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This paper models and solves a fleet deployment and demand fulfillment problem for

container shipping liners with consideration of the potential overload risk of contain-

ers. Given the stochastic weights of transported containers, chance constraints are

embedded in the model at the strategic level. Several realistic limiting factors such as

the fleet size and the available berth and yard resources at the ports are also consid-

ered. A non-linear mixed integer programming (MIP) model is suggested to optimally

determine the transportation demand fulfillment scale for each origin-destination pair,

as well as the ship deployment plan along each route, with an objective incorporating

revenue, fixed operation cost, fuel consumption cost, holding cost for transhipped con-

tainers, and extra berth and yard costs. Two efficient algorithms are then developed

to solve the non-linear MIP model for different instance sizes. Numerical experiments

based on real-world data are conducted to validate the effectiveness of the model and

the algorithms. The results indicate the proposed methodology yields solutions with

an optimality gap less than about 0.5%, and can solve realistic instances with 19

ports and four routes within about one hour.
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1. Introduction13

Shipping liners play an important role in today’s economy which is becoming14

increasingly global, and more operations are being outsourced and moved offshore15

(Fransoo and Lee, 2013). Shipping liners run weekly-serviced ship routes with fixed16

schedules to transport containers for customers. Each shipping company operates its17

own shipping network covering a number of routes (services) and ports. A shipping18

liner cannot usually fulfill all customer demands in a given container transportation19

market due to the limitations of its fleet size and of the available port resources20

(e.g., berths and yard space), and because of some other unforeseen factors (Zhen,21

2015, 2016). The transportation demand is usually characterized by the number of22

containers that need to be transported between the origin-destination (OD) pairs of23

the shipping network. Given the data on the full-size market demand, a shipping liner24

needs to determine an economic fulfillment scale for each OD pair’s transportation25

demand, as well as the number of ships deployed on each route of its shipping network26

so as to maximize its profit. This is an important strategic decision for the managers27

of shipping liners.28

The above strategic level problem involves intertwined decisions as well as nu-29

merous complex factors. While it is easy to understand that the demand fulfillment30

scale is positively related to the number of deployed ships, the optimal allocation of31

the available ships along the routes is not a straightforward decision because of the32

different unit transportation fees among OD pairs, the different cost configurations33

among the routes, and the complex underlying relationship between the OD pairs and34

the routes. A liner may not always fulfill as much transportation demand as possible35

by using all its available ships because the port resources reserved for the liner in36

the shipping network are fixed. Moreover, several features proper to the ocean ship-37

ping industry must also be considered in this strategic level decision problem. For38

example, the number of ships deployed on a route affects the ships’ speed on each39

leg of a route, which further influences fuel consumption and cost. These costs and40

the fixed operation costs of the deployed ships jointly constitute the bulk of the cost41

for a shipping liner. In addition, the ship schedule of each route (service) affects the42

containers’ storage time at the transshipment hubs which connect the routes in the43

shipping network. The holding cost of the transshipped containers should therefore44
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also be taken into account. Finally, the potential overload risk of containers should not45

be ignored since the weights of the transported containers are stochastic. Wang et al.46

(2016) state that almost all the existing literature regards the weights of containers as47

constants and few existing studies consider the problem of container overload. How-48

ever, the potential overload risk of containers occurs frequently and has irreparable49

consequences. Indeed, ship overload accidents account for 60 percent of accidents on50

inland waterways and up to 70 percent in some areas. Therefore, studying the over-51

load risk of containers is practical. For example, a shipping liner may promise a quota52

of 1,000 twenty-foot equivalent units (TEUs) to a customer with respect to an OD53

pair, but when the shipping liners make long term decisions on the demand fulfillment54

scale, the cargo types and weights in the containers are unforeseen. For example, the55

weights of 1,000 TEUs of plastic and of metal are significantly different. The overload56

risk should therefore also be controlled.57

This paper provides a comprehensive study of this complex decision problem.58

Given a shipping network with multiple routes connected by transshipment hubs and59

the transportation demand information, we propose a non-linear chance-constrainted60

mathematical integer program (MIP) to optimally determine the transportation de-61

mand fulfillment scale for each OD pair, as well as the ship deployment plan along62

each route in order to maximize the total profit, equal the revenue earned by fulfilling63

the demand, minus four types of cost: the fixed operation cost of the deployed ships,64

the fuel cost, the cost for storing transshipped containers at ports, and the cost of65

using extra port resources. The chance constraints embedded in the model control66

the potential overload risk resulting from random container weights. In addition to67

the chance constraints, the model contains other non-linear components. Some new68

techniques are suggested to linearize the model into a mixed integer second-order cone69

programming (MISOCP) model that can be tractable for some commercial solvers70

such as CPLEX.71

The remainder of this paper is organized as follows. Section 2 provides an overview72

of the related literature. Section 3 describes the problem. A mathematical model is73

proposed in Section 4, followed by a linearization scheme in Section 5. Two heuristics74

are developed to solve the model in Section 6. Section 7 reports the results of our75

computational experiments. Closing remarks and conclusions follow in Section 8.76
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2. Related works77

There exist numerous related studies on fleet deployment. Readers interested in78

overviews can refer to Ronen (1993), Christiansen et al. (2004), Christiansen et al.79

(2013), and Meng et al. (2014). At the strategic decision level, the fleet deploymen-80

t problem (FDP) consists of assigning available vessels to predetermined voyages81

(Fagerholt et al., 2009) in order to maximize profit or minimize cost.82

Several linear programming and mixed integer linear programming models for the83

FDP have been put forward. Perakis and Jaramillo (1991) were the first to develop84

a linear programming model for the FDP, which takes account of ship capacity, and85

minimizes service frequency requirements as well as ship charter cost. However, this86

model works with continuous decision variables for the allocation of ships to shipping87

routes, instead of integer variables. To remedy this problem, Jaramillo and Perakis88

(1991) proposed an integer programming model. Cho and Perakis (1996) formulat-89

ed a MIP model for the FDP, where the demand of containers between two given90

ports can be served by any shipping route passing through the two ports. Powell91

and Perkins (1997) extended the model of Jaramillo and Perakis (1991) by adding92

ship lay-out costs to the objective function. Álvarez (2009) proposed a MIP formu-93

lation for the integrated optimization of vessel routing and fleet deployment. Based94

on previous works, Gelareh and Meng (2010) developed a MIP model for the FDP95

in which speed is a decision variable, and investigated the problem of ship speed96

optimization to obtain optimal sailing speeds through a non-linear model, which can97

be approximated as a MIP model. This model was later improved by Wang et al.98

(2011). Meng and Wang (2011) investigated a multi-period fleet planning and FDP99

with a known container demand for each OD pair and each period. Meng and Wang100

(2010) proposed a chance-constrained model for the FDP under uncertain demand,101

but ignored transshipment activities. Because the speed of ships has an impact on102

fuel consumption cost, Zacharioudakis et al. (2011) developed a practical methodol-103

ogy that considers the effect of speed on fuel consumption for shipping companies104

to solve FDPs. Andersson et al. (2015) put forward an integrated model to optimize105

fleet deployment and sailing speed for RoRo shipping companies. Zheng et al. (2015)106

set up a shipping network for liner shipping alliances, and proposed a model with107

consideration of ship deployment, cargo allocation, and container routing. Xia et al.108
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(2015) developed a comprehensive model to simultaneously and optimally determine109

ship deployment, sailing speed, and container allocation in order to maximize profit110

at the strategic level. Zhao et al. (2016) designed a novel method of fleet deployment111

based on risk evaluation so as to take advantage of resources for navigation and reduce112

risks. Monemi and Gelareh (2017) provided an integrated model considering shipping113

network design, FDP and empty container repositioning. The number of routes and114

their design play an endogenous role in their problem. Wang et al. (2017) proposed115

a two-stage stochastic programming model to optimally solve the FDP and compute116

the sailing speeds with the consideration of market uncertainties. Some studies have117

incorporated container transshipment in FDPs. Wang and Meng (2012) developed118

an MIP model for the FDP in which containers can be transshipped at any port,119

which was extended by Meng and Wang (2012) by adding transit time constraints.120

There also exist some studies on FDPs that consider the uncertainties of liner ser-121

vice schedule or container shipment demand. Wang and Meng (2012), Qi and Song122

(2012) and Bell et al. (2011) considered uncertainty in the liner service schedule but123

ignored uncertainty in container shipment demand. In order to tackle demand uncer-124

tainty, Meng and Wang (2010) proposed a chance-constrained model, which extends125

the deterministic FDP to a FDP under uncertainty. Meng et al. (2012) assumed that126

the container shipment demand is a random variable, and hence formulated a two-127

stage stochastic integer programming model, and developed an algorithm integrating128

sample average approximation with a dual decomposition and Lagrangian relaxation129

method. Wang et al. (2012) further extended the model of Meng et al. (2012) by130

adding the expectation and variance of the cost in the objective function.131

In conclusion, several related studies on the FDP have not taken transshipment132

activities into account. Although some authors did consider these, they did not incor-133

porate the demand fulfillment decision and the potential overload risk of containers134

due to their stochastic weights. Moreover, some port resources such as berths and135

yard space, which are crucial in maritime activities, have also been ignored. (Liu136

et al., 2016) conducted an integrated planning of the berth allocation and the yard137

allocation in container terminals.138

Our paper proposes an integrated decision model that compounds ship fleet de-139

ployment and demand fulfillment decisions by considering crucial factors such as140

transshipment activities, the stochastic weight of containers, port resources, the141
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timetabling of ship visits at each port of call, and the demand fulfillment scale for142

each OD pair. There is no doubt that these factors complicate this already difficult143

fleet deployment and demand fulfillment problem. We propose a comprehensive mod-144

el and we develop some techniques to handle the complexity resulting from the chance145

constraints. We believe the problem features considered in our study are realistic and146

new with respect to previous research.147

3. Problem description148

We consider a shipping liner operating on a network containing a set R of container149

shipping routes (services), which cover a set P of ports. Figure 1 depicts a shipping150

network with four routes and 19 ports. Each ship route r is described as (port pr1,151

port pr2, · · ·,port pri, · · ·,port prNr , port pr1), which implies that ship route r has Nr152

ports of call as well as Nr legs. Let leg i denote the voyage from port pri to port153

pr,i+1, where pr,Nr+1 = pr1. We denote by Ir the set of legs in ship route r. The154

details on the objective and key constraints considered in this study are provided in155

the following subsections.

Figure 1: A shipping network with four routes

156
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3.1. Revenue of the demand fulfillment157

Container transportation demand is usually described by OD pairs indexed by158

ε ∈ Ω. The number of containers requesting transport for each OD pair during a159

week can be estimated according to historical data. Given the unit fee for transporting160

a TEU container, we can compute the maximum revenue Vε that can be earned if all161

the transportation demand of OD pair ε is fulfilled. We define a variable πε equal to162

the percentage of OD pair ε’s transportation demand fulfilled by the shipping liner.163

Then the total revenue can be calculated as
∑

ε∈Ω Vεπε.164

3.2. Fixed operation cost of deployed ships165

A fleet of homogeneous ships is deployed on each route to maintain a weekly166

service frequency. If the number of ships deployed on route r is βr, then the total167

fixed operation cost for all the deployed ships in all the routes during one week can168

be calculated as
∑

r∈R C
Opr
r βr, where COpr

r is the weekly operation cost for deploying169

one ship on route r.170

3.3. Fuel cost depending on sailing speed171

The total time for a ship completing the travel along a route is 7βr days. More172

specifically,
∑

i∈Ir(dri + δri) = 7βr, where dri is the dwell time of ships at the ith173

port of call on ship route r, and δri is the sailing time of ships on the ith leg on ship174

route r. In reality, the port dwell time dri is usually predetermined according to some175

contracts between the shipping liner and port operators, but the sailing time δri of176

each leg can be a decision variable for the shipping liner, which can be used to modify177

the value of δri by updating the ships’ speed on each leg.178

A ship’s unit fuel consumption significantly depends on its sailing speed. In this179

study, we assume that the unit fuel consumption function on sailing speed y is cal-180

culated as y = kxa (USD per nautical mile), where x is the speed, and k and a are181

positive coefficients. More specifically, the fuel cost for the ith leg on ship route r is182

lrikri(lri/δri)
ari , where lri is the leg’s length, and kri and ari are coefficients that can183

be estimated according to historical data. The total fuel cost is then calculated as184 ∑
r∈R

∑
i∈Ir lrikri(lri/δri)

ari .185
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3.4. Holding cost for storing transshipped containers186

The above decisions on ship deployment and sailing speeds influence the cost187

related to each route which are inter-route costs. Decisions made on the arrival time188

of ships at each port of call in each route affect the storing time and cost of the189

containers at transshipment hubs, which are inter-route costs.190

We define a quadruple (r, i, s, j) to denote that the ith port of call on ship route191

r and the jth port of call on ship route s are the same physical port in the network,192

where r, s ∈ R, i ∈ Ir and j ∈ Is. Hence Q = {(r, i, s, j)|pri = psj}. Let mrisjε be193

the maximum number of TEUs transshipped at hub (r, i, s, j) for OD pair ε if all194

the transportation demand for the OD pair is fulfilled. Then the number of trans-195

shipped containers at the hub is πεmrisjε. We define a parameter CHold equal to the196

unit holding cost (USD per TEU per day), and a variable γrisj to denote the dif-197

ference in days between the time a ship visits the port of call (r, i) and the time a198

ship visits (s, j). Then the total holding cost for storing transshipped containers is199

CHold
∑

(r,i,s,j)∈Q
∑

ε∈Ω πεmrisjεγrisj.200

3.5. Cost for using extra berth or yard space201

Each port has a certain yard space reserved for storing transshipped containers,202

and a certain number of berths for the shipping liner, booked in advance according203

to contracts. If the yard space and berth capacity limitations at ports are violated,204

then some extra costs are incurred (Petering et al., 2017).205

In this study, we define Bp as the set of berths b in port p reserved for the shipping206

liner. Another index b̂ is defined as a dummy berth, which is used when there are no207

available berths in the reserved berth set Bp when a ship arrives at port p. From the208

perspective of modeling, if the dummy berth b̂ is used by a ship, then an extra cost209

is incurred. Here we define binary decision variables θrib to denote whether the ship210

arrives at berth b in the port of call (r, i), and we define a parameter CBerth
pri

as the211

penalty cost incurred when the dummy berth b̂ is used in the port of call (r, i). Then212

the total cost for extra berth usage is
∑

r∈R
∑

i∈Ir C
Berth
pri

θrib̂.213

For the yard resource, we also define an auxiliary variable λpw as the extra used214

yard space (measured in number of TEUs) for storing transshipped containers at215

port p on day w ∈ W of a week. The formula for computing the variable λpw will be216
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explained in the Section 4. Let CY ard
p be the penalty cost for using one unit of extra217

yard space (TEUs), beyond the agreed reserved yard space, in port p to store the218

transshipped containers for one day. Then the total cost for extra yard space usage219

is
∑

p∈P
∑

w∈W CY ard
p λpw.220

3.6. Risk of overload due to random container weight221

This study also considers the potential overload risk of ships due to the stochastic222

weight of transported containers. To illustrate this, suppose a liner promises a cus-223

tomer or an agency a quota of one thousand TEUs for an OD pair ε. When the liner224

makes the long term decision on the demand fulfillment scale for that OD pair, the225

weights of the cargos in the containers are unforeseen and may create an overload.226

We define a parameter nriε as the maximum number of containers transported on leg227

(r, i) for OD pair ε if all the transportation demand for the OD pair is fulfilled. Thus228

there will be dπεnriεe containers be transported on leg (r, i) for the OD pair ε. A229

stochastic parameter c̃riεu is defined as the random weight of the containers on leg230

(r, i) for OD pair ε, where u is the index of the container. Suppose the maximum231

load capacity (in tons) of a ship on leg (r, i) is ALoadri , and the probability of overload232

should be constrained to lie under a level α (e.g., 1%, 0.1%), then the constraint233

Prob(
∑

ε∈Ω

∑dπεnriεe
u=1 c̃riεu > ALoadri )≤ α should hold for each leg (r, i).234

3.7. Assumptions and data preparation before using the model235

Based on the above analysis on the revenue, on the various types of costs consid-236

ered in the objective function and on the chance constraints controlling the overload237

risk, we will formulate a mathematical model in the next section. We first clarify the238

assumptions of this study:239

(1) the shipping network of the ports and routes (voyages) is already determined;240

(2) the ships are homogenous on each route in terms of capacity and cost structure;241

(3) the ships’ dwell time at each port of call is deterministic.242

Finally, we provide some explanation on how to prepare some key input data for243

the decision model. First, a shipping liner should collect the historical data on the244

weekly demand for each OD pair (Fagerholt et al., 2009; Bell et al., 2013). Based245

on the estimated unit price for shipping one TEU for each OD pair ε, the liner can246

calculate the Vε values (i.e., the maximum revenue that can be earned if all the247
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transportation demand of the OD pair ε is fulfilled). Moreover, the mapping from248

an OD pair to a set of its covered legs as well as a set of transshipment ports is249

also deterministic. Given this mapping information, the liner can also estimate the250

parameters nriε (i.e., the maximum number of containers transported on each leg251

(r, i) for each OD pair ε) and the parameters mrisjε (i.e., the maximum number of252

containers transshipped from the port of call (r, i) to (s, j) for OD pair ε, if all the253

demand is fulfilled).254

Another important input value is the stochastic parameter c̃riεu about the ran-255

dom container weight on the leg (r, i) for the OD pair ε. The liner could collect the256

historical data on the weights of containers transported for each OD pair ε, and then257

calibrate the expected value and standard deviation. Given the mapping information258

between an OD pair and the set of its covered legs, one can obtain the expected value259

µriε and the standard deviation σriε for the random weights of containers transported260

on each leg (r, i) for each OD pair ε. These two parameters will be used in Section 5261

to linearize the chance constraints in the model.262

4. Model formulation263

We now introduce a non-linear chance-constrained MIP model for the problem.264

We first define some indices, sets, input parameters and decision variables.265

Indices and sets266

ε index of an OD pair;267

Ω set of all the OD pairs;268

r (or s) index of a ship route;269

R set of all the ship routes;270

i (or j) index of port of call (or leg) on a ship route (leg i is from port of call i

to i+1);
271

Ir set of the ports of call (or legs) on ship route r ;272

p index of a physical port, which is different from the port of call (defined

as i);
273
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P set of all the ports;274

pri index of the port, which corresponds to the port of call (r, i);275

I ′rp set of the ports of call (or legs) on ship route r ; these port of calls are

the same physical port p;
276

R
′
p set of ship routes that include port p;277

Q set of quadruples (r, i, s, j), where r, s ∈ R; i ∈ Ir, j ∈ Is; a (r, i, s, j)

means the ports of call (r, i) and (s, j) are the same physical port in

shipping network. Q = {(r, i, s, j)|pri = psj};
278

Qp a subset of Q ; Qp = {(r, i, s, j)|pri = psj = p};279

w index of a day in a week, i.e., 0 = Sun, 1 = Mon, 2 = Tue,· · ·, 6 = Sat;280

W set of days in a week, W = {0, 1, 2, · · ·, 6};281

b index of a berth;282

Bp set of berths in port p; these berths are reserved for the shipping liner;283

b̂ index of a dummy berth, used when there are not available berths in the

reserved berth set Bp when a ship arrives at port p;
284

Z set of integers;285

Z+ set of non-negative integers.286

Parameters287

Vε maximum revenue if all the transportation demand of OD pair ε is ful-

filled;

nriε maximum number of containers (TEUs) transported on leg (r, i) for the

OD pair ε if all the demand is fulfilled;

288

mrisjε maximum number of containers (TEUs) transshipped from the port of

call (r, i) to (s, j) for the OD pair ε if all the demand is fulfilled; here

(r, i, s, j) ∈ Q;

289

NShip
r maximum number of ships that can be deployed on ship route r ;290
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TLegri minimum sailing time on leg (r, i), which is determined by ships’ maxi-

mum speed;
291

APortp capacity (TEUs) of port p for storing the transshipped containers;292

AV olri maximum volume capacity (in TEUs) of a ship on leg (r, i);293

ALoadri maximum load capacity (in tons) of a ship on leg (r, i);294

α probability limit of overload risk for ships (e.g., 1%, 0.1%);295

c̃riεu stochastic parameter, the weight of the uth container on the leg (r, i) for

OD pair ε;
296

µriε the expected value for the random weight c̃riεu;297

σriε the standard deviation for the random weight c̃riεu;298

COpr
r weekly operation cost of one ship deployed on ship route r ;299

CHold unit holding cost (USD per TEU per day) of transshipped containers

storing at ports;
300

CBerth
p penalty cost each time the dummy berth b̂ is used at the port p;301

CY ard
p penalty cost for using one TEU extra yard space for transshipped con-

tainers in port p;
302

dri duration (days) of a ship dwells at the port of call (r, i);303

D̄ maximum value of dri for all the ports of call;304

lri length of the leg (r, i);305

kri, ari coefficients to calculate the unit fuel cost for travelling per nautical mile

on leg (r, i);
306

gbw equals one if berth b is available on day w in a week, otherwise equals

zero;
307
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fẇẅw equals one if day w is in time interval from day ẇ to ẅ; otherwise equals

zero. Here ẇ, ẅ, w ∈ W,W = {0, 1, 2, · · ·, 6}. For example, if ẇ = 1, ẅ =

3, then fẇẅ1 = fẇẅ2 = fẇẅ3 = 1; if ẇ = 3, ẅ = 1, then fẇẅ3 = fẇẅ4 =

fẇẅ5 = fẇẅ6 = fẇẅ0 = fẇẅ1 = 1.

308

Decision variables309

(1) Binary variables310

ηriw binary variable equal to one if and only if the ship arrives at the port of

call (r, i) on day w of a week;
311

θrib binary variable equal to one if and only if the ship uses berth b (including

b̂) in the port of call (r, i).
312

(2) General integer variables313

βr number of ships deployed on ship route r ; here βr ∈ {1, 2, 3, · · ·, NShip
r };314

δri sailing time (days) of leg (r, i);315

τri time (day) when a ship arrives at the port of call (r, i), where i = 1, 2, 3, ··
·, |Ir|+ 1; τr1 ∈ {0, 1, 2, · · ·, 6}; τr,|Ir|+1 denotes the time at which the ship

completes a round trip journey;

316

ζri auxiliary variable associated with τri, used to transform τri into a day in

one week;
317

γrisj arrival time difference in days of a ship visiting (r, i) and a ship visiting

(s, j);
318

ξrisj auxiliary variable associated with γrisj to transform γrisj into an integer

less than seven;
319

λpw extra used yard space (TEUs) for storing transshipped containers at port

p on day w.
320

(3) Continuous variables321

πε percentage of OD pair ε’s transportation demand fulfilled by the shipping

liner.
322
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Mathematical model323

The model is then as follows:324

[M1] Maximize Z =
∑
ε∈Ω

Vεπε︸ ︷︷ ︸
Revenue

−
∑
r∈R

COpr
r βr︸ ︷︷ ︸

Ship operation cost

−
∑
r∈R

∑
i∈Ir

lrikri(lri/δri)
ari

︸ ︷︷ ︸
Fuel cost

− CHold
∑

(r,i,s,j)∈Q

∑
ε∈Ω

πεmrisjεγrisj︸ ︷︷ ︸
Holding cost of transshipment

−
∑
r∈R

∑
i∈Ir

CBerth
pri

θrib̂︸ ︷︷ ︸
Berth cost for extra usage

−
∑
p∈P

∑
w∈W

CY ard
p λpw︸ ︷︷ ︸

Y ard cost for extra usage

(1)
325

subject to

1 ≤ βr ≤ NShip
r r ∈ R (2)

0 ≤ τr1 ≤ 6 r ∈ R (3)

δri ≥ TLegri r ∈ R, i ∈ Ir (4)

τr,i+1 = τri + dri + δri r ∈ R, i ∈ Ir (5)

τr,|Ir|+1 = τr1 + 7βr r ∈ R (6)∑
w∈W

ηriw = 1 r ∈ R, i ∈ Ir (7)

τri =
∑
w∈W

wηriw + 7ζri r ∈ R, i ∈ Ir (8)

0 ≤ ζri ≤ βr − 1 r ∈ R, i ∈ Ir (9)

τsj − τri + 7ξrisj = γrisj (r, i, s, j) ∈ Q (10)

0 ≤ γrisj ≤ 6 (r, i, s, j) ∈ Q (11)∑
b∈Bpri

⋃
{b̂}

θrib = 1 r ∈ R, i ∈ Ir (12)

∑
r∈R′p

D̄∑
v=1

∑
i∈I′rp:dri=v

v−1∑
k=0

θribηr,i,(w−k+7) mod 7 ≤ gbw p ∈ P, b ∈ Bp, w ∈ W (13)
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(
∑

(r,i,s,j)∈Qp

∑
ε∈Ω

πεmrisjε

∑
ẇ,ẅ∈W

ηriẇηsjẅfẇẅw − APortp )+ = λpw p ∈ P,w ∈ W (14)

∑
ε∈Ω

πεnriε ≤ AV olri r ∈ R, i ∈ Ir (15)

Prob(
∑
ε∈Ω

dπεnriεe∑
u=1

c̃riεu > ALoadri ) ≤ α r ∈ R, i ∈ Ir (16)

0 ≤ πε ≤ 1 ε ∈ Ω (17)

βr ∈ Z+ r ∈ R (18)

τri ∈ Z+ ∪ {0} r ∈ R, i ∈ Ir ∪ {|Ir|+ 1} (19)

ηriw ∈ {0, 1} r ∈ R, i ∈ Ir, w ∈ W (20)

δri ∈ Z+ ∪ {0} r ∈ R, i ∈ Ir (21)

ζri ∈ Z+ ∪ {0} r ∈ R, i ∈ Ir (22)

γrisj ∈ Z+ ∪ {0} (r, i, s, j) ∈ Q (23)

ξrisj ∈ Z (r, i, s, j) ∈ Q (24)

θrib ∈ {0, 1} r ∈ R, i ∈ Ir, b ∈ Bpri ∪ {b̂} (25)

λpw ≥ 0 p ∈ P,w ∈ W. (26)

The objective (1) is to maximize the revenue, minus the five types of cost de-326

scribed in Section 3. Constraints (2) state that at least one ship and at most NShip
r327

ships should be deployed on each route. Constraints (3) ensure the start time of each328

route (service) occurs in the first week. Constraints (4) relate to the minimum re-329

quired sailing time TLegri for each leg, which depends on the maximum speed of ships.330

Constraints (5) link the arrival time τri of a port of call with the arrival time τr,i+1331

of the next port of call on a route. Constraints (6) guarantee that the total number332

of days τr,|Ir|+1 − τr1 for a ship completing its travel on a route is the number of333

ships deployed on the route times seven, because all the services follow weekly arrival334

pattern and one week has seven days. Constraints (7)–(9) link the binary variable335

ηriw and the integer variable τri, both of which denote the arrival time of the ith336
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port of call on ship route r. The difference is that τri denotes the arrival time on a337

universal time axis, while µwri denotes the arrival time in one of the seven days in a338

week. The former is from the perspective of port arrival time in one ship’s itinerary339

(e.g., day 2 at port 1, day 11 at port 2), while the latter is from the perspective of340

the port arrival time of a fleet of ships deployed on a route (e.g., Mon at port 1,341

Wed at port 2). Constraints (10)–(11) transfer the absolute time gap (days) τsj − τri342

between two ports of call (r, i) and (s, j) to a time difference γrisj in days within one343

week. Similarly, the former is from the perspective of port arrival time in two ship’s344

itineraries for two routes (e.g., a ship in route 1 arrives at port p on day 2, a ship345

in route 2 arrives at the port p on day 11, and the absolute time difference is nine346

days), while the latter is from the perspective of the port arrival time of two fleets of347

ships deployed on two routes (e.g., route 1’s fleet arrives at the port on Mon, route348

2’s fleet arrives at the port on Wed, and the time difference is two days, which is the349

waiting time for transshipment from route 1 to route 2). Constraints (12) guarantee350

that each port of call of a route should be assigned a berth (one of reserved berths or351

the dummy berth b̂). The berth availability limitation is ensured by Constraints (13),352

which are not straightforward and will be explained later. Constraints (14) calculate353

the extra used yard space (TEUs) for storing transshipped containers at each port on354

each day. Constraints (15) define the limitation of the ship capacity with respect to355

its available space during each leg. Constraints (16) mean that the overload probabil-356

ity is lower than a threshold α. Constraints (17)–(26) state the ranges of the defined357

decision variables.358

More explanations are required for Constraints (13). In the simplest case where359

all ships dwell at ports for only one day, the left-hand side of the constraint is360 ∑
r∈R′p

∑
i∈I′rp

θribηriw, which denotes whether or not one of the reserved berths b361

is used by a ship on day w in a week. This value should not be greater than gbw,362

which is the availability of the berth. If some ships dwell at a port for one day (i.e.,363

dri = 1), and some ships dwell for two days (i.e., dri = 2), the calculation on whether364

or not berth b is used by the ith port of call on ship route r is as follows: (1) if w365

= 1, 2, 3, · · ·, 6, then
∑

r∈R′p
[
∑

i∈I′rp:dri=1 θribηriw +
∑

i∈I′rp:dri=2(θribηr,i,w−1 + θribηriw)];366

(2) if w = 0, then
∑

r∈R′p
[
∑

i∈I′rp:dri=1 θribηriw +
∑

i∈I′rp:dri=2(θribηr,i,w−1+7 + θribηriw)].367

In what follows, subscripts w − 1 and w − 1 + 7 are interpreted as (w − 1 + 7) mod368

7. Then suppose the ships’ dwell time can be one, two,· · ·, or at most D̄ days, then369
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the above formula becomes
∑

r∈R′p

∑D̄
v=1

∑
i∈I′rp:dri=v

∑v−1
k=0(θrib ηr,i,(w−k+7) mod 7). This370

value does not exceed gbw by Constraints (13).371

5. Linearization of the model372

The above model [M1] is an optimization problem with integer decision variables373

and non-linear terms that are non-convex. It is difficult to solve it using off-the-shelf374

solvers because (i) it contains a large number of discrete variables and (ii) it has a375

non-linear objective function and non-linear constraints. To solve this model, we first376

linearizate it, and we then develop a sequential optimization algorithm.377

5.1. Linearization of Objective (1)378

Objective (1) contains a non-linear part
∑

r∈R
∑

i∈Ir lrikri(lri/δri)
ari , which can379

be rewritten as
∑

r∈R
∑

i∈Ir lrikril
ari
ri δ

−ari
ri . The key is to transform δ−ariri into a linear380

form. We adopt the linearization method used by Wang et al. (2013). We first redefine381

δri as a new binary variable δ
′
rit, which denotes whether or not the sailing time for382

the ith leg of ship route r equals t days, t ∈ T , where T is the set of integers denoting383

the possible sailing times (in days) for all legs; for example T ∈ {1, · · ·, 15}. The384

non-linear form δ−ariri can then be replaced with
∑

t∈T δ
′
ritt
−ari , subject to

∑
t∈T δ

′
rit=1385

for all r ∈ R, i ∈ Ir.386

Objective (1) contains another non-linear part
∑

(r,i,s,j)∈Q πεmrisjεγrisj, which can387

be linearized as follows Alharbi et al. (2015). We first transform the integer variable388

γrisj into a binary variable. Since γrisj ∈ W , we redefine γrisj as a binary variable389

γ
′
risjw, equal to one if and only if the time gap between ports of call (r, i) and (s, j)390

is w days. Then γrisj is replaced with
∑

w∈W wγ
′
risjw, subject to

∑
w∈W γ

′
risjw = 1 for391

all (r, i, s, j) ∈ Q. Here both πε and γ
′
risjw are binary variables; therefore, the value392

of M is 1.393
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Based on the above linearization, Objective (1) becomes394

Maximize Z =
∑
ε∈Ω

Vεπε︸ ︷︷ ︸
Revenue

−
∑
r∈R

COpr
r βr︸ ︷︷ ︸

Ship operation cost

−
∑
r∈R

∑
i∈Ir

lrikril
ari
ri

∑
t∈T

δ
′

ritt
−ari

︸ ︷︷ ︸
Fuel cost

− CHold
∑

(r,i,s,j)∈Q

∑
w∈W

mrisjεw%risjwε︸ ︷︷ ︸
Holding cost of transshipment

−
∑
r∈R

∑
i∈Ir

CBerth
pri

θrib̂︸ ︷︷ ︸
Berth cost for extra usage

−
∑

p∈P,w∈W

CY ard
p λpw︸ ︷︷ ︸

Y ard cost for extra usage

(27)

The newly defined variables and constraints needed for this linearization are sum-395

marized as follows:396

Newly defined indices, sets and parameters:397

t index of the number of days;398

T set of possible numbers of days for a leg’s sailing time, T = {1, · · ·, |T |};399

M a sufficiently large positive number.400

Newly defined variables:401

δ
′
rit a binary variable equal to one if and only if the sailing time of the

leg (r, i) is t ;
402

γ
′
risjw a binary variable equal to one if and only if the time gap between

the ports of call (r, i) and (s, j) (i.e., γrisj) is w days;
403

%risjwε continuous variable equal to πεγ
′
risjw if γ

′
risjw = 1; otherwise zero.404

Newly defined constraints:405

Constraints (11) are removed. Constraints (5), (10), (21), (23) are replaced with

the following four constraints, respectively.

τr,i+1 = τri + dri +
∑
t∈T

tδ
′

rit r ∈ R, i ∈ Ir (28)

τsj − τri + 7ξrisj =
∑
w∈W

wγ
′

risjw (r, i, s, j) ∈ Q (29)

δ
′

rit ∈ {0, 1} r ∈ R, i ∈ Ir, t ∈ T (30)
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γ
′

risjw ∈ {0, 1} (r, i, s, j) ∈ Q,w ∈ W. (31)

In addition, four new constraints are defined:∑
t∈T

δ
′

rit = 1 r ∈ R, i ∈ Ir (32)

∑
w∈W

γ
′

risjw = 1 (r, i, s, j) ∈ Q (33)

0 ≤ %risjwε ≤ 1 (r, i, s, j) ∈ Q,w ∈ W, ε ∈ Ω. (34)

5.2. Linearization of Constraints (13)406

Constraints (13) contain a non-linear part θribηr,i,(w−k+7) mod 7, which is the prod-407

uct of two binary variables. Following the method used by Yi et al. (2018), we define408

a new binary variable ϕribw to replace the non-linear part.409

Newly defined variables:410

ϕribw binary variable equal to one if and only if the ship arrives at the berth b

on the day w of a week in the ith port of call on ship route r.
411

Then Constraints (13) become

∑
r∈R′p

D̄∑
v=1

∑
i∈I′rp:dri=v

v−1∑
k=0

θr,i,b,(w−k+7) mod 7 ≤ gbw p ∈ P, b ∈ Bp, w ∈ W. (35)

In addition, some more constraints need to be defined so that the newly defined

variable ϕribw can replace the function of θribηr,i,(w−k+7) mod 7.

ϕribw ≥ θrib + ηriw − 1 r ∈ R, i ∈ Ir, b ∈ Bpri , w ∈ W (36)

ϕribw ≤ θrib r ∈ R, i ∈ Ir, b ∈ Bpri , w ∈ W (37)

ϕribw ≤ ηriw r ∈ R, i ∈ Ir, b ∈ Bpri , w ∈ W (38)

ϕribw ∈ {0, 1} r ∈ R, i ∈ Ir, b ∈ Bpri , w ∈ W. (39)

5.3. Linearization of Constraints (14)412

Constraints (14) contain the product of three variables πε, ηriẇ and ηsjẅ, In ad-413

dition, the form λpw = (·)+ is also non-linear. In the first case, we use an approach414
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similar to that of Section 5.2 to handle it. This approach was used by Wang and415

Meng (2012). We define some more decision variables and constraints:416

Newly defined variables:417

ψrisjẇẅ binary variable equal to one if and only if both variables ηriẇ and ηsjẅ
are equal to one;

418

φrisjẇẅε binary variable equal to πε if and only if ψrisjẇẅ = 1.

Then Constraints (14) become

λpw = (
∑

(r,i,s,j)∈Qp

∑
ε∈Ω

∑
ẇ,ẅ∈W

mrisjεfẇẅwφrisjẇẅε − APortp )+ p ∈ P,w ∈ W. (40)

In addition, some more constraints need to be defined as follows so that the

newly defined variable ψrisjẇẅ can replace the function of ηriẇηsjẅ:

ψrisjẇẅ ≥ ηriẇ + ηsjẅ − 1 (r, i, s, j) ∈ Q; ẇ, ẅ ∈ W (41)

ψrisjẇẅ ≤ ηriẇ (r, i, s, j) ∈ Q; ẇ, ẅ ∈ W (42)

ψrisjẇẅ ≤ ηsjẅ (r, i, s, j) ∈ Q; ẇ, ẅ ∈ W (43)

ψrisjẇẅ ∈ {0, 1} (r, i, s, j) ∈ Q; ẇ, ẅ ∈ W (44)

φrisjẇẅε ≥ πε + (ψrisjẇẅ − 1)M (r, i, s, j) ∈ Q; ẇ, ẅ ∈ W, ε ∈ Ω (45)

0 ≤ φrisjẇẅε ≤ 1 (r, i, s, j) ∈ Q; ẇ, ẅ ∈ W, ε ∈ Ω. (46)

For the non-linear part λpw = (·)+, we adopt the linearization method used by

Wang and Meng (2015). We define two more non-negative variables λ+
pw and λ−pw, and

Constraints (40) are changed into∑
(r,i,s,j)∈Qp

∑
ε∈Ω

∑
ẇ,ẅ∈W

mrisjεfẇẅwφrisjẇẅε − APortp = λ+
pw − λ−pw p ∈ P,w ∈ W. (47)

Then Constraints (26) are replaced with

λ+
pw, λ

−
pw ≥ 0 p ∈ P,w ∈ W. (48)
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Moreover, Objective (27) is further restated by replacing λpw with λ+
pw. Then419

the final version of the objective becomes420

Maximize Z =
∑
ε∈Ω

Vεπε︸ ︷︷ ︸
Revenue

−
∑
r∈R

COpr
r βr︸ ︷︷ ︸

Ship operation cost

−
∑
r∈R

∑
i∈Ir

lrikril
ari
ri

∑
t∈T

δ
′

ritt
−ari

︸ ︷︷ ︸
Fuel cost

− CHold
∑

〈r,i,s,j〉∈Q

∑
w∈W

mrisjεw%risjwε︸ ︷︷ ︸
Holding cost of transshipment

−
∑
r∈R

∑
i∈Ir

CBerth
pri

θrib̂︸ ︷︷ ︸
Berth cost for extra usage

−
∑

p∈P,w∈W

CY ard
p λ+

pw︸ ︷︷ ︸
Y ard cost for extra usage

.

(49)

Lemma 1. Because the weights of the dπεnriεe containers are independent and i-421

dentically distributed random variables with expected values uriε and variances σ2
riε,422

the classical central limit theorem (CLT) states that since dπεnriεe is very large,423

the distribution of the total weight
∑dπεnriεe

u=1 c̃riεu is approximately normal with mean424

dπεnriεeµriε and variance dπεnriεeσ2
riε.425

Lemma 2. When dπεnriεe is very large, r ∈ R, i ∈ Ir, ε ∈ Ω, since the containers426

weights are independent, the total weight
∑

ε∈Ω

∑dπεnriεe
u=1 c̃riεu of all the carried con-427

tainers approximately follows a normal distribution N(
∑

ε∈Ωdπεnriεeµriε,428 ∑
ε∈Ωdπεnriεeσ2

riε).429

In reality, the number of containers is large. According to Lemma (2), Constraints

(16) can be approximated by∑
ε∈Ω

dπεnriεeµriε + z1−α(
∑
ε∈Ω

dπεnriεeσ2
riε)

1
2 ≤ ALoadri r ∈ R, i ∈ Ir, (50)

where z1−α is the 100(1− α) percentile of the standard normal distribution.430

Proposition 1. The left-hand sides of Constraints (50) are in general non-convex431

in πε.432

Proof. To prove the proposition, we just need to provide a non-convex example.433

Consider a simple case with only one OD pair, i.e., |Ω| = 1. Suppose that for this434

OD pair ε, we have µ = 1, σ2 = 0.25. Suppose further than z = 1 and nriε = 10. Then435

the left-hand side of the constraint becomes 10π+0.25
√

10π. Consider three values of436
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π: π1 = 0, π2 = 1, and π3 = 2. Then 10π1 +0.25
√

10π1 = 0, 10π2 +0.25
√

10π2 = 1.25,437

10π3 +0.25
√

10π3 = 2.35. In other words, π2 = (π1 +π3)/2 = (0+2)/2 = 1, however,438

10π2 + 0.25
√

10π2 > (10π1 + 0.25
√

10π1 + 10π3 + 0.25
√

10π3)/2. Therefore, the left-439

hand side of the constraint in this case is non-convex.440

In order to handle the non-convex Constraints (50), we propose a second-order441

cone programming (SOCP)-based algorithm, which will be elaborated in Section 6.442

6. Algorithmic strategy443

We now present an SOCP-based algorithm to handle non-convex constraints in the444

model. A dynamic linearization algorithm and a tabu search algorithm are applied445

to solve the model under different scales of route networks.446

6.1. SOCP transformation447

We use SOCP to transfer Constraints (50) to a convex one. We first define a new

binary variable κriεh to represent the integer dπεnriεe:

dπεnriεe =

Hriε∑
h=0

2hκriεh r ∈ R, i ∈ Ir, ε ∈ Ω, h = 0, 1, · · ·, Hriε (51)

Hriε∑
h=0

2hκriεh ≤ nriε r ∈ R, i ∈ Ir, ε ∈ Ω, h = 0, 1, · · ·, Hriε (52)

κriεh ∈ {0, 1} r ∈ R, i ∈ Ir, ε ∈ Ω, h = 0, 1, · · ·, Hriε, (53)

where Hriε := blog2 nriεc. Then Constraints (50) become

∑
ε∈Ω

µriε

Hriε∑
h=0

2hκriεh + z1−α(
∑
ε∈Ω

σ2
riε

Hriε∑
h=0

2hκriεh)
1
2 ≤ ALoadri r ∈ R, i ∈ Ir. (54)

Since κriεh is binary, we have κriεh = κ2
riεh. Using this property, Constraints (54)

become

(
∑
ε∈Ω

Hriε∑
h=0

2hσ2
riεκ

2
riεh)

1
2 ≤ (ALoadri −

∑
ε∈Ω

Hriε∑
h=0

2hµriεκriεh)/z1−α r ∈ R, i ∈ Ir. (55)
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Constraints (55) are convex and now the following [M2] is a mixed integer SOCP448

(MISOCP) model, which can be solved by off-the-shelf solvers such as CPLEX.449

[M2] An MISOCP model: Objective (49)450

subject to Constraints (2)–(4), (6)–(9), (11)–(12), (15)–(20), (22), (24)–(25), (28)–451

(39), (41)–(48), (52)–(53), (55).452

6.2. Dynamic linearization for solving [M2]453

We propose solving the MISOCP model [M2] by integer linear programming. The454

core idea is as follows: since Constraints (55) are convex, if we know an infeasible455

solution y̌ := (κ̌riεh, r ∈ R, i ∈ Ir, ε ∈ Ω, h = 0, 1, 2, · · ·, Hriε) that violates the non-456

linear Constraints (55), we can linearize the left-hand side (
∑

ε∈Ω

∑Hriε

h=0 2hσ2
riεκ

2
riεh)

1
2457

of the constraint at y̌. Note that
∂(

∑
ε∈Ω

∑Hriε
h=0 2hσ2

riεκ
2
riεh)

1
2

∂κriεh
=

2hσ2
riεκ̌riεh

(
∑

ε∈Ω

∑Hriε
h=0 2hσ2

riεκ̌
2
riεh)

1
2

at458

y̌. Hence, we can add the resulting linear constraint to the model in order to cut off459

the infeasible solution y̌, as well as some other infeasible solutions. We propose the460

following Algorithm 1 to solve model [M2] and we then prove its correctness.

Algorithm 1 Dynamic linearization algorithm for solving [M2]

Step 1. Define a set Ψ of generated intermediate infeasible solutions of y := (κriεh, r ∈
R, i ∈ Ir, ε ∈ Ω, h = 0, 1, 2, · · ·, Hriε). Initialize Ψ← ∅.

Step 2. Solve model [M3] whose objective function is Eq. (49) subject to Constraints

(2)–(4), (6)–(9), (11)–(12), (15)–(20), (22), (24)–(25), (28)–(39), (41)–(48),

(52)–(53) and the following constraints:∑
ε∈Ω

∑Hriε

h=0 2hσ2
riεκ̌riεh(κriεh − κ̌riεh)

(
∑

ε∈Ω

∑Hriε

h=0 2hσ2
riεκ̌

2
riεh)

1
2

+ (
∑
ε∈Ω

Hriε∑
h=0

2hσ2
riεκ̌

2
riεh)

1
2 ≤

ALoadri −
∑

ε∈Ω

∑Hriε

h=0 2hµriεκriεh

z1−α
, y̌ ∈ Ψ, r ∈ R, i ∈ Ir.

(56)

Let ŷ be the optimal solution to model [M3].

Step 3. Check whether ŷ satisfies Constraints (55). If yes, then ŷ is the optimal solu-

tion to [M2] and stop. Otherwise, set Ψ← Ψ ∪ {ŷ} and go to Step 1.

461
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Proposition 2. No solution will be generated twice in Algorithm 1.462

Proof. If a generated solution ŷ is feasible with respect to Constraints (55), then the463

algorithm stops and hence it will not be generated twice. If it is infeasible, then it464

will become an element of Ψ at the next iteration and we denote it by y̌. Since y̌ is465

infeasible, we have466

(
∑
ε∈Ω

Hriε∑
h=0

2hσ2
riεκ̌

2
riεh)

1
2 >

ALoadri −
∑
ε∈Ω

Hriε∑
h=0

2hµriεκ̌riεh

z1−α
r ∈ R, i ∈ Ir. (57)

Inequality (57) implies that ŷ = y̌ violates the added Constraints (56). Hence, ŷ = y̌467

will not be generated again.468

Proposition 3. Algorithm 1 terminates in a finite number of iterations.469

Proof. Since all κriεh variables are binary for r ∈ R, i ∈ Ir, ε ∈ Ω, and h = 0, 1, · ·470

·, Hriε, the number of solutions feasible to Constraints (2)–(4), (6)–(9), (11)–(12),471

(15)–(20), (22), (24)–(25), (28)–(39), (41)–(48) and (52)–(53) is at most 2

∑
r∈R

∑
i∈Ir

∑
ε∈Ω

(1+Hriε)

.472

Proposition 2 implies that at least one solution is excluded at each iteration. Hence,473

Algorithm 1 terminates in at most 2

∑
r∈R

∑
i∈Ir

∑
ε∈Ω

(1+Hriε)

iterations.474

Proposition 4. An optimal solution is obtained when Algorithm 1 terminates.475

Proof. Model [M3] is a relaxation of the original model [M2], because the lin-476

earization on the left-hand side of inequality (56) underestimates the convex function477

(
∑
ε∈Ω

Hriε∑
h=0

2hσ2
riεκ

2
riεh)

1
2 . Since [M2] and [M3] have the same objective function, the478

value of ŷ generated in Step 1 is at least equal to that of the optimal value of [M2].479

If ŷ is feasible for [M2], then the objective value of the feasible solution ŷ to [M2]480

is equal to an upper bound (the optimal objective value of [M3]), meaning that ŷ481

is optimal for [M2].482

6.3. Tabu search algorithm for solving [M2]483

We now propose a tabu search algorithm to solve [M2]. Tabu search algorithm,484

introduced by Glover (1986), is an adaptive local iterative search that operates within485
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a solution space. It moves from one solution to another and diversifies solutions486

so as to find a better one (Vivaldini et al., 2016). At each iteration, the search487

process is applied to explore the neighborhood of the current optimal solution. Tabu488

search algorithm has often been applied to problems solving in the maritime industry.489

Cordeau et al. (2005) applied a tabu search algorithm to the berth allocation problem490

(BAP). Tirado et al. (2013) solved a dynamic and stochastic cargo transportation491

problem by means of tabu search. Nikolopoulou et al. (2017) used tabu search to492

compare two kinds of cargo transportation methods in the shipping industry.493

6.3.1. Local optimization using tabu search494

Given a neighborhood structure (N(pc)) and an initial solution p, the tabu search495

algorithm iteratively replaces the incumbent solution pc by a best eligible neighbor496

solution (p̂ ∈ N(pc)) until a stopping criterion is met, i.e., the current optimal solution497

p∗ has not been improved for Tmax consecutive iterations. At each iteration, the best498

movement is recorded in the tabu list to prevent the reverse movement in the next499

iterations. A movement is eligible if it is not in the tabu list or if it results in a better500

solution than the current optimal solution. The general tabu search framework is501

described in Algorithm 2 and the details are explained in subsequent sections.502

6.3.2. Population initialization503

The population initialization is obtained by generating 10 random solutions using504

a uniform probability distribution. The component xr,i of each solution is randomly505

assigned a value from [Tminri , Tmaxri ], where r ∈ R, i ∈ Ir\{|Ir|}. The minimum value506

Tminri and maximum value Tmaxri refer to the minimum sailing time and the maximum507

sailing time of each leg of each route according to the maximum speed and minimum508

sailing speed, respectively. Moveover, we should guarantee that the sum of the sailing509

time on each leg plus the duration time at each port is the multiple of seven by510

adjusting the time of the last component xr,|Ir|, where r ∈ R. We then select the best511

solution p0 among the 10 random solutions as the initial solution p.512

6.3.3. Neighborhood structure and movement513

The neighborhood structure is the crucial component of the algorithm. The neigh-514

borhood N(pc) contains all solutions in which the value of one component is changed515
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to its immediate adjacent values. The neighborhood N(pc) is defined by the one-516

change movement operator which consists of changing the current solution pc of a517

single component either from xr,i to xr,i + 1 or from xr,i to xr,i − 1, where r ∈ R, i ∈518

Ir\{|Ir|}. Meanwhile, we should guarantee that the sum of the sailing time on each519

leg plus the duration time on each port is the multiple of seven by adjusting the time520

of the last component xr,|Ir|, where r ∈ R. Given an incumbent solution pc, the one-521

change movement operator is composed of all possible solutions that can be obtained522

by applying the one-change movement to pc.523

6.3.4. Sorted candidate solutions524

The candidate solutions (SCS1, SCS2, · · ·, SCSl, · · ·, SCSCmax) are generated after525

the movement is achieved, where Cmax is the number of candidate solutions, and the526

fitness values of the candidate solutions (SCF1, SCF2, · · ·, SCFl, · · ·, SCFCmax) are527

sorted in non-increasing order by using the bubble sorting method. Bubble sorting is a528

simple sort algorithm. It compares two adjacent elements SCFl and SCFl+1. If SCFl529

is less than SCFl+1, which means their order is opposite, the two adjacent element530

positions are exchanged and their corresponding candidate solution positions are also531

updated. If SCFl is greater than or equal to SCFl+1, no transformation operation is532

taken.533

Algorithm 2 Tabu search algorithm for the fleet deployment and demand534

fulfillment for container shipping liners535

Input: parameters Tmin
ri , Tmax

ri , Tmax, Cmax, Lmax, Dmax, GBF //Pmin
ri , Pmax

ri are the minimum536

and maximum values of the initial solution with respect to r, i ; Tmax is the given number of iterations537

for t; Cmax is the number of candidate solutions; Lmax is the tabu list size; Dmax is the given number538

of iterations for d; GBF is the best fitness of all solutions539

Output: the objective value540

1: initialization: initial solution p = p0 //p0 is the best solution among the t random solutions541

2: neighborhood structure N(p)542

3: tabu list L = ∅543

4: GBF ← f(p)544

5: f(p∗)← GBF //p∗ is the current optimal solution545

6: pc ← p0 //pc is the incumbent solution546

7: d← 0 //d counts the consecutive number of iterations in which p∗ is not improved547

8: t← 0 //t counts the consecutive number of iterations where p∗ is not updated548

9: while t < Tmax do549

10: find a best solution p̂ ∈ argmaxN(pc) [f(pc)] //p̂ keeps the best solution found550
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11: record the movement in the tabu list551

12: if p̂ /∈ L then552

13: move to the best neighbor pc ← p̂553

14: update tabu list554

15: else555

16: if f(p̂) > f(p∗) then556

17: move to the best neighbor pc ← p̂557

18: GBF ← f(p̂), f(p∗)← GBF558

19: p∗ ← p̂, d← 0, t← 0559

20: clean tabu list560

21: else if f(p̂) ≤ f(p∗) then561

22: d← d + 1562

23: t← t + 1563

24: if d = Dmax then564

25: clean tabu list565

26: sum← 0566

27: for r ∈ R567

28: for i ∈ Ir\{|Ir|}568

29: generate a solution solri, whose value is allocated from Tmin
ri to Tmax

ri569

30: sum ← sum+solri570

31: end for571

32: adjust solr,|Ir| to guarantee sum is the multiple of seven days572

33: end for573

34: save the incumbent solution pc ← (solri, r ∈ R, i ∈ Ir)574

35: d← 0575

36: end if576

37: end if577

38: end if578

39: end while579

40: return the objective value580

6.3.5. Intensification and diversification strategies581

The use of memory structures within a tabu search meta-heuristic has been proven582

to create a flexible search behavior. A key element of the proposed framework is to583

achieve a balance between search intensification and diversification. The intensifica-584

tion strategy encourages move combinations and solution features that have appeared585

to be effective during the search. In contrast, diversification is used to broaden the586

exploration of the solution space. In our algorithm, the diversification strategy clean-587

s the tabu list and then randomly generates a new solution. In lines 20 and 25-34588

of Algorithm 2, we provide a description of our intensification and diversification589
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strategies.590

6.3.6. Sensitivity analysis of the parameters591

To study the effectiveness of the proposed algorithm, we performed sensitivity592

analyses to determine the optimal combination of heuristic parameters. The chosen593

four parameters are the consecutive number of iterations where the current optimal594

solution is not updated (Tmax), the number of candidate solutions (Cmax), the tabu595

list size (Lmax) and the consecutive number of iterations where the current optimal596

solution is not improved (Dmax). These parameters are key parameters which may597

significantly affect the performance of the tabu search algorithm.598

To show how the objective value and the computation time are influenced by599

parameters Tmax, Cmax, Lmax and Dmax, we designed four test schemes. The outputs600

consist of the computation time and the objective value. When we conduct sensi-601

tivity analysis for one parameter, the values of the other three parameters are fixed.602

Figure 2-(a) illustrates the interrelation between the value of parameter Tmax and603

the objective value as well as the computation time, with the value of Tmax varying604

in {3, 6, . . . , 18}. The same method is applied to parameters Cmax, Lmax and Dmax,605

varying in {5, 10, . . . , 30}, {10, 20, . . . , 60}, and {3, 4, . . . , 8}, respectively.606

The performance of tabu search algorithm is evaluated based on both the objective607

value and the computation time. The results in Figure 2 show that with increases in608

the values of parameters Tmax, Cmax, Lmax and Dmax, the computation times of the609

tabu search algorithm rise considerably, which indicates that the computation times610

are sensitive to the setting of parameters Tmax, Cmax, Lmax and Dmax. Interestingly,611

the objective values of tabu search algorithm grow considerably with the values of612

parameters Tmax and Cmax, but they fluctuate moderately as a function of Lmax and613

Dmax, which illustrates that the objective values of tabu search algorithm are sensitive614

to the setting of parameters Tmax, Cmax, but not to Lmax and Dmax.615

We then evaluated the performance of the tabu search algorithm over 36 instances616

with fixed Lmax = 20, Dmax = 4 and different values of Tmax and Cmax. For each test617

instance, several combinations of the two parameters Tmax and Cmax were used. The618

objective values (left column) and the computational time (right column) of each test619
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(a) (b)

(c) (d)

Figure 2: Sensitivity analysis of the parameters
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instance are recorded in Table 1. It can be seen that when Tmax
.
= 10 and Cmax

.
= 15,620

we can obtain the best results. Therefore, the four values Tmax=10, Cmax = 15, Lmax621

= 20 and Dmax = 4 will be used in the next experiments.622

7. Computational experiments623

In order to assess the effectiveness of the proposed decision model and the ef-624

ficiency of our algorithms, we have carried out several computational experiments625

on a LENOVO P910 workstation with 28 cores of CPUs, 2.4 GHz processing speed626

and 256 GB of memory. All of the models and algorithms proposed in this article627

were implemented in C# programming. The MIP models (the original model and the628

submodels embedded in algorithms) were solved by CPLEX 12.5.1.629

7.1. Instance setting630

We first detail the setting of the model parameters. The value of Vε relates to631

the sailing distance and to the number of containers transported between an OD632

pair. The sailing distance data can be obtained on the Internet websites, and the633

unit container revenue data can be acquired on some logistics companies’ official634

websites. The average of COpr
r is set to 180,000 USD (Wang and Meng, 2015; Wang635

et al., 2015; Alharbi et al., 2015). The average of NShip
r which depends on the length636

of one cycle time is set to 20. This is consistent with the parameter setting used in637

previous works (Wang and Xu, 2015; Yao et al., 2012). The average of kri is set to638

0.25, and the average of ari is set to 2.6, which are basically the same as in previous639

works (Wang et al., 2015; Bell et al., 2013; Yao et al., 2012; Wang and Meng, 2015;640

Meng et al., 2016). The average of CHold is set to 20 USD per day per TEU (Zheng641

et al., 2015; Wen et al., 2017; Wang and Meng, 2015; Bell et al., 2013). The value of642

α is set to 1%. The maximum value of sailing speed is set to 22 knots, which is also643

in line with the setting used in related works (Jiang and Jin, 2017; Wang et al., 2015;644

Yao et al., 2012; Aydin et al., 2017). The average of CBerth
p is set to 3000 per berth645

(Chen et al., 2012) and the average of CY ard
p is set to 200 USD per TEU (Jiang and646

Jin, 2017). The value of D is two days, which is consistent with realistic data from647

the APL company.648

The shipping network investigated in the numerical experiments is depicted in649

Figure 1. The numbers of routes are three and four in the two different scales of650
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experiments, and the numbers of ports of call are four, four, five and six in route 1,651

2, 3, and 4, respectively. The experimental instances are generated on the basis of a652

specific rule. Taking the small-scale route network for example, the number of routes653

is three and the numbers of ports of call are four, four, and five in route 1, 2, and 3,654

respectively. We can then generate four cases in route 1, which differ from each other655

only with respect to the ports of call. Each of the four cases uses three ports of call656

among the four ports of call in the original route 1 shown in Figure 1. Analogously,657

more sets of cases can be generated through different selections of ports of call in658

other routes.659

Thus for the small-scale without all ports of call network with three routes, there660

are four sets of cases including three sets without all the ports of call, and an inte-661

grated case with all of them. Similarly, as for the large-scale route network consisting662

of four routes (as shown in Figure 1), there are four sets of cases without all ports of663

call, and an integrated case with all of them.664

7.2. Investigating the efficiency of the proposed methods665

Here we apply the dynamic linearization algorithm to solve the model [M2].666

A large number of numerical experiments on small-scale cases were carried out to667

validate this algorithm by comparing the values of its solutions with the optimal668

results obtained by CPLEX.669

From the results shown in Table 2, the objective values obtained by the dynamic670

linearization algorithm are equal to the optimal results, but this algorithm is faster671

on the small-scale route network. Based on these observations, we can confirm the672

efficiency of dynamic linearization algorithm. Table 2 also provides an upper bound673

(UB) obtained by relaxing Constraints (15), and it shows the gap between the UB674

and the optimal solution value, which is used to evaluate the efficiency of tabu search675

algorithm in the large-scale route network. To generate a more complex shipping676

network, we increase the number of routes from the three to four, which yields a677

large-scale route network. The results of the experiments show that it is difficult to678

obtain an optimal solution on this network within a reasonable time.679
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Table 2: Performance of the dynamic linearization (three routes)

Cases CPLEX Dynamic linearization Upper Bound

Num. of ports

in three routes
ID ZC TC πε ZD TD GAPC

TD
TC

ZUB GAPUB

3-4-5

(Cases differ

on the ports

in route 1)

Case 1 2,550,670 43 90.34% 2,550,670 13 0.00% 0.30 2,557,281 0.26%

Case 2 2,592,150 59 92.83% 2,592,150 11 0.00% 0.19 2,605,755 0.52%

Case 3 2,450,207 28 91.90% 2,450,207 12 0.00% 0.43 2,463,843 0.56%

Case 4 2,729,982 21 94.55% 2,729,982 8 0.00% 0.38 2,743,593 0.50%

4-3-5

(Cases differ

on the ports

in route 2)

Case 1 2,766,213 48 95.28% 2,766,213 12 0.00% 0.25 2,779,856 0.49%

Case 2 2,959,825 73 94.46% 2,959,825 17 0.00% 0.23 2,969,885 0.34%

Case 3 2,307,711 58 93.17% 2,307,711 10 0.00% 0.17 2,308,947 0.05%

Case 4 2,648,636 27 93.35% 2,648,636 9 0.00% 0.33 2,652,364 0.14%

4-4-4

(Cases differ

on the ports

in route 3)

Case 1 2,354,829 30 91.96% 2,354,829 10 0.00% 0.33 2,368,568 0.58%

Case 2 2,571,288 56 92.03% 2,571,288 12 0.00% 0.21 2,584,892 0.53%

Case 3 2,667,825 28 93.30% 2,667,825 9 0.00% 0.32 2,671,536 0.14%

Case 4 2,570,305 57 92.27% 2,570,305 12 0.00% 0.21 2,576,964 0.26%

Case 5 2,664,537 35 94.82% 2,664,537 11 0.00% 0.31 2,668,272 0.14%

4-4-5 Case 1 3,905,795 75 93.11% 3,905,795 15 0.00% 0.20 3,921,398 0.40%

Average 93.10% 0.00% 0.28 0.35%

Notes: (1) The optimal objective values and the CPU time are denoted by ZC and TC , respectively. (2) The

objective values and the CPU time of the dynamic linearization algorithm are denoted by ZD and TD, respectively.

(3) GAPC = (ZD − ZC)/ZC , GAPUB = (ZUB − ZC)/ZC .
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Therefore, we suggest applying tabu search algorithm to solve the model, and we680

compare its objective value with that obtained by the dynamic linearization algorith-681

m. The results in the rightmost two columns of Table 3 demonstrate that the average682

gap between dynamic linearization and tabu search algorithm is about 0.32%, but683

the average ratio of the CPU time of tabu search algorithm to that of the dynamic684

linearization algorithm is only 0.61, which indicates that tabu search may not on-685

ly obtain near-optimal objective function values, but can also solve the model in a686

much faster way. These results confirm the effectiveness of the dynamic linearization687

algorithm and of the tabu search algorithm. They demonstrate that tabu search is688

an effective method for solving the proposed model.689

8. Conclusions690

We have proposed an integrated optimization model for the fleet deployment and691

demand fulfillment problem, with the consideration of overload risk of containers,692

vessel size and port resources (e.g., berths, yard space). The objective was to jointly693

optimize the number of ships in each route, the ship speed on each leg, the visiting694

time of ships at each port of call, and the fulfillment scale of each OD pair’s demand.695

Since the proposed model is a chance-constrained non-linear MIP model, we have696

suggested some novel techniques to linearize it into a tractable MISOCP model for697

some commercial solvers such as the CPLEX. Two efficient algorithms were then698

suggested to solve the model under different scales of route networks. The proposed699

model as well as the algorithms can help shipping liners plan the deployment and700

scheduling of ships along each route. Numerical experiments based on real-word data701

were conducted to validate the effectiveness of our decision model and the efficiency702

of the proposed solution methods. With respect to the large body of research on liner703

ship fleet deployment, we have made three main new contributions:704

(1) Few of the previous fleet deployment related studies have considered the de-705

mand fulfillment decisions. However, both the fleet deployment and the demand ful-706

fillment decisions are strategic in nature and are intertwined. This study proposed an707

integrated decision model for optimizing the ship fleet deployment, the scheduling of708

ship visits at each port of call, and the demand fulfillment scale for each OD pair. The709

objective was to maximize the total benefit of shipping liners by considering various710
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types of operation costs for running shipping networks.711

(2) The overload risk of transported containers has seldom been considered in712

the FDP related literature, but this issue should not be ignored given the stochastic713

weights of containers. Our study takes stochasticity into account by embedding chance714

constraints in the decision model so as to control the overload risk under a certain715

threshold probability. Some tactics were also suggested to handle the model’s non-716

linearity as well the complexity yielded by the chance constraints.717

(3) Several realistic factors ignored in previous studies were considered in our718

decision model, but solving them proved to be difficult. We have developed two719

algorithms to solve the proposed non-linear chance-constrained MIP on large-scale720

instances. Experiments conducted on real-world data demonstrate that our method-721

ology yields solutions with an optimality gap less than about 0.5%, and can solve722

realistic instances with 19 ports and four routes within about one hour.723
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