48,362 research outputs found

    Autoregressive Neuronale Netze - Univariate, Multivariate und Kointegrierte Modelle mit einer Anwendung aus dem Bereich der deutschen Automobilindustrie

    Get PDF
    Prediction of economic variables is a basic component not only for economic models, but also for many business decisions. Nevertheless it is difficult to produce accurate predictions in times of economic crises, which cause nonlinear effects in the data. In this dissertation a nonlinear model for analysis of time series with nonlinear effects is introduced. Linear autoregressive processes are extended by neural networks to overcome the problem of nonlinearity. This idea is based on the universal approximation property of single hidden layer feedforward neural networks of Hornik (1993). Univariate Autoregressive Neural Network Processes (AR-NN) as well as Vector Autoregressive Neural Network Processes (VAR-NN) and Neural Network Vector Error Correction Models (NN-VEC) are introduced. Various methods for variable selection, parameter estimation and inference are discussed. AR-NN's as well as a NN-VEC are used for prediction and analysis of the relationships between 4 variables related to the German automobile industry: The US Dollar to Euro exchange rate, the industrial output of the German automobile industry, the sales of imported cars in the USA and an index of shares of German automobile manufacturing companies. Prediction results are compared to various linear and nonlinear univariate and multivariate models

    Neural Network Ensembles for Time Series Prediction

    Get PDF
    Rapidly evolving businesses generate massive amounts of time-stamped data sequences and defy a demand for massively multivariate time series analysis. For such data the predictive engine shifts from the historical auto-regression to modelling complex non-linear relationships between multidimensional features and the time series outputs. In order to exploit these time-disparate relationships for the improved time series forecasting, the system requires a flexible methodology of combining multiple prediction models applied to multiple versions of the temporal data under significant noise component and variable temporal depth of predictions. In reply to this challenge a composite time series prediction model is proposed which combines the strength of multiple neural network (NN) regressors applied to the temporally varied feature subsets and the postprocessing smoothing of outputs developed to further reduce noise. The key strength of the model is its excellent adaptability and generalisation ability achieved through a highly diversified set of complementary NN models. The model has been evaluated within NISIS Competition 2006 and NN3 Competition 2007 concerning prediction of univariate and multivariate time-series. It showed the best predictive performance among 12 competitive models in the NISIS 2006 and is under evaluation within NN3 2007 Competition

    Neural Networks with Non-Uniform Embedding and Explicit Validation Phase to Assess Granger Causality

    Get PDF
    A challenging problem when studying a dynamical system is to find the interdependencies among its individual components. Several algorithms have been proposed to detect directed dynamical influences between time series. Two of the most used approaches are a model-free one (transfer entropy) and a model-based one (Granger causality). Several pitfalls are related to the presence or absence of assumptions in modeling the relevant features of the data. We tried to overcome those pitfalls using a neural network approach in which a model is built without any a priori assumptions. In this sense this method can be seen as a bridge between model-free and model-based approaches. The experiments performed will show that the method presented in this work can detect the correct dynamical information flows occurring in a system of time series. Additionally we adopt a non-uniform embedding framework according to which only the past states that actually help the prediction are entered into the model, improving the prediction and avoiding the risk of overfitting. This method also leads to a further improvement with respect to traditional Granger causality approaches when redundant variables (i.e. variables sharing the same information about the future of the system) are involved. Neural networks are also able to recognize dynamics in data sets completely different from the ones used during the training phase

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work
    corecore