three problems are deeply integrated. The
authors present various heuristic methods and test them for di�erent integration
levels of the subproblems. Turkogullari et al. (2014) formulate a novel model
for the discrete BACASP. The authors emphasize that the model is not e�ective
for large scale instances. Hence, they propose a post-processing cutting plane
algorithm over the results of a BACAP solution. Experiments show that the
largest instances can be solved to optimality with this method. Their main
assumption is that the number of QCs assigned to a vessel cannot be changed
over time (see also Iris et al. (2015b)). Li et al. (2015a) have focused on a
BACASP in which QC coverage ranges are also considered. The authors present
a mathematical model which has many similar considerations with Meisel and
Bierwirth (2009) model. They also propose a heuristic algorithm which is based
on spatio-temporal con�icts analysis.

Liu et al. (2006) is one of the �rst papers on Berth and quay Crane Scheduling
Problem (BCSP). In their berth-level model, authors assume that the berthing
position for each vessel is known in advance and they determine the berthing
start/end times, the number of QCs to assign to each vessel and which spe-
ci�c QC will be assigned. Chen et al. (2012) use the berth-level model of Liu
et al. (2006) and propose a combinatorial Benders cut algorithm to solve the
problem. In this chapter, we build our two-stage stochastic programming model
by modifying the berth-level model of Liu et al. (2006). There are two main
reasons for this. Firstly, the problem has many realistic merits, secondly the
decomposition of the problem yields a linear programming (LP) model in the
subproblem which makes the complete problem easier to solve by a stage-wise
decomposition approach.

As many literature reviews note, the number of papers that focus on the un-
certainty in quayside problems is limited. One of the �rst studies that focuses
on the uncertainties in quayside operations is Moorthy and Teo (2006). The
authors have noted the need for a model that incorporates uncertainty due to
vessel arrivals. The research papers in the �eld can be divided into two main-
stream categories. There are papers that consider some stochastic parameters
and solve the problem in a static (proactive) way (e.g. le Han, qiang Lu, and feng
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Xi (2010), Karafa, Golias, Ivey, Saharidis, and Leonardos (2013), Golias et al.
(2014), Rodriguez-Molins, Ingolotti, Barber, Salido, Sierra, and Puente (2014a),
etc.). Most of the proactive studies focus on generating robust plans by consid-
ering time bu�ers (le Han et al. (2010), Golias et al. (2014), Rodriguez-Molins
et al. (2014a)). While others present dynamic (reactive) disruption recovery
methods (e.g. Li, Jin, and Lu (2015b), Umang, Bierlaire, and Erera (2016)).

The number of studies that approach to the problem stage-wise is also very
limited. Zhen, Lee, and Chew (2011b) formulate a two-stage stochastic pro-
gramming model to solve berth allocation problem under uncertain arrival time
or operation time of vessels. The authors assume that a baseline schedule is
generated in the �rst stage. They try to minimize the cost of this baseline
schedule and expected recovery costs of all scenarios with given probabilities.
The problem is solved with a simulated annealing based algorithm. In their
study, the authors also present a dynamic recovery technique. Unlike the tra-
ditional two-stage stochastic programming problems, they allow the �rst stage
decision variables (baseline plan) to change after the realization of the scenar-
ios. This is one of the main di�erences of our work from Zhen et al. (2011b).
In a later study, Zhen (2015) focuses on tactical berth allocation problem under
uncertainty. The study proposes both stochastic programming and robust op-
timization formulations to cope with randomness in the arrival and processing
times. Heuristic methods are presented to solve the problems.

To the best of our knowledge, this study is the pioneering study that focuses on
a traditional two-stage stochastic programming formulation for a container ter-
minal problem under uncertainty. What is more, it is the �rst study that uses a
stage-wise decomposition approach to solve such a problem. The di�erent exam-
ples of stage-wise decomposition methods can be found in Pishvaee, Razmi, and
Torabi (2014), Oliveira, Nunes, Blajberg, and Hamacher (2016), Agra, Chris-
tiansen, Delgado, and Hvattum (2015), Kiya and Davoudpour (2012), Cardona-
Valdes, Alvarez, and Ozdemir (2011).

4.3 Problem de�nition and mathematical formu-
lation

The problem studied in this paper aims at �nding the berthing start and end
times for each vessel and how many QCs will be assigned to each vessel. Apart
from the number of QCs, the problem aims at determining which speci�c QCs
will be assigned to each vessel. It is assumed that the berthing position of each
vessel is known and the berthing order of vessels that share the same berthing
position at some point is given. A continuous berthing partitioning is used for



126
A two-stage stochastic programming approach to berth and quay crane

scheduling problem under uncertainty

the quay. This means a vessel or a QC can be positioned at any point along
the quay. The berthing start and end times are also continuous variables which
allows the vessel to berth at any time along the planning horizon.

Every berthed vessel has an upper and lower limit on the number of assignable
QCs. These values are determined by the size of vessel and contract between
ship operator and terminal. A limited number of QCs are available along the
berth and it bounds the maximum number of QCs that can be assigned to all
vessels at anytime.

The stochastic problem is formulated in the two stages. In the �rst stage, a
berthing order and QC assignments for all vessels are decided without any infor-
mation on the vessel arrival and processing times. The second stage (recourse)
decisions involve determining the exact berthing start and end times of each
vessel and scheduling of QCs for all vessels by considering the non-overtaking
constraints. After determining �rst stage variables, the terminal can prepare its
quay con�guration with the decided settings (e.g. pre-marshalling, moving QCs
to initial positions, etc.). This will prevent additional setup costs of QCs and
the cost of changing or updating the yard con�guration and picking up orders.
This property is the main motivation to formulate the problem as a two-stage
stochastic problem.

The problem uses discrete probability distributions of scenarios (with certain
probabilities). Each scenario holds stochastic parameters which are obtained
through a simple sampling approach. We let the probability of each scenario ω
be ρω. We try to minimize the cost of weighted completion time of all vessels and
the cost of QC operations. Since the actual arrival and processing times realize
in the second stage, there is no cost component in the �rst stage. The solution
to the complete problem includes �xed �rst stage decisions and decisions for
each second stage scenario problem.

The indices of QCs increases one by one along the berth, this increase has same
direction with the increase in the position value along the berth. Since the
berthing positions of vessels are known in advance, the precedence relationships
can be de�ned for all vessels. In the Table 6.1, we �rst present the sets and
parameters which are related to both stages, and then we list the �rst stage
variables followed by second stage variables in Table 4.2.



4.3 Problem de�nition and mathematical formulation 127

Table 4.1: Notation

Parameters and sets:
V the set of vessels that are going to be berthed in the planning

horizon, V ∈ {1, 2, ..., N} where N is the number of vessels to
berth

Φ the set of quay cranes available along the berth, Φ ∈ {1, 2, ..., Q}
where Q is the number of available (overall) QCs

T the set of vessel pairs (i, j) such that vessel j is the next vessel
that berths along some berth position occupied by vessel i

T∗ the set of vessel pairs (i, j) that include all the pairs in T and
pairs (i, j) such that {(i, i1), (i1, i2), ..., (ie, j)} ∈ T for some
vessels i1, i2, ..., , ie

U the set of all ship pairs (i, j) such that both (i, j) /∈ T∗ and
(j, i) /∈ T∗

aωi the arrival time of vessel i under scenario ω, (Stochastic
parameter)

pωiq the processing time under scenario ω when q quay cranes are
assigned to vessel i, (Stochastic parameter)

di the expected departure time of vessel i
li the (mid-point) position of vessel i
τ the total preperation time on the quayside for berthing vessel to

depart and replacing new vessel into quay
cost1i the cost of one time-unit processing time for vessel i
cost2 the cost of QC operations for one time-unit
rmini the minimum number of QCs agreed to serve vessel i ∈ V

simultaneously
rmaxi the maximum number of QCs allowed to serve vessel i ∈ V

simultaneously
Ri the set of number of QCs assignable to vessel i ∈ V , where

Ri ∈ {rmini , ..., rmaxi }
M1,M2 two large positive numbers

We now introduce the decision variables of each stage.
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Table 4.2: Decision variables

First-stage variables:
riq ∈ B 1 if q QCs are assigned to work on vessel i, 0 otherwise
zki ∈ B 1 if QC k is assigned to vessel i, 0 otherwise
yssij ∈ B 1 if berthing start time of vessel i is before berthing start

time of vessel j where (i, j) ∈ U, 0 otherwise
yscij ∈ B 1 if berthing start time of vessel i is before berthing end time

of vessel j where (i, j) ∈ U, 0 otherwise
ycsij ∈ B 1 if berthing end time of vessel i is before berthing start time

of vessel j where (i, j) ∈ U, 0 otherwise
yccij ∈ B 1 if berthing end time of vessel i is before berthing end time

of vessel j where (i, j) ∈ U, 0 otherwise
Second-stage variables:

si ∈ R+ berthing start time of vessel i ∈ V
ci ∈ R+ berthing end time (time when the handling ends) of vessel i
xski ∈ R+ the position of quay crane k at the berthing start time of

vessel i
xcki ∈ R+ the position of quay crane k at the berthing ending time of

operations of vessel i

4.3.1 Master problem and recourse function

Figure 4.1 shows an example master problem solution in a time/quay diagram.
In this example, seven vessels are berthed. Each vessel is represented by a
rectangle showing the time and space occupied by the vessel with vessel index.
The smaller rectangles in gray indicate the vessels' QC assignments with each
grey one representing one QC. The number in each of grey rectangles represents
which QC is assiged to that vessel. Each vessel has an upper and lower limit
on the number of assignable QCs (rmini , rmaxi ). A limited number of QCs are
available in the berth and this determines the maximum number of QCs that
can be assigned at The number and index of QCs does not change throughout
the vessels stay at the berth. We �rst clarify sets of vessels with this example
and then denote di�erent variables.

• T = {(1, 4), (1, 5), (2, 6), (3, 5), (4, 7), (6, 7)}
• T∗ = {(1, 4), (1, 5), (1, 7), (2, 6), (2, 7), (3, 5), (4, 7), (6, 7)}
• U = {(1, 1), (1, 2), (1, 3), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2),

(3, 3), (3, 4), (3, 6), (3, 7), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 2), (5, 4),

(5, 5), (5, 6), (5, 7), (6, 1), (6, 3), (6, 4), (6, 5), (6, 6), (7, 3), (7, 5), (7, 7)}
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Figure 4.1: Example of a master problem solution

The variables in the master problem are on vessel sequencing and QC assign-
ment. In Figure 4.1, vessel 4 has 3 QCs assigned (r43 = 1) where these QCs
are 4, 5 and 6 (i.e. z44 = z54 = z64 = 1). In this �gure, we denote these two
variables for all vessels except vessel 3. Regarding vessel sequencing variables,
vessel 1 has an earlier berthing start time compared to vessel 2 (yss12 = 1) and
its start time is also earlier than vessel 2`s end time (ysc12 = 1). Finally, the end
time of vessel 1 is earlier than vessel 2 (ycc12 = 1). Giving as an example, vessel
1`s end time is not earlier than vessel 2`s start time (ycs12 = 0), hence ycs21 takes
a value of 1. Figure 4.1 denotes various examples of these sequencing variables.
Figure 4.1 does not hold any speci�c start or end time for each vessel, because
these times can be anything that hold the sequencing conditions. We remind
the reader that berth and time axes are continuously partitioned.

We now present the following two-stage stochastic programming model:

min 0 + J(χ) (4.1)
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subject to ∑
q∈Ri

qriq =
∑
k∈Φ

zki ∀i ∈ V (4.2)

yssij + yssji = 1 ∀(i, j) ∈ U (4.3)

yscij + ycsji = 1 ∀(i, j) ∈ U (4.4)

yccij + yccji = 1 ∀(i, j) ∈ U (4.5)∑
q∈Ri

riq = 1 ∀i ∈ V (4.6)

riq, zik, y
ss,sc,cs,cc
ij ∈{0, 1} ∀(i, j) ∈ U,∀i ∈ V,∀q ∈ Ri,∀k ∈ Φ (4.7)

where

J(χ) = Eω[J(r; y; z;ω)] (4.8)

The objective of the two-stage stochastic model includes the expected cost of
second stage problem. There are no costs imposed from the �rst-stage variables
(master problem), this is because the arrival and processing time, which realize
in the second stage, determine the overall cost. Constraint (4.2) links the number
of QCs and the assignment of speci�c QCs for each vessel. Constraints (4.3)-
(4.5) are vessel sequencing constraints. They take care of vessel scheduling in
the quay. Since vessels i and j share same berthing position at di�erent time
units, either vessel i or vessel j starts or ends berthing earlier (4.3 and 4.5).
This property also guarantees that either berthing start of vessel i is earlier
than berthing end time of vessel j, or vice-versa (4.4). Constraint (4.6) ensures
that at most one QC number can be assigned to each vessel. This is because
we assume that the number of QCs that work on a vessel does not change
over time. And �nally, constraint (4.7) sets the domain of decision variables.
Here the function J(χ) accounts for the expected value of second-stage problem
J(r; y; z;ω) for the �xed values of r, y, z variables for scenario ω. By removing
J(χ) from the above formulation, we are left with the master problem for the
two-stage stochastic programming problem.

Once the �rst-stage decisions are made, the second stage recourse actions must
be taken with respect to di�erent realizations of stochastic parameters. Each
scenario, ω ∈ S, is associated with a processing time (pωiq), an arrival time (aωi )
and a probability ρω. Figure 4.2 shows an example recourse problem solution
in a time/quay diagram for scenario 1. In this example, the solution of master
problem (Figure 4.1) is inherited with QC assignment and vessel sequencing.
Figure 4.2 illustrates variables ragarding the berthing start/end times and QC
positions.
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Figure 4.2: Example of recourse problem solution for scenario 1

In Figure 4.2, QCs 1, 2 and 3 are processing at vessel 3 initially. For this
reason xsi3 and xci3 are equal to 75 for i = 1, 2, 3. This value is the mid-point
position of berthing vessel 3. Then QCs 4 and 5 are operating on vessel 1
(xs41 = xc41 = xs51 = xc51 = 250). Since vessel 1 starts berthing earlier than
vessel 3, and ends operations later than vessel 3`s berthing has started, vessel 1
and 3 are at the berth at the same time. For this reason, QCs 1, 2 and 3 hold the
positions of mid-point of vessel 3 for vessel 1 (i.e. xs11 = xc11 = xs21 = xc21 =
xs31 = xc31 = 75). This is in order to prevent the overtaking of QCs. With
respect to berthing start and end times, vessel 1 has been illustrated. It is shown
in Figure 4.2 that berthing start time is 2 (s1 = 2), while the arrival time for the
same vessel is also 2 under scenario 1 (a1

1 = 2). For vessel 1 under scenario 1,
when 2 QCs are assigned 5 hours are needed to load/unload required containers
(p1

12 = 5), while the berthing end time for vessel 1 (e1) is 7. As the x-axis
of Figure 4.2 shows, the variables of start/end time can take any positive real
number. Figure 4.2 holds some illustrative examples of the remaining variables.

For each scenario ω, the second stage recourse problem (RP) is in essence of solv-
ing a berth and QC scheduling problem. Given the berth and QC assignment
from the �rst-stage problem, in the second-stage, the berthing start/end time de-
pending on vessel's arrival/processing time and speci�c QC assignment/schedule
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is decided. The recourse problem is:

[RP ] :: J(χ) = min
∑
i∈V

cost1i
ci
di

+ cost2
∑
i∈V

∑
q∈Ri

qr̂iqp
ω
iq (4.9)

subject to

si ≥aωi ∀i ∈ V (4.10)

ci ≥si +
∑
q∈Ri

pωiq r̂iq ∀i ∈ V (4.11)

sj ≥si +M1(ŷssij − 1) ∀(i, j) ∈ U (4.12)

cj ≥si +M1(ŷscij − 1) ∀(i, j) ∈ U (4.13)

sj ≥ci +M1(ŷcsij − 1) ∀(i, j) ∈ U (4.14)

cj ≥ci +M1(ŷccij − 1) ∀(i, j) ∈ U (4.15)

xski ≥li +M2(ẑik − 1) ∀i ∈ V, k ∈ Φ (4.16)

xski ≤li +M2(1− ẑik) ∀i ∈ V, k ∈ Φ (4.17)

xcki ≥li +M2(ẑik − 1) ∀i ∈ V, k ∈ Φ (4.18)

xcki ≤li +M2(1− ẑik) ∀i ∈ V, k ∈ Φ (4.19)

xskj ≤li +M2(3− ẑik − ŷssij − ŷscji ) ∀(i, j) ∈ U, k ∈ Φ (4.20)

xskj ≥li +M2(ẑik + ŷssij + ŷscji − 3) ∀(i, j) ∈ U, k ∈ Φ (4.21)

xckj ≤li +M2(3− ẑik − ŷscij − ŷccji ) ∀(i, j) ∈ U, k ∈ Φ (4.22)

xckj ≥li +M2(ẑik + ŷscij + ŷccji − 3) ∀(i, j) ∈ U, k ∈ Φ (4.23)

xski − xsk−1,i ≥0 ∀i ∈ V, k ∈ Φ\{1} (4.24)

xcki − xck−1,i ≥0 ∀i ∈ V, k ∈ Φ\{1} (4.25)

sj − ci ≥τ ∀(i, j) ∈ T (4.26)

ẑik =z∗ik ∀i ∈ V, k ∈ Φ (4.27)

ŷssij =yss∗ij ∀(i, j) ∈ U (4.28)

ŷscij =ysc∗ij ∀(i, j) ∈ U (4.29)

ŷcsij =ycs∗ij ∀(i, j) ∈ U (4.30)

ŷccij =ycc∗ij ∀(i, j) ∈ U (4.31)

r̂iq =r∗iq ∀i ∈ V, q ∈ Ri (4.32)

ŷssij , ŷ
sc
ij , ŷ

cs
ij , ŷ

cc
ij ∈R

+ ∀i, j ∈ V, i 6= j (4.33)

xcki, xski, si, ci ∈R+ ∀i ∈ V, k ∈ Φ (4.34)



4.3 Problem de�nition and mathematical formulation 133

The objective of [RP] is to minimize the total cost of the weighted completion
time of all vessels and QC operations (4.9). Constraint (4.10) ensures that the
berthing start time for vessel i should be greater than the actual arrival time of
vessel i. Constraint (4.11) sets berthing end time when the processing time of
vessel i is set where q QCs are assigned to that vessel. The following constraints
(4.12)-(4.15) ensure that the berthing start and end times are set properly with
respect to the vessel berthing order. Constraints (4.16)-(4.23) determine QC
positions along the berth. If a QC is assigned to a vessel, it moves to the
berthing position of that vessel (4.16-4.17) and works there until the berthing
end time of that vessel (4.18-4.19). These constraints hence guarantee that the
QC operations are non-preemptive. Constraints (4.20)-(4.23) link the berthing
orders and speci�c QC assignments with the positions of QCs along the berth. It
must be also guaranteed that QCs cannot over-take each other when they move.
Constraints (4.24)-(4.25) ensure that the position of QC k is always bigger than
position of QC k − 1 at any time by assuming that positions are incremental
along the berth. For a ship pair (i, j) that uses the same berthing position
consecutively, there should be at least τ time di�erence between the berthing
end time of vessel i and berthing start time of vessel j (4.26). Constraints
(4.28)-(4.31) �x the �rst stage decision variables in the second stage. Finally,
the domains of variables are set. We should note that z∗ik, r

∗
iq, y

ss∗,sc∗,cs∗,cc∗
ij are

parameters which are inherited from master problem. The values of Big −M
should be discussed. For each given subproblem ω, M1 = max

i∈V,q∈Ri
{aωi + pωiq}

and M2 = max
i∈V
{li}.

4.3.2 Valid inequalities for master problem

In this section, we present families of valid inequalities to tighten the master
problem which is an IP formulation. We use these inequalities both in our
stage-wise decomposition approach and deterministic equivalent of the stochas-
tic programming model.

We �rstly improve the master problem with respect to the number of available
QCs in each period along the berth. If two vessels are at di�erent berth positions
at the same time-unit, they have to share the pool of QCs which is a limited
number. Therefore we can formulate a valid inequality stating that such vessels
can at most use Q QCs together. Let us �rst de�ne a new binary decision
variable Oij which is 1 if vessel i and j are at the quayside at the same time
where (i, j) ∈ U, 0 otherwise. Constraints (4.35)-(4.36) ensure that the variable
Oij is set accurately. If the berthing start time of vessel i is earlier than vessel
j and the berthing start time of vessel j is earlier than the berthing end time of
vessel i, these two vessels should be together at the berth at some time (4.35).
It must be ensured that if vessel i is at berth together with vessel j, vessel j
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should also be together with vessel i at some time (4.36). That should also be
ensured that all (i, j) ∈ T∗ should take Oij = 0, because these vessels are known
to be sharing the same berthing positions which means they cannot be at the
berth at the same time (4.37).

Oij ≥ yssij + yscji − 1 ∀(i, j) ∈ U (4.35)

Oij = Oji ∀(i, j) ∈ U (4.36)

Oij = 0 ∀(i, j) ∈ T∗ (4.37)

In order to formulate the valid inequality, we apriori generate all combinations of
vessels for di�erent number of elements ranging from 2 toN . Let us call the set of
vessel combinations Cp where p ∈ {1, 2, ..., (

(
N
2

)
+
(
N
3

)
+...+

(
N
N

)
)}. Each of these

vessel combinations holds vessels as elements. Giving an example, let us assume
that we plan 4 vessels. Then, we can write the vessel combination set as; C1 =
{1, 2}, C2 = {1, 3}, C3 = {1, 4}, C4 = {2, 3}, C5 = {2, 4}, C6 = {3, 4}, C7 =
{1, 2, 3}, C8 = {1, 2, 4}, C9 = {1, 3, 4}, C10 = {2, 3, 4}, C11 = {1, 2, 3, 4}. The set
points out which vessel combinations can share QC capacity. Constraint (4.38)
ensures that all vessels that overlap in time share at most Q available QCs.

∑
i∈Cp

∑
q∈Ri

qriq ≤ Q
{
|Cp|(|Cp|− 1)−

∑
i∈Cp

∑
j∈Cp\{i}

Oij + 1
}
∀p ∈ {1, 2, ..., |Cp|}

(4.38)

The left-hand side (LHS) of constraint (4.38) is the total number of QCs required
if q QCs are assigned for each vessel through its stay at berth. The right-
hand side (RHS) �xes the upper bound (UB) to Q only if all of the vessels in
the given combination are at the quayside at the same time. If the value of∑
i∈Cp

∑
j∈Cp\{i}Oij is equal to |Cp|(|Cp| − 1), this means that all vessels in

Cp are at the quayside together at some time point. Therefore the total QC
number that is assigned to them in total cannot be larger than Q. Constraint
(4.38) is formulated for each of the combinations in Cp.

There could be situations in which only one vessel is at berth. Hence we cannot
use the variable Oij . We can formulate a valid inequality which ensures that at
most Q QCs can be assigned to each vessel (4.39).

∑
q∈Ri

qriq ≤ Q ∀i ∈ V (4.39)
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The next set of valid inequalities deals with the assignment of speci�c QCs
to each vessel. If we know that two vessels are at the quay at the same time,
depending on the berthing position of each vessel, the speci�c QCs that might be
assigned to each vessel are limited. This property is a result of the assumption
that the number of QCs that work on vessel and QCs themselves cannot be
changed after the vessel is berthed. Constraint (4.40) guarantees that if Oij is
one and the berthing position of vessel i is smaller than vessel j, the indices of
all QCs assigned to vessel j should be higher than vessel i. (See Chen et al.
(2012) for a version of this constraint).

zki −
∑

k0∈Φ,k<k0

zk0j +Oij ≤ 1 ∀(i, j) ∈ U, k ∈ Φ, li < lj (4.40)

Vessels that are the berth at the same time cannot use the same QC. This
property is formulated as the valid inequality (4.41) where if Oij is one then zki
and zkj cannot be one together.

zki + zkj +Oij ≤ 2 ∀i, j ∈ V, k ∈ Φ i 6= j (4.41)

We can also formulate inequalities that use the information stored in the scenario
tree. The minimum and maximum arrival time of vessel i in the scenario can
be extracted. Let us call these parameters EATi, LATi (earliest arrival time
and latest arrival time) for each vessel i which is EATi = min

ω∈S
{aωi }, LATi =

max
ω∈S
{aωi }. We can also extract the minimum and maximum processing time

in the scenario tree. Let us call these parameters SPTi, LPTi (shortest pro-
cessing time and longest processing time) for each vessel i which is SPTi =

min
ω∈S,q∈Ri

{pωiq}, LPTi = max
ω∈S,q∈Ri

{pωiq}. We introduce a new positive continuous
decision variable ssi which presents the earliest possible berthing start time for
each vessel i in the master problem. We can formulate the following inequalities
which tighthen relationship between ordering of the vessels in set U.

ssi ≥ EATi ∀i ∈ V (4.42)

(LATi + LPTi)y
cs
ij ≤ ssj ∀(i, j) ∈ U (4.43)

Chen et al. (2012) formulate some valid inequalities for the problem introduced
by Liu et al. (2006). We now brie�y explain ones that our valid inequalities
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cannot dominate. If QCs k and k1 (say, k <k1) are assigned to vessel i together,
the QCs located at the interval between these two quay cranes (i.e., quay crane
k0, k< k0 < k1) should also be assigned to vessel i due to the physical constraint
of non-crossing. In the other words, the index of QCs assigned to a vessel should
be consecutive. The constraint (4.44) presents the related link.

zk0,i ≥ zk,i + zk1,i − 1 ∀i ∈ V, k, k0, k
1 ∈ Φ k < k0 < k1 (4.44)

Finally, Chen et al. (2012) discuss that if the berthing start time of vessel i is
after the berthing end time of vessel j, the berthing start time of vessel j is
also earlier than berthing start time of vessel j, such comments also hold for the
berthing end time. The constraints that address these discussions can be found
in (4.45).

yscij ≥ yssij , yccij ≥ ycsij ∀i, j ∈ V, i 6= j (4.45)

4.4 Solution method: Integer L-shaped method

The two-stage formulation can be transformed into a one compact mixed-integer
programming model which is often referred as the Deterministic Equivalent For-
mulation (DEF). In this version of formulation, each second stage variable inher-
its a new indice for each scenario and all second-stage constraints are rewritten
for each scenario. The master problem variables and constraints remain the
same. Then the objective function is the expected cost of second stage vari-
ables. (i.e. min

∑
ω∈S ρ

ω
{∑

i∈V cost
1
i
ci(ω)
di

+ cost2
∑
i∈V

∑
q∈Ri qriqp

ω
iq

}
). The

complete DEF will not be presented here, but results of it will be communi-
cated in section 4.5. When the number of scenarios increases, solving the DEF
becomes burdensome very rapidly. Hence we also propose an integer L-shaped
based decomposition approach to solve the problem.

The integer L-shaped algorithm is an extension of traditional Benders` decom-
position (L-shaped) that solves the two-stage stochastic problems which have
integer/binary variables in the master problem in an iterative fashion (Birge
and Louveaux (2011), Laporte and Louveaux (1993)). The main idea of the
L-Shaped algorithm is to approximate the non-linear term in the objective (i.e.,
the recourse function). Since the second-stage problem is an LP, J(χ) is con-
vex in χ and thus can be approximated by subgradients using optimal dual
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solutions (i.e. the recourse function also generates an optimality cut that is
subsequently included in the master problem as an additional constraint). Each
second-stage problem that is infeasible for the proposed �rst-stage decisions
generates a feasibility cut (using the extreme rays of the dual polyhedron of
the recourse problem). In the integer L-shaped method, after the traditional
L-shaped method converges (in which we solve relaxed master problem), the
binary requirements on χ are reinforced. The integer optimality cuts along with
traditional optimality cuts are also added to master problem and the procedure
continues until a termination criterion is met.

Let us assume that the general form of integer master problem of BCSP is as
follows:

min 0 +
∑
ω∈S

ρωθω (4.46)

s.t. θω + Eω,δx ≥ eω,δ ∀ω ∈ S, ∀δ ∈ I (4.47)

Dω,δx ≥ dω,δ ∀ω ∈ S, ∀δ ∈ I (4.48)

Ax = b, x ∈ {0, 1} (4.49)

and the general form of subproblems for each scenario ω (ω = 1, ..., |S|) is:

min (qs)T yω (4.50)

s.t. Wyω =hω − Tωxv (4.51)

yω ≥0 (4.52)

where x are the �rst-stage, yω are the second-stage decision variables. The xv

are the parameters that are inherited from the �rst-stage. The indice δ in the
master problem is the iteration index and set of iterations is represented by I.
We introduce a new variable θω accounting for the approximation of J(χ) in
χ for each subproblem ω. Constraint (4.47) stands for general formulation of
optimality cuts, while constraint (4.48) presents feasibility cuts. We now will
clarify the complete integer L-shaped method.

4.4.1 Integer L-shaped method

Following is the integer L-shaped algorithm which is applied for the mentioned
problem.
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Step 1: δ = 0, LB = −∞, UB =∞. Let fs, os be feasibility and optimality cuts
of problem s, respectively. First we relax the integer variables in the master
problem and obtain the relaxed master problem (RMP).

Step 2: Solve the master problem with all optimality and feasibility cuts from
previous iterations. Let (ȳ; z̄; r̄) be the optimal solution. In the �rst iteration
(δ = 0), there should be no optimality and feasibility cuts. Denote the objective
value of the master problem as ϑδ. If ϑδ ≥ LB, set LB = ϑδ.

Step 3: Check whether all second-stage problems are feasible for (ȳ; z̄; r̄) with
realizations of aωi , p

ω
iq for each ω = 1, ..., |S| by solving following LP. The ob-

jective (4.53) measures the amount by which the constraints are violated, it is
a sum of the values assigned to v+

l , v
−
l where m is the set of constraints for

each subproblem. If all |S| scenario subproblems are feasible, then go to Step
4. Otherwise, for each infeasible LP subproblem, let us say sth problem, we
introduce a new feasibility cut.

min ψ̃(v+
l , v

−
l ) (4.53)

s.t. Wyω + v+
l − v

−
l = hω − Tωxv (4.54)

yω, v+
l , v

−
l ≥0 ∀l ∈ m (4.55)

Assume that the dual vector of above-mentioned formulation is πv (associated
with the optimal basis in problem (4.50-4.52). The following constraint (4.56)
is the feasibility cut which is added to master problem for each scenario.

Dfsx ≥ dfs (4.56)

Dfs := (πv)TTω (4.57)

dfs := (πv)Thω (4.58)

Repeat Steps 2 and 3 until all the second-stage problems are feasible.

Step 4: Solve all the second-stage problems (4.50)-(4.52) to optimality. Now,
we extract the optimal dual vector of constraints in (4.51) and call this vector
πδ1(ω) where δ stands for the iteration counter.

We then update the upper bound (UB) which is the weighted sum of the ob-
jectives of all scenario subproblems where ȳω is the optimal solution to decision
variables for scenario ω:
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UB = min{UB, 0 +
∑
ω∈S

ρω(qs)T ¯yω}

In the traditional L-shaped, dual information from all of the subproblems are
combined to generate a single optimality cut. In our algorithm, a multicut
version, in which optimality cuts from each individual subproblem are added, is
implemented (see an example You and Grossmann (2011)).

θω + Eosx ≥ eos ∀ω ∈ S (4.59)

Eos := πδ1(ω)Tw (4.60)

eos := πδ1(ω)hw (4.61)

If we are in the phase of solving the integer master problem, the following
optimality cuts are also added to master problem. Given x∗ ∈ {0, 1}, we let
G(x∗) := {i : x∗i = 1} for a master problem solution. The integer optimality cut
at x∗ is then de�ned as (4.62). This cut is proposed by Laporte and Louveaux
(1993).

∑
ω∈S

θωρ
ω ≥ (J(x∗)− LB)(

∑
i∈G(x∗)

xi −
∑

i6∈G(x∗)

xi − |G(x∗)|) + J(x∗) (4.62)

The cut (4.62) puts a LB on the θω. The proof of evidence for (4.62) can be
found in Laporte and Louveaux (1993). We also formulate the no-good cut (Rei,
Gendreau, and Soriano (2007)) which states that the variables which are in the
set G(x∗) cannot take the value of one altogether in the optimal solution (4.63).
This cut ensures that at least one of the binary variables will be changed in the
value.

∑
i∈G(x∗)

xi −
∑

i6∈G(x∗)

xi ≤ |G(x∗)| − 1 (4.63)

The no-good optimality cut (4.63) also guarantees that the solution generated
in this iteration will be discarded from the feasible solution space.
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Step 5: Check if (UB − LB)/UB ≤ ε (ε is set to 10−3). If this condition is not
met and we are in the stage of solving RMP, obtain the optimality cut (4.59)
and add it to the master problem, δ = δ+ 1, and go to Step 2. If this condition
is not met and we are in the stage of solving integer master problem, obtain the
optimality cuts (4.59,4.62,4.63) and add them to the master problem, δ = δ+ 1,
and go to Step 2.

If the condition is met ((UB−LB)/UB ≤ ε), check whether we solved RMP. If
RMP is solved, impose the integrality of master problem variables back again,
δ = δ + 1, set UB = ∞ and go to Step 2. If it is the integer master problem
which is solved, then Stop, extract the optimal solution.

4.4.2 Accelerating strategies

To achieve faster convergence of the L-shaped solution approach for large-scale
optimization problems, additional enhancement techniques are used. Compu-
tational complexity of master problem is one of main reasons of tardy conver-
gence, this is due to weak cuts generated along the iterations. We suggest the
enhancements of the two-phased solution method, the use of parallel computing,
knapsack inequalities and combinatorial Benders` cuts. We now discuss each of
these acceleration techniques.

The two-phased solution approach is about solving RMP �rst until L-shaped
method converges. Since the convex hull of the feasible region for the origi-
nal master problem is contained within the LP relaxation, all added cuts in
the �rst stage are also valid for the integer master problem. Then integrality
requirements are imposed in the second phase. Since it is easier to solve LP
relaxation, such a solution method will accelerate the complete solution time
(See Froyland, Maher, and Wu (2014) for a comparison between traditional and
two-phased approach for a robust tail assignment problem).

The subproblem is an LP model that usually can be solved immediately. How-
ever, a high number of scenarios makes it time consuming to solve all of them
in a single processor machine. What is more, in our settings, we assume that all
scenarios are identically and independently distributed which means that sce-
narios do not have to share any information between them. For these reasons,
we solve each of these subproblems concurrently in multi-thread environment by
using OpenMP. The subproblems are assigned to each thread in numerical in-
dice order. Whenever all scenario subproblems are solved, exactly same cuts are
generated. Maher, Desaulniers, and Soumis (2014) compare single and multi-
thread solution approaches for a two-stage stochastic programming problem and
show the e�ciency of parallelizing subproblem solvers.
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We also formulate knapsack inequalities that use the information stored in the
optimality cuts. At an iteration i, we know that UBi ≥

∑
ω∈S θωρ

ω. What
is more the optimality cuts generated for all scenario subproblems hold the
property

∑
ω∈S θωρ

ω ≥
∑
ω∈S ρ

ω(eoω − Eoωx). This means that upper bound
will be higher than RHS of the optimality cut which can be formulated in the
form of (4.64). This cut can be added to master problem in the i+1th iteration.

∑
ω∈S

ρω(eoω − Eoωx) ≤ UB (4.64)

Such inequalities of (4.64) have been suggested by Santoso, Ahmed, Goetschal-
ckx, and Shapiro (2005). The authors note that solvers can generate useful cover
inequalities which expedite the convergence.

In order to improve the performance of feasibility cuts in the integer master
problem phase, we impose the combinatorial benders cuts (CBCs) similar to
ones which are special versions of local branching technique of Codato and
Fischetti (2006). In their paper, Codato and Fischetti (2006) argue that the
contribution of CBCs for the case, in which objective function depends on both
�rst and second stage variables, requires further computational investigation. In
this study, we conduct this analysis. Since the objective function of the two-stage
stochastic problem depends on the completion time of each vessel (second-stage)
and QC assignment (�rst-stage) decisions, we have to use the continuous copies
of y, z, r variables (ẑik, r̂iq, ŷssij , ŷ

sc
ij , ŷ

cs
ij , ŷ

cc
ij ) into the subproblems and generate

the form of constraints required for CBCs as suggested by Codato and Fischetti
(2006). We denote the row indices of constraints (4.27)-(4.32) by ∆ and the row
indices for minimal infeasible subsystems (MIS) of the current subproblem by Λ.
Note that the set of intersection (Γ) of ∆ and Λ corresponds to row indice of MIS
of each subproblem. The fundamental rationale of the CBC algorithm is that as
long as ẑik, r̂iq, ŷssij , ŷ

sc
ij , ŷ

cs
ij , ŷ

cc
ij make subproblem infeasible, it indicates that at

least one binary variable in y, z, r has to be changed to break the infeasibility.
This statement can be translated to a linear inequality called the combinatorial
Benders' cut in (4.65).

∑
t∈Γy,y∗(t)=0

y(t)+
∑

t∈Γy,y∗(t)=1

(1−y(t))+
∑

t∈Γz,z∗(t)=0

z(t)+
∑

t∈Γz,z∗(t)=1

(1−z(t))

+
∑

t∈Γr,r∗(t)=0

r(t) +
∑

t∈Γr,r∗(t)=1

(1− r(t)) ≥ 1 (4.65)
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The cut (4.65) guarantees that at least one of the y, z, r variables which make
the subproblem infeasible will be changed to its alternative value. This means
that if, for example, z11, r23, r34 are the variables that cause the infeasibility
in the subproblem, and they have the values z11 = 1, r23 = 1, r34 = 1. This
cut guarantees that at least one these variables will be set to zero to break the
infeasibility.

Proposition: The combinatorial Benders` cuts can be used as the feasibility
cuts of the integer L-shaped method and they will not violate the exactness of
the algorithm.

Proof : It is very clear that the feasibility problem of [RP] cannot be a�ect
by the objective function, it is about the constraints (4.10)-(4.34). Then we
can assume that the objective function is minimization of

∑
i∈V 0̂ ·

ci
di

+ 0̂ ·∑
i∈V

∑
q∈Ri qriqp

ω
iq for the feasibility problem. This property ensures condi-

tions "c = 0, d = 0" presented in Codato and Fischetti (2006) which proves the
preposition �

4.4.3 Alternative strategies

The performances of Benders` decomposition inspired methods depend on var-
ious factors. Many researchers note that the tradeo� might also di�er between
formulations and instance sizes. For such reasons, we further investigate the
decomposition alternatives that might perform well for the BCSP.

Trukhanov, Ntaimo, and Schaefer (2010) discuss that for integer L-shaped meth-
ods with every cut you add, RMP becomes just a bit harder, and when you solve
the master problem with integrality restrictions, it becomes burdensome very
quickly. In this sense, we test both single cut and multi cut options which simply
a�ects the number of cuts added to master problem in every iteration.

Alternative-1 (Multicut approach): The details of multicut have been explained
in the previous sections where the idea is to generate an optimality cut for each
of the scenario subproblems.

Alternative-2 (Singlecut approach): The singlecut approach is performed in the
same manner with the following modi�cation to the multicut approach. After
solving each master problem, instead of adding an optimality cut to the master
problem for each subproblem of the form (4.59), we aggregate all generated
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optimality cuts at that iteration into one single optimality cut re�ected by (4.66).

θ + Eosx ≥ eos (4.66)

Eos :=
∑
ω∈S

ρωπδ1(ω)Tw (4.67)

eos :=
∑
ω∈S

ρωπδ1(ω)hw (4.68)

This single cut is formed by multiplying each generated optimality cut with
the probability of corresponding scenario and summing them up. For singlecut
version, the general form of master problem will also be changed. The objective
(4.46) will be replaced by min 0+θ, while constraint (4.47) will be reformulated
as θ + Eδx ≥ eδ ∀δ ∈ I. Finally the integer optimality cut (4.62) should have
a LHS of θ.

4.5 Computational results

In this section, we present computational results of integer L-shaped methods
and DEF on various test problems. All computational experiments are run on
a 32 core AMD Opteron at 2.8Ghz and 132Gb of RAM computer. Runtimes
are measured in seconds. The integer L-shaped approach is implemented in
C++ using Concert Technology, and models are solved by using CPLEX 12.6.1.
All available cores are used in parallel to solve the subproblems. The master
problem is solved with the CPLEX option of emphasizing the optimality by
using one thread. The preprocessor and dynamic cut generator options are
disabled for solving the subproblems. The imposed computational time limit is
18000 seconds (5 hrs) for all models and L-shaped approaches.

4.5.1 Data set

The talks with various container terminals have shown us that the arrival time
and exact container load (i.e. consequently processing time) of the upcoming
vessels realize approximately two days before the expected arrival time. What
is more, three days before of vessel`s expected arrival, the shifts and QC mainte-
nance plans are also available. This information supports the assumption of the
simultaneous realization of arrival and processing time. Such a planning policy
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results in a 2-3 days of planning horizon. The benchmark used in this study
consists of 10, 26 (N) vessels and we assume that 8 (Q) QCs are available to
load/unload the containers. We test the methods for three di�erent scenario set-
tings ranging between 10 to 640 scenarios for each vessel-QC combination. This
means that in total, we generate 6 di�erent data sets to test the approaches.

In order to generate each particular instance, we use Chen et al. (2012) data
as the seed. The size of each vessel is randomly generated between 4 and 20
vessel-holds where each of them requires some QC-hours randomly distributed
between 1 and 6 hours. The arrival, processing time and τ(=1) are all measured
in hours. The berthing positions of vessels and positions of QCs are measured
in meters along the berth. We assume that each vessel i has an Ri set ranging
between 1 to 5 QCs, while cost2 are 1 for all QCs. The scenario information is
randomly generated for both vessel arrival and processing time. Assuming that
|S| scenarios are used in a setting, each scenario ω has a probability ρω of 1/|S|.

4.5.2 Results

Table 4.3 summarizes the computational results for two versions of the integer
L-shaped method and DEF. In this table, the column "#" indicates the instance
ID, while columns N, |S| show the number of vessels and scenarios, respectively.
The columns named "Z" hold the best upper bounds obtained, while "LB"
report the best LBs found within the time limit. The optimality gap (G =
Z−LB
Z ) is calculated between the upper and lower bounds. The columns "TOPT "

show the overall time spent to solve the problem. The integer L-shaped methods
have two additional columns which present the performance of �rst-phase of
integer L-shaped approach (where we solve RMP). The columns named "ZRMP "
show the best bounds obtained when �rst-phase is converged, while "TRMP "
report the time that it takes to coverge for the �rst-phase.
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Table 4.3: Computational results: Integer L-shaped method and DEF

Integer L-shaped (Alternative-1)

# N |S| Z LB G(%) TOPT ZRMP TRMP

1

10

10 3238.2 2541.3 21.5 18000 2258.0 87

2 320 3722.6 2933.9 22.4 18000 2584.2 2327

3 640 3986.9 2837.0 28.8 18000 2672.2 5216

4

26

10 12658.3 5401.4 57.3 18000 4644.1 1324

5 320 34841.6 19874.2 42.9 18000 16870.5 7533

6 640 38153.9 20145.3 47.2 18000 17545.6 11129

Integer L-shaped (Alternative-2)

1

10

10 3377.2 2474.3 26.7 18000 2258.0 187

2 320 3831.6 2927.9 23.5 18000 2584.2 2427

3 640 4138.3 2843.0 31.3 18000 2672.2 6018

4

26

10 12744.3 5516.2 56.7 18000 4644.1 1814

5 320 33612.8 20182.3 39.5 18000 16870.5 8612

6 640 37871.0 21548.6 43.1 18000 17545.6 12012

DEF

1

10

10 3128.9 3027.9 3.2 18000 - -
2 320 3796.2 2642.0 30.3 18000 - -
3 640 4159.8 2817.4 32.2 18000 - -
4

26

10 9651.0 7218.9 25.2 18000 - -
5 320 28021.8 19820.5 29.2 18000 - -
6 640 31827.1 20814.9 34.6 18000 - -

Results show that solving BCSP under uncertainty is a challenging problem. It
is clear that increasing the number of vessels for the same amount of available
QCs makes it even harder to solve. In average, the optimality gap obtained is
24.4% for 10 vessels instances, while this is 39.3% for 26 vessels instances.

For smaller number of vessels, integer L-shaped methods mostly obtain better
upper and lower bounds compared to DEF. This comment is stronger for the
increasing number of scenarios. Such an outcome supports the rationale of the
use of an integer L-shaped method since this method solves each subproblem
separately. For smaller number of vessels, integer L-shaped methods �nd better
upper and lower bounds for 320, 640 scenario instances. However, the DEF
outperforms the decomposition results for 10 scenario instances. For larger
number of vessels, the problem becomes strongly complicated for both DEF
and decomposition methods. Results show that lower bounds of integer L-
shaped methods are mostly better than DEF for large scenario trees (320, 640
scenarios). The upper bounds by DEF are however better for all scenario sizes
for large number of vessel instances. We can note that DEF is still competitive
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with a decomposition method for this version of the problem. It should be noted
that for instances with 26 vessels, the original version of valid inequality (4.38)
contains more 70 million constraints, so this valid inequality is just generated
with the assumption that at most 5 vessels can be in the berth at the same time
for these intances. The exactness of the method will not be violated since this
constraint is a valid inequality for the master problem.

The comparison between alternative integer L-shaped methods is also relevant.
Results show that depending on the size of instance, the �rst-phases of integer
L-shaped methods converge after reasonable amount of time. In the average,
multicut spends less time (4602 sec) to converge compared to singlecut (5178
sec) in the �rst-phase. This is expected, because multicut version is proved
to be time-e�cient for solving relaxed master problems. The values of lower
bound after the converge of the �rst-phase are the same for the two versions.
After imposing the integrality restrictions in the second-phase, the mixed integer
linear programming master problem exploits easily for larger problem sizes.
Results show that single cut version which has fewer constraints compared to
multicut version obtains better results when the number of vessels is increased.
This comment is supported from the observation that the gaps obtained for 26
vessels intances are always better for singlecut version. For 10 vessels instances,
multicut integer L-shaped method is still better for all scenario sizes. The results
of the �rst-phase of integer L-shaped method are lower bounds for the complete
problem. Hence we can analyze the improvements from the �rst-phase with
respect to lower bounds. For 10 vessels instances, the integer L-shaped methods
obtain an average of 8.6% improvement over the �rst-phase lower bounds, while
this increase is 15.4% for 26 vessels instances.

We further investigate the contribution of the stochastic programming approach.
Getting an average of all random scenario information and including them in one
model for simplifying the solution is called the expected value (EV) problem.
We �rst solve the DEF for only one scenario in which we use average scenario
information for stochastic parameters (EV problem). The expectation of the
expected value (EEV) is obtained by resolving RP for all scenarios, after �xing
the �rst-stage values obtained from the EV solution. The weighted average of
the optimal objective value for each scenario is the EEV. The value of stochastic
solution (VSS) is the cost of disregarding arithmetic mean of vagueness while
making decision. The VSS is calculated by subtracting the best upper bound
of integer L-shaped or DEF from EEV (i.e. VSS=EEV-RP).

Another indicator is about the cost of uncertainty or the maximum amount the
decision maker is willing to pay in order to make a decision without uncertainty.
In order to calculate this parameter, decision maker should be supplied with
the solution of complete information. This is called as wait-and-see (WS) prob-
lem. In this problem, DEF is solved for each scenario separately, afterwards
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expected value of all scenario subproblems are found with the weighted average
of the optimal objective value for each scenario. The expected value of perfect
information (EVPI) is the di�erence between solution of WS problem and the
best upper bound of integer L-shaped or DEF (i.e. EVPI=RP-WS). Higher
EVPI means that uncertainty is important to the problem. The RP values are
obtained from the best upper bounds in Table 4.3. We report the EEV, RP,
WS VSS, EVPI results for each instance in Table 4.4.

Table 4.4: Importance of uncertainty for berth and QC scheduling problem

EEV RP WS VSS EVPI EVPI/RP (%) VSS/RP (%)

N,|S|

10v,10s 3149.1 3128.9 3040.1 20.2 88.8 2.83 0.64

10v,320s 3801.8 3722.6 2488.9 79.2 1233.7 33.14 2.12

10v,640s 4041.3 3986.9 2912.6 54.4 1074.3 26.95 1.36

26v,10s 9716.8 9651.0 6971.8 65.8 2679.2 27.76 0.68

26v,320s 28435.1† 28021.8 †† 413.3 - - 1.47

26v,640s 30582.6‡ 31827.1 †† -1244.5 - - -

† represents that CPLEX had 1% gap after 5 hrs in order to solve EEV, while †† means that
many instances of 320/640 scenarios cannot be solved to optimality in 5hrs, for this reason

WS are not presented,

‡ represents that CPLEX had 4% gap after 5 hrs in order to solve EEV

Results show that the stochastic programming solutions payo� for almost all
instances except the 26v,640s instance, this is mainly because very large scale
instances cannot be solved perfectly with the current methods available to us.
For 10 vessels instances, VSS values are all positive. This means that stochas-
tic programming methods would obtain better results compared to expected
value based methods. For 10 vessels instances, the EVPI remains a lot higher
than VSS value. This means that further improvements can be achieved in the
stochastic programming methods. High values of EVPI point out that manage-
ment of uncertainty is very important for this problem. For 10 vessels instances,
higher number of scenarios traditionally results in higher EVPI/RP(%) values.
This can be observed from 10 v 320/640 scenarios. However, this is not the case
between 320 v 640 comparison, because RP is not solved perfectly to optimality
by our methods for these instances.

For 26 vessels instances, results are more erratic. Due to computational com-
plexity of the problems for larger scenario sizes, we cannot solve many problems
to optimality to obtain EEV and WS, what is more RP solutions presented have
high optimality gaps. For these reasons, larger scenario sizes might be mislead-
ing to evaluate. However, results show that VSS values for 10, 320 scenarios
are positive. This supports that an improvement has been made compared to
expected value problem. For the largest instance, solving EEV obtains a better
solution compared to stochastic programming method. This is mainly because
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even RP result has an optimality gap of 34.6%.

Results show that uncertainty is an important part of decision making for BCSP.
Having high uncertainties, terminals might take risk-averse approaches to solve
this problem. In the next subsection, we will analyze the results of our formu-
lations for risk-attributed settings.

4.5.3 Risk-averse stochastic programming for BCSP un-

der uncertainty

The traditional two-stage stochastic programming which is based on expected
value of second stage problem has a risk-neutral approach. Since the in�uence
of berth and QC scheduling problem has a strong impact on the terminal per-
formance, some terminals might select a risk-averse approach. Then they might
plan the seaside operations with the safe mode. In this section, we use the
conditional-value-at-risk (CVaR) as the risk measure for the BCSP and it is
incorporated into the objective function. CVaRα is the conditional expected
value exceeding the value-at-risk at the con�dence level α.

Noyan (2012) has proved that for the case of �nite probability space, one can for-
mulate a general mean-risk problem to solve two-stage stochastic programming
formulations. In this approach, λ is used as the positive trade-o� coe�cient
representing the exchange rate of mean cost for risk (i.e. the risk coe�cient).
We will test di�erent values of the risk coe�cient (Any terminal may select a
level of risk coe�cient for its attitude against risk).

Computational results show that DEF is competitive with the integer L-shaped
methods for BCSP. For this reason, we will present the DEF results for the mean-
risk [MR] stochastic programming problem for BCSP. As we have mentioned
decision variables for the DEF in section 4.4, we will not introduce them into
detail. Following model is used as the DEF:

[MR] = min
∑
ω∈S

ρω
(∑
i∈V

cost1i
ciω
di

+cost2
∑
i∈V

∑
q∈Ri

qriqp
ω
iq

)
+λ
(
η+

1

1− α
∑
ω∈S

ρωυω
)

(4.69)
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subject to

(4.2)− (4.6) (4.70)

siω ≥aωi ∀i ∈ V, ω ∈ S (4.71)

ciω ≥siω +
∑
q∈Ri

pωiqriq ∀i ∈ V, ω ∈ S (4.72)

sjω ≥siω +M1(yssij − 1) ∀(i, j) ∈ U, ω ∈ S (4.73)

cjω ≥siω +M1(yscij − 1) ∀(i, j) ∈ U, ω ∈ S (4.74)

sjω ≥ciω +M1(ycsij − 1) ∀(i, j) ∈ U, ω ∈ S (4.75)

cjω ≥ciω +M1(yccij − 1) ∀(i, j) ∈ U, ω ∈ S (4.76)

xskiω ≥li +M2(zik − 1) ∀i ∈ V, k ∈ Φ, ω ∈ S (4.77)

xskiω ≤li +M2(1− zik) ∀i ∈ V, k ∈ Φ, ω ∈ S (4.78)

xckiω ≥li +M2(zik − 1) ∀i ∈ V, k ∈ Φ, ω ∈ S (4.79)

xckiω ≤li +M2(1− zik) ∀i ∈ V, k ∈ Φ, ω ∈ S (4.80)

xskjω ≤li +M2(3− zik − yssij − yscji ) ∀(i, j) ∈ U, k ∈ Φ, ω ∈ S
(4.81)

xskjω ≥li +M2(zik + yssij + yscji − 3) ∀(i, j) ∈ U, k ∈ Φ, ω ∈ S
(4.82)

xckjω ≤li +M2(3− zik − yscij − yccji ) ∀(i, j) ∈ U, k ∈ Φ, ω ∈ S
(4.83)

xckjω ≥li +M2(zik + yscij + yccji − 3) ∀(i, j) ∈ U, k ∈ Φ, ω ∈ S
(4.84)

xskiω − xsk−1,iω ≥0 ∀i ∈ V, k ∈ Φ\{1}, ω ∈ S
(4.85)

xckiω − xck−1,iω ≥0 ∀i ∈ V, k ∈ Φ\{1}, ω ∈ S
(4.86)

sjω − ciω ≥τ ∀(i, j) ∈ T, ω ∈ S (4.87)

(4.35)− (4.45) (4.88)

υω + η ≥
∑
i∈V

(n1
i

ciω
di

+ n2
∑
q∈Ri

qriqp
ω
iq) ∀ω ∈ S (4.89)

(4.7) (4.90)

η ∈ R, siω, ciω, υω ∈R+ ∀i ∈ V, ω ∈ S (4.91)

xckiω, xskiω ∈R+ ∀i ∈ V, k ∈ Φ, ω ∈ S (4.92)

Constraint 4.89 has n1
i , n

2 parameters which are cost1i , cost
2, written so due to space limit.

There are two new decision variables for the mean-risk problem. Note that the
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Table 4.5: The expected cost vs risk-measure for di�erent risk-averseness levels

N,|S|: 26v,320s λ=0, α=0.9 λ=0, α=0.7 λ=5, α=0.9 λ=5, α=0.7

RP 28021.8 28021.8 28192.6 28107.3

CVaRα 280218.3 93406.1 47257.8 40552.9

MR 28021.8 28021.8 264481.6 230871.8

G(%) 29.2% 29.2% 26.4% 28.8%

N,|S|: 26v,320s λ=10, α=0.9 λ=10, α=0.7 λ=100, α=0.9 -

RP 28370.6 29424.8 28364.3 -

CVaRα 48907.1 41530.3 48305.1 -

MR 517441.3 444727.3 4858874.4 -

G(%) 28.3% 30.8% 27.1% -

variable η is a �rst-stage variable which retrieves an approximation of the value-
at-risk and the excess variables, υω, ω ∈ S are second-stage variables. Objective
function (4.69) is a combination of the expected value of the cost function and
perception of risk attributed to scenarios. Note that increasing the value of λ
would increase the relative importance of the risk term and so would lead to
more risk-averse policies. The speci�ed α level represents the risk preference
in percentage terms, it quanti�es the mean value of the worst (1-α)100% of
the total costs. When α increases the corresponding value-at-risk increases and
CVaRα (i.e. η + 1

1−α
∑
ω∈S ρ

ωυω) accounts for the risk of larger realizations.
Thus, larger α values would also lead to more conservative policies, which give
more weight to worse scenarios. Constraint (4.89) sets the excess variables for
each scenario which the di�erence between �rst stage variable η and the expected
cost value.

In order to test the DEF for the mean-risk problem, we focus on 26 vessels,
320 scenarios instance. In Table 4.5, we present the value of expected cost
for di�erent risk-attribute settings. Results show that for extreme risk-averse
scenarios the planning is mainly done for the case of worst-scenario outcomes.
For this reason, the expected cost value increases as the decision leans more on
conservative policies.

Results show that larger λ values provide higher expected cost for the similar
optimality gaps. This means that these plans are formed according to worst
case scenarios (very late arrival or longer processing times) for larger λ values.
However, we cannot make such a claim for α, i.e. larger α values do not increase
the expected cost all the time. For a �xed λ value, the expected cost might
increase or decrease according to results. This speci�c comparison might be
misleading since the gap of DEF is di�erent for two cases (λ=5, α=0.9/0.7).
Regarding the value-at-risk for similar optimality gap values, there is a clear
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decrease in the value with the increasing λ values. This is expected because
putting a higher risk-averseness will result in lower risk measure factor. What
is more, for larger α values, we obtain higher the value-at-risk value by its
de�nition.

4.6 Conclusion and future research

In this chapter, we have presented a novel two-stage stochastic programming
approach to solve berth and quay crane scheduling problem under arrival time
and processing time uncertainties. The studies in container terminal operations
mostly rely on estimated deterministic data. We go beyond these assumptions
and use discrete probability distributions to re�ect scenarios for stochastic pa-
rameters. The stochastic programming model that we suggested is also solved
with an integer L-shaped method. We also present a number of valid inequal-
ities to enhance the formulations. The expected two-three days of planning
horizon makes the problem more applicable for terminal operators. Computa-
tional results show that container terminals can make measurable cost savings
by implementing stochastic programming methods rather expected value based
solution methods. We also show that for higher number of scenarios, the integer
L-shaped method outperforms DEF both for upper and lower bounds.

We also conduct an analysis to evaluate di�erent versions of the integer L-shaped
method in which the number of optimality cuts generated in each iteration dif-
fers. Results point out that contrary to traditional L-shaped method to solve LP
master problems, in integer L-shaped method, singlecut approach outperforms
multicut for larger scenario trees and larger instance sizes. The higher number
of constraints added to master problem in multicut version makes it harder to
solve when integrality of binary variables are imposed. We evaluate this expla-
nation as the reason of degrading performance of multicut version against single
cut for enlarging problem sizes.

We also formulate a risk-attributed stochastic programming model for the prob-
lem. Results for fairly large scale instance show that putting a high risk-averse
pro�le increases the overall costs, adverse it reduces the risk of not �nishing the
operations too late.

Future research should be focused on improving the performance of integer
L-shaped method. Some properties of subproblem result in weaker cuts, we
intend to come up with alternating optimality cuts for the mixed integer master
problem. What is more, a branch-and-cut based integer L-shaped can be im-
plemented. In this method, we are not expected to solve the master problem to
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optimality in each iteration, instead we can branch on the current node which
will reduce the computation e�ort to explore branch-and-bound tree at every
iteration. Regarding the problem de�nition, we can incorporate the unexpected
QC breakdowns into the two-stage stochastic formulation. A possible break-
down of a QC will not only increase the processing time of a vessel, it will also
a�ect the movement of all QCs around it. We can integrate this property into
the problem de�nition.



Chapter 5

A survey on the Ship
Loading Problem

Recent statistics show that large container terminals can process more than 30
million containers a year, and are constantly in search for the better ways to
optimize processing time, deliver high quality and pro�table services. Some of
the terminal decisions are, however, dependent on externalities. One of those is
the ship loading process. Based on the stowage plan received by liner shippers,
terminal operators plan the execution of load and discharge operations. In this
chapter we present a literature review for the Ship Loading Problem, where
stowage and loading sequencing and scheduling are integrated to improve the
e�ciency of the ship handling operations. We present a survey of the state-of-
the-art methods and of the available benchmarking data.1

5.1 Introduction

The World economy has always relied on the ability of transporting goods. With
the introduction of containerized shipping, global supply chains have �ourished

1C. Iris, D. Pacino, "A survey on the Ship Loading Problem", Computational Logistics,

Lecture Notes in Computer Science, Vol. 9335, pp. 238-251, published
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and are now demanding more cost e�cient and reliable transport. Liner shippers
have responded by increasing the capacity of their �eet, deploying vessels of over
18.000 TEUs. Capacity is, however, not enough. A reliable service requires the
goods to arrive on time, and it is here that container terminals play a major role.
Recent statistics show that container terminal throughput, totaling worldwide
651.1 million TEUs in 2013 UNCTAD (2015), is estimated to increase by 5.6%.

As it can be seen from recent literature surveys Steenken et al. (2004); Bierwirth
and Meisel (2010); Kim and Lee (2015), there is an increased interest on the
use of optimization techniques for the planning of terminal operations. More-
over, there is a growing trend on integration approaches trying to increase the
�exibility of the currently rigid hierarchical planning practices.

With this study, we aim at bringing the readers' attention to the Ship Loading
Problem (SLP), where integration e�orts go beyond terminal operations and try
to reach the liner shipper as well. Traditionally, the liner shipper is responsible
for generating stowage plans suitable for the current and future ports. Stowage
coordinators spend great e�ort in generating plans that are both feasible in
terms of vessel stability and e�cient in terms of load and discharge operations.
Terminals then plan the container sequencing accordingly. The position of a
container in the vessel can, however, have a large impact on the needed trans-
portation time of the container to and from the yard. More control over stowage
planning would enhance the terminal's ability to e�ciently plan ship handling
operations. Common ground for both liner shippers and terminal operators,
is the class based stowage plan. Class based stowage plans assign classes of
containers to positions in the vessel rather than speci�c containers. Since the
assignment of speci�c containers to each class has no impact for the objective of
the liner shipper Pacino et al. (2011), this then leaves terminal operators with
two planning decisions: 1) generating an operative stowage plan (a detailed
stowage plan assigning containers to classes Monaco et al. (2014)) 2) sequencing
of container load operations. Container sequencing is governed by precedences
dictated by the physical position of the containers on the vessel e.g. the load
sequence between two containers in the same stack (or row) cannot be changed,
while it can if the containers belong to two di�erent stacks. The integration
between these two planning decisions allows a degree of freedom that, accord-
ing to existing literature (e.g. Monaco et al. (2014); Steenken, Winter, and
Zimmermann (2001)), has a large impact on terminal costs and handling time.

In this chapter we present a literature study of the SLP and its variants. We
wish to illustrate the current state-of-the-art methods and identify interesting
research opportunities. Also, we survey the currently used benchmarks and
point out missing features in the conclusion. This chapter is organized as follows:
First, the SLP is introduced in Section 5.2. The literature and benchmark
review are presented in Section 5.3, including a comprehensive comparison table.
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Finally, Section 5.4 draws conclusion and presents future work.

5.2 The Ship Loading Problem

When a container vessel arrives at port, handling equipment is immediately
mobilized to service the ship. The management of loading operations, planning
of the equipments to use and their scheduling is what we de�ne as the SLP. In
this sense, equipment scheduling heavily relies on the stowage plan of the vessel
and on the sequence in which the containers are to be loaded. As depicted in
Figure 5.1, we de�ne the SLP as the integration of four terminal planning prob-
lems: operational stowage planning, load sequencing, equipment assignment and
equipment scheduling.

Ship Loading Problem

Operational 
Stowage 
Planning

Load 
Sequencing

Equipment 
Assignment

Equipment 
Scheduling

Figure 5.1: Ship Loading Problem composition

Let us then de�ne the SLP by describing each of those problems and their
interaction. The term operational stowage plan was �rst introduced in Monaco
et al. (2014) to distinguish between the stowage planning problem (solved by
the liner shipper) and the operational re�nement of it done by the terminal.
Brie�y, during stowage planning, an assignment of containers to vessel positions
is performed. The assignment must ful�ll stability requirement for its entire
journey (not only the current port), while minimizing overstowage (re-handling
of containers) and handling time. A class based stowage plan, is a plan where
container types are assigned to vessel positions rather than actual containers,
thus leaving the �nal match between containers and container classes to the
terminal. We refer to this last container assignment as the operational stowage
planning problem. The advantage of letting the terminal perform this operation
can be easily described. Since the liner shipper has no knowledge of the yard
arrangement, a detailed stowage plan might be costly in terms of transportation
time. In Figure 5.2, it is shown how transportation time can be reduced by
switching the assignment of two containers (c1, c2) that belong to the same
class (t1). Container classes are de�ned by their weight, length , height , etc.
We refer the reader to Pacino et al. (2011) for a more in-depth description.



156 A survey on the Ship Loading Problem

t1

t1

c 1c 2

Ya
rd

 B
lo

ck
s

Ve
ss

el

Original stowage 
plan from the liner

Operational stowage 
plan from the terminal

c 1, c 2 Two containers of the 
same class t1

Figure 5.2: Operational stowage planning

Independently on whether the terminal receives a detailed or class based stowage
plan, there is still a degree of �exibility, the optimization of the loading sequence.
The Load Sequencing problem aims at better utilizing the yard equipment during
vessel handling. The sequence in which containers must be loaded is governed
by physical rules, e.g. the sequence between two containers destined to the same
row cannot be changed. It is, however, up to the terminal to decide the sequence
of containers on di�erent rows or bays. Some terminal use prede�ned loading
policies, such as "sea to land" where containers are loaded row or tier wise for the
sea to the land side. This decision can also be seen as an optimization problem.
Figure 5.3 shows an example where an optimized load sequence can greatly
improve the total handling time (the value in parenthesis). Once a loading
sequence if �nalized, further handling time improvements can be achieved by
allowing the pre-marshaling (Caserta and Voÿ (2009)) of yard blocks. This is,
however, outside the scope of the SLP.
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Optimization:
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c3 c4 c5c6 c1 c2c7

(21)
(14)

Figure 5.3: Load sequencing example.
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Load sequencing, can only be done given the ready times of each container. By
ready time we mean the time a container is ready to be loaded on the vessel,
that being by a Quay Crane (QC) or reach stacker. The ready times depend
on the equipment assigned to the vessel (QCs, straddle carriers, reach stackers,
trucks etc.). At the same time the load sequence in�uences the scheduling of
the equipment, thus making the integration of load sequencing and equipment
assignment and scheduling an obvious choice.

Each of the previously mentioned planning problems de�nes the SLP, no matter
whether they are solved hierarchically or as an integrated problem. The main
objective of the SLP is the minimization of the total handling time. This can be
interpreted as a minimization of re-handles in the yard and of the transporta-
tion times. Secondary objectives can be the minimization of costs associated
to the used equipment. Hard constraints are mainly related to the stability
requirements of the vessels and to the capacity of the terminal equipment.

5.3 Literature Review

The SLP is not well studied in the literature. The variety of settings, assump-
tions, and objectives considered in previous studies highlights the lack of a
commonly accepted view of the problem. As mentioned in the previous section,
we de�ne the SLP as a combination of the operational stowage planning prob-
lem, the load sequencing problem and the equipment assignment and scheduling
problem. Most of the works present in the literature can be classi�ed as belong-
ing to one of those sub problems, yet some authors present some integration
e�orts. The information needed to classify a problem has been inferred from
the context, if not explicitly provided by the authors.

During our literature review we compare contributions based on three main as-
pects: problem structure, objective function and solution approach. The prob-
lem structure identi�es the output of the planning problem, the constraints and
assumption wrt. yard equipment, use of loading policies etc. Table 5.1 presents
a comparison of the relevant literature. It is worth noticing that the number of
scienti�c works is not overwhelming. From now on, we will assume the terminal
as the decision maker and that only loading operations are taken into account.
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5.3.1 Operative Stowage Planning Literature

To the best of the authors' knowledge, Monaco et al. (2014) is the only work that
focuses entirely on the operative stowage planning problem. In Monaco et al.
(2014) the input of the problem is a class-based stowage plan. The authors
propose a mathematical formulation for the assignment of containers to classes.
Since vessel stability constraints are already ful�lled in the class-based stowage
plan, only stack weight capacity and weight sorting requirements are modelled.
The model aims at minimizing the total travel distance and the number of
re-handles in the yard. It assumed that the terminal is operated by straddle
carriers, and that there are no restrictions on the number of available vehicles.
Since the mathematical formulation does not scale to realistic instance, a two-
phase Tabu Search algorithm is proposed. A comparison with container terminal
data, reveals that the model underestimates the yard re-handles, which the
authors attribute to the stochastic nature of the problem.

5.3.1.1 Stowage Planning with Terminal Considerations

In our de�nition of the SLP, we assume that stowage planning is the responsi-
bility of the liner shipper. A number of works in the literature, however, do not
share the same idea (e.g. Ambrosino and Sciomachen (2003); Sciomachen and
Tanfani (2007); Zhao, Mi, Mi, and Chai (2013)). In these works, it is assumed
that the terminal has full control over the positioning of containers in the vessel.
The optimization problem that needs to be solved is then the stowage planning
problem. Since it is not the scope of this survey to review stowage planning
literature, we limit ourselves to the description of those works that include as-
pects of terminal optimization. It is also debatable (at least for liner shipping),
whether the terminal should be responsible for the stowage plan.

The work presented in Imai, Nishimura, Papadimitriou, and Sasaki (2002) is one
of the �rst stowage planning model that considers the minimization of yard-re-
handles. The model formulates the stability of vessel only in terms of GM (the
distance between the center of gravity and the metacenter). No distinction is
made between the di�erent container types or their destinations. An estimate of
the number of re-handles is calculated and included in the objective function as
well. The estimate is shown to be a fair estimation of the real re-handles. In a
later paper Imai et al. (2006), the authors include trim and healing (longitudinal
and transversal listing of the vessel) to the model. The stability constraints are
still handled as an objective rather than a constraint. Also, the improved model
includes the modeling of a yard with multiple rows. Due to the model complex-
ity, the authors propose a solution approach based on genetic algorithms. As in
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Monaco et al. (2014), there are no restrictions in terms of handling equipment.

In Ambrosino and Sciomachen (2003), a stowage planning model is used to ana-
lyze the impact of two di�erent load policies: pre-marshaling (Caserta and Voÿ
(2009)), and the sort and store policy. The model distinguished between con-
tainer length, weight, discharge port and power requirements. Vessel stability is
heuristically handled by balancing the front-back and right-left side of the vessel
(an in-depth description of the model can be found in Ambrosino et al. (2004)).
The generated stowage plan is then evaluated in terms of yard re-handles using
the two policies. The stowage planning model was also used for the implemen-
tation of the sort and store procedure, which resembles just-in-time planning
where the stowage plan is repetitively computed for the current subset of avail-
able containers. The authors argue that equipment costs must be taken into
consideration before a clear conclusion can be drawn.

Another terminal e�ciency analysis, that uses a stowage planning model, is
presented in Sciomachen and Tanfani (2007). Here the same stowage planning
problem as in Ambrosino et al. (2004) is considered. The problem is solved
using a 3D-Bin Packing approach that, included into a hierarchical heuristic
procedure, models the assignment of containers to QC. In a �rst phase the set
of containers is heuristically distributed among the cranes. The containers are
then assigned to the vessel by the stowage planning procedure. Mind that here,
as an extra requirement, a stowage planner has identi�ed subsections of the
vessels to be used for containers with speci�c discharge ports. The generated
plan is then evaluated in terms of quay crane productivity. A simpli�ed version
of this problem is studied in Zhao et al. (2013) where the authors wish to
minimize the concentration of containers coming from the same yard block and
thus focus on decreasing the interference in the yard. A mathematical model
is presented, but no comments are given to the e�ectiveness of the approach in
terms of terminal operations.

5.3.2 Load Sequencing Problem Literature

Literature on the Load Sequencing Problem is scarce. To the best of the au-
thors' knowledge, only �ve works focus on this problem, yet the approach to
the problem is very di�erent. Di�erently than all the works surveyed until now,
Meisel and Wichmann (2010) approaches the minimization of containers reshuf-
�es directly within the vessel. The authors argue that the best loading sequence
can be obtained by allowing changes to the stowage plan of each bay. The
problem deals with �nding a sequence of container moves that converts a given
arrival con�guration of a bay into a detailed stowage plan con�guration within
minimum service time. The objective is de�ned as the total processing time
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of container moves and empty crane movement. This de�nition of the problem
enables the exploitation of quay crane double cycling (i.e., alternating loading
and unloading operations), and minimizes internal reshu�es within bays. The
approach assumes that a departure con�guration is given for the vessel, then no
considerations are made to the impact of the stowage changes on the next port
of calls. The proposed model is solved using a Greedy Randomized Adaptive
Search Procedure (GRASP).

The following works move the focus on yard operations. In Lee, Kang, Ryu,
and Kim (2005) the aim is the generation of balanced QC loading plans with
respect to Transfer Crane (TC) assignment. The objective is the minimization
of the total travel distance between all TCs and their setup cost when moved to
pick up containers in a di�erent yard block. The authors propose the following
approach to cope with the complexity of the problem. Given a detailed stowage
plan, containers are grouped into classes (by size and destination, e�ectively
generating a class-based stowage plan). Then, in a hierarchical manner, the
load sequencing is performed. Since containers of the same class are distributed
among di�erent yard bays, the method �rst performs an overall sequencing
deciding how many containers should be moved from which yard-bay to which
vessel bay. In a second stage, the detailed sequencing of each container within
the container groups is calculated. The second stage problem is solved using the
beam search heuristic proposed in Kim et al. (2004), while for the �rst stage,
the authors propose an ant colony optimization, a Tabu search and a hybrid of
these methods.

In Bian, Shao, and Jin (2015), the decision is to determine the loading sequence
of containers with the aim of minimizing the number of re-handles. It is assumed
that a detailed stowage plan is given, that only one QC is available, and that
the relocation of containers within a yard block is allowed. The authors have
proposed a two-stage algorithm. In the �rst stage, a heuristic is developed to
load the containers which do not need any relocations. In the second phase, a
dynamic programming algorithm with heuristic rules is presented to solve the
load sequencing problem for all of the remaining containers. The results are
compared with an alternative re-handling strategy, where load containers are
chosen from stacks with the smallest number of blocked containers. Re-handles
are then reassigned to random stacks. The number of relocations is shown to
be reduced by 46.5% compared to the alternative strategy.

Another work on the load sequencing problem is presented in Ji, Guo, Zhu,
and Yang (2015). Di�erently than Bian et al. (2015), the authors consider
a scenario with multiple QCs, and test three di�erent container re-handling
location strategies: nearest-stack, lowest-stack, and a mixture of those. Firstly,
a mathematical model of the problem is formulated. A genetic algorithm is
then presented and tested for two versions. One version assumes that a certain
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loading sequence is given, while the other also determines the loading sequence
along with the re-handling strategy within a yard block. The results show that
the number of re-handles is reduced up to 30% compared to state-of-the art
solutions which assumes a given load sequencing strategy.

A di�erent approach is taken in Legato and Mazza (2013), where the focus is
on the calculation of the exact number of re-handles for a given load sequencing
policy. They do this by simulating the picking strategies with a discrete-event
based simulation model. The simulation model considers the availability of
straddle carriers, the number of reshu�es to reach a stacked container, and
the availability of bu�er space under the crane. Tests on the impact of multiple
QCs on the operational e�ciency of the loading plan are performed. The authors
argue that the turnaround time of vessel loading is signi�cantly reduced when
assigning more straddle carriers and note that the number of re-handles does
not change (see also Legato, Mazza, and Trun�o (2010) for a simulation-based
optimization approach for both loading and unloading operations).

5.3.3 Equipment Assignment and Scheduling Literature

Many works in the literature touch on di�erent aspects of equipment manage-
ment. Some examples are the determination of the number of the yard equip-
ment to use Vis et al. (2005), the assignment of equipment to QCs and/or con-
tainers Lee, Chew, Tan, and Wang (2010b); Grunow, Guenther, and Lehmann
(2006); Nishimura et al. (2005); Bish et al. (2005); Kim and Kim (1999c); Jung
and Kim (2006), and sequencing and scheduling of the yard equipment Bose
et al. (2000); Lee, Cao, and Meng (2007); Lau and Zhao (2008); Kim and Kim
(2003); Bish et al. (2005); Li and Vairaktarakis (2004); Kim and Kim (1999c);
Jung and Kim (2006); Cao et al. (2010b).

Each of these problems has been studied extensively in the literature. For
this survey, we decided to concentrate on two of the most popular works that
incorporate the all above mentioned equipment management problems, and that
are concentrated around container loading.

The focus in Kim and Kim (1999b) is the optimal routing of one TC in a
container yard during loading operations. They decide the number of containers
that a TC picks up at each yard-bay and they also determine the sequence of
yard-bays that a TC visits during the loading of the vessel. It is assumed that
QC work schedule is given, which de�nes how many containers of a speci�c
type (size and destination) should be loaded in which vessel-bay at what time
interval. The objective of the presented mathematical model minimizes the total
container handling time, which consists of the setup time at each yard-bay and
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the travel time between yard-bays.

The work presented in Bish et al. (2005) looks at the vehicle dispatching prob-
lem, which also assumes a given QC work schedule. The authors assume that a
�xed number of vehicles has been assigned to serve each QC. The problem aims
at minimizing the ship berthing time. They propose a greedy heuristic to solve
the problem. For the single-crane case, they prove that the greedy algorithm
is optimal. This does not hold for the multiple crane case. For multiple QC
case, they provide a modi�cation of the greedy algorithm which, compared to
the results obtained with a mathematical model, �nds better solutions than the
original algorithm.

QCs are also considered as quay-side equipment which are attributed to the
ship loading. In the most of the SLP studies, a QC working plan is given as
input to the problem Kim et al. (2004); Kim and Kim (1999c); Jung and Kim
(2006). This plan holds the QC split which points out which speci�c QC will
work on each bay. Once a QC working plan is given, the QC scheduling for bay
areas (see Meisel and Bierwirth (2011)) can be generated. The QC scheduling
problem is, however, outside the scope of the SLP.

5.3.4 Integration E�orts

The literature on integration e�orts for the SLP is also rather limited. To the
best of the authors` knowledge, only one of the surveyed works actively models
and optimizes the container sequencing. The other integration e�orts focus on
the combination of operational stowage planning and equipment planning, where
a loading policy is assumed (e.g. sea-land, �ll each stack �rst. etc.), leaving no
space for the sequence optimization.

The pioneering paper on SLP is Steenken et al. (2001), which focuses on the
generation of operative stowage plans and the allocation/schedule of straddle
carriers. They assume that a given �xed number of straddle carriers is available
for each QC. The problem described in Steenken et al. (2001) relies on the as-
sumption that only one QC operates and disregards the equilibrium constraints
of the vessel in the detailed stowage plan. A just-in-time scheduling model is
solved when a group of container is ready to be retrieved from the yard. This
model assigns each container to a speci�c slot and a straddle carrier. Later, in
the same paper, the authors extend the approach to include multiple QCs. This
is done by �rst solving the crane split problem and then applying the single
crane heuristic to each QC. Authors assume two loading strategies: column-
wise, where each stack is �lled in sequence, or layer-by-layer. The objective
is the minimization of lateness of the QC moves and the transportation time
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between the yard and the quay area. To solve the problem, the authors present
a mathematical model and a best-�t heuristic which can be applied for all QCs
in parallel.

Another integration approach is Kim et al. (2004). Given the QCs schedule, this
work combines operational stowage planning, load sequencing and TC schedul-
ing, making this, to the best of the authors knowledge, the most complete
integration e�ort. With respect to operational stowage planning, the presented
non-linear mathematical model incorporates vessel stability considerations by
imposing weight and height limit constraints on the stacks of the vessel. The
sequencing is part of the model decisions, however, a column-wise policy is en-
coded into the objective. Only the travel time costs of the TCs can force the
sequence away from this policy. The actual schedule for the loading of the con-
tainers is also modelled, aiming at minimizing reshu�es, TCs travel times and
interferences. A two stage approach is used to solve the problem. The �rst stage
sequences yard-clusters (like the �rst stage of Lee et al. (2005)), while the second
sequences individual containers. Both stages are solved using beam search. In a
later paper Jung and Kim (2006), the authors propose a genetic algorithm and
a simulated annealing heuristic for solving the �rst stage problem. Although
this problem is similar to Lee et al. (2005), we include it in this section since
the scheduling of Yard Cranes (YCs) is also included. Here the objective is the
minimization of the makespan for the YCs.

In Alvarez (2006) we �nd an integration approach that combines detailed yard
equipment planning and scheduling, with operative stowage planning. A ter-
minal operated by reach-stackers is considered. This work is particularly in-
teresting for its presentation of a full mathematical model that includes all the
aspects regarding reach-stackers routing and operations at the yard for each
container. It is assumed that a selection is made between column-wise or layer-
by-layer loading policy. Moreover it assumes that containers are expected to
be loaded sea-to-land. As in previous approaches, the use of loading policies
leaves no space for sequencing optimization. The model minimizes the num-
ber of re-handling, the movement of reach-stacker (i.e. distance traveled on the
ground by the transport vehicles) and vessel instability. A solution of the model
establishes which sections of the yard provide the containers of the needed type
(with given numbers of containers) and generates a feasible tour of the yard to
pick them up. A Tabu Search algorithm is described for solving the problem.
A Lagrangian relaxation approach is proposed by the same author in a later
work Alvarez (2008). A summary of the surveyed literature can be found in Ta-
ble 5.1. The reader can compare the di�erent manuscripts in terms of problem
structure, objective function and solution approach.
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5.4 Conclusions and Future Research Directions

This paper has presented a description of the SLP as a combination of op-
erational stowage planning, load sequencing and equipment management. The
relevant literature has been surveyed and a comparison table has been provided.
The study shows that, aside from yard equipment scheduling, little work has
been done on the optimization of loading operations.

It is worth noticing that the lack of literature, does not only apply to the inte-
grated SLP but also to the planning problems composing it. Many works have
appeared in the past two decades on stowage planning, yet very few focus on
the interface with the terminal, and those that do, often look at the problem
only from the terminal side.

An explanation for the scarce amount of research in this �eld, could be explained
by the general lack of benchmark data. Each paper presents indications of
the nature of the data, but no detailed information. It would be bene�cial to
have a public benchmark for the SLP, which could then also be used for its
subproblems.

Of notice, it is also the use of load policies for the container sequencing. Since
most of the surveyed papers have industrial collaborations, this tendency could
be explained as a lack of interest from the terminals.

With respect to solution techniques, the literature focuses mainly on heuristic
methods. However, exact decomposition algorithms might e�ciently solve some
reasonable sized problems to optimality.

With focus on the loading operations, we see the integration of yard equipment
into the planning models as the nearest research challenge. In none of the papers
we surveyed (with exception of Vis et al. (2005) which focuses on routing),
yard equipment such as straddle carriers are considered as a limited resource.
Optimized resource utilization can have a large impact, especially on short-
sea terminals, since the now available resources can be utilized to service e.g.
hinterland operation.
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Chapter 6

Formulations for ship
loading problem with

transfer vehicle assignment
and scheduling

This chapter introduces containership loading problem in seaport container ter-
minals. The management of loading operations, planning of the equipment to
use and their scheduling is what we de�ne as the Ship Loading Problem (SLP).
We formulate mathematical models and a number of valid inequalities to en-
hance these formulations. We also propose a method to compute new lower and
upper bounds for the problem. Results show that enhancements on the formu-
lations improve the performance signi�cantly and the lower bound procedure
obtains many strong bounds in very short computational times. We also test
the model for di�erent objective functions. 1

1C. Iris, D. Pacino, S. Ropke, "Formulations for ship loading problem with transfer vehicle
assignment and scheduling", Technical report, 2016
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scheduling

6.1 Introduction

Maritime freight transport is an important part of the logistics systems. Ben-
e�ting from rapid globalization, the containerized freight transport has been
growing steadily in the past several decades. Container terminal throughput,
totaling worldwide 684.4 million TEUs in 2014 (UNCTAD (2015)), is estimated
to increase by 5.1% in 2015, therefore the increasing container handling vol-
umes makes operations planning a more complex and important for container
terminals.

Liner shipping companies have adapted to the growth in the transport volumes
by increasing the capacity of their �eet, deploying vessels of over 19.000 TEUs.
Capacity is, however, not enough. A reliable service requires the goods to arrive
on time, and it is here that container terminals play a major role. The increase
in vessels size is not acting alone to intensify the pressure on the container
terminals. The slow-steaming has increased the time spent in the open sea
(Psaraftis and Kontovas (2010)). An outcome of the slow-steaming is that liner
shipping companies deploy many more and larger vessels to the strings and this
increases the peak of workloads on the container terminals. In order to meet
the tight transit times along the strings, they also expect container terminals to
minimize the vessel turnaround (handling) times.

Vessel turnaround times might be reduced by deploying more QCs or transport
equipment on each vessel, however there is no guarantee of an improvement in
the service quality because there is a limit to the number of equipment that can
be deployed to a vessel and ine�cient management of these new equipment can
bring more congestion and deterioration in the overall performance. Considering
that QCs and transport equipment are limited resources with high operating
costs, terminals should rather optimize the use of these resources.

We refer readers to the literature reviews on decision problems in seaside oper-
ations (Bierwirth and Meisel (2010), Carlo et al. (2013), Bierwirth and Meisel
(2014), Iris et al. (2015b)), transport operations (Carlo et al. (2014a)) and yard
operations (Li and Vairaktarakis (2004), Carlo et al. (2014b)) in terminals. Lit-
erature reviews present that there is an ongoing research avenue that merely
focuses on decision problems on which terminals have complete control. In par-
allel, there is a need for �exibility in operations, and possible collaboration with
the liner shipping company can bring some �exibility in ship loading related
operations.

The e�cient loading of containers to the vessel became a more complicated
problem due to the increase in vessel size, vessel numbers and complicated tech-
nicalities. The high degree of industrial requirements (e.g. lashing patterns,
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vessel stress forces and sta� working hour regulations) along with all other
mentioned challenges, makes the e�cient ship loading even more complicated
problem. It also often happens that some of containers are ready to be loaded
earlier but have to wait since they would be out of the planned load sequence
while, some other containers can easily be spread over large areas due to tran-
shipments, missing space, di�erent services or due to delays from feeder ships,
tracks and trains. Due to the large number of interactions between the handling
equipment, the cargo arrangement on the vessel/yard, and the scarce number
of vehicles, most attempts at improving the loading operations should be based
on optimization methods.

Some liner shipping companies are aware of this problem and have actively
started to adapt their stowage plans to be more terminal friendly. A stowage
plan describes the arrangement of containers on the vessel. The liner, makes
sure the plan results in as few handling costs as possible and that the vessel is
sea-worthy once loaded. In recent years there has been a shift on the stowage
planning policy which is based on an increasing collaboration between the con-
tainer terminal and the liner shipper. The liner provides the container terminal
with the stowage plan based on container classes (class-based stowage plan), but
leaves the terminal the freedom of modifying the arrangement of speci�c con-
tainers of the same class (a container class is de�ned by its port of discharge,
physical dimensions, weight, etc.). In this study, we focus on this problem with
further considerations of loading equipment management aiming at reducing
working hours handling equipment, increasing the QC intensity and meeting
the deadlines of the liner shipping company.

The potential time and cost savings of this collaboration have been initially
studied by Monaco et al. (2014) in which authors did not consider the limited
number of loading equipment (transfer vehicle). In this study, we include the
assignment and scheduling of transfer vehicles into this stowage planning prob-
lem. The contribution of the study is mainly two-fold. First we introduce a new
integrated container terminal problem to improve the e�ciency of loading oper-
ations. We formulate a mathematical model to solve the problem and a number
of valid inequalities to improve the formulation. Then we suggest a method to
obtain the new bounds for the mentioned problem. We also test the formula-
tion with the di�erent objectives of the terminals. Finally, we report the cost
savings obtained by integrating these subproblems. Computational results show
that the enhancements on the model signi�cantly improve the performance of
the formulation. Although the deeper integration makes the problem harder to
solve, there are signi�cant cost savings for the terminal operators. In the liner
point of view, the problem de�nition strongly supports the terminal to stick to
the deadline of vessel departures and this ensures more reliable services for the
liner.
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The remainder of the chapter is organized as follows. Section 6.2 presents rele-
vant literature brie�y. Section 6.3 addresses the problem de�nition. Section 6.4
provides the mathematical model and improvements, while Section 6.5 presents
a new method to obtain lower and upper bounds. The results are discussed in
Section 6.6 and �nally the paper is �nalized with conclusion and future research
perspectives in the last section.

6.2 Relevant literature

The problem studied in this chapter is introduced methodologically in Iris and
Pacino (2015). The authors also review each subcomponent of the SLP and
present the integration e�orts between these subcomponents. Monaco et al.
(2014) is one of the �rst studies that distinguishes between the stowage planning
problem (solved by the liner shipper) and the operational re�nement of it done
by the terminal in the loading operations. Ful�lling requirements of class-based
stowage plan and making the �nal match between containers and container
classes is referred to operational stowage planning problem which is solved by
Monaco et al. (2014). Authors solve the problem through a two-phase tabu
search method.

The work presented in Imai et al. (2002) is one of the �rst stowage planning
model that considers the yard operations. In that paper, no distinction is made
between di�erent container types or classes. The model formulates the stability
of the vessel by a measure and solve the problem with an estimate on the number
of yard re-handles. In a later paper Imai et al. (2006), the authors include trim
and healing (longitudinal and transversal listing of the vessel) to the before-
mentioned model. The stability constraints are still handled in the objective
rather than a constraint. The authors propose a solution approach based on
Genetic Algorithms (GAs).

In Ambrosino and Sciomachen (2003), a two-stage stage planning problem is
solved. In the �rst-stage a stowage planning model is solved and the gener-
ated stowage plan is evaluated in terms of yard re-handles using two policies
namely the pre-marshalling and the sort-and-store. The model distinguishes
between container type, weight, discharge port. Vessel stability is heuristically
handled by balancing the front-back and right-left side of the vessel (an in-depth
description of the model can be found in Ambrosino et al. (2004)).

Steenken et al. (2001) focus on the generation of a stowage plans with respect to
class-based plan and they dispatch/schedule straddle carriers (SC) simultane-
ously for the �rst time. A just-in-time scheduling model is solved when a group
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of container is ready to be retrieved from the yard. The model assigns each
container to a speci�c position and a SC with the objective of the minimizing
the lateness of the QCs and the transportation time between the yard and the
quay area. To solve the problem, authors present a mathematical model and a
best-�t heuristic.

Kim et al. (2004) focus on the load sequencing and TC scheduling with respect
to operational stowage planning. The presented non-linear mathematical model
incorporates vessel stability considerations by imposing weight and height limit
constraints on the stacks of the vessel. The sequencing is part of the model
decisions, however, a column-wise policy is encouraged with the objective. Only
a high travel time of the TCs can force the sequence away from this policy. The
actual schedule for the loading of the containers is also modelled with objective of
minimizing reshu�es, TCs travel times and interferences. A two stage approach
is used to solve the problem. The �rst stage sequences yard-clusters (like of Lee
et al. (2005)), while the second sequences individual containers. Both stages are
solved using beam search.

Alvarez (2006) suggests an integration approach that combines detailed reach-
stackers planning and scheduling with operative stowage planning. It is assumed
that either column-wise or layer-by-layer load sequencing is selected. The model
minimizes the number of re-handling, the movement of reach-stacker (i.e. dis-
tance traveled on the ground by the transport vehicles) and vessel instability.
A solution of the model establishes which sections of the yard provide the con-
tainers of the needed type (with given numbers of containers) and generates a
feasible tour of the yard to pick them up. A Tabu Search algorithm is described
for solving the problem. A Lagrangian relaxation approach is proposed by the
same author in a later work Alvarez (2008).

Regardless of operative stowage planning problem, Jung and Kim (2006) have
focused on the integration of load scheduling and equipment assignment prob-
lems. The authors focus on a YC based container terminal with the objective of
minimizing makespan and they solve the problem with a GA. Grunow et al. for-
mulate a dispatching problem for terminals using Automated Guided Vehicles
(AGVs) and the performance of the dispatching strategies is evaluated using a
scalable simulation model.

6.3 Ship Loading Problem

As Figure 6.1 illustrates, we de�ne the SLP as the integration of four terminal
planning problems: operational stowage planning, load sequencing, equipment



172
Formulations for ship loading problem with transfer vehicle assignment and

scheduling

assignment and equipment scheduling. This problem is con�gured for a single
vessel, but it could be extended for multiple ships.

Ship Loading Problem

Operational 
Stowage 
Planning

Load 
Sequencing

Equipment 
Assignment

Equipment 
Scheduling

Figure 6.1: Ship Loading Problem composition (Iris and Pacino (2015))

We now detail the SLP by describing each of those problems and their interac-
tions.

In particular, we wish to utilize the �exibility that exists when moving from a
class-based stowage plan to an operative stowage plan. Consider the example
in Figure 6.2. The �gure to the left shows a stowage plan composed of two con-
tainers of the same class (say two 40-foot containers weighting between 20 and
22 tons having the same destination). The position in the terminal area is also
shown and the arrows represent the travel distance needed to bring the container
to the vessel. In the �gure on the right side, the terminal has re-arranged the
assignment of containers with the same container class thus achieving a better
plan that requires less travel time. Such �exible assignment helps to integrate
the remaining problems into the SLP. The new plan is of no consequence for
the liner so long as the container classes are not changed. Summing up, the
operative stowage plan deals with assigning speci�c containers in the yard for
each position on the vessel with respect to the class-based stowage plan.

Vessel

A

B

Yard Block Yard Block

B
A

Vessel

B

A

Yard Block Yard Block

B
A

Figure 6.2: Class based stowage plan example.

The second component of the SLP is the load sequencing problem. The sequence
in which containers will be loaded is �rstly governed by physical rules, such as the
sequence between two containers destined to the same row cannot be changed
due to given QC work-schedule and physical limitation of the vessel (e.g. below
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tiers in the same bay/row combination should be loaded before, hatch cover,
etc.). It is, however, up to the terminal to decide the sequence of containers
on di�erent rows or tiers. The ordering is a�ected by possible ready time of
each container in front of the respective QC and this depends on various factors
such as container locations in yard, the availability of handling equipment, the
operative stowage plan, etc. The terminal might reduce the total loading time
by e�ciently ordering containers to load on the vessel.

The load sequencing problem is constrained by QC work-schedule. The QC
work-schedule is the set of decisions and it includes the QC assignments (QC
split) to bays of the vessel and the loading order between the bays. The QC
work-schedule is mostly determined in earlier stages with berth allocation and
QC assignment (See Iris et al. (2015b)). In this study, in order not to increase
the computational complexity, we assume that QC work-schedule is ready and
there is a �xed loading policy for each QC. It is assumed that loading "from-
sea-to-land" with "stack-wise" sequencing is applied for each QC.

The SLP �nally covers the assignment and scheduling of loading equipment
(i.e. transfer vehicles). Integrating the transfer vehicles (TVs) into the SLP is
vital because they are limited resources in the terminal and they might cause a
bottleneck in loading operations. What is more, generating a feasible schedule of
transfer vehicles will determine the ready time of each container in front of the
respective QC more accurately. These ready times in�uence the assignments
of containers to each position. The SLP studied in this chapter covers the
assignment of speci�c TVs to each QC and the schedule of all TVs to load all
containers to the vessel. In the other words, the problem deals with determining
which speci�c container will be picked up by which TV at what point in the
time. It is assumed that the number of TVs that works on each QC might
change over time (time-variant assignment). This means that for example, a
solution can hold 3 TVs working on a QC for an hour then it can be reduced to
2 TVs for the remaining loading time.

The e�cient planning of the SLP might reduce port stay times, the number
of transport vehicle required to load and unload the vessel, terminal related
emissions, the idle time of QCs, etc.

The class-based stowage plan and the QC work-schedule have been decided and
are inputs for the SLP in this study. The problem de�nition is based on further
assumptions which will detailed as follows:

• It is assumed that unloading operations are performed �rst, then loading
operations start (i.e. the problem does not include dual cycling opera-
tions).
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• It is assumed that a loading policy for each QC is determined beforehand.
This means that the sequence, in which each position is loaded, is known.
It is still not known which speci�c container will be loaded to each position.

• It is assumed that the retrieval order of containers in the yard does not gen-
erate any yard-shifts within the yard bay (e.g. a variant of pre-marshalling
problem is solved beforehand)

• The stability of vessel is ensured with the class-based stowage-plan.

• Each TV can only work for a single QC during the loading of the vessel.
In the other words, it is not allowed to pool TVs for each QC.

• It is assumed that TV operations are non-preemptive. When a TV is
assigned to a QC it does not stop until it �nishes its tasks on that QC.

• It is assumed that the congestion in the yard, the travel speed of a TV
with/without a container are all re�ected in the transportation times be-
tween yard positions (or I/O point depending on the available yard type)
and QCs.

• It is assumed that there is no bu�er for any containers under the QC, then
the TV and QC operations are not decoupled.

The SLP in this study aims at determining the assignment of each container to
a vessel position (slot). It also determines which TV will load each container
to their positions, and the time of pickup from the yard block and dropping in
front of QC is also decided (i.e. the complete schedule of all TVs are also made).

6.4 Mathematical Model for the SLP

The list of notations, i.e. parameters, decision variables is as follows:
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Table 6.1: SLP mathematical notation

Parameters and sets:

C Set of containers that will be loaded to vessel
Cp Set of containers belonging to a class suitable for slot position p
Q Set of quay cranes that are assigned to load the vessel
Qp Set of quay cranes that loads the container for position p, one

element set
P Set of positions to be served
Pi Set of positions that matches with the class type of container i
Pq Set of positions that will be loaded by QC q
P cranep Set of positions that are handled by the same crane as position

p
S Set of transfer vehicles available to serve the vessel
Sp Set of transfer vehicles that can serve position p
Sq Set of transfer vehicles that are available to serve QC q
T Set of time periods, T ∈ {0, 1, .., H − 1}, where H is the closing

of planning horizon
τip The time needed for a transfer vehicles to transport container i

from its yard-position to vessel-position p. The time needed is
assumed to be equal in both directions.

β The handling time for each QC, minimum time between two
consequtive container loading operation

EFT Expected �nishing time of operations for the vessel
α The cost of using one TV for one time-unit
γ The cost of exceeding the expected �nishing time (EFT ) for

one time-unit
M A large positive number

Decision variables:

tsp ∈ Z+ Time when container for position p has been dropped in front
of QC by TV s (container dropping time)

Starts ∈ Z+ Time when operations of TV s starts
Ends ∈ Z+ Time when operations of TV s ends
z ∈ Z+ Makespan for the operations
∆EFT ∈ Z+ Lateness of operations
xsip ∈ B 1; if the container i is loaded to position p picked up by TV s, 0

otherwise
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Let us now introduce the mathematical model:

minα
∑
s∈S

(Ends − Starts) + γ∆EFT (6.1)

subject to ∑
p∈Pi

∑
s∈Sp

xsip = 1 ∀i ∈ C (6.2)

∑
i∈Cp

∑
s∈Sp

xsip = 1 ∀p ∈ P (6.3)

2τip −M(2− xsip −
∑
i∈Cp′

xsip′) ≤ tsp − tsp′ ∀i ∈ C,∀s ∈ S,∀p ∈ Pi, p′ ∈ P cranep | p′ ≺ p

(6.4)∑
s∈S

tsp ≥
∑
s∈S

tsp′ + β ∀p ∈ P, p′ ∈ P cranep | p′ ≺≺ p

(6.5)

tsp ≤
∑
i∈Cp

Hxsip ∀p ∈ P,∀s ∈ Sp (6.6)

tsp ≥ 2
∑
i∈C

τipx
s
ip ∀p ∈ P,∀s ∈ Sp (6.7)

tsp − 2
∑
i∈C

τipx
s
ip +H(1−

∑
i∈C

xsip) ≥ Starts ∀s ∈ S,∀p ∈ P (6.8)

tsp ≤ Ends ∀s ∈ S,∀p ∈ P (6.9)

Starts ≤ Ends ∀s ∈ S (6.10)

z ≥ tsp + β ∀s ∈ S,∀p ∈ P (6.11)

xsip = 0 ∀i ∈ C,∀p ∈ P,∀s ∈ S \ Sp
(6.12)

∆EFT ≥ z − EFT (6.13)

tsp, Starts, Ends, z,∆EFT ∈ {0, ..,H − 1} ∀s ∈ S,∀p ∈ P (6.14)

xsip ∈ {0, 1} ∀i ∈ C,∀s ∈ S,∀p ∈ P
(6.15)

The model has decision variables regarding operative stowage plan and TV
assignment to containers (xsip), TV scheduling (tsp, Starts, Ends). There are also
other auxiliary variables which help to obtain link between operative stowage
plan and TV management.
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The objective function is a combination of the cost of TV-times and the lateness
(if loading �nishes after expected �nishing time). Constraint (6.2) ensures that
each container will be loaded to a position that matches with its container class.
Constraint (6.3) guarantees that all positions will be loaded with a container
that matches the container class of that position. For a given container, TV
and position, constraint (6.4) makes sure that the container dropping time for
that position is set correctly. This is done by forcing the di�erence between
two consecutive positions` dropping times to be equal or greater than the time
required to bring the container (2τip) to the QC. The term multiplied by M
on left-hand side makes sure that the constraint is only active when the two
positions which are following each other in loading order are handled by the
same TV. Constraint (6.5) ensures that all positions are loaded in the correct
order, and the containers that will arrive at the same QC should have at least
β time apart. Note that p′ ≺≺ p is meant that the position p′ is handled
immediately before position p according to the loading policy, while p′ ≺ p
shows that position p′ is loaded before position p. Constraint (6.6) ensures that
if there is a TV assignment to a position, then the container dropping time
is earlier than end of planning horizon. Assuming that each TV is in front of
its respective QC in the initial position, constraint (6.7) guarantees that that
earliest dropping time is transportation time of the container which is picked
up. Constraint (6.8) sets the starting time of each TV, while constraint (6.9)
sets the ending time of each TV operations. If a TV is not assigned to a QC,
these variables take a value of zero. Constraint (6.10) is the link between start
and end time for each TV operation. Constraint (6.11) obtains the makespan,
while constraint (6.12) ensures that a container for position p cannot be picked
up by TV s, if it is not assigned to serve this position. Constraints (6.14)-(6.15)
determine the domain of variables.

6.4.1 Enhancements for the SLP model

This section introduces a number of enhancements which are based on formu-
lating lower bounds on variables and valid inequalities for the SLP.

6.4.1.1 Lower bounds for variables

Before detailing the inequalities, let us formulate the minimum transportation
time that is required in total to transfer containers that will be loaded by QC
q. That is obtained when the nearest container is picked up for all positions
that will be loaded by that QC. We go through each position, which is in the
loading order of QC q, one by one and pick up the container with the least
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transportation time (2τip) for that position. If one speci�c container is picked
up for an earlier position of the same QC, we do not consider it again. The
minimum transportation time for each of the selected container is called with
parameter τminip . The minimum overall time required to transport all containers
of a speci�c QC q (δqmin) is then:

δqmin =
∑
i∈Cp

∑
p∈Pq

2τminip ∀q ∈ Q (6.16)

Now suppose that we have a feasible schedule for all TVs. Then there exists a
feasible schedule with the same makespan in which all waiting times of each TV
occur just before it drops the container in front of the QC. We now formulate a
lower bound on the total waiting time in front of QC q. To formulate it, we �rst
need the maximum transportation time to load a container to a given position
matching with its container class. We have to compare this value with the QC
loading time β. If the QC loading time is longer than maximum interarrival time
for the container, this means TVs must wait under the QC q for the di�erence
between β and interarrival time. When we sum up the waiting time for all
positions that will be loaded by QC q, we obtain a lower bound on the total TV
waiting time for the QC q as (6.17).

LBqwaiting =
∑
p∈Pq

max
{

0, (β − 2 max
c∈Cp

{τcp})
}
∀q ∈ Q (6.17)

We now set lower bounds on various variables. First an inequality is formu-
lated, and it ensures that the makespan should be larger than the maximum
of �nishing times of all QCs. The lower bound on the makespan of each QC is
obtained as the maximum of the total loading time (β|Pq|) and the minimum

TV transportation/waiting time for QC q where
⌈
δqmin
|Sq|

⌉
is the lower bound on

the minimum transportation time for each TV to load all containers of QC q.
We formulate Constraint (6.18) for this lower bound.

z ≥ max
q∈Q

{
max{β|Pq|,

⌈
δqmin
|Sq|

⌉
+ LBqwaiting}

}
(6.18)

Since we know that minimum δqmin TV-time is required to transport containers
to all positions that will be loaded by QC q and the minimum waiting time for
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QC q is LBqwaiting, we formulate a lower bound on the TV working times that
are required to serve QC q as:

∑
s∈Sq

(Ends − Starts) ≥ δqmin + LBqwaiting ∀q ∈ Q (6.19)

Another lower bound is set on the dropping time (tsp) variables. For each position
p, the tsp is at least the maximum of the total loading time of all positions before
p and the minimum transportation time required to load all positions before p.
The minimum transportation time is obtained in a similar way to τminip . A set
named Bp, which holds containers of given class that are loaded before position
p, is generated on �y. If a container is picked up before, it is not reevaluated to
be placed to another position. Since all positions in the precedence relationship
are loaded by the same QC, they share the same pool of TVs. Constraint (6.20)
sets the lower bound.

∑
s∈Sp

tsp ≥ max
{ ∑
p′∈p′≺p


min

i∈Cp′,i/∈Bp′
{2τip′}

|Sp′|

 ,
∑

p′∈p′≺p
β
}
∀p ∈ P (6.20)

6.4.1.2 Valid inequalities for SLP model

The �rst set of valid inequalities focuses on the container classes rather than
speci�c containers. Let us call the set of all container classes as U and the set of
container classes for each QC q as Uq. We can extract the set of containers which
has a class of u (Cu) and the set of positions which requires a container class u
that will be loaded by QC q (Pqu). The valid inequality (6.21) ensures that for
the given QC and container class, the class-based stowage plan determines the
total number of containers to be assigned to each QC.

∑
s∈Sq

∑
i∈Cu

∑
p∈Pqu

xsip = |Pqu| ∀q ∈ Q,∀u ∈ Uq (6.21)

The second family of inequalities tries to better link the integer start/end and
binary assignment variables. We now introduce a new binary variable yst which
takes value of 1, if TV s is operating in period t, 0 otherwise.
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∑
t∈T

yst = Ends − Starts ∀s ∈ S (6.22)

tyst +H(1− yst ) ≥ Starts ∀t ∈ T, ∀s ∈ S (6.23)

(t+ 1)yst ≤ Ends ∀t ∈ T, ∀s ∈ S (6.24)∑
s∈Sq

yst ≤ |Sq| ∀t ∈ T, ∀q ∈ Q (6.25)

∑
t∈T

∑
s∈Sq

yst ≥ δ
q
min ∀q ∈ Q (6.26)

yst ∈ {0, 1} ∀s ∈ S,∀t ∈ T (6.27)

Constraint (6.22) ensures that for each TV, the sum of yst for all periods should
be equal to the operating time of that TV. Constraints (6.23)-(6.24) guarantee
that, the yst takes a value of one in periods between starting and ending times.
Constraint (6.25) sets the maximum number of TVs that can be assigned to
each QC for each period, while constraint (6.26) guarantees that at least δqmin
TV-time is needed to transport all containers to QC q. Finally the domain
of yst is set in constraint (6.27). In order to reduce the number of variables
and constraints, we formulate an upper bound on H. Simply by assuming
that only one QC and one TV are used, we can obtain an upper bound on
the planning horizon by obtaining maximum processing and waiting time, H =

max
{∑
p∈P

{
2 max
c∈Cp

{τcp}+ max
{

0, (β − 2 min
c∈Cp

{τcp})
}}
, β|P |

}
.

Finally we formulate a valid inequality that better links the assignment and
scheduling variables. Constraint (6.28) ensures that the total time that a TV
will be operating is at least the total transportation time to load containers that
are going to be loaded by that TV.

Ends − Starts ≥ 2
∑
i∈Cp

∑
p∈Pi

τipx
s
ip ∀s ∈ S (6.28)

We call the enhanced version of the SLP model as SLP+.
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6.5 New lower and upper bounds for the SLP

In order to obtain updated lower bounds for the SLP rapidly, we focus on the
components of the objective function. It composes of two parts: the cost of
total TV-time and the cost of ending later than expected �nishing time.

We formulate a new mathematical model that omits decision variables related
to TV scheduling (tsp, Starts, Ends) and this model obtains a lower bound on
the SLP. Let us �rst show that we can obtain lower bounds on objective com-
ponents by solely using xsip variables.

Proposition 1:
∑
i∈C

∑
p∈Pi

∑
s∈Sp

2τipx
s
ip is a lower bound on

∑
s∈S

(Ends − Starts).

Proof: The proof is evident when we note that
∑
i∈C

∑
p∈Pi

∑
s∈Sp

2τipx
s
ip is the exact

transportation time of all TVs, while
∑
s∈S

(Ends−Starts) holds the exact trans-

portation time and the TV waiting times which are proved to be non-negative
by the de�nition of lower bound LBqwaiting. Note that Ends, Starts variables
take a value of zero for unused TVs. �

Proposition 2: β + max
s∈S

{∑
i∈C

∑
p∈Pi

2τipx
s
ip

}
is a lower bound on z.

Proof: The de�nition of makespan for the SLP states that makespan is bounded
by the maximum of the �nishing times of all TVs added by the loading time of
one last container. Then we have to show that

∑
i∈C

∑
p∈Pi

2τipx
s
ip is a lower bound

on the maximum �nishing time of TV s. The �nishing time of TV s is at least
the summation of all transport times for containers that it will load to its QCs. �

Proposition 3: max
q∈Q

{
β|Pq|

}
is a lower bound on z.

Proof: The de�nition of makespan for the SLP states that makespan is bounded
by the maximum of the �nishing times of all QCs that work on the vessel. The
�nishing time of one QC is at least loading time of all positions that the QC is
assigned to (β|Pq|).�
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The model that we suggest to obtain the lower bound on the SLP uses the same
notation and variables of the SLP model. We introduce a new integer variables;
TTSs which presents the lower bound on the �nishing time of operations for TV
s. Now, let us introduce the new model which is called lower bounding model
refereed to as LB-SLP:

minα
∑
i∈C

∑
p∈Pi

∑
s∈Sp

2τipx
s
ip + γ∆EFT (6.29)

subject to ∑
p∈Pi

∑
s∈Sp

xsip = 1 ∀i ∈ C (6.30)

∑
i∈Cp

∑
s∈Sp

xsip = 1 ∀p ∈ P (6.31)

xsip = 0 ∀i ∈ C,∀p ∈ P,∀s ∈ S \ Sp
(6.32)

TTSs = β +
∑
i∈C

∑
p∈Pi

2τipx
s
ip ∀s ∈ S (6.33)

z ≥ TTSs ∀s ∈ S (6.34)

z ≥ β|Pq| ∀q ∈ Q (6.35)

z ≥
⌈
δqmin
|Sq|

⌉
+ LBqwaiting ∀q ∈ Q (6.36)

∆EFT ≥ z − EFT (6.37)

TTSs, TTQq, z,∆EFT ∈ {0, ..,H − 1} ∀s ∈ S (6.38)

xsip ∈ {0, 1} ∀i ∈ C,∀s ∈ S, ∀p ∈ P
(6.39)

Any feasible solution to (6.29)-(6.39) will be a lower bound on the SLP. The
objective function (6.29) is a combination of the cost of TV-times and the cost
of being late. Constraints (6.30)-(6.32) are interpreted in a similar way to SLP
model. Constraint (6.33) sets the lower bound on the �nishing time for each
TV, constraint (6.34) uses these variables to obtain the makespan for the vessel.
Constraint (6.35) sets the lower bound on �nishing time for each QC, where |Pq|
refers to the number of positions that will be loaded by QC q. Constraint (6.36)
uses minimum transportation time to obtain the lower bound on the makespan
for the vessel. Constraints (6.37)-(6.39) are similar to the SLP model.

The properties of the SLP allows us to obtain upper bounds with the solution
obtained from the lower bounding model (LB-SLP). The assignment decisions
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made in the LB-SLP will always generate feasible solutions for the SLP. This
is because the remaining problem is a TV scheduling problem with given as-
signments and transportation times. We use this remainder problem to obtain
upper bound for the SLP. Let us call the assignment decisions hich are obtained
from the LB-SLP as x̂sip. They are now parameters for the following model.
The remainder problem inherits the notation and objective function of the SLP.
We now introduce the model to obtain the upper bounds and it is referred as
UB-SLP.

minα
∑
s∈S

(Ends − Starts) + γ∆EFT (6.40)

subject to

(6.2)− (6.13) (6.41)

xsip = x̂sip ∀i ∈ C, ∀s ∈ S, ∀p ∈ P (6.42)

tsp, Starts, Ends, z,∆EFT ∈ {0, ..,H − 1} ∀s ∈ S, ∀p ∈ P (6.43)

xsip ∈ {0, 1} ∀i ∈ C,∀s ∈ S, ∀p ∈ P (6.44)

The objective function and set of constraints can be read in the same way of
the SLP model. Constraint (6.42) sets xsip variables to x̂

s
ip values.

6.6 Computational analysis

We now analyze the performance of each formulation, valid inequalities and new
bounds on a set of benchmark instances. All models are run on a 32 core AMD
Opteron at 2.8Ghz and 132Gb of RAM computer, and computational times are
reported in seconds.

The benchmark includes six sets of test instances. Each instance has either 60
or 240 containers, while the number of QCs di�ers between 2,4 and 6. The
number of TVs is proportional to the number of QCs, we assume that 3 TVs
are available to each QC. The number of positions that will be loaded by each
QC is also proportional to the number of QCs. Giving an example, assume
that 240 containers will be loaded by 4 QC, this means that each QC loads 60
containers with a pool of 3 TVs. The parameters α, γ are selected to be 5 and 30,
respectively. We test the methods for two versions of EFT, one setting assumes
that a no-tight EFT is selected (300 minutes), while in the other settings, tight
EFT (40, 75 minutes) values are selected. The loading time β is assumed to be
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2 minutes, while transportation times are generated according to the layout of
the yard and container positions. The number of container classes also di�ers.
For 60 containers instances, it is assumed that 25 container classes are given,
while there are 48 container classes in the instances with 240 containers.

All models are solved using CPLEX 12.6.1 solver. A time limit of 5 hours is
imposed to solve the SLP and SLP+ models with the options of emphasizing
optimality and aggressive cuts. In default conditions, models are run with 4
threads. In the case of memory over�ows, they are run with a single thread.

6.6.1 Results

Before presenting the detailed results for the SLP, SLP+ models and the new
bounds, we �rst analyze the e�ects of lower bounds on variables and valid in-
equalities to the SLP model. Table 6.2 and 6.3 present the value of linear
programming (LP) relaxation lower bounds and the CPU times to obtain these
lower bounds for each instance in the tight EFT set, respectively. Table 6.2 and
6.3 are composed of two main parts, one part with results of the LP relaxation,
and the other with results which are gathered after CPLEX cutting planes are
added to the root node. In Table 6.2, the �rst column presents the EFT for the
instance. The next columns |C|, |S|, |Q| present the number of containers, TVs
and QCs, respectively. The column LBr points out the lower bound without
any enhancement, while the remainder of columns include di�erent enhance-
ments indexed with the equation number. The unique di�erence of Table 6.3
from Table 6.2 is that Table 6.3 holds CPU times to obtain the mentioned lower
bounds of Table 6.2.

Table 6.2 suggests that lower bounds have been improved for almost all in-
stances, while the lower bounds of are improved better than the remaining valid
inequalities with the use of (6.18-6.20) and (6.28). Table 6.2 presents that con-
straints (6.21) and (6.28) improve the lower bound better after the inclusion
of CPLEX cutting planes. These comments hold for all enhancements, except
(6.23)-(6.27). Although these constraints marginally contribute to the LBs, they
increase the number of constraints signi�cantly and worsen some lower bounds.
Additionally, these inequalities increase the computational e�ort without entail-
ing markable gains. For such reasons, constraints (6.23)-(6.27) will not be used
in the SLP+ model. Table 6.3 points out that imposing the enhancements ex-
cept (6.23)-(6.27) does not signi�cantly increase the computational e�ort. Hence
we justify the use of remaining enhancements with the help of Table 6.2 and
6.3.
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Results for the SLP, SLP+, LB-SLP and UB-SLP models are presented in Table
6.4 and 6.5. In these tables, the columns identifying the instance are similar to
Table 6.2. The columns named "UB" show the best upper bound obtained, while
"LB" report the best lower bounds found with that method. Results are indexed
with di�erent numbers, the index 1 presents the SLP model results, while index
2 refers to the SLP+ model, and �nally 3 reports the bounds that are obtained
with the LB-SLP and the UB-SLP. The optimality gap (Gap (%)) is calculated
between the each UB and LB (Gap=UB−LB

UB ). The LB-SLP and UB-SLP are
models that do not guarantee an optimal solution, hence gaps of new lower and
upper bounds (Gu, Gl) by the LB-SLP and UB-SLP are calculated with the best
known upper and lower bounds (from SLP, SLP+) and new upper and lower
bounds (LB-SLP, UB-SLP) for each instance (Gu = UB3−min{UB1,UB2}

UB3
, Gl =

max{LB1,LB2}−LB3

LB3
). Finally tables hold information about the CPU time, T

represents the time to obtain each bound in seconds.

The �rst important observation is that the SLP model does not perform well
for any instance size. Speaking of EFT=300, results show that the SLP model
obtains an average of 74% and 98% optimality gaps for 60, 240 containers,
respectively. These gaps are 66% and 91% for EFT=40,75 instances. Whenever
enhancements are imposed to the SLP model, the performance signi�cantly
increases. The SLP+ model solves instances to optimality for 60 containers
for EFT=300, while it obtains a gap of 17% for 240 containers for EFT=40,75
instances. The average improvement from SLP to SLP+ is 67% for 60-container
instances, while it is 73% for 240-container instances. The SLP+ model can
solve four instances to optimality within time-limits and it improves all upper
and lower bounds compared to the SLP model.

The lower bounds obtained by the LB-SLP are as good as the result of the
SLP+ model, while the upper bounds by the UB-SLP have an average gap of
31% and 38% (from best upper bounds of SLP, SLP+ models) for 60, 240-
container instances, respectively. These methods aim at obtaining upper and
lower bound in a rapid fashion, so the average time to obtain these bounds is
less than one second for 60-container instances, while it is around 2 seconds for
the 240-container instances.



6.6 Computational analysis 187

T
a
b
le
6
.4
:
C
om

pu
ta
ti
on
al
re
su
lt
s
fo
r
E
F
T
:3
00

S
L
P

S
L
P
+

B
o
u
n
d
s
w
it
h
L
B
-S
L
P
a
n
d
U
B
-S
L
P

|C
|,
|Q
|,
|S
|,
E
F
T

U
B

1
L
B

1
G
a
p

T
1

U
B

2
L
B

2
G
a
p

T
2

U
B

3
L
B

3
G
u

G
l

T
L
B

3
T
U
B

3

6
0
,2
,6
,3
0
0

1
8
9
0

4
0
0
.0

0
.7
9

1
8
0
0
0

1
8
9
0

1
8
9
0
.0

0
.0
0

4
4
2
0

2
4
3
0

1
8
9
0

0
.2
2

0
.0
0

0
.8

0
.1

6
0
,4
,1
2
,3
0
0

1
8
9
0

5
0
1
.1

0
.7
3

1
8
0
0
0

1
8
9
0

1
8
9
0
.0

0
.0
0

3
7

2
5
2
0

1
8
9
0

0
.2
5

0
.0
0

0
.2

0
.1

6
0
,6
,1
8
,3
0
0

1
8
9
0

5
6
6
.5

0
.7
0

1
8
0
0
0

1
8
9
0

1
8
9
0
.0

0
.0
0

6
2
2
1
0

1
8
9
0

0
.1
4

0
.0
0

0
.6

0
.1

2
4
0
,2
,6
,3
0
0

1
3
5
5
0

5
0
.1

1
.0
0

1
8
0
0
0

1
2
1
3
0

6
8
6
0
.0

0
.4
3

1
8
0
0
0

1
9
1
0
0

6
8
6
0

0
.3
6

0
.0
0

0
.2

2
.3

2
4
0
,4
,1
2
,3
0
0

7
9
1
0

1
2
0
.1

0
.9
8

1
8
0
0
0

7
6
1
0

6
8
6
0
.0

0
.1
0

1
8
0
0
0

1
2
9
3
0

6
8
6
0

0
.4
1

0
.0
0

0
.6

2
.5

2
4
0
,6
,1
8
,3
0
0

7
5
2
0

1
7
8
.5

0
.9
8

1
8
0
0
0

7
3
1
0

6
8
6
0
.0

0
.0
6

1
8
0
0
0

1
2
7
2
0

6
8
6
0

0
.4
3

0
.0
0

1
.0

2
.2

T
a
b
le
6
.5
:
C
om

pu
ta
ti
on
al
re
su
lt
s
fo
r
E
F
T
:4
0,
75

S
L
P

S
L
P
+

B
o
u
n
d
s
w
it
h
L
B
-S
L
P
a
n
d
U
B
-S
L
P

|C
|,
|Q
|,
|S
|,
E
F
T

U
B

1
L
B

1
G
a
p

T
1

U
B

2
L
B

2
G
a
p

T
2

U
B

3
L
B

3
G
u

G
l

T
L
B

3
T
U
B

3

6
0
,2
,6
,4
0

3
2
4
0

1
4
5
0

0
.5
5

1
8
0
0
0

3
2
3
0

2
6
7
6
.0

0
.1
7

1
8
0
0
0

5
4
3
0

2
6
7
0

0
.4
1

0
.0
0

0
.2

0
.1

6
0
,4
,1
2
,4
0

2
0
3
0

5
8
6
.1

0
.7
1

1
8
0
0
0

1
9
7
0

1
8
9
0
.0

0
.0
5

1
8
0
0
0

4
0
0
0

1
8
9
0

0
.5
1

0
.0
0

0
.0
7

0
.1

6
0
,6
,1
8
,4
0

1
8
9
0

4
9
1
.1

0
.7
4

1
8
0
0
0

1
8
9
0

1
8
9
0
.0

0
.0
0

2
3

2
8
3
0

1
8
9
0

0
.3
3

0
.0
0

0
.1

0
.1
1

2
4
0
,2
,6
,7
5

1
7
3
8
0

2
5
6
3
.2

0
.8
5

1
8
0
0
0

1
6
2
0
0

1
1
8
7
0
.2

0
.2
7

1
8
0
0
0

2
4
5
7
0

1
1
8
1
0

0
.2
9

0
.0
1

0
.4
3

2
.4
7

2
4
0
,4
,1
2
,7
5

1
2
6
9
0

9
3
7
.7

0
.9
3

1
8
0
0
0

1
0
8
0
0

8
2
7
0
.1

0
.2
3

1
8
0
0
0

1
7
5
7
0

8
2
1
0

0
.3
9

0
.0
1

0
.6

2
.5
3

2
4
0
,6
,1
8
,7
5

9
0
8
0

4
1
5
.1

0
.9
5

1
8
0
0
0

8
7
6
0

7
1
6
0
.0

0
.1
8

1
8
0
0
0

1
4
5
7
0

7
0
1
0

0
.4
0

0
.0
2

0
.3
1

2
.7
1



188
Formulations for ship loading problem with transfer vehicle assignment and

scheduling

6.6.2 Hierarchical vs integrated planning

We further investigate the cost savings with the integration of the operative
stowage planning and TV assignment/scheduling, and compare results to the
hierarchical planning method. The hierarchical planning is simulated as follows.
We �rst solve the operative stowage planning problem with the objective func-
tion of minimizing the transportation times of all containers (Monaco et al.,
2014).

min
∑
i∈C

∑
p∈Pi

∑
s∈Sp

2τipx
s
ip (6.45)

subject to ∑
p∈Pi

∑
s∈Sp

xsip = 1 ∀i ∈ C (6.46)

∑
i∈Cp

∑
s∈Sp

xsip = 1 ∀p ∈ P (6.47)

xsip ∈ {0, 1} ∀i ∈ C,∀s ∈ S, ∀p ∈ P (6.48)

The model and constraints are interpreted as in the SLP model. After the
xsip variables are determined with this model, we supply them as parameters to
(6.40)-(6.44) model and obtain results of hierarchical planning. We compare the
hierarchical planning results with the upper bounds obtained from the SLP+
model and UB-SLP in Table 6.6. We identify the hierarchical planning results
with index of 4 in Table 6.6.

Results show that the average actual cost savings (UB4−UB2

UB4
) through integra-

tion (hierarchical vs SLP+) is 43.3% for EFT=40,75 instances, while it is 26.4%
for EFT=300 instances. The actual savings do not have any visible correlation
with the instance size. This comparison suggests that there is a big potential
for savings for the terminal operators. However, the computational time to ob-
tain the SLP+ model results can be too long. For this reason, we also compare
the results of the hierarchical planning with upper bounds obtained with the
UB-SLP. For EFT=40,75 instances, upper bounds of the UB-SLP are mostly
better than the hierarchical planning. For EFT=300 instances, the hierarchical
planning outperforms upper bounds of the UB-SLP. Since no-tight EFT (300)
instances give a high �exibility on the makespan, the LB-SLP model cannot
dominate the operative stowage planning model of (6.45)-(6.48).
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6.6.3 What is the minimum �eet size?

Some container terminals aim at loading containers with the least amount of
TVs. In this problem, the goal is to determine the minimum number of TVs
required to transport all the containers before the EFT (See Vis et al. (2005)
for a version of this problem for an AGV-operating container terminal). The
same assumptions and conditions of the SLP hold for the minimum �eet size
problem. The only di�erent condition is that EFT bounds the makespan as a
hard constraint rather than a soft constraint.

We formulate a variant of the SLP+ model to solve this problem. We introduce
a new binary variable rsq which takes the value of one if TV s works to load
QC q, zero otherwise. Let us now introduce the modi�ed model which uses the
same notation of the SLP model.

min
∑
q∈Q

∑
s∈Sq

rsq (6.49)

subject to

(6.2)− (6.12) (6.50)

(6.18)− (6.21), (6.28) (6.51)

z ≤ EFT (6.52)

rsq ≤
∑
p∈Pq

xsip ∀i ∈ C, ∀q ∈ Q,∀s ∈ Sq (6.53)

(6.14)− (6.15) (6.54)

rsq ∈{0, 1} ∀q ∈ Q,∀s ∈ S (6.55)

The objective function (6.49) is the minimization of the number of TVs used to
load all containers. Constraint (6.52), which imposes the bound on z, replaces
constraint (6.13). Constraint (6.53) ensures that if a container is picked up by
TV s in order to load to a position by QC q, rsq should take a value of one,
otherwise due to minimization of rsq , it will take a value of zero. Finally we set
the domain of variables. We run the model in the same settings of the SLP+
model. Since EFT imposes a hard constraint on z, we test di�erent values of
EFT. In Table 6.7, we report these results. The columns can be reviewed with
the same approach compared to the remaining tables.
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Table 6.7: Minimum TV �eet size

|C| |S| |Q| EFT UB LB EFT UB LB

60 6 2

300

2 2 150 4 4

60 12 4 4 4 80 8 5

60 18 6 6 6 40 12 12

240 6 2 - 2 480 6 2

240 12 4 8 4 240 12 4

240 18 6 6 6 200 11 6

The �rst important observation is that instances with 60 containers are mostly
solved to optimality. For 240 containers, results are more erratic. The gap
between upper and lower bounds illustrates that there might be further im-
provements to load 240 containers with fewer TVs. Considering an EFT of 300
minutes, instances with 60 containers are all solved to optimality. Each QC
requires only one TV to load 60 containers in 300 minutes. In order to load 240
containers in 300 minutes, the model cannot �nd a feasible solution for 2 QCs
case; for 6 QCs case, we only need 6 TVs to load 240 containers. Results show
that loading 240 containers in 240 minutes by using 4 QC is possible by using
all TVs (i.e. 12). However, this solution is the upper bound, the lower bound is
4 TVs, this shows that there is a potential for possible improvement.

It is observed that most of the results have uniformity between QCs. This means
that the number of TVs used for each QC is the same for one instance (i.e. all
QCs use either 1, 2 or 3 TVs). This is mainly due to the fact that the number
of positions loaded by each QC is the same. In one instance (240 container, 6
QCs, 200 minutes), the model �nds a solution that requires one less TVs for one
of the QCs compared the usage of remaining QCs.

6.7 Conclusion and future research direction

In this chapter, we have proposed a novel integrated container terminal problem.
This problem focuses on the ship loading operations and tries to integrate the
aspects of terminal-oriented stowage planning with routing and scheduling of
transfer vehicles. We have formulated a mathematical model and a number
of enhancements for this model. These enhancements can be used for similar
research problems with some modi�cations. Results show that signi�cant cost
savings can be achieved with an e�cient solution to this integrated problem
rather than solving it in a hierarchical fashion. What is more, the enhancements
that are suggested contribute to achieve a better solution. Results show that
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we can load 60 containers in optimal way for most of the instances, while 240
containers are loaded with an average optimality gap of 21.1%.

We also test an alternative objective function for terminals. This problem aims
at minimizing the number of handling equipment rather than minimizing the
working time of these equipment. Results show that this problem is not necessar-
ily an easier problem. Similar to original problem, we can load the 60-container
instances with the optimal number of TV �eet. For loading 240 containers, the
optimality gaps remain high for most of the instances.

We see many strong future research directions both on the problem de�nition
and the solution method. With respect to the problem, we aim at going beyond
some of the assumptions in the �rst place. The �rst clear addition would be
integrating optimization of the load sequencing within the SLP. This extension
will make the problem more complicated. However, the careful implementation
of novel solution methods might obtain further cost savings. Another very
promising research direction is to focus on the dual-cycling in which loading
and unloading operations are executed simultaneously. Such an extension will
allow a better utilization of the QCs and TVs.

Regarding the solution method, the lower bounding model which is relatively
easy to solve can be used in a math-heuristic solution approach.
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Appendix of Chapter 2

A.1 Proof of Theorem 1

Assume that a better solution existed (resulting in fewer QC hours used). Let
hr be the number of hours we use r QCs in this solution, and h be the duration
of the port stay (d(j) for given column j). We must have:∑

r∈{rmin,...,rmax}

hr = h (A.1)

in order for the preemption constraint to be satis�ed.

• (a) If hr = 0 for all r ∈ {rmin, . . . , rmax}\{q, q+1} then we cannot do bet-
ter than the solution computed in Algorithm (5) since here we computed
all possible combinations by using q and q + 1 QCs.

• (b) Therefore, let us �rst analyze the situation where hr = 0 for all r < q
and hr̄ > 0 for some r̄ > q+1. If hq = 0 then this solution is clearly worse
than the one computed by the algorithm because of constraint (A.1). Thus
we must have hq > 0 and we can make a more balanced solution that uses
the same amount of QC hours by incrementing hq+1 and hr̄−1 by one (if
q+ 1 = r̄− 1 then we increase hq+1 by 2) and decrementing hq and hr̄ by
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one. We continue doing so until either hq = 0, showing that the starting
solution was not better than the one computed by the algorithm or hq > 0
and hr̄ = 0 for all r̄ > q + 1. Now we are back at case (a) and we see
that the starting solution could not have used fewer QC hours than the
one computed by the algorithm.

• (c) Now let us analyze the situation where hr > 0 for r < q. In that case
we must have hr̄ > 0 for some r̄ > q. Otherwise we would have selected a
lower q in the initial checks. We construct a more balanced solution that
use the same number of QC hours by increasing hr+1 and hr̄−1 by one
(if r + 1 = r̄ − 1 then this should be interpreted as increasing hr+1 by 2)
and decreasing hr and hr̄ by one. By continuing to do so we either get to
situation (a) or (b) and we see that the starting solution could not have
used fewer QC hours than the one computed by the algorithm. �
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B.1 Calculation of q̂, f1, f2 (Iris et al. (2015b))

Algorithm 5: QC assignment

Input : k, rmink , rmaxk , processi, (1 + β∆bi)mk

1 Find q̂ ∈ {rmink , ..., rmaxk } such that q̂ =

⌊(
(1+β∆bi)mk
processi

)1/α
⌋

2 p = processi
3 while (p ≥ 0) do
4 δ = p(q̂ + 1)α + (processi − p)(q̂)α
5 if δ ≥ (1 + β∆bi)mk then
6 f2 = p, f1 = (processi − p)
7 p = p− 1

8 return f1, f2, q̂
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B.2 Lower bound on objective function (Iris et al.
(2015b))

We �rst obtain f1, f2, q̂ by using B.1. We know that an assignment j has a costj
which is time-dependent cost component and QC assignment cost. With this
information, we can calculate an improved lower bound φ(j) for assignment j's
cost contribution to the objective function:

φ(j) = costj + c4(f1q̂ + f2(q̂ + 1))

We now use φ(j) to de�ne the lowest contribution σi for each vessel i:

σi = minj∈Ωi {φ(j)}

and we compute the lower bound on the total objective: z1 =
∑
i∈V σi.

B.3 Smarter greedy insertion: pseudo code
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Algorithm 6: Smarter greedy insertion
De�nition: I : Insertion list, Xp: partial solution, k: vessel index, i:

assignment index, t: time index, Ωk : set of assignments
of vessel k sorted in increasing cost order, i ∈ Ωk

Input : I,Xp, φ =| I |, p ∈ (0, 1],Ωk : ∀k ∈ I
1 for k = I1 → Iφ do
2 i = 0, costupdate=∞
3 Draw a random number q in (0,1]
4 if (q > p) then
5 i→ i+ 1, go to 3
6 else
7 if (costupdate ≤ costi) then
8 Xp = i

⋃
Xp, apply QCtuse, update Free_QC(t)

9 Remove vessel k from insertion list: I = I − {k}
10 else
11 if (fOverlap (i, Xp)=true) ∧ fCheckQCcapacity=enough)

then
12 Xp = i

⋃
Xp, Calculate q̂, f1, f2, Make

QC_Assignment, update Free_QC(t),I = I − {k}
13 else if (fOverlap (i,

Xp)=true) ∧ fCheckQCcapacity=notenough) then
14 QCneeded = (1 + β∆bi)mk

15 for t = sk → sk + processi do
16 if (Free_QC(t) < rmink ) then
17 i→ i+ 1, go to 3
18 else
19 QCtpossible=min{Free_QC(t),r

max
k }

20 QCeffective= QCeffective+(QCtpossible)
α

21 if (QCeffective ≥ QCneeded) then
22 for t = sk → sk + processi do
23 QCtuse =

max{min{d(QCneededLefttime
)1/αe,QCtpossible}, rmink }

24 update Lefttime, QCneeded, costupdate

25 else
26 i→ i+ 1, go to 3

27 else
28 i→ i+ 1, go to 3
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