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1 Introduction

Prediction of future values of economic variables is a basic component not only for eco-

nomic models, but also for many business decisions. It is di�cult to produce accurate

predictions in times of economic crises, which cause nonlinear e�ects in the data. In the

following a new statistical method is introduced, which tries to overcome the problem

of such nonlinear e�ects.

This dissertation belongs to the scienti�c �eld of time series analysis, an important

sub�eld of econometrics. The aim of time series analysis is to extract information of

a given data series, consisting of observations over time. This information is used to

build a model of the dynamics, called process, which determines the data series. Such

a model can be used for prediction of future values of the time series. For identi�cation

of the process linear models like linear autoregressive processes (AR) and autoregressive

moving average processes (ARMA) are a standard tool of econometrics at least since

Box and Jenkins (1976). In particular Wold's theorem (Wold (1954)) has popularized

ARMA. However empirical experience shows that linear models are not always the best

way to identify a process and do not always deliver the best prediction results. In this

context Granger and Teräsvirta (1993) speak of �hidden nonlinearity�, which requires

the adoption of nonlinear methods. Particularly in times of economic crisises nonlinear-

ities may appear. Since the early 1990's a lot of nonlinear methods have arisen. They

can be divided into parametric models, characterized by a �xed number of parameters

in a known functional form, and the more general nonparametric models.

The method for nonlinear time series analysis discussed in this dissertation - autore-

gressive neural network processes (AR-NN) - is parametric. Due to this, it has all

the advantages concerning estimation and testing connected with parametric methods.

In addition AR-NN ful�ll the requirements for the universal approximation theorem of

neural networks in Hornik (1993). Thus they are able to approximate any unknown

nonlinear process. A bottom-up strategy for model building makes them applicable to

typical economic time series. Hence the prediction of economic time series can be

improved with AR-NN. The theory is not constrained to univariate time series models
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only, but can also be extended to multivariate and vector error correction models.

The contribution of this dissertation to science is the discussion of a nonlinear method

for analysis of nonlinear economic time series, which is able to produce better results

in out-of-sample prediction, because of its universal approximation property of neural

networks. The method is parametric and can be handled like the well known linear

methods in time series analysis: The models can be built according to the steps of

Box and Jenkins (1976) (data preparation, variable selection, parameter estimation and

parameter tests) using some nonlinear methods, proposed in this dissertation, for each

step. The following section shortly introduces the basic ideas and the motivation and

section 1.2 gives a summary of the contents.

1.1 Basic Ideas and Motivation

Here a method for the analysis of economic time series is introduced, which is based on

arti�cial neural networks, a class of functions which became popular in many �elds of

science from the late 1980's to the late 1990's. Certainly statistics is not the only appli-

cation area for neural networks. But used as statistical function they seem particularly

interesting, for diverse authors have shown that certain arti�cial neural networks can

approximate any function (universal approximation theorem, see Cybenko (1989), Fu-

nahashi (1989), Hornik, Stinchcombe and White (1989), Hornik (1991), Hornik (1993),

Liao, Fang and Nuttle (2003)). Various arti�cial neural networks have been used for

analysis of economic or �nancial time series (examples are White (1988), White (1989b),

Gencay (1994), Kuan and White (1994), Kaastra and Boyd (1996), Swanson and

White (1997), Anders, Korn and Schmitt (1998), Medeiros, Teräsvirta and Rech (2006)

to mention just a few). In contrast to the mentioned works, which sometimes include

high parametrized and complicated models, we want to improve linear AR's with ele-

ments of neural networks using a bottom-up strategy. The starting point is basically a

linear AR. Only if a nonlinearity test indicates hidden nonlinearity, nonlinear components

are added. Further more also the complexity of the nonlinear part of the models is in-

creased step- by- step, always using tests which indicate if additional elements might

contribute signi�cantly to the performance of the models. Thus we call our AR-NN

here augmented. The aim of such a procedure is to keep the models as simple as pos-

sible. As a consequence AR-NN are not only applicable to high-frequency data usually
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connected with neural networks, but also to time series with around 100 observations,

which are typical in economics.

Additionally, we use three other properties of neural networks which are su�cient for the

universal approximation property: The networks are only feedforward directed, consist

of only three layers and the nonlinear part is based on a bounded nonlinear function.

The �rst two properties keep the structure of the processes straightforward, the third

property contributes to analyze the stability behavior of the process (stationarity). The

consequence are simple structured processes, consisting of a linear and a nonlinear part,

which are adaptable for the �classical� steps for modelling time series (model selection,

parameter estimation and parameter tests, see Box and Jenkins (1976) part II). On the

other hand our models have all the advantages of neural networks. The most important

of them is the ability to handle any nonlinearity. In the empirical part (chapter 5) it

is shown that AR-NN sometimes perform better than some popular linear as well as

nonlinear alternatives concerning the out-of-sample performance.

So far the existing literature has already been discussing particular problems and can be

combined for modelling procedures of AR-NN, but until now multivariate and multivari-

ate cointegrated processes have not been modeled using arti�cial neural networks. We

introduce such multivariate modelling and show how the nonlinear vector- error- cor-

rection model of Escribano and Mira (2002) can be concretized using neural networks.

The result is linear cointegration with nonlinear adjustment. Such neural network er-

ror correction is necessary if the time series involved in a cointegration relationship are

nonlinear. In such a model a linear cointegration relationship between some nonlinear

variables is adjusted at the variables via nonlinear error- correction. An example for

application are supply- demand equations: Let the supply as well as the demand data

be a nonlinear time series, whereas the equilibrium between supply and demand is linear.

Let the long-run equilibrium between the series be a cointegration relationship. Now

for prediction of the individual series using a vector error correction model, the long-run

linear cointegration relationship has to be adjusted at the nonlinear series, because the

long-run equilibrium has an individual nonlinear in�uence on each series. The results are

better predictions than with linear error correction models.

To put it in a nutshell, AR-NN as proposed in this dissertation are processes which

combine �classical� time series analysis with the advantages of arti�cial neural networks,
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taking into account to keep the models as simple as possible. Those processes are able

to handle hidden nonlinearity, which appears in economic time series, in particular, in

times of economic crises and changes. In contrast to many other works neural networks

here are not considered to be a black box, but rather a parametric statistical function

which is able to include nonlinear phenomenons. In this context AR-NN are improved

linear models rather than pure nonlinear models.

1.2 Outlook of the Contents

The structure of chapters 2 and 3 follows the steps necessary for adjusting a univari-

ate model at a time series. Chapter 2 introduces univariate AR-NN and explains their

properties. Therefore, in section 2.1 at �rst the basic theory of time series analysis

is introduced and connected to the ideas of nonlinear modelling. The subsequent sec-

tions show how a linear model is extended for nonlinear components (so called hidden

neurons) to receive an AR-NN. The components of the AR-NN equation (linear and

nonlinear part) are explained in graph form as well as a written description. An interest-

ing and important point is the stability behavior of AR-NN. Using the results of Trapletti,

Leisch and Hornik (2000) we show that only the linear part determines the stationarity

of AR-NN. Therefore a modi�cation of the well known Augmented Dickey-Fuller test,

the Rank Augmented Dickey-Fuller test, can be applied as a stationarity test.

Chapter 3 provides the tools necessary for model selection, parameter estimation and

parameter tests. Only the �nding of nonlinearity in a given time series justi�es the use

of nonlinear methods. Hence nonlinearity tests have to be applied before the nonlin-

ear model is adjusted. The �rst part (section 3.1) introduces the nonlinearity tests.

Section 3.2 shows four methods of selecting the lag order for nonlinear models. In

the subsequent sections the numerical parameter estimation methods usually used for

neural networks are introduced. In particular the Levenberg-Marquardt algorithm seems

to be the best solution: It combines the advantages of �rst and second order gradient

descent methods. Section 3.4 explains how parameters of the nonlinear model can be

tested for signi�cance.

Chapter 4 indicates how the theory from chapters 2 and 3 can be transferred to multi-

variate and cointegrated models. For cointegrated models the nonlinear error correction
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theorem of Escribano and Mira (2002) is used. It can be interpreted as linear cointegra-

tion with nonlinear adjustment. As for the univariate models, the Levenberg-Marquardt

algorithm can also be used for parameter estimation. Graphical representation is used

to explain the complicated connections between the components of the multivariate

and cointegrated models.

In chapter 5 the theory is applied to real economic data. Four variables connected

with the German automobile industry are used: The industrial production of car manu-

facturers in Germany, the sale of imported foreign automobiles in the USA, the Dollar

to Euro exchange rate and an index of selected German car manufacturers stocks. Data

are provided on a monthly basis from January 1999 to October 2009. The number of

observations (129) is typical for economic time series. Although neural networks are

usually used for larger datasets, we show that a bottom-up arranged AR-NN - starting

with a linear process - may deliver quite good results for the given short time series. In

the �rst part of this chapter a univariate nonlinear model is adjusted to each series. The

out-of-sample performance is measured at a subset of the data set which includes ob-

vious nonlinearities caused by the economic crisis since the end of 2008. A one- and an

eight- period forecast is compared to some other linear as well as nonlinear methods. In

section 5.5 a nonlinear error correction model using neural networks is estimated. Uni-

variate AR-NNs as well as the error correction model perform quite well compared to

some linear as well as nonlinear alternatives concerning the out-of-sample performance.

Nearly all theory used in the empirical part has been implemented in the statistical

programming language R. The programming code is provided in appendix B. Concern-

ing this code one remark has to be made: Keeping the functions general was not always

possible. Therefore some of the functions can only be used with the data set used in

this dissertation or at least similar data sets.
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2 Basic Theory of Autoregressive Neu-

ral Network Processes (AR-NN)

2.1 Time Series and Nonlinear Modelling

This section introduces the basic theory of autoregressive processes (AR). We start

with a de�nition of AR. In contrast to most of the other time series literature we use

a general de�nition to ensure that nonlinear autoregressive processes are also autore-

gressive processes by their basic properties. Furthermore an introduction is given to the

problems in linear estimation and the aims of nonlinear models to overcome them. We

distinguish between parametric, semiparametric and nonparametric nonlinear methods.

Most nonlinear models are dedicated to certain speci�c nonlinearities in the data (like

structural breaks in the regression coe�cient or constant), while AR-NN are able to

approximate any function and therefore any nonlinearity (see section 2.2.3). As it is

shown in this section, they are parametric, which makes them easy to handle. These

two features are the main reasons why neural networks are used in this dissertation to

overcome the problem of hidden nonlinearity.

2.1.1 Autoregressive Processes

Time series analysis, a sub�eld of econometrics, is engaged in analyzing the underlying

dynamics of a set of sucessively observed past time values, called time series. We call

the underlying dynamics stochastic process and describe it as a series of random vari-

ables f~xtgTt=1 with �nite time index t = 1; 2; : : : ; T . A time series is a series fxtgTt=1

of observed realizations of the random variable (see for example Wei (1990) pp. 6-7).

Actually only the time series is given. We want to identify the process which determines

the time series using only the information given by the series. Therefore the process is

separated into a part which we can determine or predict and a random part. To create

a useful model of a process, as much as possible should be explained by the �rst part
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and the latter should be kept as small as possible. Usually the �rst part determines the

expectation conditioned by certain exogenous variables and the random part is account-

able for the deviations, or in other words the variance. Thus a variance minimal model

means that the predictable part explains as much as possible of the time series.

The simplest and probably the most common way is to construct the process as a

function of n past observed values of the time series. Because this implies that one

usually estimates this function by regressing xt on its past values, such a process is

called AR. Formally it is introduced in de�nition 2.1.

De�nition 2.1 (Autoregressive process):

A process is called autoregressive process of order n, short AR(n), if it is represented

by the equation

xt = F (Xt�1) + "t ; (2.1.1)

whereas Xt�1 = (xt�1; xt�2; : : : ; xt�n)>, F : Rn ! R and �t is a i.i.d. N(0; �2) (Gaussian

WN) random variable. The �rst term on the right hand side of equation (2.1.1) is called

predictable part, the second term stochastic part.

Remark 2.1.1:

If F (Xt�1) is a linear function, the process is a linear AR. If F (Xt�1) is nonlinear it is a

nonlinear AR.

The in�uence of the stochastic part is only of temporary nature and contains no time

dependent trends or a variance (heteroskedasticicty) as �2 is �nite and equal 8 t. Note
that in de�nition 2.1 "t is simply added to the predictable part. Of course in theory it is

also possible to combine the predictable and the stochastic part multiplicatively. How-

ever, this is not very common and probably not feasible. Thus we exclude multiplicative

errors in de�nition 2.1. It also has to be mentioned that we only deal with the constant

distance one between the lags.

The conditional expectation of xt is de�ned as E(xt jXt�1) = F (Xt�1) and the con-

ditional expectation of "t is de�ned as E("t jXt�1) = 0. This means that the input and



2 Basic Theory of Autoregressive Neural Network Processes (AR-NN) 8

the stochastic part "t are completely uncorrelated. If a process is an AR(n) we can say

that the process has a memory in mean which goes back until period n. It is important

to know that any speci�cation of the predictable part requires stationarity of the time

series as spurious regression could occur otherwise (Granger and Newbold (1974)). For

de�nition, testing and preprocession concerning stationarity see section 2.3.

Linear AR are the most simple and oldest models for processes, �rst mentioned in

Yule (1927). In full representation a linear AR(n) is written as

xt = �0 + �1xt�1 + �2xt�2 + : : :+ �nxt�n + "t (2.1.2)

Application shows that in most cases the residuals hardly match the Gaussian WN

assumption. A linear solution of this problem are the ARMA processes, see Box and

Jenkins (1976) p.11. They assume that the process does not only consist of a linear

predictable part and an additive Gaussian WN. Rather the stochastic part itself may be

determined by a moving average process (MA) of the Gaussian WN "t . An ARMA(n,k)

process is represented by the following equation (k indicates the maximum lag of the

MA part):

xt = �0 + �1xt�1 + �2xt�2 + : : :+ �nxt�n + "t + ��1"t�1 + : : :+ ��k"t�k (2.1.3)

Until today ARMA are the most frequently applied process models in time series anal-

ysis. The Wold decomposition theorem (introduced in Wold (1954)) justi�es theoret-

ically that one can estimate any covariance stationary process by an ARMA. However

according to Lütkepohl and Tschernig (1996) p.149. ARMA are only the best linear

estimators. In practical application however sometimes even large ARMA are inferior to

simple linear AR concerning the out-of-sample performance, because they are not able

to capture nonlinearities like regime e�ects and tend to over�tting. Sometimes loga-

rithms may help to linearize some nonlinear e�ects, but information can be lost by the

transformation. A linear solution might be to extend the assumptions on the stochastic

part, particular the Gaussian distribution. The alternative are nonlinear models (see Fan

and Yao (2003) p.15).
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2.1.2 Nonlinear Autoregressive Processes

Nonlinear models try to overcome the problem of observed nonstandard features1 in

linear models. They can be interpreted as an alternative draft to linear models with

extensions on the stochastic part (ARMA) as they try to improve the predictable part

to explain the process rather than to add some stochastic components or to intro-

duce some assumptions which are di�cult to handle. By contrast it is possible that

a nonlinear AR has its "t in accordance with the standard assumptions in de�nition

2.1. In natural sciences only nonlinear modelling allows us to think of pure deterministic

processes (which for example chaos science tries to analyze). However according to

Granger and Teräsvirta (1993) p.2 such theory does not �t to economic and �nancial

time series. Nonlinear methods are more �exible than linear models on the one hand,

but it may become di�cult to interpret their parameters (Medeiros, Teräsvirta and

Rech (2006) p.49).

The entirety of nonlinear modelling techniques is large. The �rst step to classify them is

to distinguish between parametric, semiparametric and nonparametric methods. Para-

metric means that the structure of the function to estimate and the number of the re-

lated parameters are known. Examples are threshold autoregression (TAR) or smooth

transition autoregression (STAR), methods which consider regime switching e�ects.

Nonparametric models do not constrain the function to any speci�c form, but allow for

a range of possible functions. Kernel regression for example would belong to this class.

Granger and Teräsvirta (1993) p.104 describe semiparametric models as a combination

of parametric and nonparametric parts. Granger and Teräsvirta (1993) p.105 as well as

Kuan and White (1994) p.2 classify neural networks as parametric econometric models,

for the model has to be speci�ed - including the number of parameters - before it is

estimated.

As we will see below neural networks have a universal approximation property. This

means that they are able to approximate any (not speci�ed) function arbitrary accu-

rately. This property can be seen as evidence for a nonparametric model. However,

the neural network function has to be speci�ed and is therefore parametric, even if

this parametric function may be able to approximate any unknown function arbitrary

1The term nonstandard features means the same as hidden nonlinearity and is used by Fan and

Yao (2003) p.15
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precisely. Hence a neural network can be referred as parametric model in the statisti-

cal sense (see Anders (1997) p.185). Of course in estimating linear functions neural

networks are clearly inferior to linear methods because of the needless additional e�ort.

2.2 The Architecture of AR-NN

Neural networks as we will use them and as they appear often in econometric literature

always contain a linear and a nonlinear part. To make the neural network function

easily accessible, we use signal-�ow graph representation, stepwise, at �rst of the linear

part and then of the whole neural network function. For the usage in the subsequent

chapters we introduce vector representation of the scalar neural network function. We

explain the basic components of the universal approximation theorem in the version

of Hornik (1993). As the universal approximation property depends of the activation

function, we discuss some appropriate bounded functions. Their boundedness allows

the analysis of stationarity using linear methods as we will see in section 2.3. Non-

bounded activation functions in contrast are much more di�cult to handle. After

the activation function and the architecture of the network including the number of

parameters is speci�ed, the AR-NN becomes a parametric function as mentioned above.

This is the starting point for model building according to the typical scheme of Box and

Jenkins (1976) part II (variable selection, estimation, evaluation) in the subsequent

chapter.

2.2.1 AR-NN Graphs

Graphical visualization is the �rst step to understand the AR-NN function. The graphs

we use here are architectural graphs, similar to those in Anders (1997) or Haykin (2009)

for example. They serve as "blueprint" of the models and give some deeper insight into

complicated networks.2 This will be particularly useful if the models become more com-

plex (see chapter 4). At �rst we start with the graph of a linear AR. The elements we

need and their equivalents in functional representation are shown in table 2.1.

In linear time series analysis the term layer is unknown. For the graph of the linear

AR we need two layers: The input layer, which contains the entirety of all independent

variables and the output layer, which contains the dependent variables (only one variable

2For design of the graphs the software yEd Graph Editor was used.
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in the univariate case). Note also that the constant term is decomposed into a bias

neuron with value 1 and the bias parameter �0. This serves for easier representation,

in particular if the models contain more than one constant in the following. A graph of

a linear AR(2) given by

x̂t = �0 + �1xt�1 + �2xt�2 (2.2.1)

is shown in �gure 2.1. We abstain here from the stochastic part as we only deal with

an estimator x̂t which corresponds to the (conditional) expectation of the process xt

(the expectation of the stochastic part is 0).

Symbol
Statistical

term

Term in

NN

theory

Equivalent

in

functions

Variables

Input and

output

neurons

x̂t , xt�i

Parameters
Shortcut

weights
�i

Constant Bias

1 (to be

multiplied

by �0)

- Layer -

Table 2.1: Symbols for linear AR graphs

As we know from the introduction, a linear AR is sometimes not su�cient and has

to be augmented therefore for a nonlinear part. The entirety of this nonlinear part is

called the �hidden� layer. It is inserted between the input- and output layer. This basic

concept is shown in �gure 2.2: Inside the nonlinear layer the variables are transformed

by a nonlinear function. The result of this nonlinear transformation is added to the

result of the linear part. Let F (�) be such a nonlinear function (it will be concretized

later), then the nonlinear extension of an linear AR(2) (as in equation (2.2.1)) is given

by

x̂t = �0 + �1xt�1 + �2xt�2 + F (xt�1; xt�2): (2.2.2)
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Figure 2.1: Linear AR(2) graph
Source: Authors' design

The nonlinear part here is described as a "black box", which generates some contribu-

tion to the result, but is not yet known. Figure 2.2 shows the graph belonging to the

equation (2.2.2), whereas F (xt�1; xt�2) is represented by the hidden layer.

Now we will have a look inside the hidden layer. To understand the nonlinear trans-

Figure 2.2: AR-NN(2) graph - "black box" representation
Source: Authors' design

formation, a few additional symbols are necessary. They are de�ned in table 2.2. The

nonlinear part contains h so called hidden neurons, which transform the input variables,

weighted by parameters 
i j plus a bias 
0j , via a nonlinear activation function 	(�). Let
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i indicate the number of lags and j the number of hidden neurons. A hidden neuron is

denoted by

	

(

0j +

n∑
i=1


i jxt�i

)
: (2.2.3)

Each hidden neuron is weighted by a parameter �j before it belongs to the output layer.

Assume that h = 2, then the nonlinear part F (xt�1; xt�2) in equation (2.2.2) becomes

F (xt�1; xt�2) = 	(
01 + 
11xt�1 + 
21xt�1)�1 +

	(
02 + 
12xt�1 + 
22xt�1)�2: (2.2.4)

In the most cases 	(�) is the same for all hidden neurons, but it also can be chosen

to be di�erent for each hidden neuron. However this is not common practise and leads

to complications in the estimation procedures. Now we can unveil the �black box� in

our graph (see �gure 2.3) and substitute F (xt�1; xt�2) in equation (2.2.2) by equation

(2.2.4).

Symbol Description
Equivalent in

functions

Weight between

input- and hidden

neuron


i j

Weight between

hidden- and output

neuron

�j

Hidden neuron:

Returns a nonlinear

transformation of the

weighted input

neurons

	

(

0j +

n∑
i=1


i jxt�i

)

Table 2.2: Additional symbols for AR-NN

In the further procedure all AR-NN are constructed like the one in �gure 2.3: For-

ward directed (all edges are forward directed in the graphs) with only one hidden layer.

Those properties are su�cient to guarantee the universal approximation property of the
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Figure 2.3: AR-NN(2) with two hidden neurons
Source: Authors' design

networks (see section 2.2.3 for details). In particular for our time series models multi

hidden layer or recursive neural networks will probably add not much additional value, as

such neural networks become very complicated, with impact on parameter estimation

etc.

We will see below that single hidden layer feedforward networks are su�ciently to esti-

mate any function - if the number of hidden neurons is su�cient large. Hence, also more

complicated neural networks (like multi hidden layer) functions can be approximated by

a single hidden layer neural network. Empirical application in chapter 5 shows that for

some series with around 130 observations models with 1-4 hidden neurons improve the

out-of-sample performance compared to some alternative linear models. More hidden

neurons probably do not contribute any additional value. Thus multilayer neural net-

works with large numbers of parameters might be just �too much� for economic data

series and lead to over�tted and therefore senseless models.
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2.2.2 The AR-NN Equation

Once knowing the structure of AR-NN from graphs, it is easy to formulate the scalar

AR-NN equation. For the AR-NN(2) the full network representation is

x̂t = �0 + �1xt�1 + �2xt�2 +

	(
01 + 
11xt�1 + 
21xt�1)�1 +

	(
02 + 
12xt�1 + 
22xt�1)�2: (2.2.5)

If the stochastic part is included we can write

xt = �0 +

n∑
i=1

�ixt�i +
h∑

j=1

	

(

0j +

n∑
i=1


i jxt�i

)
�j + "t : (2.2.6)

In the literature (for example Granger and Teräsvirta (1993) p.125) sometimes neural

networks without a linear part can be found. A linear part (also called shortcut con-

nections) is always included here, as our philosophy is - as already mentioned in the

introduction - to improve linear models by augmenting them for a nonlinear part if a

nonlinearity test shows that there is hidden nonlinearity in the data.

Particularly for estimation, it makes sense to write equation (2.2.6) in vector repre-

sentation with vector input and scalar output. Therefore the following notations are

introduced:

A = (�1; �2; : : : ; �n)
>

�j = (
1j ; 
2j ; : : : ; 
nj)
>

� = (�0; A
>; 
01; �

>
1 ; �1; : : : ; 
0h; �

>
h ; �h)

>

The dimension of � is (r � 1) with r = (n + 2) � h + n + 1. The �rst version of the

vector representation of equation (2.2.6) is

xt = �0 + A>Xt�1 +

h∑
j=1

	(
0j + �>j Xt�1)�j + "t : (2.2.7)
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Using � the short representation of the AR-NN equation (2.2.6) is

xt = G(�; Xt�1) + "t : (2.2.8)

Finally some considerations concerning the selection of the number of the hidden neu-

rons: A usual approach is to specify the network for an arbitrary number of hidden

neurons and later test the signi�cance of each hidden neuron (see the testing proce-

dures in section 3.4). A common rule of thumb is to set the number of hidden neurons

equal to the median of input and output variables (here: h = (n + 1)=2), see An-

ders (1997) p.104. Of course this method does not account for any technical needs like

data speci�c behavior or the reaction of the activation function on the inputs. Hence

it is not really a practical tool. White (1992) says that the number of observations of

the input variables should not exceed the number of parameters by the factor 10 (r =

T/10) to avoid overparametrization.

A method consistent with the procedure to augment a linear AR for a nonlinear part -

if the data are nonlinear - is to extend the number of hidden neurons step by step: At

�rst only one hidden neuron is added, then it is tested by a bottom-up parameter test

(see section 3.4.1) to see if an additional hidden neuron would improve the model. If

the test gives evidence for this, the additional hidden neuron is added. This procedure

can be repeated several times until a model with a su�cient number of hidden neurons

is reached.

2.2.3 The Universal Approximation Theorem

The universal approximation property was independently detected at �rst only for certain

activation functions by Cybenko (1989), Funahashi (1989) and Hornik, Stinchcombe

and White (1989). Hornik (1991) proved that any continuous, bounded and noncon-

stant activation function can approximate any function on a compact set X (see below)

if su�cient hidden units are implemented (with respect to a certain distance measure).

Finally Hornik (1993) weakened the conditions for the activation functions, which should

at least be locally Riemann integrable and nonpolynomial. This means that the universal

approximation property of neural networks does not depend on any speci�c activation

function, but rather on the network structure (Hornik (1991) p.252). In the follow-

ing we analyze the formulation of the universal approximation theorem according to
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Hornik (1993).3 Note that the universal approximation theorem does not depend of

any linear components. Its focus is only on the approximation of the nonlinear part or

hidden nonlinearity, which is not covered by the linear function (and therefore repre-

sented by function F (�) in equation (2.2.2)).

First some notations have to be introduced: Let W � Rn be the weight space such

that all �j 2 W and B � R the bias space such that all 
0j 2 B. Then G(	;B;W) is

the set of all functions of the form

G(�; Xt�1) =

h∑
j=1

	
(

0j + �>j Xt�1

)
�j ; (2.2.9)

which estimate the "true" F (Xt�1). In other words, G(	;B;W) is the set of all func-

tions which can be implemented by a neural network with biases in B and �rst to second

layer weights in W. Let X be the n-dimensional input set. Let F(X) denote the space
of all continuous functions with �x n, F (Xt�1), on the input set. Further we need the

term nondegenerate: An interval is said to be nondegenerate if it has positive length.

The performance or density of an estimation function is measured with respect to the

input environment measure �(Rn) <1 and some p, 1 � p <1 by the distance

�p;�(F;G) =

(∫
Rn

jF (Xt�1)� G(�; Xt�1)jpd�(Xt�1)j
) 1

p

: (2.2.10)

Usually one chooses p = 2, therewith equation (2.2.10) is equal to the mean-squared

error (see Hornik (1991) p.251). We call the subset G of F(X) dense in F(X) if

�p;�(F;G) < � with an arbitrary function G 2 G and a number � > 0. Therewith we

can formulate the universal approximation property by

Theorem 2.1 (Hornik (1993) p.1069 theorem 1):

Let 	(�) be Riemann integrable and nonpolynomial on some nondegenerate compact

interval B and let W contain a neighborhood of the origin. Then G(	;B;W) is dense

in F(X).

PROOF: See appendix A for a sketch of the proof. For the original proof see Hornik (1993)

3We concentrate on that version of the universal approximation theorem (Hornik (1993)) because it

probably covers the widest range of activation functions.
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pp.1070-1072.

Remark 2.1.2:

In Hornik (1993) p.1069 instead of the formulation "G(	;B;W) is dense in F(X)"
an expression using topological terms is used: "G(	;B;W) contains a subset that

contains F(X) in its closure with respect to uniform topology". Both mean the same,

see White (1992) p.21.

The term nonpolynomial is needed because only polynomials up to a certain degree can

be implemented in �nite layer networks (Hornik (1993) p.1070). The universal approx-

imation property is implied in theorem 2.1 by the fact that by any function G(�; Xt�1)

one can approximate any F (Xt�1) up to a certain �nite number �, provided that some

conditions are met. Thus the aim of modelling AR-NN is to approximate this function

as best as possible, which means trying to minimize � as much as possible. On the

one hand a large number of h might lead to that goal. On the other hand algorithms

which choose the parameter vector � in an intelligent way are necessary to minimize

�. The universal approximation theorem itself says nothing about the existence of an

unique solution of the approximation problem or about the estimation procedures for

the neural network (Widmann (2000) p.21).

Universal approximation has its limits in so far as one can only estimate but not identify

any function. If the true function is linear or polynomial, the corresponding methods

may behave much better than a neural network. A critical point is also the number of

hidden neurons. The more hidden neurons and consequently parameters that are intro-

duced, the more complex the neural network becomes. Therefore there is a con�ict of

objectives between avoiding overparametrization and precision.

So far we have seen that universal approximation is possible using an AR-NN with-

out linear part. This result is essential for the purpose in identifying the additional

hidden nonlinearity in a process. Consider equation (2.2.2) with a not speci�ed nonlin-

ear function F (xt�1; xt�2). No matter what kind of equation it might be, the hidden

neurons in the AR-NN can approximate it.

Caution has also to be paid to the number of hidden units. For example Lütkepohl
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and Tschernig (1996) p.164 generate data with a linear AR(3) and estimate the pro-

cess by an AR-NN with varying number of hidden neurons, h = 0; : : : ; 5. They calculate

the in-sample and out-of-sample standard deviation of the residuals for each model. If

one chooses the out-of-sample performance as a decision criterion, a model with h = 1

is optimal (and thus the linear model is not identi�ed). Consequently the neural net-

work has only approximated, not identi�ed the true equation. This fact intuitively says

that the AR-NN can be a misspeci�ed model, which is nevertheless able to give a good

approximation.

2.2.4 The Activation Function

The next step is to specify the activation function 	(�). Determining the activation

function is the �rst step to concretize and thus to parametrize the AR-NN function.

In the sense of statistical model building the borderline between semiparametrism and

parametrism is therewith crossed. We have seen in the subsection above, that the uni-

versal approximation property does not depend on any certain activation function. The

only prerequisite is nonpolynomiality and Riemann integrability (as far as X is compact

of course). In later sections we will see that boundedness of the activation function is

necessary for analysis of stationarity. Hence only bounded activation functions will be

needed in the further proceedings. Concerning the Riemann integrability there should be

no con�ict with the bounded activation functions we use and theorem 2.1, as a Riemann

integrable function has to be bounded and continuous or monotone respectively (see

for example Carathéodory (1927) p.463). We abstain from using radial basis function

(RBF) neural networks. They di�er from the usual AR-NN by the di�erent calculation

of the nonlinear part. Compared to the neural networks we use, RBF-networks are

more complicated to estimate as they contain an additional bandwidth parameter. As

RBF-networks resemble strongly to kernel regression, intuitively they can be classi�ed

as semi- or even nonparametric functions. In addition it might be di�cult to analyze

stationarity if RBF are used. Hence the relationships between AR-NN with RBF ac-

tivation functions and linear AR are not as big as the relationships between linear AR

and AR-NN with the activation functions proposed below. For an application of RBF

in analysis of �nancial time series see for example Hutchinson (1994).

The best known bounded activation functions are the so called sigmoid functions. They
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are called sigmoid because of their "S"-like plot. The �rst one of the sigmoid functions

is the logistic function

	logistic(�) = (1 + e�(�))�1; (2.2.11)

	logistic : R ! [0; 1]. Another well known sigmoid function is the tangens hyperbolicus

(tanh)

	tanh(�) = e(�) � e�(�)

e(�) + e�(�) ; (2.2.12)

	tanh : R ! [�1; 1]. Note that the tanh can be calculated out of the logistic function

by

	tanh(�) = 2	logistic(2(�))� 1;

so it is inessential, which function is used (Widmann (2000) p.16). According to Dutta,

Ganguli and Samanta (2005) p.5 sigmoid functions reduce the e�ect of outliers, because

they compress the data at the high and low end. Such functions also can be called

squashing functions (Castro, Mantas and Benìtez (2000) p.561). Although in the

literature often only sigmoid and RBF activation functions are considered, it is also

possible to choose any other bounded, Riemann integrable and nonpolynomial activation

function. The cosine is also sometimes used, for example in Hornik, Stinchcombe and

White (1989). Like the sigmoid activation functions it has also a bounded range of

values. Far less common are the Gaussian,

	G(�) = e�
1

2
(�)2 (2.2.13)

and the Gaussian complement activation function

	GC(�) = 1� e�
1

2
(�)2; (2.2.14)

which both map on the unit interval [0; 1]. The choice of the activation function may be

useful if additional information on the process is available or one wants to gain a certain

e�ect (see Dutta, Ganguli and Samanta (2005) p.5). The Gaussian and the Gaussian

complement function underline the e�ect of values in the middle range. Nevertheless

as we have seen above, the universal approximation theorem states that the univer-

sal approximation property of an AR-NN does not depend upon any speci�c activation

function.

Because of the bounded value range of certain activation functions, scaling of the
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data set on those intervals could be useful sometimes, but it is not necessary. However

scaling of the data set has two main advantages (see also Anders (1997) pp.25-26):

� The learning procedures (see section 3.3) behave much better if the variables are

scaled. In particular if the range of the observed values is much bigger than the

range of the activation function, the linear part may dominate the whole process.

As a consequence, the result is similar, or at least not much better than a linear

AR. On the other hand if the data already range in an interval close to the interval

at which the activation functions maps, scaling contributes no additional value.

� The initial parameter values for the iterative learning procedures do not depend

on the input variables. If the variables are not scaled and the initial weights are

not su�ciently small, the output of the bounded activation function will always

be on the upper or lower bound of the range of values. In this case, the activation

function has only a switching e�ect, similar to a threshold function.

Variables can be scaled in several ways. One possibility is to scale the data on the value

range of the activation functions. This can be executed by the Min- Max- method with

xtmin
as the minimum and xtmax

as the maximum element of one input series of length

T with elements xt 8 t = 1; : : : ; T . According to El Ayech and Trabelsi (2007) p.209

the scaled data on [0; 1] are calculated by

x 0t =
xt � xtmin

xtmax
� xtmin

: (2.2.15)

The scaled data on [�1; 1] result from

x 0t =
2xt � xtmax

� xtmin

xtmax
� xtmin

: (2.2.16)

Anders (1997) p.24 proposes to transform the data by subtracting the mean and division

by the standard deviation:

x 0t =
xt � �xt
�xt

(2.2.17)

�xt is the arithmetic mean of the values of xt . �xt is the square root of the variance of

xt respective �xt . The values scaled by formula (2.2.17) should have zero mean and a

standard deviation equal to one. In this case the range of values of the scaled variables

is not necessarily identical with that of the activation function. However, scaling is in

no way necessary. Transforming the series may lead to a loss of information (in the
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Figure 2.4: Reaction of certain activation functions on their input range
Source: Authors' design
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sense of Granger and Newbold (1974)).

In �gure 2.4 a linear series of 501 observations (T = 501) equally distributed on the

intervals (a) [�1; 1] and (b) [�10; 10] is transformed by the mentioned bounded acti-

vation functions to visualize their behavior concerning the input range. It is observable

that the larger the input is, the stronger the activation functions reacts. Note that the

size of the input is not only determined by the input neurons but also by the weights.

Only those bounded functions which are used as activation functions for neural networks

in literature are described in this section. Thus, this section does not claim to be a per-

fect list of all possible bounded activation functions. However it should be mentioned

here that the universal approximation property does not depend on the speci�c form of

the activation function.

A sigmoid activation function can be interpreted as a smooth transition function, which

is especially able to handle structural breaks. A closely related method to AR-NN's with

sigmoid activation function is the smooth transition autoregression model (STAR). A

simple version of a STAR(1) is (similar to Granger and Teräsvirta (1993) p.39):

xt = �0 + �1xt�1 +	(
0 + 
1xt�1)�(xt�1) + "t ; (2.2.18)

whereas	(�) is for example the tanh. This equation can be interpreted as a linear AR(1)

with a structural break in the regression coe�cient. The transition from regression

coe�cient �1 to �1 + � proceeds "smoothly" along the tanh function (an alternative

would be a threshold function, which directly shifts from one model to the other). An

AR-NN(1) with h = 1,

xt = �0 + �1xt�1 +	(
0 + 
1xt�1)� + "t ; (2.2.19)

can be interpreted as a STAR with structural break in the constant. Nevertheless

equation (2.2.18) can be approximated by an AR-NN(1) with su�cient hidden neurons,

as the e�ect of �(xt�1) in (2.2.18) can be approximated by the combination of several

constants. To illustrate this we consider a simple model of an AR(1) with structural

break in the regression coe�cient as shown in �gure 2.5. In this case - for simpli�cation
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- 	(�) is a threshold function. This graph shows the following transition autoregression

(TAR) process:

xt = �0 + �1xt�1 +	(
1xt�1)�(xt�1 � 2) (2.2.20)

with

	(x) =

1 if x � 1

0 if x < 1
(2.2.21)

and �0 = 1, �1 = 0:5, 
1 = 0:5 and � = 0:5. Now we consider an AR-NN(1) with 2

hidden neurons and function (2.2.21) as activation function:

x̂t = �0 + �1xt�1 +	(
1xt�1)�1 +	(
2xt�1)�2 (2.2.22)

with �0 = 1, �1 = 0:5, 
1 =
1
3
, �1 = 1, 
2 =

1
5
and �2 = 1. Figure 2.6 shows how the

AR-NN(1) in equation (2.2.22) approximates the TAR(1) of equation (2.2.20). If the

number of hidden neurons is increased, the approximation becomes more accurate. To

demonstrate this, we use 4 hidden neurons such that the AR-NN(1) equation becomes

x̂t = �0 + �1xt�1 +

4∑
i=1

	(
ixt�1)�i (2.2.23)

with �0 = 1, �1 = 0:5, 
1 = 1
2
, 
2 = 1

3
, 
3 = 1

4
, 
4 = 1

5
, �1 = 0:25, �2 = 0:5,

�3 = 0:5 and �4 = 0:5. The result is shown in �gure 2.7. A structural break in the

regression coe�cient can be approximated by a su�ciently large number of structural

breaks in the constant (which are represented by the hidden neurons in an AR-NN).

This simple example shows the advantage of AR-NN: The number of hidden neurons

can be increased until an optimal approximation is reached. Concerning prediction, the

AR-NN only delivers appropriate results in the short run. Consider �gure 2.8: The

larger the prediction horizon becomes, the more the original and the estimated series

diverge and the more the prediction error increases. Our empirical results also con�rm

the �nding that AR-NN perform well mainly in one and two step predictions: For higher

step predictions they are dominated by their linear part.

In the further proceedings we will use often the tanh activation function for the follow-

ing two reasons: Firstly, it is one of the most common activation functions in literature,

and secondly, its derivations can be calculated relatively easily and thus it is easy to

handle.
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Figure 2.8: Prediction with the model from �gure 2.7
Source: Authors' design
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2.3 Stationarity of AR-NN

Before the �classical� scheme of Box and Jenkins (1976) part II (consisting of variable

selection, parameter estimation and model validation) can be applied to the time series,

it has to be tested for stationarity and eventually preprocessed to a stationary repre-

sentation (usually by di�erentiation). This section begins with a general de�nition of

stationarity and shows why weak stationarity is su�cient in the case of Gaussian white

noise errors. Furthermore the important �ndings of Trapletti, Leisch and Hornik (2000)

concerning stationarity tests in AR-NN are introduced. They say that the popular linear

unit root stationarity tests are su�cient if the activation function is bounded. We give

a short introduction into the principle of unit root tests and focus on a modi�cation

of the the Augmented-Dickey-Fuller test (ADF) for nonlinear environments, the Rank-

ADF test of Hallman (1990). This test can be used as an ex-ante stationarity test,

especially for nonlinear time series, as most modelling procedures require stationary

data. Of course tests other than the RADF are possible, but it is simple to implement

and based on the ADF test, the most common unit root test in econometrics.

2.3.1 Stationarity and Memory

A generalization of the concept of stationarity, which shows the idea behind it, can be

found in Granger and Teräsvirta (1993) p.51. We introduce this �rst to examine the role

which the information contained in the lagged values of xt plays in explaining the long

run behavior. This so called memory-concept is the information theoretic basis from

which we later attach to the concept of stationarity, which we de�ne particularly for

processes with normal distributed errors (as only the �rst and second moment are used

to describe the distribution). Let xt+h be the h step forecast and Inft be the information

set, which is in the case of an AR(n) given by Inft : Xt�1. The conditional expectation

belonging to xt+h given the information set is E(xt+hjInft). If the expectation of the

stochastic part is zero, G(�; Xt�1) is an optimal estimator for E(xt+hjInft) in the sense
of the mean square principle (Leisch, Trapletti and Hornik (1998) p.2). We say the

process xt is short memory in mean (SMM) if

lim
h!1

E(xt+hjInft) = c (2.3.1)
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and the distribution of the random variable c does not depend on Inft . In the special

case of mean-stationarity as we will see in de�nition 2.2, a constant mean is a special

case of SMM. In contrast, if the distribution of c depends on Inft , the process xt is

called long memory in mean (LMM).

We now consider the conditional distribution of the h step forecast expressed by the

probability P rob(xt+h � x jInft). If the limit of this conditional distribution,

lim
h!1

P rob(xt+h � x jInft) (2.3.2)

does not depend on Inft , the process xt is said to be short memory in distribution

(SMD). Just another notation for this would be if for all sets C1 and C2 holds

jP rob(xt+h 2 C1jInft 2 C2)� P rob(xt+h 2 C1)j ���!
h!1

0 (2.3.3)

If in contrast (2.3.2) depends on Inft , the process is called long memory in distribution

(LMD). In the case of a stationary AR(n) the distribution of the process is determined

by "t which is by de�nition 2.1 i.i.d. N(0; �2) with constant �2. Thus a stationary

process is SMD. The property SMD implies also the property SMM but Granger and

Teräsvirta (1993) pp.51-52 provide some examples that this relation does not work in

the other direction.

Stronger than the term SMD would be the term stationary in distribution, which means

that (2.3.2) is constant. According to Leisch, Trapletti and Hornik (1998) p.2 this

also can be called strict stationarity as it incudes of course stationarity in mean. The

term weak stationarity as we will de�ne it in the following, according to Schlittgen

and Streitberg (1995) p.100 and Hamilton (1994) p.45, is included in the de�nition of

strict stationarity. Weak stationary means that only the �rst and second moment have

to be stationary. Particularly for normal distributed processes weakly stationarity can

be used synonymously for strict stationarity as the distribution is mainly characterized

by the �rst and second moment (this is intuitively clear if one considers the Gaussian

probability density function).
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De�nition 2.2 (Stationarity):

A stochastic process xt is called

� Mean-Stationary if E(xt)=constant 8 t 2 T

� Variance-Stationary if �2
t=�

2=constant 8 t 2 T

� Covariance-Stationary if cov(xt�i ; xt�j) = constant 8 t 2 T and i ; j = 0; : : : ; n

� Weakly Stationary if it is mean-stationary and covariance-stationary

Remark 2.2.1:

If a process is covariance-stationary the covariance of any two lag variables depends only

on the distance between the lags. Clearly the i.i.d. N(0; �2) process "t is stationary as

E("t) = 0 8t, �2
t=�

2 8t and

cov(xt�i ; xt�j) =

0 i f i 6= j

�2 i f i = j
: (2.3.4)

Remark 2.2.2:

Covariance stationarity implies variance stationarity as cov(xt�i ; xt�i)=

cov(xt�j ; xt�j) = �2.

2.3.2 Markov Chain Representation and the Invariance Measure

For the further procedure we need a function representing equation (2.2.8) which maps

from Rn ! Rn. We get it by the Markov chain representation

Xt = H(Xt�1) + Et : (2.3.5)

The vectors belonging to this equation are Xt=(xt ; xt�1; : : : ; xt�n+1)
>, H(Xt�1) =

(G(�; Xt�1); xt�1; : : : ; xt�n+1)
> and Et = ("t ; 0; : : : ; 0)

> (see Trapletti, Leisch and

Hornik (2000) p.2429). A Markov chain resembles a multivariate AR(1). Markov chain

theory provides some additional measures to analyze the stability (for a detailed in-

troduction see Haigh (2010) pp.88-89). Our aim is to use those stability measures

for formulating a theorem concerning the stability of AR-NN (theorem 2.2). Equation
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(2.3.5) provides the link between the measures from Markov chain theory and AR-

NN(n) with n > 1.

Again we need the term SMD. As we have seen that SMD includes SMM, a Markov chain

which is SMD is also stationary (see Resnick (1992) p.116). To show under which condi-

tions a Markov chain like equation (2.3.5) is strictly stationary (and thus weakly station-

ary in the case of Gaussian WN errors) we need a term for the probability that xt moves

from point x to a set A in k steps, denoted by P robk(x;A)= P rob(xt+k 2 Ajxt = x).

This probability is called the k-step transition probability (Fonseca and Tweedie (2002)

p.651). If this transition probability is constant for all steps k we have in fact a strictly

stationary process. Account for the fact that the Markov chain (2.3.5) is a AR(1), then

the transition probability is equal to the �rst probability term in (2.3.3). Let jj � jj be
the total deviation norm. If a constant probability measure dependent on the selection

of A, �(A), exists such that

lim
k!1

�k jjP robk(x;A)� �(A)jj = 0; (2.3.6)

the process is called geometrical ergodic and ergodic for the special case � = 1. The

probability measure has to satisfy the invariance equation

�(A) =
∫

Rn

P rob(x;A)�dx: (2.3.7)

� is also called the stationary or invariant measure. Geometrical ergodicity implies sta-

tionarity as the distribution converges to �, which is constant. Thus a geometrical

ergodic process is asymptotic stationary (because of the convergence). If a process

already starts with �, it is strictly stationary. In addition we need the properties irre-

ducible and aperiodic. Irreducible can be explained informally as the property that any

point of the state space of the process can be reached independently from the starting

point. The process is aperiodic, if it is not possible that the process returns to certain

sets only at certain time points. If the errors in our process are i.i.d. N(0; �2), it is

certainly irreducible and aperiodic (see Trapletti, Leisch and Hornik (2000) p.2431).

Hence we will not further discuss those terms as they are included in the Gaussian WN

assumption on the errors.
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2.3.3 Unit Roots and Stationarity of AR-NN

This section is mainly based on Trapletti, Leisch and Hornik (2000) p.2431. For the

further proceeding we �rst introduce some notations from linear time series analysis:

The unit roots (UR) of the characteristic polynomial. Consider the scalar linear AR(n)

xt = �1xt�1 + �t�2 + : : :+ �nxt�n + "t (2.3.8)

"t = xt � �1xt�1 � �t�2 � : : :� �nxt�n (2.3.9)

The characteristic polynomial of this process is denoted by

1� �1z
2 � �2z

2 � : : : �nz
2 = 0; (2.3.10)

see Schlittgen and Streitberg (1995) p.100. The solutions z of this equation are called

roots. The process is weakly stationary if the roots are outside the unit circle and thus

jz j > 1 and explosive or chaotic if jz j < 1, (Hatanaka (1996) p.22). A condition equiv-

alent to the condition that the roots should be outside the unit circle is j�i j < 1 (see

Schlittgen and Streitberg (1995) pp.123-124 and Hatanaka (1996) pp.22-23).

If the process has its roots outside the unit circle, it can be inverted to an in�nite

MA representation based on the residuals. In this case it can easily be shown that xt is

stationary, because it only depends on the white-noise process "t . Therefore we rewrite

equation (2.3.8) using the lag-operator L:

xt = �(L)xt + "t = (1� �1L� : : :� �nL
n)xt + "t : (2.3.11)

The process has an in�nite MA representation if the inverse �lter ��1(L) exists. There-

with equation (2.3.11) becomes

xt = ��1(L)"t =

1∑
i=1

�i"t�i : (2.3.12)

The inverse �lter exists only if jz j < 1, see Schlittgen and Streitberg (1995) p.122 and

Hassler (2007) p.48.



2 Basic Theory of Autoregressive Neural Network Processes (AR-NN) 32

In the border case the largest solution is jz j = 1. Equation (2.3.10) becomes

1 = �1 + �2 + : : :+ �n: (2.3.13)

We say the process has a unit root. This process can be stationarized by di�erentiation,

because the stable �lter (1 � L) can be splitted o� from �(L). Without stationariza-

tion via di�erences the process has no MA(1) representation and is not stationary. A

nonstationary process with one UR is called process of integration order 1. An impor-

tant theorem concerning the stationarity of an AR-NN can be formulated according to

Trapletti, Leisch and Hornik (2000) pp. 2430-2431:

Theorem 2.2 (Trapletti, Leisch and Hornik (2000) pp. 2430-2431 theorem 1):

Assume that "t is a Gaussian WN process and 	 is bounded. The characteristic poly-

nomial of the linear part (the direct edges between input and output nodes without the

bias) is denoted as

�(z) = 1�
n∑
i=1

�iz
i : (2.3.14)

The condition

�(z) 6= 0 8z; jz j � 1; (2.3.15)

is su�cient but not necessary that the process xt is geometrical ergodic and asymptotic

stationary. If Ej"t j2 <1, the process is weakly stationary.

PROOF: The proof can be formulated in two di�erent ways using two previous �ndings:

The �rst proof in Trapletti, Leisch and Hornik (2000) p. 2438 uses the results of Tjø-

stheim (1990) and Meyn and Tweedie (1993). The alternative, the proof of theorem

1 (Leisch, Trapletti and Hornik (1998) p.4) in Leisch, Trapletti and Hornik (1998) pp.

9-10 uses the results of Chan and Tong (1985).

The bias is is processed like a constant and is thus not part of the characteristic polyno-

mial (like deterministic drifts in linear AR(n)). We see that stationarity of the process

depends on the linear part and we can use the usual unit root theory from linear time

series analysis to test for stationarity. If we have no linear part, the AR-NN always leads

to a stationary representation (because of the boundedness of the activation function),
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see Trapletti, Leisch and Hornik (2000) p.4.

Next it has to be shortly explained why (weak) stationarity of the linear part is not

a necessary condition. If one root is on the unit circle, we expect Random Walk behav-

ior of the process with or without time trend (drift). But it is possible that the nonlinear

part of the process causes a drift towards a stationary solution. This is meant by the

statement that stationarity of the linear part is su�cient but not necessary in theo-

rem 2.2. For further details see Trapletti, Leisch and Hornik (2000) p.2432. Theorem

2.2 outlines also the hybrid character (composed of a linear and a nonlinear part) of

AR-NN as we use them. Practical application especially with unscaled data shows that

the squashing property for bounded activation functions tends to produce stationary

outputs.

2.3.4 The Rank Augmented Dickey-Fuller Test

In this subsection we consider a procedure based on the ADF test. This test is most

common in econometrics to analyze the UR of a given time series (originally developed

by Dickey and Fuller (1979) for linear AR(1)). Dickey-Fuller tests for higher order linear

AR are called ADF tests, see Schlittgen and Streitberg (1995) p.300. In the following

we give a short overview over the test and consider some problems using UR tests.

At �rst the linear AR with unknown order n of equation (2.1.2) is rearranged:

xt = a1xt�1 + a2�xt�1 + a3�xt�2 + : : : an�xt�n + "t (2.3.16)

whereas a1 = �1 + �2 + : : : �n, a2 = ��2 � : : :� �n, a3 = ��3 � : : :� �n, an = ��n

and "t are the residuals of the equation. The null hypothesis "H0 : a1 = 1" implies that

the process is integrated of order one which means it can be stationarized by applying

�rst di�erences. The alternative is "H1 : a1 < 1", which means that the process is

already stationary. Usually the following test statistic is applied:

TADF =
a1 � 1√

�2
"t
�∑T

t=2 x
2
t�1

: (2.3.17)

�2
"t

(the variance of the residuals) and a1 are received by linear regression applied at

equation (2.3.16), see Schlittgen and Streitberg (1995) p.300. The distribution of TADF
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in a linear environment is tabulated for example in Fuller (1976) p.373. Hallman (1990)

pp. 7-584 considers nonlinear transformations of linear time series. He found out that

an ADF test using the ranks of a time series works better, if the underlying dynamic

of the series is nonlinear (see Hallman (1990) p.43). The rank of a single observation

xt of a time series, R(xt), is de�ned as the rank of xt in the ordered time series (see

Hallman (1990) p.34). Thus for computation of the ranks of a time series in a �rst

step the observations are increasingly ordered by their value. In a second step a rank

corresponding to the place in the ordered series is assigned to each element of the

originally unordered series. Equation (2.3.16) for the ranks of the series is

R(xt) = a1R(xt�1) + a2�R(xt�1) + a3�R(xt�2) + : : : an�R(xt�n) + "t : (2.3.18)

The test statistic is calculated analogous to (2.3.17). For the rank- ADF (RADF) new

critical values are necessary, which are provided in Hallman (1990) p.39. Table 2.3

shows them for models without constant.5 A series is considered to be stationary, if

the test statistic is below the critical value. If the RADF test indicates that a series

is nonstationary, di�erences of the ranks have to be used rather than ranks of the

di�erences to keep the procedure in accordance with the ADF test.

T 10% 5% 1%

25 -1.67 -2.05 -2.87

50 -1.57 -1.91 -2.56

100 -1.61 -1.92 -2.52

200 -1.66 -1.95 -2.57

400 -1.70 -2.04 -2.61

800 -1.79 -2.08 -2.73

Table 2.3: RADF critical values (Hallman (1990) p.39)

Linear regression for calculation of the test statistics (out of equation (2.3.16)) requires

speci�cation of the lag order. As we will see in the following section, lag selection

procedures require on the other hand stationary data. This leads to the dilemma that

the one is not possible without the results of the other. Said and Dickey (1984) propose

to estimate the AR-order as a function of T . In our opinion this does not completely

solve the problem as the UR-test should be based on the same lag order as the estimated

4This chapter of Hallman (1990) was also published in a shorter version as Granger and Hallman (1988)
5Note that the presign is changed, because in Hallman (1990) p.29 the presign of the test statistic is

di�erent
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model. Therefore a good strategy might be to de�ne a maximal lag order m at �rst and

then calculate the RADF test statistic for all lags from 1 to m. The maximal lag order

should account for the fact that a realistic relation between n and T is kept. In Said and

Dickey (1984) p.600 the optimal relation between lags and observations is determined

by 3
p
T �m ! 0 for example. Another possibility is to prespecify the number of hidden

neurons and to determine a maximal lag order which accounts for the fact that the

relation between parameters and observations should be 1=10. For example if we have

h = 2 hidden neurons, the maximal number of lags should be m � 1=30T+5=3. Usually

we expect to �nd for each lag order n = 1; : : : ; m that the process is nonstationary and

can be stationarized by the �rst di�erences. Subsequently one of the several variable

selection procedures from the following section can be applied to the stationarized data

to �nd the optimal lag order n for the models.
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3 Modelling Univariate AR-NN

In this chapter we show how one belongs to an univariate AR-NN model for a given time

series. Only estimating the parameters is certainly not su�cient to receive an appropri-

ate model. We follow Box and Jenkins (1976) part II, who propose to proceed in three

steps: Variable selection, parameter estimation and model validation (parameter tests).

Before we can start with the �rst step, it has to be assured that the data are stationary.

If they are nonstationary, stationarization as an additional transformation is neces-

sary. The aim of doing so is to avoid the problem of spurious regression mentioned by

Granger and Newbold (1974), which may occur if regression of any nonstationary time

series which are in reality uncorrelated on each other indicates signi�cantly correlated

results. Although this problem is analyzed only for linear time series, several authors

state that it is relevant for neural networks too (Lee, White and Granger (1993) p.287,

Anders (1997) p.99, Trapletti, Leisch and Hornik (2000) p.2440). Steurer (1996)

p.120-124 shows by empirical investigation that neural networks only work accurate for

stationary data. Hence the methods presented below are only applicable at stationary

time series. For testing procedures for stationarity we refer to section 2.3.4.

Nonlinearity tests are an addition to the common framework of time series modelling.

Testing a time series on hidden nonlinearity before an AR-NN model is adjusted is nec-

essary for two reasons: Firstly the additional e�ort necessary for a nonlinear model

compared to a linear one has to be justi�ed. Secondly as we know from section 2.2.3

an AR-NN model performs equal to a linear model if the investigated time series is

determined by a linear process. If one accounts for the additional e�ort necessary for

the nonsigni�cant linear part in such a case, the AR-NN is inferior than a simple linear

AR.

In �gure 3.1 a �ow chart shows the steps to build an AR-NN model for a given time

series. This �gure may serve as a general plan to construct an AR-NN model of any

given time series as also the �augmented� philosophy is included (increasing the number

of hidden neurons step by step, starting with h=1). The �gure also serves as a guideline

for the sections of this chapter.
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Figure 3.1: Flow chart AR-NN model building
Source: Authors' design, based on the �gures in Anders (1997) p.37 and pp.127-132
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3.1 The Nonlinearity Test

In the previous sections we have become acquainted with the structure of AR-NN.

Compared to a simple linear model it is much more complicated. If a series is linear,

the additional e�ort is of no use. To avoid this, the series should be tested on hidden

nonlinearity at the �rst. The nonlinearity test of Teräsvirta, Lin and Granger (1993),

described in this section, is a simple and e�cient method, based on previous results of

White (1989a). The basic idea is to approximate the AR-NN by a Taylor polynomial.

Such an approximation is necessary, because the distribution of the parameters of the

AR-NN does not always exist (only if the conditions in section 3.4.2.1 are achieved).

In contrast the distribution of the parameters of the Taylor polynomial always exists.

An existing distribution of the parameters is a prerequisite for parameter tests like the

Lagrange-multiplier test. As we have not yet speci�ed the number of lags, the test

on hidden nonlinearity should be executed on all lags from 1 to a prespeci�ed maximal

number of lags. Empirical application shows, that a time series may be nonlinear for

one lag order as well as linear for other lag orders.

3.1.1 Taylor Expansion

Taylor expansion is a method to approximate nonlinear functions by a chain of polyno-

mials of increasing order. The concept is easy to understand, hence this approximation

method will be of use several times in this dissertation. Its two main advantages are

its general approximation property and the existence of a distribution of its parameters

and therefore its adaptability for parameter tests. We specify it in the following:

Based on Weierstrass (1885) and extended by Stone (1948), the Stone-Weierstrass

theorem says that a Taylor polynomial of su�cient high order can approximate any

function (see Medeiros, Teräsvirta and Rech (2006) pp.52-53). Taylor expansion of

order k for a function F (x) around a point x0 is given by

F (x) = F (x0) +
F 0(x0)
1!

(x � x0) +
F 00(x0)
2!

(x � x0)
2 + : : :+

F k(x0)

k!
(x � x0)

k ; (3.1.1)

with F 0(x0) as the �rst derivative of F (x0) respective x0, F
00(x0) the second derivative

and F k(x0) the kth derivative, see Anders (1997) p.52. If x0 = 0 (Taylor expansion

around 0) the series (3.1.1) is also called Maclaurin series. If our aim is to approximate
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an unknown nonlinear function F (Xt�1) in equation (2.1.1) we can not determine F (0)

as well as the derivatives F 0(0); F 00(0); : : : ; F k(0). In general the derivatives with respect

to zero consist only of constant parts. All constants in a Maclaurin series can be

combined in parameters � such that it is no longer necessary to know the derivatives.

Therewith equation (3.1.1) can be written as a function only consisting of parameters

and variables. With a polynomial approximation of F (Xt�1) equation (2.1.1) becomes

xt = �0 +

n∑
j1=1

�j1xt�j︸ ︷︷ ︸
l inear component

+

n∑
j1=1

n∑
j2=j1

�j1;j2xt�j1xt�j2︸ ︷︷ ︸
quadratic component

+

n∑
j1=1

n∑
j2=j1

n∑
j3=j2

�j1;j2;j3xt�j1xt�j2xt�j3︸ ︷︷ ︸
cubic component

+ : : :+

n∑
j1=1

: : :

n∑
jk=jk�1

�j1;j2;:::;jkxt�j1 : : : xt�jk︸ ︷︷ ︸
k component

+ut (3.1.2)

whereas ut is the residual part consisting of "t plus the additional error caused by the

approximation. The number of parameters is m(k) =
(n + k)!

n!k!
.

The number of parameters increases with k or n. This means that for models with

high lag orders even low order polynomials include an immense number of parameters

(for example if n = 15 and k = 3, m(k) = 816 parameters have to be estimated). The

dilemma is now that if one wants to increase the precision of the Taylor polynomial by

increasing k , also the number of parameters increases multiplicatively. Simple estima-

tion procedures like ordinary least squares (OLS) can only identify the parameters for a

limited number of lags which should be small compared to the number of observations

T (see section 3.2.3 for more about this). The main problem in polynomial approxi-

mation is a con�ict of objectives between precision and avoiding overparametrization.

Nevertheless polynomial approximation is an easy concept which may produce quite ac-

ceptable results. Note that like in linear autoregression the data should be stationarized

to avoid spurious regression. For an implementation of an OLS estimation of equation

(3.1.2) see section 3.2.3.

To reduce the complexity we take up a parametric position as we already have speci�ed
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the nonlinear function (here the tanh). The following procedure partly follows the ideas

of Granger and Lin (1994). Instead of using the complex equation (3.1.2) we may use

equation (3.1.1) to specify the polynomial as the structure of F (Xt�1) is known (the

tanh) and we are able to calculate the derivatives. We assume that the order of the

polynomial k = 3 is su�cient (for example k = 3 is used by Granger and Lin (1994)).

The �rst, second and third order derivations of tanh(0) are (see Anders (1997) p.53):

tanh0(0) = 1

tanh00(0) = 0

tanh000(0) = �2

Using those results equation (3.1.1) with k = 3 becomes

xt = �0 +

n∑
j1=1

�j1xt�j1 �
1

3

n∑
j1=1

n∑
j2=j1

n∑
j3=j2

�j1;j2;j3xt�j1xt�j2xt�j3 + ut (3.1.3)

The number of parameters is reduced to m(3)�=n + 1 +
(n + 3� 1)!

(n � 1)!3!
compared to

m(3) =
(n + 3)!

n!3!
if equation (3.1.2) is used. To illustrate this advantage let n = 6.

Using polynomial (3.1.2) requires the estimation of m(3) = 84 parameters, polynomial

(3.1.3) in contrast requires only m(3)� = 63 parameters.

The approximation property of the function in equation (3.1.3) can be illustrated by the

following example (similar to Anders (1997) p.53): Let x be a linear increasing series

in the interval [�5; 5] with 80 observations and let

y = tanh(x): (3.1.4)

This function is plotted in �gure 3.2 (black line). The red line in �gure 3.2 shows the

polynomial approximation of equation (3.1.4),

ŷ = �0 + �1x � 1

3
�2x

3: (3.1.5)
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This equation can be estimated by an OLS procedure. We see that the polynomial is

able to approximate the original tanh quite well, but the regression in the "transition"

part is more �at.1

0 20 40 60 80
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0.
0
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0

x
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Polynomial
tanh

Figure 3.2: Taylor polynomial approximation of the tanh
Source: Authors' design, based on Anders (1997) p.53 �gure 3.5

3.1.2 The Lagrange-Multiplier Tests

The test of Teräsvirta, Lin and Granger (1993) is an advancement of the test of

White (1989a). Both tests are executed as Lagrange-multiplier (LM) tests. The main

di�erence is, that in the test of White (1989a) weights for the additional hidden neurons

are determined randomly, whereas in the test of Teräsvirta, Lin and Granger (1993) the

nonlinear part is approximated by Taylor expansion. The main di�culty with the test

of White (1989a) is the problem of inconsistency in the case of heteroscedasticity in

calculation of the test statistic. Another problem is the arbitrariness in selection of

the nonlinear hidden units weights. As the test of Teräsvirta, Lin and Granger (1993)

tries to overcome those problems, we use it in the further procedure. The following

description starts with the test of White (1989a) (see also Anders (1997) pp.69-72) in

subsection 3.1.2.1 to introduce the basic principles of LM nonlinearity tests. Subsection

3.1.2.2 continues with the advancements of Teräsvirta, Lin and Granger (1993) (see

also Anders (1997) pp.67-69)

1The main di�erence between our �gure 3.2 and the �gure in Anders (1997) p.53 are the parameters;

In our example they are estimated by OLS, in Anders (1997) p.53 they are set 1. The advantage of

our result is, that the polynomial estimator is bounded on the right and left end of the "transition"

part. However the approximation of the boundaries is not appropriate as they are not �at in the

polynomial.
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3.1.2.1 The Test of White

Neglected nonlinearity in the sense of White (1989a) p.45 means, that there is some

nonlinearity which is not covered by the linear AR in the process. If neglected nonlinearity

exists - and the process is in fact determined by a nonlinear function - the linear AR model

is misspeci�ed. Now the test should examine whether the linear model is misspeci�ed

or not. Thus the null hypothesis in the test is, that an estimated linear model

xt = �0 + �1xt�1 + : : :+ �nxt�n + "t = �0 + A>Xt�1 + "t (3.1.6)

with Xt�1 = (xt�1; : : : ; xt�n)> and A = (�1; : : : ; �n)
> is able to explain the "true"

function F (Xt�1) in equation (2.1.1). The hypothesis formally can be written as

H0 : P rob
(
F (Xt�1) = �0 + A>Xt�1

)
= 1 (3.1.7)

The alternative hypothesis is, that the linear AR does not explain F (Xt�1),

H1 : P rob
(
F (Xt�1) = �0 + A>Xt�1

)
< 1: (3.1.8)

The test of H0 against H1 is constructed on the basis of the WN assumption on the

residuals. If H0 does not apply and not the whole true function F (Xt�1) is explained by

�0 + A>Xt�1, then some neglected nonlinearity is spuriously contained in the stochas-

tic part. Consider equation (3.1.6). To separate the neglected nonlinearity from the

stochastic part we must rewrite this equation as

xt = �0 + A>Xt�1 + ut ; (3.1.9)

with

ut =
(
F (Xt�1)� �0 � A>Xt�1

)
+ "t (3.1.10)

and "t is i.i.d. with N(0; �2). The �rst term of equation (3.1.10) notes the part of

F (Xt�1) which is not covered by the linear process, the neglected nonlinearity. If such

is present, the residuals ut are actually not equal to the stochastic part "t but contain

the neglected nonlinearity in addition. If H0 applies, the �rst term of equation (3.1.10)

vanishes and the residual term ut consists only of the Gaussian distributed WN part "t .

In this case equation (3.1.9) becomes (3.1.6) and the linear estimation is appropriate.
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If H0 is true, there is no correlation between the residual term and Xt�1, which means

that the conditional expectation E(ut jXt�1) = E("t jXt�1) = 0 (see also section 2.1.1).

Hence even if Xt�1 is transformed by any function H(Xt�1), the residual term ut is not

correlated with that transformation, because

E(H(Xt�1) � ut) = E(E(H(Xt�1) � ut jXt�1)) = E(H(Xt�1))E(ut jXt�1) = 0: (3.1.11)

We de�ne H(Xt�1) as an additional hidden unit, called �phantom unit�. It can be con-

structed using the activation function of the network 	, random weights 
0; 
1; : : : ; 
n

and a random �. Note that in the original paper of White (1989a) more than one

additional hidden unit can be used. To keep the test manageable, we propose to use

only one additional unit, also in regard of a proper relation between observations T and

the number of parameters. The following hypotheses are based on the AR-NN equation

xt = �0 + A>Xt�1 +	(
0 + �>Xt�1)� + "t ; (3.1.12)

which corresponds to equation 2.2.7 with h=1. The test of White (1989a) is based only

on the 
-weights. Respecting this, a consequence of the null hypothesis H0 (3.1.7) is

H�
0 : E

(
	
(

0 + �>Xt�1

) � ut j
i) = 0 8 i = 0; : : : ; n (3.1.13)

with the alternative

H�
1 : E

(
	
(

0 + �>Xt�1

) � ut j
i) 6= 0 8 i = 0; : : : ; n (3.1.14)

Thus the rejection of H�
0 means rejecting H0. However not rejecting H

�
0 does not mean

not rejecting H0. Consequently testing H�
0 against H�

1 is not consistent for testing H0

against H1. But as a test of H�
0 against H�

1 can be implemented as a LM test, we

continue with that procedure.

In order to get to the test statistic �rst the expectation E
((

0 + �>Xt�1

) � ut j
i) has
to be estimated, which is done by calculating the average:

E
(
	
(

0 + �>Xt�1

) � ut j
i) = 1

T

T∑
t=1

(
	
(

0 + �>Xt�1

) � ut) (3.1.15)
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If the null hypothesis is not rejected, the value of (3.1.15) should be around zero

(White (1988) p.453). If in contrast the null hypothesis is rejected, the value of

(3.1.15) is away from zero. Vice versa one can test if the expectation is signi�-

cantly away from zero to decide if H�
0 should be rejected. Therefore the distribution

of 1p
T

∑T

t=1

(
	
(

0 + �>Xt�1

) � ut) should be known. According to the central limit

theorem it converges to N(0; �2�), a normal distribution with zero mean and variance

�2� (denotes here the variance of the additional hidden neuron) as T !1.2 The test

statistic

T1 =
1p
T

T∑
t=1

(
	
(

0 + �>Xt�1

) � ut) � 1

�2� �
1p
T

T∑
t=1

(
	
(

1 + �>Xt�1

) � ut) (3.1.16)

is �2 distributed with one degree of freedom. The test is implemented as �2-test, which

means that H�
0 is rejected if it exceeds a certain percentile of the (above) �

2-distribution.

However sometimes it might be sometimes di�cult to determine �2�. Therefore the

parameter estimators have to be consistent, which is only given under certain condi-

tions (see section 3.4.2.1). Hence a procedure is used, which leads to test statistics

asymptotically equivalent to 3.1.16:

First an arti�cial linear regression is performed:

ut = �1r
(
�0 + A>Xt�1

)
+�2

(
	
(

0 + �>Xt�1

))
+ u�t ; (3.1.17)

whereas �1 and �2 are parameters with dimensions (1�(1+n)) and (1�1) respectively,
ut are the residuals of equation (3.1.9) and u�t is the residual term of the arti�cial linear

regression. r denotes the vector of partial derivatives (gradient vector) respective the

input (constant and n lags of xt). For the following LM test statistics see Anders (1997)

pp.68-69. Using the residuals ut from equation (3.1.9) we can calculate the �rst LM

test statistic

TLM1
= T �

T∑
t=1

ût

T∑
t=1

u2t

: (3.1.18)

2The variance is univariate as we add only one �phantom� hidden neuron
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It is �2- distributed with 1 degrees of freedom (�2 is scalar) as only one additional hidden

neuron is added. This test statistic is the uncentered coe�cient of determination of

the arti�cial linear regression (3.1.17) multiplied by T . According to Davidson and

MacKinnon (1993) p.189 equation (3.1.18) can be stabilized by multiplication by a

factor (T � r) with r equal to the number of parameters in equation (3.1.6). An

alternative test statistic is

TLM2
=

(

T∑
t=1

u2t �
T∑
t=1

u�2t )=1

(

T∑
t=1

u�2t )=(T � r)

: (3.1.19)

It is F - distributed with (n+1) and (T � r) degrees of freedom. It has to be mentioned

that the power of the LM- test eventually rises if the errors are regressed on the prin-

cipal components of the terms in equation (3.1.6) rather than on the terms itself (see

White (1989a) p. 454).

3.1.2.2 The Test of Teräsvirta, Lin and Granger

The problem with the null hypothesis is, that it can only be identi�ed if the alternative

H1 applies. Teräsvirta, Lin and Granger (1993) pp. 210-211 solve this problem by using

Taylor expansion around 
i = 0 8 i = 0; : : : ; n.3 Thus the second term of equation

(3.1.17) is replaced by a third order polynomial.4 Thus we can apply equation (3.1.1)

at the additional neuron. If equation (3.1.12) is now concretized for the tanh activation

function we may use the results from equation (3.1.3).

As the �rst two terms in equation (3.1.3) represent a linear relationship, testing on

nonlinearity is only based on the parameters �j1;j2;j3 in the cubic terms (the third term).

If we assume that all linear relationships are already contained in the linear part we can

rewrite equation (3.1.17) by using equation (3.1.3) as

ut = �1r(�0 + A>Xt�1)� 1

3

n∑
j1=1

n∑
j2=j1

n∑
j3=j2

�2j1;j2;j3xj1xj2xj3
+ u�t : (3.1.20)

3This test is related to Lee, White and Granger (1993), see also section 3.4.1.1
4Note that if the logistic activation 	logistic(�) function is used we have to subtract 1

2
such that

	(�) = 	logistic(�)�
1

2
because 	logistic(0) =

1

2
.
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However, if the activation function is unknown, the nonlinear part can be approximated

using equation (3.1.2). The null hypothesis is

H0 : �2j1;j2;j3
= 0 8 j1; j2; j3 (3.1.21)

with alternative

H1 : �2j1;j2;j3
6= 0 8 j1; j2; j3: (3.1.22)

The testing procedure itself is executed as a LM test in the same way as the test of

White (1989a). �1 is the regression coe�cient like in equation (3.1.17) for the �rst

part and �2j1;j2;j3
are the regression coe�cients for the second part (corresponds to �2 in

equation (3.1.17)). If the general polynomial in equation (3.1.2) is used, the degrees of

freedom are

(
(n + 3)!

3!(n)!
� n � 1

)
for TLM1

and for TLM2
the second degrees of freedom

term is (T�r). If the reduced Taylor polynomial for the tanh function is used (equation

(3.1.3)), the degrees of freedom are

(
(n + 3� 1)!

3!(n � 1)!

)
for TLM1

(of course this applies

also to the �rst degree of freedom in TLM2
).

As input variables are multiplied with each other in the Taylor polynomial, the dan-

ger of multicollinearity in the quadratic and cubic terms exists. A solution might be

the application of principal component decomposition like proposed by White (1989a)

p.454. However, the nonlinearity test should give a �rst insight into possible nonlinear

structures only. To keep the testing procedure simple, we abstain from introducing

additional principal component decomposition.

3.2 Variable Selection

Now for a time series with hidden nonlinearity in at least some lags, an AR-NN can

be adjusted. Aside from estimating the parameters there are still two things to decide:

Selecting the lags and detecting the number of hidden units (Medeiros, Teräsvirta and

Rech (2006) p.52). To keep the computational e�ort straightforward, the �rst problem

is solved ex-ante. The second problem is solved by the mentioned bottom-up strategy

starting with an AR-NN with h=1 and increasing h stepwise. In addition ex-post signif-

icance tests on the parameters, see section 3.4.2, exclude non-signi�cant hidden units.

In general the procedure of lag and parameter selection is carried out according to the

Occam's razor principle, which means to prefer the simplest model from a set of models
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with the same performance. In other words only those lags and parameters should be

included, which signi�cantly improve the model.

In linear time series analysis the lag order is usually detected by calculating informa-

tion criteria (IC) for several lags and choosing the lag order belonging to the smallest

IC. These criterions consider not only the absolute quality of the model (like the vari-

ance of the residuals which should be minimized) but also account for the amount of

computational e�ort if the models becomes more complicated. The most common IC

is the Akaike Information Criterion (AIC), which is de�ned as

AIC1 = T � log(�2) + 2 � r; (3.2.1)

see Burnham and Anderson (2004) p.268 and Akaike (1974) p.719 or alternatively

without logarithms as

AIC2 =
1

T

T∑
t=1

"2t + �22r

T
; (3.2.2)

see Amemiya (1980) p.344 and Anders (1997) p.78. A well known alternative is the

Schwarz- Bayesian information criterion (BIC), proposed by Schwarz (1978) pp.462-

463,

BIC = T � log(�2) + T � log(r): (3.2.3)

For other ICs see for example Judge et al. (1984) p.862-874.

The application of those IC in nonlinear time series analysis is criticized in several works.

For example Qi and Zhang (2001) show, that there is no correlation between the IC

and out-of-sample forecasting performance. Tschernig and Yang (2000) argue, that

using ICs for lag selection of nonlinear processes is not based on proper theory. They

show by simulation that it is sometimes ine�cient. Surely estimating several AR-NN

with various lags and evaluating them might be a solution in theory. Yet estimation

of parameters in AR-NN is an expensive procedure. The learning algorithms provide

various tools to improve the search for an optimum for a given number of lags. We will

see below that evaluation of estimated AR-NN with various lag orders might lead to the

question if all options for optimization of the learning algorithms have been utilized. To

reduce the e�ort as much as possible, restrictions should be introduced, like �xing the

number of lags before the parameters are estimated. Then this structure of the neural
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network is the basis for search for the optimal parameter values and number of hidden

neurons.

In the following chapters we discuss some lag selection procedures, which have the

common property not to be restricted only to neural networks but to be applicable

to all kinds of nonlinear processes as they use some general nonlinear/nonparametric

(Taylor polynomials and kernel regression, subsections 3.2.2, 3.2.3 and 3.2.4) methods

to approximate the unknown nonlinear function. They are able to give an approxima-

tive insight into how nonlinear models would behave and which lag structure might be

optimal for them. It has to be mentioned that all procedures shown below have the

limitation to work only appropriate if data are stationary. We only concentrate on those

methods which also manageable with much less e�ort than neural networks themselves.

Otherwise approximation of the neural networks for lag selection would be senseless.

3.2.1 The Autocorrelation Coe�cient

The very simplest procedure from a computational point of view is based on autocor-

relation coe�cients (AC). This measure is not restricted to linear time series and can

be applied to nonlinear series as well, see for example Lin et al. (1995). The Pearson-

AC between the original series xt and an arbitrary lag xt�i in general de�ned as

ACi = AC(xt ; xt�i) =
cov(xt ; xt�i)

�xt�xt�i

: (3.2.4)

The values of the AC range in the interval [�1; 1]. Evans (2003) p.229 propose to apply
this formula only at stationary series (to avoid spurious regression), although it is often

applied at nonstationary series. In practical application - particularly for nonstationary

real world economic and �nancial data series - we observe that the data in levels have

a highly autocorrelated structure, which means that the AC is signi�cant up to a high

lag order. Typical for AR is the fact, that the AC for nonstationary series decreases

with increasing i . The �rst di�erences of the series are characterized by nearby no

autocorrelation. Hence the AC is not a good tool for identi�cation of the lag order,

because it certainly includes too many lags if applied to a nonstationary series. In con-

trast the AC tend to detect no autocorrelated structure - in opposite to some other

lag selection procedures we will see below - if the series is stationarized by di�erentiation.
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The partial autocorrelation coe�cients (PAC) are a modi�cation of the AC. They de-

scribe the partial correlation between the variables xt and xt�i , whereas the variables

between them are kept constant (Schlittgen and Streitberg (1995) p.194). In other

words the correlation between the two variables is corrected for the in�uence of the

variables between them. The PAC for the �rst lag is equal to the AC of the �rst lag:

AC1 = PAC1: (3.2.5)

The PAC's for larger lags, i > 1, are calculated by

PACi =

ACi �
i�1∑
j=1

PACi�1;j � ACi�j

1�
i�1∑
j=1

PACi�1;j � ACi�j

; (3.2.6)

see Evans (2003) pp. 229- 231. The range of the PAC is the same as for the AC. If the

PAC are used for lag selection, the lag where the PAC is signi�cant is chosen as maximal

lag n. If the PAC is signi�cant for more than one lag, the lag with the largest PAC is

chosen as n. A similar lag selection criterion is the AC-criterion of Huang et al. (2006)

p.514. It detects the lags to be included from a certain prespeci�ed lag range 1 to m.

The result would be a lag structure with varying time lags. Because of our assumptions

of a constant delay, this procedure is not further discussed.

In general AC and PAC are a very simple tool for lag selection, but they dont ac-

count for complexity like the IC. Therefore they can only be used for a �rst check if the

process is autocorrelated. The PAC may also be used for determination of a maximal

lag number m before one of the following lag selection procedures is applied.

3.2.2 The Mutual Information

The mutual information (MI) is - similar to to the AC - a nonparametric measure for

the dependence between two series. In the case of time series analysis the two series

are the original series xt and an arbitrary lagged series xt�i . According to Hausser

and Strimmer (2009) p.1476 there exists a relationship between the AC� and the MI.

Note that the AC� in this case means not the Pearson-AC from subsection 3.2.1 but
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rater a general version of the AC which also accounts especially for nonlinearity (The

Pearson-AC is considered to be only a estimator of the true AC� in this case).

MIi = MI(xt ; xt�i) = �1

2
log(1� AC�2

i ) (3.2.7)

The range of values of the MI is R+. It is symmetric (MI(xt ; xt�i)=MI(xt�i ; xt)) and

zero if the variable xt and its lag xt�i are independent (see Hausser and Strimmer (2009)

p.1476). Granger and Lin (1994) p. 375 use the relationship between the AC� and the

MI to formulate the MI coe�cient (MIC),

MICi = MIC(xt ; xt�i) = jAC�j =
√
1� e�2�MIi : (3.2.8)

The MIC of Granger and Lin (1994) is consequently an alternative estimator of the

absolute value of the autocorrelation coe�cient. Granger and Lin (1994) p.379- 383

show by simulation that their MIC does a better job in identifying the true lag order

than the Pearson-AC. The range of the MIC is between 0 and 1, because the MIC

approximates an absolute value.

The MI is de�ned as the joint Shannon-entropy H(xt ; xt�i) between the two variables,

subtracted the Shannon-entropy of each single variable (H(xt), H(xt�i)):

MIi = H(xt) +H(xt�i)�H(xt ; xt�i) (3.2.9)

To explain the Shannon entropy we �rst need the probability density function of the

variable xt . We will discuss those methods only for H(xt), but they can as well be

applied to calculate the Shannon entropy of xt�i and the Shannon entropy of the joint

data xt and xt�i . Granger and Lin (1994) p.375 propose to use kernel density esti-

mation to determine the probability density function, but in the case of discrete series

with a relatively small number of observations the ordinary histogram is su�cient. The

histogram is a discrete representation of the distribution. To determine the histogram,

the value range of the series is split into d bins. Let vi 8 i = 1; : : : ; d denote the number

of values of the original series xt belonging to the ith bin (for the well known frequency
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histogram, the d bins are plotted on the x-axis and the corresponding values vi on the

y-axis). The probability of vi , P rob(vi), can then be determined by

P rob(vi) =
vi
d∑
i=1

vi

: (3.2.10)

This is called the ML probability estimator (see Hausser and Strimmer (2009) p.1470).

Note that
d∑
i=1

P rob(vi) = 1: (3.2.11)

The Shannon-Entropy of series xt is de�ned as

H(xt) = �
d∑
i=1

P rob(vi)log (P rob(vi)) : (3.2.12)

see Shannon (1948) p.11 and Hausser and Strimmer (2009) p.1470.

In particular if d >>
∑d

i=1 vi the ML estimator is optimal (Hausser and Strimmer (2009)

p.1470). In application such a relation between d and
∑d

i=1 vi is often not observable.

Therefore Hausser and Strimmer (2009) pp.1472-1473 propose to use the James-Stein

shrinkage estimator, which in this case delivers better results than the ML- and some

other estimators. It estimates the probability of vi by

P robSHRINK(vi) = � � ti + (1� �)P rob(vi) (3.2.13)

whereas usually ti =
1
d
and

� =

1�
d∑
i=1

(P rob(vi))
2

(1�
d∑
i=1

vi)

d∑
i=1

(ti � P rob(vi))
2

: (3.2.14)

The parameter � is called the shrinkage intensity. Practical application shows (see

section 5.4.1), that the MIC has the same disadvantages as the AC and the PAC for

real data series. It possibly tends to indicate no signi�cant lag for some stationary series

in a prede�ned interval [1;m].
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3.2.3 Polynomial Approximation Based Lag Selection

Rech, Teräsvirta and Tschernig (2001) propose an alternative nonparametric lag selec-

tion procedure based on Taylor polynomials, which are able to approximate unknown

nonlinear functions (see section 3.1.1). For our model we assume an AR-NN process

with constant delay 1. Before Rech, Teräsvirta and Tschernig (2001)'s method is used,

the data have to be stationarized if they are not stationary to avoid spurious regression.

According to the theorem of Stone and Weierstrass, as we have seen in section 3.1.1,

the AR-NN can be approximated by a polynomial of su�cient high order. As the pro-

cedure of Rech, Teräsvirta and Tschernig (2001) is designed to identify the lag order

of an unknown nonlinear function, formula (3.1.2) is used for approximation. This is

necessary because it is not yet known if a distribution of the parameters of the AR-NN

exists. For lag orders i = 1; : : : ; m the nonlinear function is estimated by the polyno-

mial and subsequently evaluated by an IC (the �nal prediction error (FPE) is used in

the original paper, but others are of course possible). Finally the lag order where the

model has the smallest IC is chosen.

Rech, Teräsvirta and Tschernig (2001) p.1231 propose to use the OLS method to

identify the equation (3.1.2). With the (T �m(k)) variable matrix

Z =


x1�1 : : : x1�n x1�1x1�1 : : : x1�nx1�n : : :

k times︷ ︸︸ ︷
x1�nx1�n : : : x1�n

x2�1 : : : x2�n x2�1x2�1 : : : x2�nx2�n : : : x2�nx2�n : : : x2�n
...

...
...

...
...

...
...

...

xT�1 : : : xT�n xT�1xT�1 : : : xT�nxT�n : : : xT�nxT�n : : : xT�n


︸ ︷︷ ︸

m(k)

and the vectors Xt = (x1; x2; : : : ; xT )
T , � = (�11; �12; : : : ; �TT : : : T| {z }

k times

)T and

U = (u1; u2; : : : ; uT )
T equation (3.1.2) can be written as

Xt = Z�+ U: (3.2.15)

An OLS estimator for � is

�̂ = (Z>Z)�1Z>Xt : (3.2.16)
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Therewith a polynomial approximation of the unknown AR-NN function is given by

xt =

n∑
j1=1

�j1xt�j +
n∑

j1=1

n∑
j2=j1

�j1;j2xt�j1xt�j2

+

n∑
j1=1

n∑
j2=j1

n∑
j3=j2

�j1;j2;j3xt�j1xt�j2xt�j3 +

n∑
j1=1

: : :

n∑
jk=jk�1

�j1;j2;:::;jkxt�j1 : : : xt�jk + ut

whereas �j1,: : :,�j1;j2;:::;jk are the elements of �̂. Now it is easy to calculate the AIC or

BIC for this equation to identify the optimal lag order. Like in linear equations, it is

observable in practical application, that the AIC tends to include more lags than the

BIC (see section 5.4.1). For application we suggest to use a polynomial of order three,

which should be su�cient as it was already proposed by Lee, White and Granger (1993).
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3.2.4 The Nonlinear Final Prediction Error

More computational e�ort is necessary if the nonlinear or nonparametric FPE based on

the works of Auestad and Tjøstheim (1990) and Tjøstheim and Auestad (1994) is used.

Their work was later extended for lag selection in the presence of heteroscedasticity by

Tschernig and Yang (2000). In the following we discuss the version of Tschernig and

Yang (2000), which is also mentioned by Medeiros, Teräsvirta and Rech (2006) p.52 as

an alternative for lag selection for neural networks. The necessary assumptions in Tsch-

ernig and Yang (2000) pp. 3-4 can be subsumed as follows: The function determining

the predictable part of the process has to be stationary and di�erentiable. Further more

the process should have a continuously di�erentiable density. Here the unknown non-

linear function is estimated by a nonparametric general approach, kernel regression. In

the original paper nonparametric FPEs are derived based on the Nadaraya-Watson and

the local- linear kernel estimator. According to the authors the local linear estimator

performs better for nonlinear processes, see Tschernig and Yang (2000) p.13. Hence we

concentrate on the local- linear estimator and refer to the original paper for the other

possibility.

Instead of specifying the estimator for the function we want to approximate it using a

nonparametric function. Let k(x), k : R ! R, be the kernel function. It should be

positive and symmetric with the property
∫
k(x)dx = 1. Most common is the Gaussian

kernel

k

(
xt � xt�i

h

)
=

1p
2�

� e
�1

2

(
xt � xt�i

h

)2

: (3.2.17)

It resembles the Gaussian density function, whereas h denotes the so called bandwidth,

which in some sense can be interpreted as an estimator for the variance. A kernel

estimator respective the n dimensional vector input Xt�1 is the product kernel

K(Xt�1; h) =
1

hn

n∏
i=1

k

(
xt � xt�i

h

)
: (3.2.18)
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For the de�nition of the local linear estimator for F (Xt�1) we need the following vectors

and matrices:

Z =

(
1 1 : : : 1

Xn�1 �Xt�1 Xn�2 �Xt�1 : : : Xn�T �Xt�1

)>

(3.2.19)

W = diag

{
K(Xj�1 �Xt�1; h)

T � n + 1

}T

j=n

(3.2.20)

E = (1; 0; : : : ; 0)> (3.2.21)

Y = (xn; : : : ; xT )
> (3.2.22)

The dimensions are ((n+1)� 1) for E, ((T � n+1)� (n+1)) for Z, ((T � n+1)�
(T � n + 1)) for W and ((T � n + 1) � 1) for Y . The matrix in (3.2.20) denotes a

diagonal matrix with a diagonal of length (T � n + 1) with

(
K(Xj�1 �Xt�1; h)

T � n + 1

)
at

the jth element for j = n : : : T . The local linear estimator for the unknown function

F (Xt�1) is

F̂ (Xt�1; h) = E> {Z>WZ
}�1

Z>WY: (3.2.23)

The nonparametric version of the FPE, called Asymptotic FPE (AFPE) is calculated

by

AFPE(Xt�1; hopt ; hB) = A(hopt) + 2K(0)n
1

(T � n + 1)hnopt
� B(hB); (3.2.24)

whereas

A(hopt) =
1

T � n + 1

T∑
i=n

(
xt � F̂ (Xt�1; hopt)

)
w(Xm�t) (3.2.25)

and

B(hB) =
1

T � n + 1

T∑
i=n

(
xt � F̂ (Xt�1; hB)

) w(Xm�t)
�(Xt�1; hB)

: (3.2.26)
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The function w(Xm�t) depends of the prespeci�ed maximal lag m and �(Xt�1; hB) is

a kernel density estimator calculated by

�(Xt�1; hB) =
1

T � n + 2

T+1∑
i=n

K(Xi�1 �Xt�1; hB): (3.2.27)

The �rst term of equation (3.2.24) can be considered as the performance term whereas

the second term is the penalty term (Härdle, Kleinow and Tschernig (2001) p.4). For

calculation of the plug-in bandwidth hopt used in (3.2.25) we refer to Tschernig (2005)

p.10. The bandwidth hB is determined by the rule of Silverman (1986) pp.86-87, see

also Tschernig (2005) pp.9-10:

hB = 2�̂

(
4

n + 4

) 1

n+6

T� 1

n+6 (3.2.28)

�̂ is the geometric mean of the standard deviations of the regressors,

�̂ =

(
n∏
i=1

√
�2
xt�i

) 1

n

; (3.2.29)

whereas �2
xt�i

is the variance of the lag (or regressor) xi . The lag selection procedure

is executed as follows: First the maximal lag order m has to be prespeci�ed and subse-

quently the AFPEs for all lag orders n = 1; : : : ; m have to be calculated. The optimal

lag order has the smallest AFPE.

Tschernig and Yang (2000) p.9 mention, that the AFPE tends to include too many

lags (over�tting). Thus they propose an extension of the AFPE, the corrected AFPE

(CAFPE), which accounts for that problem:

CAFPE = AFPE
(
1 + n(T � n)�

4

m+4

)
(3.2.30)

Like the AFPE the CAFPE has to be minimized. Medeiros, Teräsvirta and Rech (2006)

p.52 state that computation of the AFPE or CAFPE may become very e�ortly, in

particular if T and m become large. Thus this procedure may be appropriate especially

for small maximal lag numbersm. Already Auestad and Tjøstheim (1990) p.686 observe

by simulation, that their version of the nonlinear FPE works only accurate for 3-4 lags

in a time series with T = 500 observations.
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3.3 Parameter Estimation

The most important step to concretize the AR-NN is the estimation of the weights.

This equals the estimation of the parameters in linear time series analysis and is called

learning or training in neural network theory. Many procedures exist to estimate the

parameters of neural networks. Thus it has to be distinguished between supervised

learning methods und unsupervised methods (Haykin (2009) pp.64-67). Supervised

methods means that the estimation output is compared to a desired output and esti-

mation takes the error signal into account. The error signal is de�ned as the di�erence

between estimation and desired output. Unsupervised methods use no criteria to control

the learning process, so they seem not applicable to statistics and especially time series

analysis. Hence in the following we concentrate on supervised learning procedures only.

In general it can be said that there are two di�erent classes of supervised learning pro-

cedures concerning the estimation of the parameters (see Widmann (2000) pp.28-29,

Haykin (2009) pp.157-159). Batch learning is an iterative procedure where the weights

are adjusted in each iteration after the presentation of all T inputs, while during on-line

learning - sometimes referred to as stochastic learning - the weights are adjusted on

element-by-element basis. This means that for each set of input and output neurons

from 1 to T the weights are newly adjusted. The AR-NN process is estimated for the

inputs and outputs at a certain time t only, for time t + 1 the weights are adjusted

again. The main advantages of on-line over batch learning methods are the lower com-

putational complexity and the better adaptability to integrate new values if data arrive

sequentially.

Some studies have shown that under certain conditions batch and on-line learning pro-

cedures deliver similar results particularly if the input data set is large (Oppner (1998)

p.363). In general it can be said that on-line learning is faster and less complex

than batch learning, but concerning the precision of the results it performs poor (Bot-

tou (2003) p.172). Hence on-line learning might be more useful in electrical engineering

where complexity matters much more than in statistics and particularly time series anal-

ysis, where the focus is on comprising long term patterns the most precise way out of

a closed historical data set.
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Hence in the following we proceed with batch learning procedures only, notwithstanding

that in the last years several proceedings have been made concerning the performance

of on-line learning procedures in pattern recognition (for example Schraudolph (2002)

etc.). We do so because in statistics generally the data sets are completely delivered

and contains all the necessary information to analyze the long term interdependencies.

On-line learning procedures would be useful if input data were provided continuously,

even during the learning process, and therefore the adjustment of the weights has to be

an evolving process. A main problem is that on-line algorithms do not really converge,

because they are adjusted after each new input of a variable set. The most advanta-

geous property of batch learning is its accurate estimation of the gradient vector for a

�nite input data set, which guarantees the convergence of the algorithms presented in

the following. Hence according to White (1989c) p.1005 batch learning is more e�cient

than on-line learning from a statistical point of view.

The supervised batch learning algorithms in the subsequent sections are iterative nu-

meric procedures, which possibly lead only to local minima. Direct methods similar to

the OLS method can not be implemented for AR-NN as they are not able to account

for the nonlinear part of the function. However Medeiros, Teräsvirta and Rech (2006)

pp.53-55 propose a hybrid method where the linear part of an AR-NN is estimated us-

ing the maximum-likelihood method for linear models. A numeric method estimates the

remaining nonlinear part. For example Widmann (2000) pp.65-66 discusses some pro-

cedures (simulated annealing and generic algorithms) which claim to be able to identify

a global minimum for nonlinear functions. But such procedures do not only require too

much e�ort to be of any use for our purposes (Anders (1997) p.36) but it is also ques-

tionable if they can keep their promise and lead to a global minimum at least in �nite

time (White (1992) pp.111-112, Widmann (2000) p.34). Thus we only concentrate on

the local search methods, which are well established in the neural network literature.

3.3.1 The Performance Function

The performance function we use is rooted in White (1989b) pp.430- 433 (see also

Trapletti, Leisch and Hornik (2000) pp.2437-2442 and Widmann (2000) pp.32- 34).



3 Modelling Univariate AR-NN 59

Like in the well known least square procedures the goodness of �t of an AR-NN model

can be determined by

Q(�) =
1

2

T∑
t=1

(xt � G(�; Xt�1))
2: (3.3.1)

If this performance function is used, the parameter estimation procedures in the follow-

ing are referred to as nonlinear least squares (NLS) method in literature and are not

restricted to neural networks only. Of course it is possible to use other performance

functions like the likelihood function (see Anders (1997) pp.23-25), but they are less

common. As the AR-NN function should also be valid for future values of the time

series, the expectation of fuction (3.3.1) has to be minimized. As an AR in general is

a stochastic process, there is some uncertainty as we know from de�nition 2.1. We

assume that the uncertainty is only determined by the stochastic part "t . This uncer-

tainty should be minimized. Due to our assumptions on "t (i.i.d. Gaussian distributed

with zero mean and constant variance) this is the case if its variance is minimized. The

relationship between the performance function and the variance of "t as well as the fact

that minimization of the one equals the minimization of the other is formally shown in

the following.

The uncertainty also causes the stochastic property of the expectation, which is the rea-

son that one can not calculate � directly but has to estimate it. An optimal nonlinear

least squares estimator for �, �̂, can be found by solution of the problem

�̂ = argmin
�2�

E(Q(�)); (3.3.2)

� denotes the network weight space.

By transformation of Q(�) one can show that an optimal �̂ � � is minimizing the ex-
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pected error between an unknown function F (Xt�1) and its approximation G(�; Xt�1)

(White (1988) p.432):

E(Q(�)) =
1

2
E[

T∑
t=1

(xt � G(�; Xt�1))
2]

=
1

2
E[

T∑
t=1

((xt � F (Xt�1) + F (Xt�1))� G(�; Xt�1))
2)]

=
1

2
E[

T∑
t=1

(xt � F (Xt�1)
2)] +

1

2
2E[

T∑
t=1

(xt � F (Xt�1))(F (Xt�1)� G(�; Xt�1)))]

+
1

2
E[

T∑
t=1

((F (Xt�1)� G(�; Xt�1)
2)] (3.3.3)

=
1

2
E[

T∑
t=1

((xt � F (Xt�1)
2)] +

1

2
E[

T∑
t=1

((F (Xt�1)� G(�; Xt�1)
2)] (3.3.4)

=
1

2
E[

T∑
t=1

"2t ] +
1

2
E[

T∑
t=1

((F (Xt�1)� G(�; Xt�1)
2)]: (3.3.5)

(3.3.4) follows from (3.3.3) because

E[

T∑
t=1

((xt � F (Yt))(F (Xt�1)� G(�; Xt�1))]

= E[

T∑
t=1

((xt � F (Xt�1))"t)]

= E[

T∑
t=1

(E(xt � F (Xt�1))"t jXt�1)]

= E[

T∑
t=1

((xt � F (Xt�1))E("t jXt�1))]

= 0

Note that E("t jXt�1) = 0 8 t. The �rst term of (3.3.5) states that � minimizes the

errors of the stochastic part. The second term states that a for Q(�) a minimum is
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reached if G(�; Xt�1) = F (Xt�1). In this case (3.3.5) reduces to (with respect to the

i.i.d. assumption)

Q(�) =
1

2

T∑
t=1

"2t : (3.3.6)

This causes on the other hand the statement (see therefore equation (3.3.1))

T∑
t=1

"t =

T∑
t=1

(xt � G(�; Xt�1)) (3.3.7)

and

"t = "t(�) = (xt � G(�; Xt�1)): (3.3.8)

In equation (3.3.8) the residual at time t is described by a function of �. This function

as well as the performance function are important for the following sections.

3.3.2 Important Matrix Terms

In the following sections we will extensively use the constructs gradient vector, Jacobian

matrix and Hessian matrix. Hence they should be introduced and explained here. The

aim is to impart understanding of the dimensionality in the following.

The simplest construct is the gradient vector, indicated by r(�). The gradient vec-

tor is a column vector of the partial derivatives of a function respective its variables.

Consider for example the gradient vector of the performance function:

rQ(�) =


@Q(�)

@�1
...

@Q(�)

@�r

 (3.3.9)

Its dimension is (r � 1). If a function additionally depends on time t, for example the

residual at time t in equation (3.3.8), the Jacobian matrix corresponds in some sense

to the gradient vector. It is the matrix of the partial derivatives respective the variables
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(in the rows) and the time (in the columns). We denote it by J(�). For equation (3.3.8)
the Jacobian matrix has dimension (T � r) and is calculated by:

J("t(�)) =



@"1
@�1

@"1
@�2

: : :
@"1
@�r

@"2
@�1

@"2
@�2

: : :
@"2
@�r

...
. . .

...
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There is a relationship between the gradient vector of the performance function and

the Jacobian matrix of (3.3.8) which can be constructed using the residual vector

E = ("1; "2; : : : ; "T ). The (r � 1)-dimensional gradient vector rQ(�) is the product

of the transposed Jacobian matrix J("t(�)) of dimension (r � T ) and the (T � 1)-

dimensional vector E.

rQ(�) = J("t(�))>E =



"1
@"1
@�1

+ "2
@"2
@�1

+ : : : + "T
@"T
@�1

"1
@"1
@�2

+ "2
@"2
@�2

+ : : : + "T
@"T
@�2

...
...

...
...

"1
@"1
@�r

+ "2
@"2
@�r

+ : : : + "T
@"T
@�r



(3.3.11)

Note that this relationship is in particular 8 i = 1; : : : ; r based on (3.3.6) because

@Q(�)
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: (3.3.12)
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The third important matrix term is the Hessian matrix. It is the matrix of second order

derivatives of a function respective its input variables and is denoted by r2(�). For the
performance function Q(�) it has the following (r � r) representation:

r2Q(�) =


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(3.3.13)

3.3.3 Basic Features of the Algorithms

All numeric parameter estimation algorithms for neural networks work the same way:

Starting with a random initial parameter vector �0 it is searched iteratively for the

optimal parameter vector. The optimal parameter vector is reached if the performance

function is minimized. To show how the search direction is determined the performance

function is depicted in �gure 3.3 as a function of �i, whereas i indicates the number of

the iteration, starting with i=0. The function has various extrema, minima as well as

maxima, which satisfy rQ(�) = 0 (Bishop (1995) pp.254-255), because the gradient

rQ(�) is the slope of the function.

However sometimes only a local minimum might be reached by the algorithm. In addi-

tion the choice of the initial weight vector �0 in�uences the outcome of the algorithm

respective local and global minima. But as already discussed above, there are no alter-

native algorithms which guarant to �nd a global minimum.

In general the algorithm is carried out according to the �ow chart in �gure 3.4. The

weights are updated after each iteration and the performance function is calculated. If

a stopping criterion is reached, the algorithm is quitted. The stopping criterion can be

a restriction concerning the performance function, for example the distance between

performance function in two iterations, which should be below a certain value (see An-

ders (1997) p.36). For our attempt such a stopping criterion eventually circumvents
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the detection of a better minimum, because the algorithm is stopped immediately after

the criterion is achieved. Thus we recommend saving the result of the performance

function and the parameter vector after each iteration. Then the maximal number of

iterations imax can be used as a stopping criterion and the optimal parameter vector is

calculated by the following steps:

� Start the algorithm with the initial weight vector �0

� After each iteration save Q(�i) and �i

� Quit the algorithm after imax iterations

� Among the saved values search

Q(�i*) = argmin
i2[0;imax ]

Q(�i)

� �i* is the optimal parameter vector

i* denotes the iteration where the optimal parameter vector is reached. Such a pro-

cedure can be interpreted as search for a global minimum within a �nite horizon of

iterations. One critical point is the need for storage for each iteration, but to our at-

tempt this is outweighed by the fact that this procedure is able to identify a very good

local minimum. Often the performance function converges to a certain constant within

a �nite number of iterations. Therefore a good local minimum within a �nite number

of iterations, imax , often is in fact a global minimum. Thus we prefer this method in

the following. It is implemented in context with the Levenberg-Marquardt algorithm in

R in appendix B.4.
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�i

Q(�)

Local minimum

Maximum

Global minimum

rQ(�)

Figure 3.3: Iterative parameter estimation
Source: Authors' design, based on Bishop (1995) p.255 �gure 7.2

Figure 3.4: Flow chart iterative parameter estimation
Source: Authors' design, based on the �gures in Anders (1997) p.37 and pp.127-132
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3.3.4 First Order Gradient Descent Methods

In this section the oldest and computationally simplest iterative parameter estimation

algorithms for neural networks are discussed.They are based on the �rst order par-

tial derivatives - the gradient vector - of the performance function, rQ(�). There-

fore they are called �rst order gradient descent methods. Rumelhardt, Hinton and

Williams (1986a) p. 535 propose to compute the changes of the weights proportional

to the accumulated partial derivatives. This learning algorithm is also called steepest

descent algorithm (see Bishop (1995) p. 263). The change in the individual weight

�i 2 � is

��i+1
i = �� @Q(�

i)

@�ii
(3.3.14)

whereas the parameter � 2 R+ is called the learning rate, i = 1; : : : ; r and i is the

number of the iteration, see Rumelhart, Hinton and Williams (1986b) p.323. Starting

with an arbitrary initial �0, the weights are updated after each iteration. Equation

(3.3.14) can be written in vector representation (see Widmann (2000) p.40):

��i+1 = ��rQ(�i); (3.3.15)

rQ(�i) is the gradient vector of dimension (r�1). The main problem with the steepest

descent algorithm is the choice of an appropriate learning rate. If it is chosen too small,

many steps are necessary, because the changes after each iteration are very small. If in

contrast the learning rate is chosen too big, the danger consists to overlook a global

minimum, because the results may tend to strong oscillation. Varying the learning rate

is a subjective and therefore not recommendable solution (Bishop (1995) pp.264-266).5

Several extensions of the steepest descent algorithm have therefore been developed

to systematize the method. The �rst to mention here, also proposed in Rumelhart,

Hinton and Williams (1986b) p.330, is to include a momentum term in (3.3.15)

��i = ��rQ(�i�1) + ���i�1; (3.3.16)

5Note that this simple version of the �rst order gradient descent method is often called backprop-

agation algorithm. This is not correct, as backpropagation only describes the way derivatives are

calculated. The backpropagation method was also published in the paper of Rumelhardt, Hinton

and Williams (1986a). As we use only three layers, the derivatives can be reconstructed using the

chain rule of di�erentiation. For higher order layer networks certainly a detailed discussion of the

backpropagation method, see for example Bishop (1995) pp. 140-146, would be necessary.
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where � 2 [0; 1] is the momentum parameter and the last term is called the momen-

tum term. The reason why this term is added is that it can �lter out high frequency

variations in the error-surface in the weight space. In other words the momentum term

"smoothens" the oscillations. The e�ect is faster convergence of the algorithm, because

one can use larger � without the danger of missing any global minimum (Rumelhart,

Hinton and Williams (1986b) p.330). According to Bishop (1995) p.268 this extension

does not really solve the problems of the simple gradient descent algorithm of equation

(3.3.15), because it depends on a second parameter, �, which has to be chosen arbi-

trary like �.

Another alternative is the so called bold-driver method of Vogl et al. (1988), where

the learning rate is updated according to some rules after each iteration, for the follow-

ing see Vogl et al. (1988) p.259 and Bishop (1995) p.269. Consider equation (3.3.15):

If the value of the present error function Q(�i) is smaller than that of the previous

error function Q(�i�1), the learning rate can be slightly increased in the next itera-

tion. This is done by multiplication by a parameter �1, which is slightly above 1, for

example �1 = 1:1. If the value of the present error function is bigger than that of the

previous error function, the learning rate has to be decreased and the iteration has to

be repeated, because it can be possible that a global minimum has been overlooked.

Therefore � is set 0 and � is multiplied by a parameter �2, which has to be signi�cantly

less than 1, for example �2 = 0:5.

A modi�cation of the bold-driver method is the delta-bar-delta-rule proposed by Ja-

cobs (1988) pp.299-301. A local gradient �delta� is de�ned for iteration i and weight i

as

�ii =
@Q(�i)

@�ii
: (3.3.17)

The extension of that local gradient, �delta-bar�, is

��ii = (1� �1)�
i
i + �1

��i�1
i : (3.3.18)

The learning rate update is computed using (3.3.17) and (3.3.18) by

�� i
i =

�2 if ��i�1
i �ii > 0

��3�
i
i if ��i�1

i �ii < 0
: (3.3.19)
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Note that this method implies, that each element of the weight vector is updated in-

dividually like in the bold-driver algorithm. The system behind this approach is on the

one hand to increase the learning rates in a linear way and thus to avoid a too rapid

increase. On the other hand the learning rate is decreased exponentially to ensure that

no global minimum is missed. One disadvantage of this method is, that three parame-

ters (�1; �2; �3) have to be determined, if a momentum term is added four parameters.

The other disadvantage is, that the weight parameters are treated like they were inde-

pendent, which actually is often not the case (Bishop (1995) p.271).

Another class of �rst order gradient descent methods are the so called line search meth-

ods (Bishop (1995) p.272-274). They are at least an extension of the gradient-reuse

algorithm of Hush and Salas (1988). The di�erence to the ordinary steepest descent

algorithm is, that the search direction is not determined only by the negative local gra-

dient but also by the weight space. Gradients are �reused� to update the learning rate.

Formally this can be written by using

��i+1 = �� irQ(�i)

�i+1 = �i � � irQ(�i); (3.3.20)

whereas the parameter � i is the parameter which minimizes

Q(� i) = Q(�i � � irQ(�i)): (3.3.21)

According to Widmann (2000) p.40 one avoids therewith to go arbitrary far in the di-

rection of the gradient. The learning rate � i leads to the deepest point in this direction.

There are two practical approaches to �nd the minimum of (3.3.21): The �rst is a

quadratic interpolation, which in a �rst stage computes three values of �, a < b < c

such that Q(a)>Q(b) and Q(c)>Q(b). If the error function is continuous, it is guar-

anteed that a minimum is between a and c . The second stage is the location of the

minimum by adjusting a quadratic polynomial to the error function at the points a,b and

c and searching for a minimum of that function (Bishop (1995) p.273). The alternative

approach is the computation of the derivatives of (3.3.21). This requires much more

computational e�ort and would in fact result in a second order gradient descent method

(Widmann (2000) p.41).
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Updating the search direction in line-search methods, in other words the gradient, is

the idea of the so called conjugate gradient procedures. The reason for those meth-

ods is, that sometimes the gradient is not the optimal search direction and therefore

high computational e�ort is necessary to �nd the minimum of (3.3.21) (Bishop (1995)

pp.274-275). ri is a (r � 1)-dimensional vector for the search direction at iteration i,

such that (3.3.20) can be written as

�i+1 = �i � � iri: (3.3.22)

A solution of the mentioned problem is to choose ri+1 such that

(ri)>(r2Q(�i))ri�1 = 0: (3.3.23)

The search direction is in this case said to be conjugate (Bishop (1995) p.276). The

algorithms to calculate the r's can be described according to Bishop (1995) pp.274-283

as follows: The initial value is calculated by r0 = �rQ(�0). The subsequent search

directions can be found by

ri+1 = rQ(�i+1 + airi): (3.3.24)

The weight vector for the iterations is determined by (3.3.22), the learning rate by

line-search methods. For the determination of the parameter ai there are three well

known methods. It is computed by the formula of Hestenes and Stiefel (1952) by

ai =
(rQ(�i+1))>(rQ(�i+1)�rQ(�i))

(ri)>(rQ(�i+1)�rQ(�i)
; (3.3.25)

according to the formula of Polak and Ribière (1969) (a modi�cation of the above

formula to avoid to include r i in the formula, see Bishop (1995) p.280) by

ai =
(rQ(�i+1))>(rQ(�i+1)�rQ(�i))

(rQ(�i))>(rQ(�i))
(3.3.26)

and according to the formula of Fletcher and Reeves (1964) by

ai =
(rQ(�i+1))>(rQ(�i+1))

(rQ(�i))>(rQ(�i))
: (3.3.27)

The conjugate gradient algorithm is designed for quadratic error functions with positive

de�nite Hessian matrix. If it is applied to arbitrary error functions it is assumed that they
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can be locally approximated by a quadratic polynomial, but they dont have necessarily

to be quadratic. The formula of Polak and Ribière (1969) is superior in the case of

nonlinear error functions (Haykin (2009) p.222). But continuing this discussion would

lead too far as we only use the quadratic error function (3.3.1). The conjugate-gradient

method is generally the most powerful �rst order gradient descent method (if we abstain

from quasi-Newton methods mentioned in the next chapter).

3.3.5 Second Order Gradient Descent Methods

The second order gradient descent methods are learning algorithms, which explicitly

make use of the Hessian matrix r2Q(�). Consider equation (3.3.14): The learning

rate � is replaced by the inverse Hessian matrix such that

�i+1 = �i � (r2Q(�i))�1r(�i): (3.3.28)

The second term in this equation is called Newton direction. Its main advantage is,

that the Newton direction or Newton step of a quadratic error function directly points

towards a minimum and hence avoids oscillation (Bishop (1995) p. 286).

However determining the Hessian matrix brings along some problems. Firstly, it is

very demanding from a computational point of view to calculate and invert the Hessian

matrix. To show this, let O denote the Landau symbol indicating the upper bound of

the computing complexity. Computing the Hessian matrix has complexity O(r 2) and

inverting it O(r 3) (Bishop (1995) p.287). Secondly, the Newton direction may point

to a maximum or saddle point, which is the case if the Hessian matrix is not positive

de�nite. As a consequence the error is not necessary reduced in each iteration. Thirdly,

the step size of the Newton step may be such large that it leads out of the range of

validity.

The second problem can be reduced by adding a positive de�nite symmetric matrix

to the Hessian matrix which includes the unit Matrix I and a su�cient large parameter

�. Then the combination

r2Q(�) + �I (3.3.29)

is certainly positive de�nite. This is a compromise between the negative gradient search

direction, which (approximatively) results if � is chosen large, and the Newton direction,
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which results if � is very small. In this way also the third problem mentioned above is

solved. But the �rst problem remains, which is in general known as the greatest disad-

vantage of the Newton's method and is the origin of several approximation procedures

called quasi-Newton methods. Because they do not deal with second order gradients

directly but approximate them via �rst order gradients, they are in general classi�ed

as �rst order gradient methods (Bishop (1995) pp.287-290, Widmann (2000) pp.44-

45, Haykin (2009) pp.224-226). We will not discuss those methods here and refer to

the literature mentioned above as with the Levenberg-Marquardt algorithm in the next

chapter a powerful kind of a quasi-Newton method is shown.

Shortly we want to compare the quasi-Newton and conjugate gradient methods (see

Haykin (2009) p.226-227): The complexity of conjugate gradient is only O(r), thus this
method is preferable to quasi-Newton methods with an overall computing complexity of

O(r 2) (Haykin (2009) p.227) if the weight vector becomes large. An additional argu-

ment to that point of view is, that storage is required for the approximated Hessian ma-

trices which of course becomes the larger the more elements are included in the weight

vector. In the close neighborhood of a local minimum however, quasi-Newton methods

converge faster as they approximate Newton's method accurate. Quasi-Newton, conju-

gate gradient and the Levenberg-Marquardt algorithm converge with superlinear speed,

whereas the other methods converge with linear speed (Bottou (2003) pp. 165-166).

3.3.6 The Levenberg-Marquardt Algorithm

In the following we continue with the Levenberg- Marquardt algorithm (founded in the

works of Levenberg (1944) and Marquardt (1963)) which combines the steepest de-

scent algorithm of Rumelhart, Hinton and Williams (1986b) and Newton's method.

Like other quasi-Newton methods it can not be counted to the second order gradient

methods, because the Hessian matrix is approximated by combinations of the Jacobian

matrix of "t(�), the matrix of �rst oder gradients, such that no second order gradients

rest to calculate. According to Haykin (2009) p.227 the advantages of this method

are therefore that it converges rapidly like Newton's method but it can not diverge be-

cause of the steepest descent algorithm in�uence. Via modi�cation of some parameters

the Levenberg-Marquardt algorithm can be made equal to either the steepest descent-

or Newton's algorithm. The algorithm is also recommended in several econometric

works as for example in Medeiros, Teräsvirta and Rech (2006) p.54 and is commonly
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known as one of the most powerful learning methods for neural networks. According

to Bishop (1995) p.253 the Levenberg-Marquardt algorithm is especially applicable to

error-sum-of-squares performance functions. Therefore it is used for our empirical ex-

amples in chapter 5. Appendix B.4 contains a implementation of the algorithm in the

statistical programming language R. For the following description see Hagan and Men-

haj (1994) p.990:

We can show that the Hessian matrix of the performance function can be estimated by

the cross product of the Jacobian matrices of "t(�). The following relationships are in

the style of equation (3.3.11):

r2Q(�) = r2

(
1

2

T∑
t=1

"t(�)2

)

= r
(
r
(
1

2

T∑
t=1

"t(�)2

))
= r (J("t(�))>E

)
(3.3.30)

On element by element basis we get for the ith row of (3.3.30) and the jth weight,

i ; j = 1; : : : ; r , by the product rule of di�erentiation:

@

(∑T

t=1 "t
@"t
@�i

)
@�j

=

T∑
t=1

(
@"t
@�j

@"t
@�i

+ "t
@2"t
@�i@�j

)
(3.3.31)

The second term on the right hand of (3.3.31) is approximatively zero, see Hagan and

Menhaj (1994) p.990 and Bishop (1995) p.291. The �rst term equals the cross product

of the Jacobian matrices. With this result we get for (3.3.28)

��i+1 = � [J("t(�i))>J("t(�
i))
]�1

J("t(�
i))>E i: (3.3.32)

The fact that the pure crossproduct of the Jacobian matrices sometimes leads to sin-

gularities as application shows might be problematic. Thus an modi�cation is needed.

Equation (3.3.28) together with (3.3.29) can be written as

��i+1 = � [r2Q(�i) + �I
]�1rQ(�i): (3.3.33)



3 Modelling Univariate AR-NN 73

The Levenberg- Marquardt representation of equation (3.3.33) now contains the ap-

proximation (3.3.32) of (3.3.29):

��i+1 = � [J("t(�i))>J("t(�
i)) + � � I]�1

J("t(�
i))>E i (3.3.34)

� is multiplied by a factor � if an iteration results in an increased Q(�). If an itera-

tion reduces Q(�), � is divided by � . If � and � are chosen to be such big that their

in�uence is stronger than that of the Hessian matrix, the Levenberg- Marquardt algo-

rithm becomes very similar to the steepest descent algorithm of Rumelhardt, Hinton

and Williams (1986a). If those parameters are chosen to be zero, the Levenberg-

Marquardt algorithm is identical to the Newton procedure. For computational rea-

sons the parameter � should at least be di�erent from zero such that the matrix

[J("t(�
i))>J("t(�i)) + � � I] is positive de�nite (see section 3.3.5 and Haykin (2009)

p.228). The �owchart in �gure 3.5 explains how the algorithm runs. Because of the

squared Jacobian matrices in (3.3.34) (also referred as Gauss-Newton method) one

abstains from calculating the complex Hessian matrices and has consequently all the

advantages of the Newton algorithms combined with less complexity.
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Figure 3.5: Flow chart Levenberg-Marquardt algorithm
Source: Authors' design, based on the �rgures in Anders (1997) p.37 and pp.127-132
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3.3.7 Stopped Training

Using one of the learning algorithms discussed above, it is possible - at least in theory -

to minimize the stochastic part such that it vanishes if i!1. This leads to the assump-

tion that the AR-NN becomes a perfect estimator for the process. To consider to which

problems this may eventually lead, we have to mention the aims of the analysis of the

process. We want to detect the long run behavior of the process, which is assumed to

be included in the considered data series. Having discovered this behavior once, values

over a certain period in the future can be forecasted, showing a trend which is only dis-

turbed by the stochastic part "t . Its in�uence is only temporary. A neural network with

(nearby) zero residual variance would put in question our general model of the process

(equation (2.1.1)) because a deterministic model without stochastic part might then be

a better representation. According to Medeiros, Teräsvirta and Rech (2006) p.51 this

question arises only with nonlinear models. Concerning out-of-sample prediction, AR-

NN's with low residual variance sometimes behave surprisingly poor. This phenomenon

is called over�tting (or sometimes overlearning, see Haykin (2009) p.194). The over-

�tted network has lost its ability to generalize (Haykin (2009) p.194). According to

Widmann (2000) p.56-57, over�tted neural networks are too big respective the free

parameters compared to the necessary complexity for the analysis of the data. Thus

the model is adjusted to the data the more precisely the more weights are involved, but

its property to explain the underlying process is not changed or even gets lost if it is

over�tted.

To visualize over�tting, we use an example with real data. Figure 3.6 shows an over-

�tted AR-NN, generated with data from chapter 5 (di�erences of the log(USD/EUR)

exchange rate, 128 values) and the Levenberg-Marquardt function in appendix B.4.6

For estimation an AR-NN with 20 hidden neurons was used. The data set is splitted

into two subsets: The �rst 120 values are used for estimation, the last 8 values for

comparison to a 8 step forecast. We observe that the model �ts very well in-sample,

whereas the forecast predicts values which are not at all realistic. They are even not in

the range of the original values. Such observations lead to two conclusions: Firstly the

model of the process is wrong. An overtrained network will not only be adjusted to the

deterministic part, but also to the stochastic part (Widmann (2000) p.56). Hence the

network is no longer the concretization of equation (2.1.1) and is not able to provide

6The function has been modi�ed for generating this �gure
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Figure 3.6: Example: Over�tted AR-NN
Source: Authors' design

the expectation of this equation. The stochastic part is therefore an essential part of

the equation, which describes the dynamics of the process. The second conclusion is:

We need some stopping conditions which prevent the learning algorithm from adjusting

to the stochastic part.

A well known approach to solve the problem of over�tting is stopped training or early

stopping. The data set used for estimation is partitioned in an estimation subset (ES)

and a validation subset (VS). According to Haykin (2009) pp.202-203 in general an

estimation subset containing 80% of the values and a validation subset containing the

remaining 20% is a good partition. For alternative ways on how to partition the data see

the referred literature. If the model should be used for prediction, empirical application

shows that the validation subset should be as large as the number of steps to predict

(for example if the model is used for a 8 step forecast, the validation subset should

contain about 8 values). In our empirical part we observe that the AR-NN perform very

well in the short run (1-step or 2-step) forecasts. Consequently the validation subset

should be correspondingly small.

According to the stopped training method after each iteration the resulting parame-

ters are used to forecast the values of the validation subset. Subsequently the sum of
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squares of the deviations of the forecasted from the original validation subset values

is calculated (in the following referred as VS-RSS). It is observable that the VS-RSS

is only minimized up to a �nite optimal number of iterations i*. If more iterations are

used, the VS-RSS will increase. The ES-RSS in contrast always decreases with increas-

ing number of iterations. Figure 3.7 shows a sketch how ES-RSS and VS-RSS develop

during the iterations.

i

RSS
VS-RSS

ES-RSS

Minimum VS-RSS

i*

Figure 3.7: Stopped training: Development of ES-RSS and VS-RSS during the learning

algorithm
Source: Authors' design, based on Bishop (1995) p.364 �gure 9.16

The parameter vector at the iteration where the VS-RSS is minimal (i*) is considered

to be the optimal parameter vector. Empirical application shows that an AR-NN with

a parameter vector chosen by the stopped training method is able to produce forecasts

which are at least in the range of the original values.

In application it is sometimes observable, that the results of the Levenberg-Marquart

algorithm depend on the initial values for the parameter vector. Stopped training pro-

vides a simple way to overcome this problem: The search for the minimum VS-RSS

does not start until some initial iterations are executed (in the empirical part for example

�ve initial iterations are used). In this way the initial values are modi�ed by the �rst

iterations in order to be more appropriate. In particular empirical application for this

dissertation showed that for such a procedure the di�erence in the results for various

initial values is lowered. Another fact that has been observed was that solutions at very

low numbers of iterations (iterations<5) often do not perform very well in out-of-sample

prediction.
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Stopped training is just a method of limiting the iterative parameter estimation process

and not yet a solution for the problem of potentially too many hidden neurons. The

general approach to that problem is �nding the simplest model from a set of models

with the same goodness of �t the simplest model (Bishop (1995) p.14). Similar to linear

time series analysis it is possible to check wheater the in�uence of certain parameters is

signi�cant for the model. Further if only the �rst (1+ n) parameters were su�cient for

the model, a linear model would be a better approach. Therefore such tests are some-

times referred to as linearity tests, see section 3.1. Of course there are some ex-ante

parameter determination methods (for example the rule Baum and Haussler (1988)),

but they are not so powerful as the ex-post parameter tests for they are not built on

a sound theoretical fundament like parameter hypothesis tests. Therefore we abstain

from explaining them (for an overview see Widmann (2000) pp.57-65) and recommend

the testing procedures discussed in the following sections.

3.4 Parameter Tests

The �nal step is now to examine if the estimated model is appropriate. This can be

performed in two ways:7 Bottom-up means starting with the estimated model. It is

examined, if an additional hidden unit would improve the model. Therefore the non-

linearity test already known from section 3.1 is extended. Their disadvantage is, that

they only consider the in-sample performance (for example the in-sample RSS) of the

models. An alternative is cross validation, which means that the quality of a model is

evaluated by its out-of-sample performance.

Top-down parameter tests are well known from linear statistics. They consider one

parameter or a set of parameters within the estimated model and test them on signif-

icance. For an estimated model the general procedure is �rst to execute bottom-up

parameter tests as long as no additional hidden unit improves the model. Then a model

including those additional hidden units is again estimated and evaluated by top-down

parameter tests (see �gure 3.1 for an overview how top-down and bottom-up parameter

tests are used).

7The notations bottom-up and top-down parameter testing are taken from Anders (1997) pp.127-128
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3.4.1 Bottom-Up Parameter Tests

In this section two methods for bottom-up evaluation of an estimated model are dis-

cussed. The �rst method is based on Taylor polynomial estimation of an additional

hidden neuron. Therefore the test of Lee, White and Granger (1993) (see also section

3.1.2.2) is slightly modi�ed by Teräsvirta, Lin and Granger (1993). As this test only

examines the in-sample contribution of an additional hidden unit, a second procedure

is proposed: Cross-validation, an approach similar to stopped training, considers the

out-of-sample contribution of the additional hidden unit.

3.4.1.1 The Test of Lee, White and Granger

The test of Lee, White and Granger (1993), related to the test of Teräsvirta, Lin and

Granger (1993), can also be used as a test on additional hidden nonlinearity. Equation

(3.1.9) includes here an AR-NN G(�; Xt�1)

xt = G(�; Xt�1) + ut ; (3.4.1)

with

ut = (F (Xt�1)� G(�; Xt�1)) + "t : (3.4.2)

If the �rst term in equation (3.4.2) is zero, the estimated AR-NN G(�; Xt�1) does

explain the process completely and there is no additional hidden nonlinearity. To test this

like in equation (3.1.12) an additional hidden neuron is added to the AR-NN equation:

xt = G(�; Xt�1) + 	(
0a + �>a Xt�1)�a + "t (3.4.3)

The index a indicates the additional hidden neuron. The further procedure is now the

same as in the nonlinearity test. The arti�cial linear regression of equation (3.1.17)

becomes

ut = �1rG(�; Xt�1) + �2(	(
0a + �>a Xt�1)) + u�t : (3.4.4)

The second term of this equation is approximated by a Taylor polynomial, such that

equation (3.4.4) becomes for the tanh activation function (like equation (3.1.20)):

ut = �1rG(�; Xt�1)� 1

3

n∑
j1=1

n∑
j2=j1

n∑
j3=j2

�2j1;j2;j3
xj1xj2xj3 + u�t (3.4.5)
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Thus the null hypothesis can be written as

H0 : �2j1;j2;j3
= 0 8 j1; j2; j3 (3.4.6)

with alternative

H1 : �2j1;j2;j3
6= 0 8 j1; j2; j3: (3.4.7)

The calculation of the test statistics is the same as in subsection 3.1.2.1 (equations

(3.1.18) and (3.1.19)). The only di�erence is the second degree of freedom for the F

test statistic, which is here (T � r).

3.4.1.2 Cross Validation

The formal LM test mentioned in the previous subsection only checks if one additional

hidden neuron can improve the in-sample performance of a model. But in the empir-

ical part of this dissertation (especially tables 5.10 to 5.13) the main focus is on the

out-of-sample performance of AR-NN. It does not always behave in a parallel way to

the in-sample performance. Therefore an intuitive method which considers the out-of-

sample behavior of the models can be used as an alternative to the formal bottom-up

parameter tests (see for example Inoue and Kilian (2006) p.273 for this idea).

The procedure is similar to the one shown in section 3.3.7. The data set is split-

ted into a training subset (at which for example stopped training may be applied) and

a so called test subset (see Haykin (2009) p.201). Cross validation is executed in three

steps:

� In the �rst step several models with increasing h - starting with h=0 - are adjusted

to the training subset.

� In the second step the values of the test subset are predicted out of the estimated

models. Those values are compared to the original values of the test subset (for

example by calculating the RMSE between estimated and original values).

� The model with the lowest test subset RMSE is the optimal model. If the test

subset RMSE does not di�er signi�cantly for some models, the model with the

lowest h (and thus the smallest number of parameters) should be chosen.
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3.4.2 Top-Down Parameter Tests

The principle of top-down parameter testing is well known in statistics.The aim of such

procedures is to check in an already estimated model if all or certain parameters are

signi�cant. Hence the notation top-down describes to start with the estimated model

and check if not a smaller model (according to the Occam's razor principle) is better.

In this section we propose two types of parameter tests for AR-NN. Those procedures

can also be applied at other forms of nonlinear functions (as Taylor-polynomials for

example). The �rst type is an IC. The Neural Network IC (NIC) is a generalization of

the AIC and has therefore to be minimized like the AIC. We use this method in accor-

dance to the authors of the original paper (Murata, Yoshizawa and Amari (1994)) to

detect the optimal number of hidden neurons. Using the AIC itself would lead to mis-

speci�cations. Murata, Yoshizawa and Amari (1994) p.876 cite a japanese study which

shows that problems occur if certain models with di�erent numbers of hidden neurons

are compared. Alternatively the NIC can be used to detect the number of input neurons

or lags, see Anders (1997) p.77. Then the NIC would belong to section 5.4.1. Another

possible alternative would be to vary lags and hidden neurons simultaneously to detect

an optimal combination of lags and hidden neurons.

The second type of methods discussed in this section for testing the signi�cance of

parameters is one of the the classical parameter hypothesis testing procedures in sta-

tistical models: The Wald test. The additional feature of this test is the possibility to

examine each single 
 (as well as �)-weight for signi�cance. Anders (1997) pp.64-73

also mentions the other classical parameter tests, the likelihood ratio (LR) test and the

LM test, in context with neural networks, but there are sone arguments which speak

against them:

The LR test examines two separately estimated models against each other (a restricted

and a unrestricted model). This makes only sense if the parameters are estimated by the

same algorithm. If a numerical algorithm in combination with stopped training is used,

the two models may react di�erently on the algorithm. Thus here we would compare

two di�erently estimated models, which does not make any sense for the LR test.

Using the LM test as a top-down parameter test means splitting the AR-NN into two

parts (the one contains the hidden neurons which should be examined, the other con-
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tains the rest) to execute the arti�cial linear regression with both parts. In particular if

the number of hidden units is large, splitting o� one or more of them o� will lead into

a huge programming e�ort, which is not justi�ed as the Wald test or the NIC examine

the same hypothesis and are simpler to implement.

3.4.2.1 Consistency

A prerequisite for parameter tests is the existence of a distribution of the estimated

weights, which can be determined at least asymptotical. This requires that the esti-

mators are consistent, which means that they converge to their true value if T ! 1
(see Anders (1997) p.57). Once consistency of the estimators has been shown it is

possible to prove with the help of the central limit theorem the multivariate Gaussian

distribution of a standardization of �̂ for a su�cient large T (see Widmann (2000)

p.53). This distribution is necessary for parameter tests.

A prerequisite of consistency for parameter estimators is that the "true" value of the

parameter vector is identi�ed, which means that there exists a unique minimum (not

necessarily the global minimum) of the performance function. Particularly for neural

networks it might be possible that two di�erent network structures lead to the same

minimum. Hence it is absolutely necessary to prespecify the number of hidden neurons

h and lags n appropriately, such that no unnecessary parameters are involved (see Wid-

mann (2000) p.54). The lag selection methods as well as the selection of h such that

the relation T=r is about 10% might be helpful to avoid overparametrization. Another

problem is the order of the hidden units. For any estimated AR-NN with more than one

hidden unit the same performance result can be achieved if the order of the hidden units

is exchanged. Therefore always two di�erent parameter vectors exist for each minimum.

In addition some restrictions or conditions are necessary to guarantee the uniqueness

of an optimal parameter vector. The results of White and Domowitz (1984) on the

consistency of AR-NN parameters can be recapitulated in the following according to

time series speci�c version of Trapletti, Leisch and Hornik (2000) pp.2431-2434. At

�rst some conditions have to be de�ned and explained:

Condition 3.1 (Trapletti, Leisch and Hornik (2000) p.2432 assumption 1):

Each hidden neuron contributes nontrivial to the process such that
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	(
0j + �>j Xt�1) 6= 0 and �j 6= 0. All inputs of the hidden neurons are not sign

equivalent such that j
0j + �>j Xt�1j 6= j
0k + �>k Xt�1j 8j; k = 1; : : : ; h.

This condition should ensure that it is not possible to archive the same equation with

fewer hidden units, i.e. that no unnecessary hidden neurons are included. The second

part of this condition in particular excludes the twofold existence (with di�erent presign)

of any hidden neuron.

Condition 3.2 (Trapletti, Leisch and Hornik (2000) p.2433 assumption 2):

The data generating process is a stationary AR-NN with continuos activation function

and the weight space � � Rr .

This condition restricts the weight space � such that all roots of the characteristic

polynomial of the linear part are outside the unit circle (see theorem 2.2). The other

weights are restricted to be real numbers.

Condition 3.3 (Trapletti, Leisch and Hornik (2000) p.2434 assumption 3):

�j > 0 8j = 1; : : : ; h and �j < �j+1 8j = 1; : : : ; h � 1.

This condition avoids the problem of changing the order of the hidden units as we have

discussed before. The restriction of all �j on positive numbers rules out the possibility

of reaching the same value by changing the 
- and �-weight signs. Conditions 1 to 3

restrict the set of possible solutions such that a unique minimum exists for certain ac-

tivation functions. Those activation functions have to archive the following condition:

Condition 3.4 (Trapletti, Leisch and Hornik (2000) p.2434 assumption 4):

All functions 	(
0k +�>j Xt�1) and the constant 1 are linear independent 8j = 1; : : : ; h

and any Xt�1 � Rn.

The tanh activation function ful�lls in general this condition.8 Theorem 3.1 in the

8But if the input is large and always positive/negative, then it would in fact become a constant on the

upper bound of its range of values. This is not a realistic case because already in theorem 2.1 it was

stated that the weight space should contain a neighbourhood of the origin.
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following shows how a NLS-estimator �̂ is consistent:

Theorem 3.1 (Trapletti, Leisch and Hornik (2000) p.2434 theorem 5):

If conditions 1-4 are achieved and Ej"2t jk < 1 for any k > 1, the NLS estimator �̂

converges almost sure (a.s.) to the true parameter vector �, �̂
a:s:��! �.

PROOF: For the proof see Trapletti, Leisch and Hornik (2000) p.2439.

Two additional conditions are necessary to calculate the asymptotic normal standard-

ized distribution of �̂:

Condition 3.5 (Trapletti, Leisch and Hornik (2000) p.2434 assumption 5):

The original weight vector � is in � and 	(�) is continuously di�erentiable of order 2.

Condition 3.6 (Trapletti, Leisch and Hornik (2000) p.2434 assumption 6):

All 	0(
0j +�>j Xt�1), Xt�1	
0(
0j +�>j Xt�1) and the constant 1 are linear independent

8j = 1; : : : ; h and any Xt�1 � Rn.

The tanh activation function satis�es condition 5 and 6. Condition 1 and 6 together

ensure the regularity of the information matrix at �. Theorem 3.2 shows the standard-

ized distribution of �̂:

Theorem 3.2 (Trapletti, Leisch and Hornik (2000) p.2434 theorem 6):

If all conditions are achieved, Ej"3t jk <1 for any k > 1 and T !1, then

1

�

√
r2Q(�̂) � (�̂��)

d�! N(0; Ir); (3.4.8)

whereas
d�! denotes convergence in distribution.

PROOF: For the proof see Trapletti, Leisch and Hornik (2000) p.2439

Ir denotes the r dimensional identity matrix. This result is the basis for the hypothesis
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tests in the following section. An alternative representation of equation (3.4.8) using

the (r � r) dimensional covariance matrix C of the parameters, is

p
T (�̂��)

d�! N(0;C): (3.4.9)

An estimator Ĉ for C can be received by

Ĉ = ��1���1; (3.4.10)

using the crossproduct of the gradient vectors multiplied by T�1

� =
1

T
(rQ(�̂))>(rQ(�̂)) (3.4.11)

and the Hessian matrix multiplied by T�1

� =
1

T
r2Q(�̂) (3.4.12)

see Murata, Yoshizawa and Amari (1994) p.173 and Onoda (1995) p.278. The relation

between the equations (3.4.8) and (3.4.9) is as follows: If the model is appropriate, the

crossproduct of the gradient vectors should be equal to the Hessian matrix,

� = �̂2�: (3.4.13)

Consequently equation (3.4.10) is reduced to

Ĉ = �̂2��1; (3.4.14)

see White and Domowitz (1984) p.152. Therefore equation (3.4.8) is the usual trans-

formation of equation (3.4.9) to a standard Gaussian distribution:

p
T (�̂��)

d�! N(0;C)

C� 1

2

p
T (�̂��)

d�! N(0; Ir)
1

�

p
�T (�̂��)

d�! N(0; Ir)

(3.4.15)
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3.4.2.2 The Neural Network Information Criterion

The Neural Network Information Criterion (NIC) is a generalization of the AIC to de-

tect nonsigni�cant components. It is especially designed for misspeci�ed models, where

the usual AIC or BIC can not be used (see Anders (1997) p.77). The AIC in time

series analysis is rather used for lag selection than for parameter tests. Hence it is of

course possible to use its generalized equivalent, the NIC, also for such aims. Yet this

would imply estimating several AR-NN models ex-ante which requires much more e�ort

than to approximate them via the methods of section 3.2 (Taylor polynomials, kernel

regression etc.).

First some notations for di�erent AR-NN models have to be introduced. Suggest k neu-

ral network functions for the same time series are given, G1(�1; Xt�1), G2(�2; Xt�1),

: : :, Gh(�h; Xt�1). Let �1 2 Rr1, �2 2 Rr2, : : :, �h 2 Rrh for r1 < r2 < : : : < rh. h indi-

cates the originally introduced number of hidden neurons. This means that the number

of hidden neurons in the second function is lager than that in the �rst function and

so on. The di�erent models Gj(�j ; Xt�1), j = 1; : : : ; h are not estimated separately.

Rather we use the estimated �̂ � � and delete descending from the largest model

Gh(�h; Xt�1) the part of the equation as well as the elements of � which correspond

to the hidden neuron which is not contained in the lower model. Thus we can say that

the functions are nested submodels,

G1(�1; Xt�1) � G2(�2; Xt�1) � : : : � Gh(�h; Xt�1): (3.4.16)

Instead of the discrepancy functions proposed in Murata, Yoshizawa and Amari (1994)

pp.870-871 we use for each model j the performance function

Q(�j) =
1

2

T∑
i=1

(xt � Gj(�j ; Xt�1))
2 (3.4.17)

known from section 3.3.1. The NIC is de�ned for model j using �j and �j by

NICj =
1

T

(
1

2

T∑
t=1

"2jt + tr(�j�
�1
j )

)
: (3.4.18)

The second term is called penalty term because it "punishes" the excessive usage of

parameters. Should the model j be faithful, which means that �j is a (optimal) NLS
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solution, we know from equation (3.4.13) that �j = �2
j �j . A consequence would be

that

tr(�j�
�1
j ) = �2 � tr(I) = �2r (3.4.19)

Thus in this case the NIC is equal to the AIC2 (equation (3.2.2)). Like any other IC

the NIC has to be minimized, thus we choose the submodel with the lowest NIC.

The NIC, like any other IC, is not consistent. If IC in general are used as parameter

tests, it has to be ensured that no irrelevant hidden neurons are included in the models

(see Anders (1997) p.78). If the models are overparametrized, �j and �j are degener-

ated and may diverge heavily. The consequence is an unusual large NIC value. Hence

large NIC's can be interpreted as an sign for overparametrization (see Anders (1997)

p.79).

3.4.2.3 The Wald Test

Before the Wald test (rooted in Wald (1943)) can be executed, it is necessary to

estimate the covariance matrix C using equation (3.4.10). In addition no irrelevant

hidden neurons should be included in the models. For the following see Widmann (2000)

pp.100-102 and Anders (1997) pp. 72-73. The simplest application of the Wald test

is to consider a null hypothesis of non-signi�cance for each single weight,

H0 : �i = 0 8 i = 1; : : : ; r: (3.4.20)

In this case the test statistic is

TWALD1
=

�2i
�2
�i

: (3.4.21)

The denominator �2
�i
is the variance of �i . This equals the ith element on the principal

diagonal of C. The test statistic is �2 distributed with one degree of freedom (see An-

ders (1997) p.73). Davidson and MacKinnon (1993) p.89 call it "pseudo- t-statistic".
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4 Multivariate models

4.1 Multivariate AR-NN

4.1.1 Vector Autoregressive Neural Network Equations

Our knowledge of neural network modelling of autoregressive processes now is easily

extendable to nonlinear vector autoregressive models. In general multivariate modelling

means to add an additional dimension - the number of variables m - to a univariate

model. The idea of multivariate AR-NN is based on Raman and Sunlikumar (1995)

and Chakraborty et al. (1992), although vector representation as we will use it in this

section is not treated by those authors. A vector autoregressive process is introduced

formally (equivalent to de�nition 2.1) by

De�nition 4.1 (Vector autoregressive process (VAR)):

A process is called vector autoregressive process of order n - short VAR(n) - if it is

described by the functional relation

Yt = F (Yt�1) + Et ; (4.1.1)

whereas Yt = (y1t ; y2t ; : : : ; ymt) is a vector of m variables and Yt�1 is a (m � n � 1)

vector of the lagged variables,

Yt�1 = (Yt�1; Yt�2; : : : ; Yt�n)
> (4.1.2)

with F : Rmn ! Rm and Et = ("1t ; "2t ; : : : ; "mt)
> is a m-dimensional Gaussian dis-

tributed WN vector.

Remark 4.1.1:

If F (Yt�1) is a linear function, the process is a linear VAR. If F (Yt�1) is nonlinear it is

a nonlinear VAR.
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A linear VAR is represented by

Yt = A0 + A1Yt�1 + A2Yt�2 + : : :+ AnYt�n + Et (4.1.3)

whereas the constant matrix A0 has dimension (m � 1)and the parameter matrices Ai

8 i = 1; : : : ; n have dimension (m � m) . An alternative representation of equation

(4.1.3) is

Yt = A0 + A︸︷︷︸
(m�m�n)

Yt�1︸︷︷︸
(m�n�1)

+Et ; (4.1.4)

whereas A = (A1; A2; : : : ; An). In full matrix representation equation (4.1.4) is written

as follows: 
y1;t

y2;t
...

ym;t

 =


�01

�02

...

�0m

+


�111 : : : �11m : : : �n1m

�121 : : : �12m : : : �n2m

...
...

...
...

...

�1m1 : : : �1mm : : : �nmm




y1;t�1

...

y1;t�n
...

y2;t�1

...

ym;t�n


+


"1t
...

"mt



By the independence assumptions of the residuals one can divide (4.1.4) into m inde-

pendent linear equations

yj;t = �0j + �1j1y1;t�1 + : : :+ �1jmym;t�1 + �2j1y1;t�2 + : : :+ �njmym;t�n + "jt (4.1.5)

for each variable j = 1; : : : ; m. The separate models for each output neuron have the

same dimensional properties like univariate models. The main di�erence is, that there

are some additional variables which might be Granger-causal to the output variable.

Informally in times series context a variable y2 is said to Granger-cause any other variable

y1, if its lagged past values signi�cantly contribute to explain the present state of y1
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(see for example Granger (1988) p.203). The neural network modelling procedure

discussed here is equivalent to a linear VAR like equation (4.1.3). In particular the

property to split the multivariate model into several independent univariate models (like

in equation (4.1.5)) is essential. Let us introduce the following additional matrix terms

for formulation of the Vector AR-NN (VAR-NN):

�0;j =



0j1


0j2
...


0jm



�i ;j =



i j11 
i j12 : : : 
i j1m


i j21 
i j22 : : : 
i j2m
...

...
...

...


i jm1 
i jm2 : : : 
i jmm



�j = (�1j ; �2j ; : : : ; �nj)

(4.1.6)

A VAR-NN is thus de�ned by the multivariate version of equation (2.2.7):

Yt︸︷︷︸
(m�1)

= A0︸︷︷︸
(m�1)

+ A︸︷︷︸
(m�mn)

Yt�1︸︷︷︸
(mn�1)

+

h∑
j=1

	( �0j︸︷︷︸
(m�1)

+ �j︸︷︷︸
(m�mn)

Yt�1︸︷︷︸
(mn�1)

) �j︸︷︷︸
1�1

+ Et︸︷︷︸
m�1

(4.1.7)

In this case 	 : Rm ! Rm whereas each element is transformed individually by the

activation function (the tanh for example). Like in the linear case (equation (4.1.5)),

m independent models can be splitted o�. Note that the parameter �j is scalar (1� 1)

to keep the structure of the NN-VAR straightforward. In addition �j has to be prespec-

i�ed, because it can not be estimated simultneaously with the other parameters.

Stopped training becomes more complicated in the multivariate models, as for esti-

mation the equations have to be separated, but for forecasting they have to be added

together. The problem is, that for forecasting one variable, one also needs the estimated



4 Multivariate models 91

models for the other variables. One may proceed as follows: Firstly the parameter vec-

tors are estimated for each variable and saved for each iteration. Then the multivariate

model is used to evaluate all combinations of the parameters in each iteration. The

optimal model minimizes the VS-RSS for each variable. Such a procedure requires much

e�ort, especially for implementing all the combinations of parameter vectors. Hence we

recommend to abstain from stopped training in the multivariate models.

One has to overcome a di�culty if the lag selection methods from section 3.2 are

applied at VAR-NN. The lag selection methods can be applied at the submodels of the

VAR-NN without problems but the result are certainly di�erent lag structures. Merging

the submodels to a VAR-NN is then impossible. Thus a procedure has to be imple-

mented which detects the optimal lag for the whole AR-NN. The following steps might

provide a solution:

� Calculate the lag selection criterion for several lags for the submodels (especially

for the methods in 3.2.3 and 3.2.4 the submodels can be approximated by Taylor

expansion or local linear estimation as well as the univariate models).

� Sum the lag selection criteria of all submodels for each lag.

� Choose that lag where the sum of lag selection criteria is minimal.

The last step results of the fact that the lag selection criteria in general have to be

minimized. The parameter estimation methods may in a similar way also be used simul-

taneously for the submodels. But they also allow for partly weakly exogeneity of some

variables if parts of the multivariate hidden neurons are not signi�cant. Alternatively

the lag order can be detected by the average lag of the univariate time series optimal

lag orders.

4.1.2 Vector Autoregressive Neural Network Graphs

To start with graph representation of a VAR-NN, we �rst consider the graph of a linear

VAR(2) with two variables using the symbols from section 2.2.1 with white circles for

the �rst variable and yellow circles for the second variable (see �gure 4.1). The output

neurons in this graph can be considered separately (see �gure 4.2 for the separated

�rst variable). In the following we draw the graph of a VAR-NN(2) with two variables.

Before we proceed with the multivariate AR-NN we have to introduce some additional
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symbols, see table 4.1. Note that here the �-weights connect vectors, but they apply

to each single variable in the vectors. This is important if the VAR-NN are separated

for estimation. Now the hidden layer is inserted into the linear AR(2) model of �gure

4.1. Figure 4.3 shows the "black box" representation of a VAR-NN(2), in �gure 4.6 the

"black box" is unveiled. Alternatively the variable can be hidden to simplify the graph

to a vector representation (see �gure 4.7).

Symbol Formal

y1

y2

�i

Table 4.1: Additional symbols for a 2 variable VAR-NN

Figure 4.1: VAR(2) graph with 2 variables
Source: Authors' design
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Figure 4.2: Separated model of the �rst variable
Source: Authors' design

Figure 4.3: VAR-NN(2) - "black box" representation
Source: Authors' design
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Figure 4.4: VAR-NN(2) graph
Source: Authors' design

Figure 4.5: VAR-NN(2) - vector representation
Source: Authors' design
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4.2 Neural Networks and Cointegration

The concept of cointegration has become essential in time series analysis since Engle

and Granger (1987). In general the term cointegration is de�ned by (see for example

Johansen (1995) p.35):

De�nition 4.2 (Cointegration):

If for a vector Yt of m series of the same integration order � 1 a stationary linear

combination B>Yt , exists, the series are called cointegrated with cointegration matrix

B of dimension (c �m) with c < m. If c=1, B is called cointegration vector.

In this section we will show how cointegration can be related to our AR-NN models.

Note that this section is not about nonlinear cointegration but rather about nonlin-

ear adjustment in vector error-correction models (VEC), see therefore Dufrenot and

Mignon (2002) p.224.

4.2.1 Nonlinear Adjustment in Error Correction Models

First of all we consider a linear VEC in reduced rank representation as for example in

Johansen (1995) p.45:

�Yt = KB>Yt�1 + A0 + A1�Yt�1 + : : :+ �Yt�n + Et (4.2.1)

B is the (m � c) cointegration matrix with 0 6= c < m and K is the (m � c) loading

matrix. c is the number of cointegration relationships. For details see Johansen (1995)

pp.45-69. The cointegration matrix in�uences the variables via K through a linear

relationship. If there is nonlinearity in the data, nonlinear instead of linear adjustment

might improve the model (4.2.1). Using the nonlinear function F (�) equation (4.2.1)

can be rewritten as

�Yt = F
(
B>Yt�1

)
+ A0 + A1�Yt�1 + : : :+ �Yt�n + Et : (4.2.2)
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Note that here F : Rc ! Rm is the nonlinear equivalent to K in equation (4.2.1). This

VEC can be illustrated by a simple bivariate example from Escribano and Mira (2002)

p.514:

�xt = �11�xt�1 + f1(zt�1) + v1t (4.2.3)

�yt = �21�yt�1 + f2(zt�1) + v2t (4.2.4)

zt = xt � byt (4.2.5)

zt is the cointegration relationship and the cointegration vector here is B = (1; b)>.

f1(�) and f2(�) are nonlinear functions mapping F1; F2 : R ! R, Yt = (xt ; yt)
>,

F (B>Yt�1) =

(
f1(zt�1)

f2(zt�1)

)
(4.2.6)

and

A =

(
�11 0

�21 0

)
(4.2.7)

4.2.1.1 Theoretical Prerequisites

Now should be shown how such a nonlinear VEC is theoretically justi�ed. We will there-

fore use theorem 3.7 in Escribano and Mira (2002) p.517. For the formulation two new

expressions have to be introduced, which both are closely related to stationarity: �-

mixing and near epoch dependency (NED). With those constructs a functional central

limit theorem holds for the nonlinear error correction theorem. Such a functional central

limit theorem is the basis for estimation and inference (see Escribano and Mira (2002)

p.511-512). For this section see Escribano and Mira (2002) pp.512-515.

Beforehand some mathematical notations have to be explained: Let 
 be the set of all

possible realizations of a process xt . The �-algebra F of 
 is then de�ned as a system

of subsets which
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� contains the null set

� contains for each subset A 2 F also the complement �A of A

� contains for a (possibly) in�nite (i ! 1) sequence of sets Ai also their union⋃
i Ai

see Hassler (2007) p.14. The �-algebra F t
s = �(xs ; : : : ; xt) generated by a process xt

is de�ned as the smallest �-algebra for which xt is measurable. Therewith the mixing

coe�cients � are de�ned as

�k = sup
t

sup
fF12F t

�1;F22F1
t+k

g
jP rob(F1F2)� P rob(F1)P rob(F2)j (4.2.8)

sup denotes the supremum (upper bound) of a set. We call the process �- or strong-

mixing if �k ! 0 as k !1. A strong- mixing process can be interpreted as a process,

where the dependence between two realizations of the process xt , which are separated

by k steps, decreases as k increases. The mixing coe�cient �k measures this depen-

dence. A stationary process is strongly mixing (but not vice versa).

The second concept necessary for the nonlinear error correction theorem is the NED.

Let yt be a process with a �nite sum of squares (E(y 2
t ) < 1). yt is NED of size �a

on the process xt if

�(n) = sup
t

= jjyt � E(yt jxt�n; : : : ; xt+n)jj2 (4.2.9)

is of size �a. jj � jj2 is the L2-norm E
1

2 j � j2. To keep this concept in accordance with AR

theory, we assume that the forward values of xt , xt+i 8 i = 1; : : : ; n do not improve the

conditional expectation and are therefore useless. If �(n) goes to zero as n increases,

it can be said that yt essentially depends on the recent epoch of xt . yt is NED of any

size if it depends on a �nite number of lags of xt .

The NED property is important to characterize an I(0)-process via a functional central

limit theorem for NED variables. The functional central limit theorem for NED pro-

cesses explains how a standardization of an I(0) NED process converges to a standard

Brownian motion and justi�es thus the distribution of such a process.
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Theorem 4.1 (Escribano and Mira (2002) p.513 theorem 2.3):

Let xt be a process with zero mean, uniformly Ls-bounded and NED of size �1
2
on an

�-mixing process of size �s=(s � 2) and T�1E(
∑T

t=1 xt)
2 ! �2, �2 2]0;1[. Then

T� 1

2

∑[Ts]
t=1 xt coverges to a standard Brownian motion B(s).

A process yt is I(0) if it is NED on a mixing process xt , but the process wt =
∑t

s=1 ys

is not NED on xt . If wt =
∑t

s=1 ys is NED on xt , the process is I(1). Similarly we can

express linear bivariate cointegration in terms of NED: Two I(1) processes xt and yt are

linearly cointegrated with cointegration vector B = (1;�b)> if xt � byt is NED on a

strong-mixing process, but xt��yt is not NED on a strong mixing process for any � 6= b.

In the following we will use the nonlinear VAR

Zt = H(Zt�1) + Ut (4.2.10)

with dimensions of Zt and Ut (c � 1). H(�) : Rc ! Rc is a di�erentiable function of a

variable Z on an open set of Rm. Under the following assumptions and conditions is Zt

NED on the �-mixing sequence Ut :

� Ut is �-mixing of size �s=(s � 2) for s > 2.

� SR(JZ(H(Z))) � 1 � �, whereas SR(�) denotes the spectral radius of a matrix,

which is its largest eigenvalue. JZ(H(Z)) denotes the Jacobi matrix of H(Z) with

respect to Z. Its dimension is (c � c). This condition is also called boundedness

condition, because it limits the largest eigenvalue of the Jacobian matrix away

from 1. The boundedness condition is a su�cient condition for H(Zt�1) to be

NED (see Escribano and Mira (2002) p.516).

� Let �u be a �nite constant and EjjUt jj2S = �u. jj � jjS denotes a subordinate matrix

norm.

4.2.1.2 The Nonlinear Error Correction Model and Neural Networks

Using the notations from the section above, we can formulate the VEC-theorem of

Escribano and Mira (2002) p.517. Note that the theorem is formulated for only one

lag (n = 1) in the VAR-part:

�Yt = A1�Yt�1 + F (B>Yt�1) + Et (4.2.11)
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Theorem 4.2 (Escribano and Mira (2002) p.517 theorem 3.7):

We consider the VEC in equation (4.2.11). Assume that

� Et is �-mixing of size �s=(s � 2) for s > 2

�

∑T

t=1 Et is not mixing on a NED sequence

� EjjEt jj2S � �u

� F (B>Yt�1) = F (Zt�1) with Zt = B>Yt of dimension (c � 1) and F (�) is a

continuously di�erentiable function ful�lling the general Lipschitz conditions (see

Escribano and Mira (2002) p.7 for details)

� SR(A1) < 1

� For some � 2 [0; 1]

SR =


A1︸︷︷︸

(m�m)

JZ(F (Zt))︸ ︷︷ ︸
(m�c)

B>A1︸ ︷︷ ︸
c�m

Ic + B>JZ(F (Zt))︸ ︷︷ ︸
(c�c)


︸ ︷︷ ︸

(m+c)�(m+c)

� 1� � (4.2.12)

Then �Yt and Zt are simultaneously NED on a �-mixing sequence Ut whereas Ut =

B>Et and Yt is I(1).

PROOF: For the proofs we refer to the original literature (see Escribano and Mira (2002)

pp.517-518).

The AR-NN function ful�lls the general Lipschitz conditions as it consists of one linear

and several bounded functions. A VEC-NN with more than n = 1 lags can be brought

in accordance with the theorem by some rearrangement:

�Yt︸︷︷︸
(m�n�1)

= A1︸︷︷︸
(m�n�m�n)

��Yt�1︸ ︷︷ ︸
(m�n�1)

+F (B>Yt�1) + Et (4.2.13)
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with Yt = (Yt ; : : : ; Yt�n)>, Yt�1 = (Yt�1; : : : ; Yt�n�1)
>, B = (B; : : : ; B︸ ︷︷ ︸

n times

)>, F : Rr !

Rm�n, Et = (Et ; : : : ; Et�n)> and

A1 =


A1 : : : An

. . .
...

. . .

A1 : : : An


However for estimation of the nonlinear VEC we may use the usual form (equation

4.2.2). We can formulate an example for a bivariate nonlinear VEC with an AR-NN

representation of F (Zt�1) and one cointegration relationship (c = 1). Let n = 1 and

h = 1 (see also Dufrenot and Mignon (2002) pp.229-243 for other applications of the

VEC of Escribano and Mira (2002)):

zt = yt � bxt (4.2.14)

�xt = ��11�xt�1 + ��12�yt�1 +

�01 + �11zt�1 +	(
01 + 
11zt�1)� + "1t (4.2.15)

�yt = ��12�yt�1 + ��22�xt�1 +

�02 + �12zt�1 +	(
02 + 
12zt�1)� + "2t (4.2.16)

A vector representation of equations (4.2.14), (4.2.15) and (4.2.16) together is given

in the following:(
�xt

�yt

)
=

(
�
�
11 �

�
12

�
�
21 �

�
22

)(
�xt�1

�yt�1

)
+(

�01

�02

)
+

(
�11

�21

)
zt�1 +	

((

01


02

)
+

(

11


11

)
zt�1

)
�

+

(
"1t

"2t

)
(4.2.17)
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4.2.2 NN-VEC graphs

The NN-VEC can also be depicted as a graph. In the following we assume a NN-

VEC with 3 variables, 2 lags and 2 hidden neurons in the nonlinear adjustment of the

cointegration relationship. Such a VEC is given by equation

�̂Yt = A�1�Yt�1 + A�2�Yt�2 + A0 + A1zt�1

2∑
j=1

	(�0j + �1jzt�1)�j (4.2.18)

with yt = (y1t ; y2t ; y3t)
> and zt�1 = (b1; b2; b3)

>Yt�1. We need some additional sym-

bols, shown in table 4.2. The linear cointegration relationship is shown in �gure 4.6 and

the nonlinear VEC-NN in �gure 4.7.

Symbol Formal Symbol Formal

y1 �y1

y2 �y2

y3 �y3

z

Table 4.2: Additional symbols for a 3 variable NN-VEC

Figure 4.6: Linear cointegration relationship (3 variables)
Source: Authors' design
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Figure 4.7: NN-VEC with 2 lags, 3 variables and 2 hidden neurons
Source: Authors' design

Figure 4.8: Linear VEC with 2 lags, 3 variables
Source: Authors' design



4 Multivariate models 103

4.2.3 Identifying and Testing the NN-VEC

The nonlinear VEC of Escribano and Mira (2002) in combination with AR-NN from the

previous section (NN-VEC) is identi�ed via several steps. Partly we follow Dufrenot

and Mignon (2002) p.229 here. The steps are summarized in the following:

� Identify the linear cointegration relationship B>Yt�1. The easiest way is to use a

two or more stage least squares procedure (2SLS, 3SLS). Using the 2SLS proce-

dure to detect bivariate cointegration is for example discussed in Al-Ballaa (2005).

Therefore a structural equation system has to be constructed using the given vari-

ables. One or more variables included in the structural equation system a�ect the

cointegration relationship only indirectly via estimation of the instrumental vari-

able (they are not included in the cointegration relationship). A possible �eld

of application are supply-demand equations with nonlinear variables (supply and

demand observed over time are nonlinear). In the VEC-NN example from section

4.2.1.2 the result is an estimator for equation (4.2.14).

� Test the cointegration relationship on the �-mixing property. As there exist no

formal tests of �-mixing, tests on stationarity are su�cient.

� Estimate the NN-VEC using the Levenberg-Marquardt algorithm. Therefore the

m-dimensional NN-VEC has to be split into m equations which map on the uni-

variate R space (one equation for each variable). After this step the results in the

VEC-NN example from section 4.2.1.2 are the equations (4.2.15) and (4.2.16).

They can be brought together to receive the multivariate model (4.2.17).

� Test the nonlinear part of the nonlinear adjustment in the VEC on signi�cance.

It might be di�cult to compute the Wald statistic or the NIC for large m. A

simpler way, which in addition is focused on the out of sample behavior, is cross

validation (see section 3.4.1.2). Even a cointegration test can be executed using

cross validation: A linear VAR as well as NN-VEC with h = 0; : : : are estimated

(repeating step three for various h). If the out-of-sample performance of the VAR

is signi�cantly better than any NN-VEC, there is evidence for no cointegration.

Finally some remarks to the test on the mixing property in the cointegration relation-

ships: Tests on stationarity of the residuals are in general su�cient to guarantee the

�-mixing property. By de�nition �-mixing includes stationary processes. Dufrenot and
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Mignon (2002) use a response- surface (R/S) test in addition, but this does not con-

tribute any further �ndings. Therefore we will only consider stationarity in the empirical

part.
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5 The German Automobile Industry

and the US Market

The aim of this study is to predict some variables (macroeconomic, industry speci�c

and �nancial) connected with the German automobile industry using univariate AR-NNs

and a NN-VEC with one cointegration relationship. We use data from a time period

including the crisis of 2008/2009, which certainly is responsible for nonlinearities in the

data set. Mishkin (1996) p.17 de�nes a �nancial crisis as a nonlinear disruption to �nan-

cial markets.1 Such a de�nition restricted to �nancial markets can easily be transferred

to the real economy, in our case the German automobile industry. We observe that

data without crisis tend to be linear whereas data including a crisis tend to be nonlinear

(tables 5.2 and 5.4). Thus, especially for data including a crisis nonlinear methods are

necessary.

Our focus is particularly on the relations between the German automobile industry

and the US market. The macroeconomic variable is the exchange rate between US

Dollar and Euro (USD/EUR). We choose two industry speci�c variables: The �rst, the

industrial production of car manufacturers in Germany, can be considered as a supply

variable. The second, imports of foreign cars to the USA, serves as a demand variable.

As �nancial variable we use an index of the stock prices of three German car manu-

facturing companies. Several recent and past news (see for example Moody's (2008))

emphasise the special relationship between the German automobile manufacturers and

the US car market including the mentioned variables.

For the analysis of the data we �rst construct univariate AR-NN models for all vari-

ables, after we have shown that all series are nonlinear by the test of Lee, White and

Granger (1993) and integrated of order one by the RADF-test. We execute all the

variable selection procedures and parameter tests from chapter 3. The Levenberg-

Marquardt algorithm is used for parameter estimation. The resulting models are com-

1Although this paper is about asymmetric information, this statement of the de�nition a�ects �nancial

time series as well.
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pared to several linear AR and ARMA models. Afterwards a cointegrated model is

adjusted, whereas the cointegration relationship is calculated using a structural equa-

tion model and 2SLS regression. The cointegration relationship includes the variables

industry production of the German automobile industry, sales of foreign cars in the USA

and the exchange rate. The stock price index �ows indirectly into the cointegration

relationship, via estimation of the instrumental variable. We consider this �nancial

variable only as a management incentive, which indirectly exercises some in�uence on

industry production and sales. For calculations, some of the functions are implemented

in the statistical programming language R. The code is provided in appendix B. As far

as possible, some already existing R-packages as well as the software JMulti are used.

5.1 Economic Motivation

Before we proceed with the statistical analysis of the data, the economic motivation be-

hind the statistical models, especially a cointegrated model, should be explained. There-

fore at �rst the economic meaning of the technical terms in the NN-VEC is considered:

In the cointegrated model we distinguish between long-run and short-run e�ects. The

cointegration relationship, often referred to as long-run-equilibrium, represents the long

run e�ects, whereas the VAR part of the NN-VEC describes the short run e�ects.

Long- and short-run e�ects are combined by the NN-VEC. Intuitively we assume that

the univariate AR-NN are only able to describe short-run e�ects, as they do not include

any long-run economic relationship. This assumption is con�rmed by our results below.

A simple example should show how the long run relationship between industry pro-

duction, sales of foreign cars in the USA and the exchange rate are expected to explain

some economic developments: A long-run increase of the exchange rate, caused by a

weak USD, leads to lower sales of foreign cars in the USA and consequently a lower

industry production in the German car manufacturing industry. This statement is only

valid for the German premium car manufacturers (the diversi�ed VW corporation is not

much a�ected as its production for the US market is located in the NAFTA aerea and its

cars dont count as imported). In other words we consider the exchange rate exposure of

the German premium automobile industry with focus on sales and industry production.

Some statistics underline how important the US market for German car manufacturers

is (see VDA (2010)): In 2008 74.4% and in 2009 68.8% of the production of German
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car manufacturers was exported, the USA was the most important non-EU market (ac-

counting in 2008 for 12.6% and in 2009 for 10.5% of the total German car export).

An increasing exchange rate caused by a weakening USD may have the following two

implications on the German automobile industry:

� The German car manufacturers increase the price of their products in the USA

to keep the pro�t constant. On the demand side US consumers observe the

persistent increase in prices of foreign cars. Consequently they look for alter-

natives. Hence the industry production of the German car manufacturers de-

creases, as they lose their share of the important US automobile consumer mar-

ket (Humboldt Institution on Transatlantic Issues (2005) p.3). Adjustment to the

equilibrium is certainly a long-term issue, as cars are not goods of daily consump-

tion and it takes some time until the increase in the purchase price of the cars

reaches the consumer.

� Car manufacturers keep the prices constant. Consequently their pro�t decreases,

because of the increasing production costs (for production in the Euro currency

area) measured in USD. To increase the pro�t again, production has to be shifted

to the USD currency area. Intuitively, this strategy seems superior to the �rst

one, because it does not imply that the car manufacturers accept the reduction of

pro�t. In fact it was reported by the media September 2009 that BMW plans to

invest additional 750 million EUR in its US plant (see Handelsblatt (2009a)) and

in December 2009 that Daimler plans to shift production of the Mercedes C-class

partly to the USA (see Handelsblatt (2009b)). Even earlier BMW responded on

an assumed long-run weak USD by enlarging its US based production (Harbour

and Joas (2008) p.67). Hence the cars produced in the USA do not count any

more as imported foreign cars, with the consequence that the number of sales of

imported foreign cars decreases. Subsequently, the industrial production of the

German car manufacturing industry also decreases.

Both chains of reaction lead to the same result: The long-run-equilibrium between the

three variables is maintained. A vice versa e�ect appears if the USD is strong as in the

years before 2003 (Mohatarem (2003)). Relationships between the variables are shown

in �gure 5.1: The relation between EXC and IND and SAL respectively is negative.

In the NN-VEC the additional nonlinear term involving the cointegration relationship

accounts for the fact, that this linear equilibrium a�ects nonlinear time series and has
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to be processed nonlinear.

The stock index as a �nancial variable is involved in the cointegration relationship in-

directly via the calculation of the instrumental variable. It is used as a fourth variable,

because the stock market price can serve as an incentive for management actions. For

example, only changes in the share prices caused by decreasing sales, forces the man-

agement to intervene.

For prediction of the individual time series not only the long-run-equilibrium is nec-

essary. In addition, the model has to take into consideration the short run deviations

from the equilibrium. They occur, if the series involved in the model are a�ected by

a short-run change, which disappears over time and has no relation to the long-run-

equilibrium. The linear VAR as a part of the NN-VEC (�rst term on the left hand of

the NN-VEC equation) tries to explain such short-run-e�ects.

IND SAL

EXC

USD

EUR

USD per EUR " (USD weak) USD per EUR # (USD strong)

" #

" # " #

" #

Figure 5.1: Relations between investigated variables
Source: Authors' design
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5.2 The Data

We use monthly data from January 1999 to September 2009, therefore T = 129. The

�nancial data are provided by Thomson Banker One. Prices of the shares traded at

Frankfurt Stock Exchange are in Euro and are provided as monthly average closings.

Each company is represented by its most traded share, in detail Porsche Automobil Hold-

ing Vz, BMW St, and Daimler St. BMW and Daimler shares are common shares. The

Porsche share is a preferred share of Porsche Automobil Holding SE, which includes

100% of the Dr.Ing.h.c. F.Porsche AG. Common stocks of the Porsche Automobil

Holding SE are not traded on stock markets.

The German premium car manufacturer stock price index (PCI) is calculated as a

Laspeyres index by the following formula (see Moosmüller (2004) p.28)

PCIt =
wp0 � pt + wb0 � bt + wd0 � dt
wp0 � p0 + wb0 � b0 + wd0 � d0 : (5.2.1)

pt indicates the Porsche share, bt the BMW share, dt the Daimler share and w(�)0 the

weights belonging to the individual shares at time t = 0. As weights for a company we

use its sales (in Euro, also provided by Thomson Banker One) divided by the sum of

all companies sales in 1998. The weight factors are in detail wb0 = 0:19, wd0 = 0:79

and wp0 = 0:02. We use the logarithm of the series in the following. Figure 3.1 shows

the PCI time series in logarithms. Logarithms have to be used to bring this series in

accordance to the other ones concerning the behavior of the �rst di�erences. Although

the RADF test indicates that the original series is stationary in �rst di�erences, huge

outliers in the beginning of 2009 seem not to �t into the concept of a stationary series.

Logarithms smooth out those outliers.

The monthly Dollar to Euro (Dollar per 1 Euro) exchange rate (EXC) is provided

by the German Federal Reserve Bank (Bundesbank). It is plotted in �gure 3.3, �rst

di�erences in �gure 3.4. The industrial production of the German car manufacturing

and car parts manufacturing industry adjusted for working days (IND) is also provided

by the Bundesbank. As it is originally scaled di�erently than the other values, a simple

index is constructed with the average of 1999=100. The series is seasonally adjusted

using the R-package timsac. We assume an additive model and split o� the seasonal

components, such that the series only consists of the AR-part and the noise. The US
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Bureau of Economic Analysis provides the data on sales of foreign cars in the USA

(SAL). Originally the scale of the series is sold units in thousands. Hence to bring it in

accordance with the other data, an index with the average of 1999=100 is constructed.

The series is seasonal adjusted like the industry production series.
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5.3 Nonlinearity and Stationarity Tests

Before AR-NN models can be adjusted the data have to be tested for stationarity. This

test requires a speci�cation of the lag-order, thus the test statistic is calculated for lag

orders from n = 1; : : : ; 4. We assume that a maximal lag order of m = 4 is su�cient,

with respect to keep the number of parameters in a realistic relation to the number of

observations T . In table 3.3 the RADF test statistic is calculated for levels and �rst

di�erences for all series for lag orders 1 to 4 without constant and trend variables in

the linear model (compare theorem 2.3). The function rank() in the basic package

was used to compute the ranks of the series, the function adfTest() in the R-package

fUnitRoots was used for calculation of the test statistics, critical values are taken

from table 2.3 for a series with 100 observations. We clearly see that all series are

nonstationary in levels and stationary in �rst di�erences (in other words integrated of

order one).

But before AR-NN models are adjusted at the �rst di�erences of the series, their non-

linearity has to be examined. Therefore the Teräsvirta-Lin-Granger test (see section

3.1.2.2) with polynomial (3.1.20) is used. The R-package tseries provides a function

terasvirta.test(), which is used to calculate the results. They are shown in tables

5.2 and 5.3. Note that here T=128 because of the di�erentiation. It is observable that

all series are nonlinear at least for lag orders >1.

As already mentioned above the data contain the crisis of 2008/2009. We now want to

examine, if the crisis is responsible for the nonlinearity. Thus we test parts of the series

without crisis (the �rst 100 values representing the time period from January 1999 to

April 2007) for nonlinearity. The �2- test statistic for the Lee-Teräsvirta-Granger test

is shown in table 5.4. In fact it is observable, that series without crisis data tend to

be linear. This result compared to the result above (table 5.2) outlines the nonlinear

character of crises.
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Series Lag Levels Di�erences CV (5%)

PCI 1 -0.3733 -8.1096 -1.92

2 -0.3714 -6.7666 -1.92

3 -0.3285 -5.0388 -1.92

4 -0.4135 -5.1162 -1.92

EXC 1 0.2779 -8.4932 -1.92

2 0.5457 -6.4931 -1.92

3 0.5455 -5.7527 -1.92

4 0.6129 -4.7600 -1.92

IND 1 -0.6298 -7.7757 -1.92

2 -0.6926 -6.0291 -1.92

3 -0.7198 -5.2267 -1.92

4 -0.7122 -4.5226 -1.92

SAL 1 -1.4447 -11.3016 -1.92

2 -1.0810 -8.1241 -1.92

3 -1.0387 -7.2868 -1.92

4 -0.9093 -6.1205 -1.92

Table 5.1: ADF test

Series Lag �2 df CV (95%)

PCI 1 11.5989 2 5.9915

2 20.2478 7 14.0671

3 44.2536 16 26.2962

4 77.1989 30 43.773

EXC 1 4.7863 2 5.9915

2 17.4252 7 14.0671

3 39.6585 16 26.2962

4 58.0129 20 43.773

IND 1 12.5899 2 5.9915

2 18.9509 7 14.0671

3 29.1732 16 26.2962

4 76.7795 20 43.773

SAL 1 6.2537 2 5.9915

2 22.5614 7 14.0671

3 33.1896 16 26.2962

4 49.5517 20 43.773

Table 5.2: Teräsvirta-Lin-Granger test �2- statistic (data in �rst di�erences)
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Series Lag F df CV (95%)

PCI 1 5.9281 2;125 3.0687

2 2.9135 7;119 2.0874

3 2.8137 16;109 1.7371

4 2.5938 30;94 1.5806

EXC 1 2.3813 2;125 3.0687

2 2.4792 7;119 2.0874

3 2.4743 16;109 1.7371

4 1.7966 30;94 1.5806

IND 1 6.4599 2;125 3.0687

2 2.7128 7;119 2.0874

3 1.7439 16;109 1.7371

4 2.5751 30;94 1.5806

SAL 1 3.1294 2;125 3.0687

2 3.2767 7;119 2.0874

3 2.0166 16;109 1.7371

4 1.4812 30;94 1.5806

Table 5.3: Teräsvirta-Lin-Granger test F - statistic (data in �rst di�erences)

Series Lag �2 df CV (95%)

PCI 1 2.3462 2 5.9915

2 11.199 7 14.0671

3 24.3844 16 26.2962

4 51.8294 30 43.773

EXC 1 1.9647 2 5.9915

2 7.3563 7 14.0671

3 24.7121 16 26.2962

4 50.1251 20 43.773

IND 1 0.4235 2 5.9915

2 8.8055 7 14.0671

3 24.2016 16 26.2962

4 58.0233 20 43.773

SAL 1 2.4662 2 5.9915

2 8.4997 7 14.0671

3 14.2617 16 26.2962

4 42.6048 20 43.773

Table 5.4: Teräsvirta-Lin-Granger test �2- statistic without crisis data (data in �rst

di�erences, �rst 100 values)
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5.4 Univariate AR-NN

5.4.1 Lag Selection

We use the series in �rst di�erences as a starting point for lag selection, because the

lag selection procedures in section 3.2 are only appropriate for stationary series. Figure

5.3 shows the AC and PAC for all series up to lag order 10. In the �gure the interval

[� 2p
T
; 2p

T
]=[�0:177; 0:177] is marked by a dashed line. The PAC is above that dashed

line for the IND series at lag 1 and for the SAL series at lag 2. This information can

be used for lag selection, but we still have no indication for the lag order for the �rst

two series.

Hence we subsequently apply the other lag selection procedures proposed in section

3.2. The MIC is - like the AC - not a very useful tool for lag selection. The MIC,

calculated by the function in appendix B.3 with d = 100, for the �rst 4 lags are shown

in table 5.5. It is observable that the results are in the same range as the jACj. Results
for polynomial lag selection using formula (3.2.17) and the AIC and the BIC as quality

criteria are displayed in table 5.6. For the calculations the function in appendix B.2 is

used, the optimal lag orders are marked by a "*". AIC and BIC accord in only one

case. The AIC sometimes also tends to include more lags than the BIC. The next table

(table 5.7) shows results for the Nonlinear Final Prediction Error (NFPE) from section

3.2.4. For calculation of the results the software JMulti was used. The AFPE as well

as its correction, the CAFPE , are calculated. Both criteria have to be minimized like

any other IC. It is observable that both criterions indicate the same optimal lag order.

As the di�erent lag selection procedures lead to partly very di�erent results, we have

to decide which lag order we use in the following. We proceed with the results from

polynomial lag selection and use the AIC, thus the PCI has 4 lags, the EXC series has

3 lags and the IND and the SAL series have 2 lags.
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Lags

Series 1 2 3 4

PCI 0.0164 0.0312 0.0448 0.0575

EXC 0.0675 0.0979 0.1208 0.1399

IND 0.0243 0.0448 0.0627 0.0788

SAL 0.0116 0.0225 0.0328 0.0426

Table 5.5: MIC

Series Lag AIC BIC

PCI 1 -215.2964 �218:0006�
2 -213.1339 -213.4044

3 -209.6199 -203.8683

4 �216:0644� -195.3435

EXC 1 -538.8916 �541:5958�
2 -535.8858 -536.1562

3 �541:6615� -535.9100

4 -538.0680 -517.3471

IND 1 -428.1411 -430.8452

2 �435:8922� �436:1626�
3 -428.1819 -422.4304

4 -430.2283 -409.5074

SAL 1 -210.4986 -213.2028

2 �224:1334� �224:4039�
3 -220.1187 -214.3672

4 -214.0852 -193.3643

Table 5.6: Polynomial approximation lag selection
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Source: Authors' design
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Series Lag AFPE CAFPE

PCI 1 0:0099� 0:0101�

2 0.0103 0.0111

3 0.0287 0.0342

4 0.0409 0.0556

EXC 1 0.0008 0.0008

2 0:0007� 0:0008�

3 0.0008 0.0010

4 0.0011 0.0015

IND 1 0:0019� 0:0019�

2 0.0020 0.0021

3 0.0023 0.0028

4 0.0029 0.0040

SAL 1 0.0095 0.0097

2 0:0086� 0:0093�

3 0.0094 0.0112

4 0.0104 0.0141

Table 5.7: NFPE
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5.4.2 Estimation and Bottom-Up Parameter Tests

In the following the �rst 120 values of the sample are used for estimation of the models

(training set (TS), T=120), the values 121 to 128 for comparison with out-of-sample

predictions (test subset). One- and eight-step predictions are compared to various other

linear and nonlinear models. For estimation of the parameters some initial settings have

to be de�ned. The relationship ES/TS is 0.98 and thus the VS contains 2 values.

� = 0:001 and � = 100 seems to be the best setting for those parameters. The initial

values for the linear part are estimated by OLS, the initial values for the nonlinear part

are set 1 uniformly. The Levenberg-Marquardt algorithm has 5 iterations to initialize.

This lowers the dependency of the results from the initial parameter values. One has

to be cautious with setting such a limit for initialization: Empirical application shows,

if that limit is too high, the residuals tend to be no more independent for some series.

Therefore it can be said that too much iterations for initialization of the algorithm may

lead to misspeci�ed models.

Subsequently the stopped training concept is applied: The optimal model is reached

if the VS-RSS is minimal. A maximal number of iterations of 200 is used (thus 195

iterations are used for stopped training, the �rst �ve iterations are needed to initialize

the values, see section 3.3.7). Table 5.8 shows the optimal number of iterations (i*)

for all series for h=0,1,2,3,4.

In tables 5.10 to 5.13 estimation and prediction results are shown for AR-NN with

h=0,1,2,3,4 (calculated using the functions estimate.ARNN(), fitted.ARNN() and

residuals.ARNN() in appendix B.4) and some alternative models. In detail those are

various ARMA models (calculated using the function arima() in the stats package),

the logistic smooth transition regression (LSTAR) model and a local linear kernel re-

gression model (using the functions lstar() and llar() in the package tsDyn). The

in-sample and the one- and eight step out-of-sample root mean-squared error (RMSE),

calculated by

RMSE =

√√√√ 1

T

T∑
t=1

(xt � x̂t)2 (5.4.1)
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for in-sample and

RMSE =

√√√√1

k

k∑
t=T+1

(xt � x̂t)2 (5.4.2)

for the k-step prediction are shown in the tables as performance measure. The in-sample

RMSE of the models trained by cross-validation stopping can not be compared to the

RMSE of the alternative models. They only minimize the RSS of the TS, whereas

the cross-validation stopping method also considers the prediction behavior during the

estimation process (VS as part of the TS). A fairer comparison is the application of

the ES-RMSE as in-sample measure for the AR-NN's. It is minimized analogously to

the in-sample RMSE in the alternative models. Note that di�erent variances for the

individual steps in more-step prediction might distort the RMSE. A rolling one-step

prediction would overcome that problem. However more-step prediction is a realistic

aim in forecasting time series, thus we apply it despite that. The �gure 5.4 should be

considered in together with the RMSE for more-step prediction. In addition tables 5.10

to 5.13 show the Theil inequality coe�cient (IEC) for the out-of-sample set. The Theil

IEC for a k-step prediction is calculated by

Theil IEC =

√√√√ ∑k

t=T+1(xt � x̂t)
2∑k

t=T+1(xt � 1
T

∑T

t=1 xt)
2
: (5.4.3)

It compares the out-of-sample prediction with the mean of the TS. If the Theil IEC is

small, the out-of-sample prediction is better, if it is larger than one, the mean of the TS

(average of the TS) is better (see Steurer (1996) p.120). The Theil IEC also simpli�es

the comparison of the out-of-sample performance of the models between each other,

because it normalizes the RMSE (by the division of the out-of-sample MSE by the mean

of the TS MSE).

To identify the optimal model we use the two bottom-up procedures proposed in section

3.4.1:

� Table 5.9 shows the Lee-White-Granger bottom up test for h=1 using the models

estimated in tables 5.10 to 5.13 (calculated using the function LWG.test() in

appendix B.9). We only use the �rst 118 values to calculate the test statistic.

This is necessary because the Lee-White-Granger test is based on the in-sample

performance for RSS minimizing procedures. If models are estimated using the
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stopped training method, only the ES is considered to be in-sample and is mini-

mized like in least squares procedures. Including the VS would distort the results

of the test. We execute the test for the model with h=1 (the test for h=0 equals

the linearity test which was already executed in section 5.3). The test indicates,

that for none of the series a second hidden neuron would improve the model.

The statement of the test is correct if the third column in tables 5.10 to 5.13

are considered. If the focus is mainly on in-sample behavior of the models, the

estimation procedure could be stopped after the models with h=1 are estimated.

� As we are also interested in the out-of-sample performance, cross validation con-

sidering the one- or eight- step- prediction would be an alternative. We assume

that the models with the lowest out-of-sample RMSE are optimal. Concerning

the one step prediction those are the AR-NN with h=4 for PCI and EXC, h=1

for IND and h=0 for SAL. If the eight-step prediction is considered the optimal

models have h=4 for PCI, EXC and IND and again h=0 for SAL. Consequently

the SAL series is linear (in contrast to the result of the nonlinearity test).

We proceed with the analysis of the models which perform best concerning the one-step

prediction. In �gure 5.4 the in-sample behavior is plotted, �gure 5.5 shows the out-of-

sample performance compared to a linear AR and a ARMA model. As the AR-NN for

SAL has h=0, it does not di�er from the linear AR model. In particular in the short-

run prediction (1-3 steps) the AR-NN performs better than linear models, whereas for

higher steps of prediction they become similar to the linear AR.

Tables 5.14 to 5.17 show the parameters for the mentioned models. Interpretation

of the parameters is certainly more di�cult than in linear models - if not impossible.

One argument might be that the larger the parameter for a variable in one hidden neu-

ron is, the more this variable contributes to the nonlinearity of the hidden neuron. Note

that for the models with h=4 the parameters in all hidden neurons are the same. If only

one hidden neuron with �= 4 � �j would be used instead, the results would be identical.

This could be one way to reduce the complexity.2

2This result depends from the initial settings. For di�erent settings, the parameters in each hidden

neuron di�er from each other.
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h PCI EXC IND SAL

0 5 5 138 5

1 5 5 200 94

2 5 5 200 5

3 5 5 200 5

4 5 5 200 5

Table 5.8: Iterations necessary for univariate models

The nonlinearity can be shown by so-called surface plots (see �gures 5.6 to 5.9). There-

fore only the �rst two lags are considered and plotted against the estimated values, for

values between -1 to 1 for each lag. Other lags are kept constant. Surface plots for

models with h=0,1,2,3,4 from tables 5.10 to 5.13 are shown.

Series �2 df CV (95%) F df CV (95%)

PCI 3.4221 30 43.7730 0.1895 30;83 1.5966

EXC 0.02081 16 26.2962 1.5088 16;98 1.7477

IND 5.1319 7 14.0671 0.9338 7;108 2.0955

SAL 0.4482 7 14.0671 1.4122 7;108 2.0955

Table 5.9: Lee-White-Granger test for h=1
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PCI: In-sample AR-NN(4) with h=4
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EXC: In-sample AR-NN(3) with h=4
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IND: In-sample AR-NN(2) with h=1
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SAL: In-sample AR-NN(2) with h=0

Figure 5.4: Univariate models in-sample plots
Source: Authors' design
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PCI: 8 step forecast AR-NN(4) with h=4
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1 2 3 4 5 6 7 8

-0
.1
0

-0
.0
5

0.
00

0.
05

0.
10

0.
15

Time

Original
ARNN
AR
ARMA

IND: 8 step forecast AR-NN(2) with h=1

1 2 3 4 5 6 7 8

-0
.4

-0
.2

0.
0

0.
2

Time

Original
ARNN,AR
ARMA

SAL: 8 step forecast AR-NN(2) with h=0

Figure 5.5: Univariate models out-of-sample plots
Source: Authors' design
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�0= -0.3247 
01= 0.6347 
02= 0.6347

�1= -0.2901 
11= 1.0051 
12= 1.0051

�2= -0.2620 
21= 0.7245 
22= 0.7245

�3= -0.5168 
31= 1.1304 
32= 1.1304

�4=-0.3209 
41= 0.6106 
42= 0.6106

�1= 0.1499 �2= 0.1499


03= 0.6347 
04= 0.6347


13= 1.0051 
14= 1.0051


23= 0.7245 
24= 0.7245


33= 1.1304 
34= 1.1304


34= 0.6106 
44= 0.6106

�3= 0.1499 �4= 0.1499

Table 5.14: PCI: Parameters AR-NN(4) with h=4

�0=-0.8535 
01=1.0348 
02= 1.0348

�1=-0.1592 
11= 1.2125 
12= 1.2125

�2=-0.6814 
21= 1.2985 
22= 1.2985

�3=-0.2733 
31= 0.8475 
32= 0.8475

�1= 0.2757 �2= 0.2757


03= 1.0348 
04= 1.0348


13= 1.2125 
14= 1.2125


23= 1.2985 
24= 1.2985


33= 0.8475 
34= 0.8475

�3= 0.2757 �4= 0.2757

Table 5.15: EXC: Parameters AR-NN(3) with h=4
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�0=-1.1246 
01= 1.0516

�1=-1.4247 
11= 1.9216

�2=-1.6643 
21= 2.9492

�1= 1.4468

Table 5.16: IND: Parameters AR-NN(2) with h=1

�0= 0.0008

�1= -0.2710

�2= -0.1212

Table 5.17: SAL: Parameters AR-NN(2) with h=0
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Figure 5.6: PCI: Surface plot AR-NN(4) with various h
Source: Authors' design
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Figure 5.7: EXC: Surface plot AR-NN(3) with various h
Source: Authors' design
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Figure 5.8: IND: Surface plot AR-NN(2) with various h
Source: Authors' design
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Figure 5.9: SAL: Surface plot AR-NN(2) with various h
Source: Authors' design
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5.4.3 Top-Down Parameter Tests

Again we examine the models which perform best concerning the one step prediction.

Condition 3.3 (see section 3.4.2.1) required for consistency is violated by the models

for the PCI and EXC series with h = 4. For the other models the top-down parameter

tests can be executed. Table 5.18 shows the NIC for the IND series. The model for the

SAL series is already a linear, therefore a NIC (which tests the signi�cance of nonlinear

parts) is not calculated. We can also calculate the Wald test statistic for the � as well

as the 
-parameters. Results are shown in table 5.19. All nonlinear hidden units and

parameters seem to be signi�cant. For the results -like above, and for the same reasons

- only the ES values have been used. Results can be calculated using the function

covariance.ARNN() in appendix B.8.

Series h=0 h=1

IND 1.3156 0.0014

Table 5.18: Univariate models: NIC

Test statistic

Weight EXC SAL

�0 497190 2

�1 183330849 2056152361

�2 292475532 1214875


01 575565


11 504128246


21 1259951220

Table 5.19: Univariate models: Wald test
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5.4.4 Residual Analysis

Finally the residuals of the estimated models are evaluated (again for the models which

perform best concerning the one step prediction). Therefore we examine, if the resid-

uals are in accordance with the i.i.d. N(0,�2) assumption. Only the residuals for the

ES subset are examined, because the in-sample RSS-minimization only applies to them.

At �rst we test the normality. Figure 5.10 shows the density histograms belonging to

those residual series, including the density function of a normal distribution. The nor-

mality can be analyzed by looking at the histograms and the third and fourth moments

(see table 5.20, results are calculated using the functions skewness() and kurtosis()

in the package e1071). The skewness should be zero and the kurtosis around 3 if the

residuals are Gaussian distributed. In addition the Jarque-Bera test is executed to ex-

amine the normality of the residuals. Except for the PCI series all residuals are normal

distributed according to this test (see table 5.21).

The next part of the assumption is the independence. Therefore we consider the AC of

all residual series (see �gure 5.11). In addition we calculate the Box-Pierce statistic for

lag orders between 1 and 5 (using the function Box.test() in the package tseries).

The test statistic is �2-distributed with degrees of freedom equal to the number of

lags. All series seem to be independent according to the AC, as it is not signi�cant at

any lag. According to the Box-Pierce statistic the residuals of all series are independent.

Finally heteroskedasticity can be tested by the ARCH-LM test of Engle (1982) (ARCH

means Autoregressive Conditional Heteroskedasticity). In the presence of ARCH, the

residuals themselves have an autoregressive representation:

"t = �0 + �1"t�1 + : : :+ �n"t�n (5.4.4)

ARCH can thus be tested by estimation of equation (5.4.4) with a prespeci�ed lag order

n. Subsequently the coe�cients �i 8 i=1,: : :,n are tested on signi�cance using a LM

test. The test statistic is �2-distributed with n degrees of freedom. If the test statistic

is above the critical value, the coe�cients �i in equation (5.4.4) are signi�cant and

an MA-part should be added to the model. Test statistics in table 5.23 are calculated

by JMulti for lags from 1 to 5. Alternatively the test of White (1980) can be used
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to examine the residuals on heteroskedasticity. We �nd heteroskedasticity only in the

residuals of SAL.

Series Mean � Skewness Kurtosis

PCI 0.0000 0.0903 0.4794 1.15

EXC 0.0000 0.0274 -0.0511 1.3464

IND 0.0000 0.0379 -0.1335 0.0380

SAL 0.0000 0.0909 -0.0578 -0.0518

Table 5.20: Univariate models: Skewness and kurtosis

Series Test statistic CV (99%)

PCI 11.9703 9.2103

EXC 9.981 9.2103

IND 0.3996 9.2103

SAL 0.0674 9.2103

Table 5.21: Univariate models: Jarque-Bera test

Lag

Series 1 2 3 4 5

PCI 0.0128 0.0132 0.0419 0.0804 0.3013

EXC 0.0409 0.5757 2.2220 2.4138 2.4189

IND 0.0000 0.0263 0.3475 0.3476 0.4387

SAL 0.0062 0.0076 0.0366 3.4300 3.4877

CV (95%) 3.8415 5.9915 7.8147 9.4877 11.071

CV (99%) 6.6349 9.2103 11.3449 13.2767 15.0863

Table 5.22: Univariate models: Box-Pierce test
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Lag

Series 1 2 3 4 5

PCI 2.4883 11.5169 12.0451 12.6325 13.4076

EXC 0.9267 8.4323 8.7798 8.7974 15.1851

IND 2.4413 3.5160 3.6484 3.5121 9.7773

SAL 10.6703 10.5682 16.6300 21.2555 21.2214

CV (95%) 3.8415 5.9915 7.8147 9.4877 11.071

CV (99%) 6.6349 9.2103 11.3449 13.2767 15.0863

Table 5.23: Univariate models: ARCH-LM test (�2- statistic)
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Figure 5.10: Histogram residuals
Source: Authors' design
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Figure 5.11: Univariate models: Autocorrelation residuals
Source: Authors' design
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5.5 Cointegration and NN-VEC

In this section a NN-VEC including the three variables IND,SAL and EXC is constructed.

Afore in section 5.5.1 the cointegration relationship is calculated. In the subsequent

sections the NN-VEC including this cointegration relationship is estimated and used for

prediction. Via cross-validation it is also examined, how many hidden neurons should

be included in the model.

5.5.1 The Cointegration Relationship

The cointegration relationship is represented by a (3�1) vector B, which is transposed

and multiplied with the data vector. The output from this product is the stationary

univariate series zt . In general the existence of such a cointegration vector can be

explained by the fact that the e�ects of the non-stationary time series cancel each

other out. As OLS estimation did not result in any cointegration relationship, we use

the 2SLS method instead. Therefore a structural equation system is constructed using

the four variables IND,SAL, EXC and PCI:

INDt = b11 � SALt + b12 � EXCt + zt (5.5.1)

INDt = b21 � SALt + b22 � PCIt + ut (5.5.2)

The two equations can be interpreted as macroeconomic-environment (5.5.1) and

capital-market-incentive driven (5.5.2) supply-demand equation concerning the Ger-

man automobile industry production and the US market. IND and SAL are endogenous

variables, PCI and SAL are exogenous variables. Only equation (5.5.1) is used as coin-

tegration relationship in the following. This means, that the variable PCI is not directly

involved in the cointegration relationship. However it is needed, because only the si-

multaneous treatment of both equations ((5.5.1) and (5.5.2)) leads to a stationary

relationship in equation (5.5.1).

Both equations of the system are identi�ed. In the �rst step the variable SAL is regressed

on EXC and PCI. Subsequently in the second step IND is regressed on the estimated
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ŜAL and EXC. For details about the 2SLS method see for example Moosmüller (2004)

p.186. The following parameters result:

b11 = 1:1515

b12 = �0:1867

Those results correspond with the economic considerations from section 5.1. The cor-

relation of IND with SAL is positive, which means that an increase in SAL let also IND

increase. In contrast the correlation of IND and EXC is negative, which describes the

negative impact of the USD per EUR exchange rate discussed in section 5.1. In addition

the coe�cient of EXC is smaller than that of SAL. This is realistic as the impact of

SAL on IND is more direct and therefore stronger.

The equilibrium relationship or attractor zt is received by multiplication of the coin-

tegration vector C with the vector of variables:

zt = (INDt ; SALt ; EXCt) � B = (INDt ; SALt ; EXCt)


1

�1:1515
0:1867

 (5.5.3)

Figure 5.12 shows a plot of zt . The ADF as well as the RADF test for several lags

indicate that zt is stationary.
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Figure 5.12: Cointegration relationship
Source: Author's design
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5.5.2 Estimation of the NN-VEC

Before the NN-VEC can be estimated, the number of lags has to be determined for

the common model. We use lag order n=3 for the common model. The cointegration

relationship estimated in the previous section is used as zt . The NN-VEC is written in

vector representation (like equation (4.2.17)):
�INDt

�EXCt

�SALt

 =

3∑
i=1


��i11 ��i12 ��i13
��i21 ��i22 ��i23
��i31 ��i32 ��i33




�INDt�i
�SALt�i
�EXCt�i

+


�01

�02

�03

+


�11

�21

�31

 zt�1 +

h∑
j=1

tanh





01j


02j


03j

+



11j


12j


13j

 zt�1

�j +


"1t

"2t

"3t


This equation can be split into 3 independent equations with scalar outputs. This is

necessary for estimation. Initial values are uniformly setted equal to 0.05, � = 0:0001,

� = 100, �1 = 6 and �2 = 3. The maximum number of iterations is 11. Again the �rst

120 values are used for estimation, the last 8 values for prediction. Keeping the maxi-

mum number of iterations small helps to avoid the problem of overlearning here (which in

for univariate series is avoided by stopped training). Results for NN-VEC's with h=0,1,2

are shown in table 5.24 (results are calculated using the functions estimate.NNVEC()

in appendix B.10 and predict.NNVEC in appendix B.11). The table contains also a

linear VAR (estimated using the function VAR() in the package vars). Again one- and

eight step prediction is considered using the same performance measures as in section

5.4.2.

The results for the individual series concerning out-of-sample prediction vary with the

models in table 5.24. If we focus on the IND series, a NN-VEC(3) with h = 1 seems

to be the best model. With increasing h the prediction performance concerning the

IND series decreases. Results for the EXC series connected with that model are out-

performed by a model with linear cointegration, which again is not as good as the VAR

(one- and eight- step prediction). This let us assume that the EXC series is at least
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weak exogenous, which means that it in�uences the system but is not in�uenced by

the system. The EXC variable can be excluded by setting the parameters connecting

the cointegration relationship with EXC equal to zero. However doing so would also

in�uence the prediction for the other models as the multivariate model is highly inter-

connected. Thus we proceed with the analysis of the NN-VEC(3) with h = 1. In �gure

5.13 its out-of-sample performance as well as the out-of-sample performance of the

VAR is plotted. Parameters are shown in table 5.25.

If we compare the NN-VEC's to the univariate AR-NN's (especially IND in 5.12), then

we observe, that for short predictions (one step) the univariate model perform better,

whereas in the eight step prediction the NN-VEC delivers better predictions. The rea-

son might be that univariate AR-NN are especially able to deal with short-run e�ects,

whereas the NN-VEC can treat long-run e�ects more e�ective (this was already ex-

plained in section 5.1). Thus it depends of the prediction horizon which kind of model

should be used.

In-

sample

Out-of-sample 1

step prediction

Out-of-sample 8

step prediction

Series RMSE RMSE Theil

IEC

RMSE Theil

IEC

Linear VAR

IND 0.0396 0.1167 1.2745 0.0838 1.2132

SAL 0.0857 0.0611 2.1523 0.2363 1.0215

EXC 0.0279 0.0016 0.0387 0.0327 1.1022

NN-VEC with h=0

IND 0.0369 0.0707 0.7721 0.0667 0.9657

SAL 0.0813 0.0054 0.1902 0.2332 1.0081

EXC 0.0277 0.0298 0.721 0.0343 1.1562

NN-VEC with h=1

IND 0.0411 0.0667 0.7284 0.0517 0.7485

SAL 0.0811 0.006 0.2114 0.2375 1.0267

EXC 0.0277 0.1938 4.6887 0.1836 6.1888

NN-VEC with h=2

IND 0.0367 0.1194 1.304 0.0625 0.9049

SAL 0.0813 0.0131 0.4615 0.2343 1.0128

EXC 0.0272 0.0292 0.7065 0.0247 0.8326

Table 5.24: Cointegrated NN with varying h
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 ��111 ��112 ��113
��121 ��122 ��123
��131 ��132 ��133

 =

 �0:3143 �0:0921 0:0526

0:0180 0:5500 0:0943

�0:0848 0:1295 0:0465


 ��211 ��212 ��213

��221 ��222 ��223
��231 ��232 ��233

 =

 �0:0334 �0:1220 0:0161

�0:0605 �0:0546 0:0072

0:0522 0:1144 �0:0424


 ��311 ��312 ��313

��321 ��322 ��323
��331 ��332 ��333

 =

 0:2236 0:5686 0:3274

0:1253 �0:0267 �0:2104
]� 0:1702 �0:0480 0:0357


(�01; �02; �03)

> = (�0:9170;�5:9974;�5:9966)>

(�11; �12; �13)
> = (0:1551; 12:2202; 2:9086)>

(
01; 
02; 
03)
> = (�4:1134; 0:2569; 0:0098)>

(
11; 
12; 
13)
> = (0:6906;�29:7890;�4:3797)>

Table 5.25: Parameters NN-VEC(3)
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Figure 5.13: NN-VEC out-of-sample plots
Source: Authors' design
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5.5.3 Residual Analysis

Again like in section 5.4.4 the assumptions on the residuals are checked. Therefore the

same methods are used. Residuals of the IND and SAL series seem to �t at the i.i.d.

Gaussian WN assumption, whereas the residuals of the EXC series does not. Conse-

quently the model could be estimated again with di�erent settings for the algorithm.

Alternatively the EXC series could be excluded from the cointegration relationship.
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Figure 5.14: Histogram residuals NN-VEC(3)
Source: Authors' design

Series Mean � Skewness Kurtosis

IND 0.0000 0.0362 -0.2181 0.2999

SAL 0.0000 0.0814 -0.0144 -0.2025

EXC 0.0547 0.0782 2.7748 10.6639

Table 5.26: NN-VEC(3): Skewness and kurtosis
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Series Test statistic CV (99%)

IND 1.5965 9.2103

SAL 0.1232 9.2103

EXC 745.3444 9.2103

Table 5.27: NN-VEC(3): Jarque-Bera test

Lag

Series 1 2 3 4 5

IND 0.2728 0.3738 0.3810 0.3992 0.4155

SAL 0.0013 0.003 0.0592 0.5259 0.8982

EXC 25.0724 29.619 30.5732 30.6633 30.6752

CV (95%) 3.8415 5.9915 7.8147 9.4877 11.071

CV (99%) 6.6349 9.2103 11.3449 13.2767 15.0863

Table 5.28: NN-VEC(3): Box-Pierce test

Lag

Series 1 2 3 4 5

IND 0.1648 0.5944 3.5675 4.0638 4.1823

SAL 2.1954 4.1663 7.5125 7.7133 8.1279

EXC 9.7267 13.4696 13.5108 13.4225 13.3803

CV (95%) 3.8415 5.9915 7.8147 9.4877 11.071

CV (99%) 6.6349 9.2103 11.3449 13.2767 15.0863

Table 5.29: NN-VEC(3): ARCH-LM test (�2- statistic)
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Figure 5.15: Auto-and cross-correlations NN-VEC(3)
Source: Authors' design
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6 Conclusion

In this dissertation a method for analysis and prediction of nonlinear time series, AR-NN,

based on neural networks is discussed. Nonlinear time series methods have to be applied,

if any nonlinear e�ects or nonstandard features are in the data, which would disturb

linear methods. Such e�ects occur especially with economic crises as it is shown in the

empirical part. AR-NN combine the properties parametric and universal approximation,

which makes them applicable at any nonlinear e�ect, as well as easily handable concern-

ing model validation and parameter tests. Alternative models, in contrast, are either

nonparametric ( kernel regression) or dedicated to special nonlinearities like structural

breaks (threshold regression). In the empirical part it is shown, that AR-NN outperform

many linear and nonlinear methods concerning out-of-sample prediction, particularly in

one-step prediction.

Further AR-NN are extended to multivariate error correction models based on the er-

ror correction theorem of Escribano and Mira (2002). This model combines a linear

long-run equilibrium with nonlinear adjustment. If some linearly cointegrated series are

nonlinear, such nonlinear error correction is essential. The linear cointegration rela-

tionship is estimated using a structural model and the 2SLS estimation method. This

means that time series analysis here is combined with structural equation models. This

is not yet very common in literature but might be an interesting point of research. The

NN-VEC as proposed here, combined with structural equations, are especially useful

for prediction of time series involved in a supply-demand system. The example in the

empirical part is such a system, whereas the demand for foreign cars in the USA, the

industry production of the car manufacturing industry in Germany (corresponds to sup-

ply) and the USD/EUR exchange rate are examined.

Various methods from existing literature for data preparation, variable selection, model

estimation and models validation are brought together here with neural network the-

ory to provide an adequate toolkit for our AR-NN models. Therefore some of those

methods are modi�ed, especially the MIC in combination with the method of Hausser

and Strimmer (2009) or the early stopping method, which is extended for a search of
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a global minimum within a �nite number of iterations. In this �eld no theory exists

in literature about multivariate neural networks, thus VAR-NN and NN-VEC are newly

introduced by this dissertation.

Future topics of research based on this dissertation might be a comprehensive study

about nonlinearities and economic crises, which would include data from various �elds

of economics including crises (�nancial data as stock indices as well as macroeconomic

data as growth of GDP). The aim of such a study should be to show if crises cause

nonlinearities in the data. The statistical tool therefore can be the nonlinearity test

of Teräsvirta, Lin and Granger (1993). Furthermore the NN-VEC can be extended to

a model which includes a nonlinear cointegration relationship. Although such a model

might be more complex than the one in this dissertation, it might be possible to include

a broader range of cointegration relationships and provide better predictions for vari-

ables which are only nonlinear cointegrated. Finally, the comparison between the models

from this dissertation and linear as well as nonlinear alternatives could be continued,

using other data sets from various �elds of application, especially to see if there is any

supply-demand relationship.
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A Proof of Theorem 2.1

For this proof see Hornik (1993) p.1071. At �rst let us give a short nonformal de-

scription of the proof: We de�ne a subset of G(	;B;W) such that W contains a

neighborhood of the origin and B is compact and nondegenerate (see the requirements

concerning those intervals in theorem 2.1) and make use of an extension of the dual-

space argument of Cybenko (1989), which says that, if the selected subset should not

be dense in F(X), a certain nonzero measure may exist. We show that no such measure

exists for any selected subset of G(	;B;W) and thus proofe theorem.

Let Xt�1 be a nondegenerate compact interval, Xt�1 � Rn. j � j denotes the determi-

nant. The �- neighborhood of is denoted by X� = fS : jS �Xt�1j � � for Xt�1 2 Xg.
Let W (Xt�1) be a function on the interval [�1; 1],

W (Xt�1) =

c � e
� 1

1�jXt�1j
2 jXt�1j < 1

0 jXt�1j � 1:
(A.0.1)

where c is to choose such that
∫

Rn W (Xt�1)dXt�1 = 1. With �0 > 0 we can formulate

the �-molli�er of 	,

J�	(Xt�1) =

∫
jUj�1

W (U)	(Xt�1 � �U)dU: (A.0.2)

Concerning the molli�er the following fact holds, that if 	 is Riemann integrable on

X�, then it is possible to approximate J�	 uniformly on X by linear combinations of

functions 	(Xt�1 � S) for jSj � �. (See lemma 4 in Hornik (1993) p.1070).

Let the vector M = maxfjXt�1j : Xt�1 2 Xg. Choose the initial sets W0, B0 and

some numbers �0 and �0 such that W0 = f� : j� j < �0g � W and B�0M+�0
0 � B.

Further 	 should be nonpolynomial on W0. According to the dual space argument, if
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the subset G(	;B�0
0 ;W0) of G(	;B;W) is not dense in F(X), a nonzero signed �nite

measure � has to exist such that∫
X

J�	(
0 + �>Xt�1)d�(Xt�1) = 0 (A.0.3)

8 � 2 W0, 
0 2 B0 and 0 < � < �0. We take the partial derivatives of order � for

(A.0.3) and set � = 0:

r�J�	(
0)

∫
X

X�
t�1d�(Xt�1) = 0 (A.0.4)

Lemma 5 in Hornik (1991) p.1071 states that for all � � 0 always a 
0 2 B0 and

0 < � < �0 can be found such that r�J�	(
0) 6= 0. This means that
∫
X
X�
t�1d�(Xt�1)

has to be zero if equation (A.0.4) is true. This is only the case if � = 0 and thus

theorem 2.1 is proved.
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B R-Code

For calculation of the results the statistical programming language R is used. In the

following sections a short description inclusive the code of the used functions is provided.

B.1 Lag Partition Matrix

We need a function which generates a matrix of the lagged values of the time series xt

for the calculations in the following. This matrix X has dimension (n� T ), with the ith

lagged series in the ith row, i = 1; : : : ; n:

X =


x1�1 x2�1 : : : xT�1

x1�2 x2�2 : : : xT�2

...
...

...

x1�n x2�n : : : xT�n

 (B.1.1)

A problem is that we have only data for xt , t = 1; : : : ; T but not for t < 1 as we need

it for the matrix X. Hence we propose to substitute those missing values by the mean

of the �rst �ve values of xt . The following function generates X:

1 lag<-function(x,n)

2 ##x:=Time series vector

3 ##n:=Number of lags

4 {

5 X<-matrix(mean(x[1:5]),n,length(x))

6 for(i in 1:n) X[i,(i+1):(length(x))]<-x[1:(length(x)-i)]

7 return(X)

8 }
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B.2 Polynomial Approximation Based Lag Selection

Like in the previous section polynomial approximation is used. The function in the

following returns the AIC and BIC for selected lags up to lag order 4 using equation

(3.1.3).

1 Polyapprox<-function(x,n)

2 ##x:=Time series vector

3 ##n:=Number of lags

4 {

5 if(n>4) return("Only up to 4 lags!")

6 m<-ifelse(n==1,1,(fak(n+3-1)/(fak(3)*fak(n-1))))

7

8 ##Preparation of the lags

9 X<-lag(x,4)

10 X[4,]<-switch(n,0,0,0,X[4,])

11 X[3,]<-switch(n,0,0,X[3,],X[3,])

12 X[2,]<-switch(n,0,X[2,],X[2,],X[2,])

13

14 ##The function

15 f1<-(x~X[1,]*X[2,]*X[3,]*X[4,])

16 r1<-lm(f1)

17

18 ##Return

19 return(list("AIC"=AIC(r1),"BIC"=AIC(r1,k=log(n+1+m))))

20 }

Example

Let ind be a vector containing the 128 observations of the industry production data

(IND). The result for polynomial approximation based lag selection for lag order 4 is

calculated by

Polyapprox(ind,4)
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B.3 The MIC

This function returns the MIC using the method of Hausser and Strimmer (2009) as

discussed in section 3.3.

1 ##Required packages

2 library(entropy)

3

4 MIC<-function(x,n,d)

5 ##x:=Time series vector

6 ##n:=Number of lags

7 ##d:=Number of bins

8 {

9 X<-lag(x,n)

10

11 return("MIC"=sqrt(1-exp(-2* mi.shrink

12 (rbind(hist(x,breaks=d)$density,

13 hist(X[n,],breaks=d)$density)))))

14 }

Example

The MIC for the ind data with lag 4 and 100 bins is calculated by

MIC(ind,4,100)
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B.4 The Levenberg-Marquardt Algorithm for

Univariate Models

This function executes the Levenberg-Marquardt algorithm for a �xed number of it-

erations including stopped-training (section 3.3.7). It returns the optimal parameter

vector as well as many more information which are necessary for related functions in

the following.

1 ##Required packages

2 library(numDeriv)

3 estimate.ARNN<-

4 function(x,n,h,iter,lambda,tau,init,partition)

5 ##x:=Time series vector

6 ##n:=Number of lags

7 ##h:=Number of hidden neurons

8 ##iter:=Number of iterations

9 ##lambda:=Paramter

10 ##tau:=Parameter

11 ##init:=Initial values for the nonlinear part

12 ##partition:=The relation to split the series in ES and VS

13 {

14 ##Initialization of input variables, ES and VS

15 u<-ceiling(length(x)*partition)

16 X<-lag(x,n)

17 b<-X[1:n,1:u]

18 b2<-x[1:u]

19 y<-x[(u+1):length(x)]

20

21 ##Number of parameters

22 r=(n+1)*h+(n+1)+h

23

24 ##Initialization parameter vector

25 a<-rep(1,r)

26 fit<-arima(b2,c(n,0,0))

27 la<-c(coef(fit)[n+1],coef(fit)[1:n])
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28 a<-c(la,rep(init,(r-n-1)))

29 neu<-a

30

31 ##Initialization internal storage

32 h1<-matrix(NA,(iter+1),length(a))

33 h2<-matrix(NA,(iter+1),length(y))

34 v1<-rep(NA,(iter+1))

35 v2<-rep(NA,(iter+1))

36

37 ##Constructs for internal usage

38 pv<-rep(NA,length(y))

39 c<-rep(NA,n)

40 e2<-0

41 s1<-0

42 if(h>0)

43 {

44 q=0

45 s1<-rep(NA,h)

46 s1[1]<-(n+2)

47 if(h>1) for(i in 2:h) s1[i]<-(s1[i-1]+(n+2))

48

49 ##Basic components of functions

50 e2<-expression(for(i in s1)

51 {

52 +(tanh(crossprod(b,a[i:(i+n-1)])

53 +a[i+n]))*a[i+n+1]

54 })

55 }

56 e1<-expression(a[1]+crossprod(b,a[2:(n+1)]))

57

58 ##General functions

59 f<-function(s1,a) eval(e1)+eval(e2)

60 ff<-function(a) eval(e1)

61
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62 ##Function with respect to the network weights

63 f1<-function(a) eval(e1)+eval(e2)

64

65 ##Difference between real and estimated values

66 f2<-function(a) b2-f1(a)

67

68 ##Performance function

69 f3<-function(a) sum((f2(a))^2)

70

71 ##Function for prediction

72 f4<-function(a,b) eval(e1)+eval(e2)

73

74 ##Execution of the algorithm

75 for(i in 1:(iter+1))

76 {

77 m1<-c(b2[(length(b2)-n+1):length(b2)],pv)

78 for(j in 1:length(y))

79 {

80 m1[j+n]<-f4(a,m1[(j+n-1):(j)])[1]

81 }

82 v1[i]<-(f3(a))

83 v2[i]<-sum((y-m1[(n+1):(length(m1))])^2)

84 h1[i,1:(length(a))]<-a

85 h2[i,1:(length(y))]<-m1[(n+1):(length(m1))]

86 i=i+1

87 if(f3(neu)==f3(a))

88 {

89 t=1

90 }

91 else

92 {

93 if(f3(neu)<(f3(a))

94 {

95 t=tau
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96 }

97 else

98 {

99 t=(1/tau)

100 }

101 }

102 a<-neu

103 neu<-a-crossprod(t(solve((crossprod(jacobian(f2,a))+

104 (lambda*t)*diag(r)))),crossprod((jacobian(f2,a)),f2(a)))

105 }

106

107 ##Iteration where an optimum is reached

108 for(i in 5:(iter))

109 {

110 if(v2[i]==min(v2[5:(iter)])) mini=i

111 }

112

113 ##Function return

114 return(list("Minimum VS-RSS reached at"=mini,

115 "Minimum VS-RSS"=v2[mini],

116 "Minimum ES-RSS"=v1[mini],

117 "Optimal parameter vector"=h1[mini,],

118 "f"=f,"ff"=ff,"f4"=f4,"Data"=x,"Lags"=n,

119 "Support variable"=s1,"ES"=u))

120 }

Example

Let the total estimation subset TS be the �rst 120 values of the ind data. A object

ARNN1 for the ind data with n=4, h=2, � = 1, � = 100, the maximal number of

iteration imax = 100, ES/TS=0.95 and initial values for the nonlinear part uniformly

one is calculated by

ARNN1<-estimate.ARNN(ind[1:120],4,2,100,1,100,1,0.95)
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B.5 Residuals ES

This function returns the residuals of an estimated AR-NN (only ES residuals).

1 residuals.ARNN<-function(l)

2 ##l:=Result generated by function estimate.ARNN

3 {

4 return(l$"Data"[1:l$"ES"]-l$"f"(l$"Support variable",

5 l$"Optimal parameter vector"))

6 }

Example

ES-residuals for the object ARNN1 are calculated by

residuals.ARNN(ARNN1)

The in-sample RMSE is calculated by

sqrt(sum((residuals.ARNN(ARNN1))^2)/(120*0.95))
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B.6 Fitted Values ES

This function returns the �tted values of an estimated AR-NN (only ES �tted values).

1 fitted.ARNN<-function(l)

2 ##l:=Result generated by function estimate.ARNN

3 {

4 return(l$"f"(l$"Support variable",l$"Optimal parameter vector"))

5 }

Example

ES-�tted values for the object ARNN1 are calculated by

fitted.ARNN(ARNN1)
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B.7 Prediction

This function returns one- and more-step predictions for an estimated AR-NN.

1 predict.ARNN<-function(l,k)

2 ##l:=Result generated by function estimate.ARNN

3 ##k:=Steps to predict

4 {

5 c<-rep(NA,n)

6 a<-l$"Optimal parameter vector"

7 n<-l$"Lags"

8 m<-c(l$"Data"[(length(l$"Data")-n+1):

9 length(l$"Data")],rep(NA,k))

10

11 for(j in 1:k) m[j+n]<-l$"f4"(a,m[(j+n-1):j])

12

13 return(m[(n+1):(length(m))])

14 }

Example

An one-step prediction out of the object ARNN1 is calculated by

predict.ARNN(ARNN1,1)
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B.8 The Covariance Matrix

This function returns the NIC, the Wald test statistics for each parameter or the co-

variance matrix of an estimated AR-NN.

1 covariance.ARNN

2 <-function(l,h,type=c("NIC","Wald","Covariance"))

3 ##l:=Result generated by function estimate.ARNN

4 ##h:=Number of hidden neurons

5 {

6 ##Input elements

7 x<-l$"Data"[1:l$"ES"]

8 n<-l$"Lags"

9 r=(n+1)*h+(n+1)+h

10 a<-l$"Optimal parameter vector"[1:r]

11

12 ##Network function

13 if(h>0)

14 {

15 s1<-l$"Support variable"[1:h]

16 f<-expression(l1$"f"(s1,a))

17 f1<-function(a) eval(f)

18 }

19 else

20 {

21 f1<-l$"ff"

22 }

23

24 ##RSS function

25 f2<-function(a) 0.5*sum((x-f1(a)[1:l$"ES"])^2)

26

27 ##Submatrices

28 Gamma<-function(a)

29 (1/length(x))*hessian(f2,a)

30 Upsilon<-function(a)
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31 (1/length(x))*(grad(f2,a)%*%t(grad(f2,a)))

32

33 ##Covariance matrix

34 C<-Upsilon(a)%*%solve(Gamma(a))%*%Upsilon(a)

35

36 Wald<-a^2/diag(C)

37

38 NIC<-(1/length(x))*(f2(a)+(1/length(x))

39 *sum(diag(Upsilon(a)%*%solve(Gamma(a)))))

40

41 ##Return

42 if(type=="Wald")

43 {

44 return(list("Wald statstic"=Wald))

45 }

46 if(type=="NIC")

47 {

48 return(list("NIC"=NIC))

49 }

50 if(type=="Covariance")

51 {

52 return(list("Covariance matrix"=C))

53 }

54 }

Example

The NIC for the object ARNN1 is calculated by

covariance.ARNN(ARNN1,2,type="NIC")
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B.9 The Lee-White-Granger Test

This function executes the Lee-White-Granger test for additional hidden nonlinearity

(see section 3.4.1.1 and Lee, White and Granger (1993)).

1 LWG.test<-function(l)

2 ##l:=Result generated by function estimate.ARNN

3 {

4 ##Preparation of the lagged matrix

5 n<-l$"Lags"

6 x<-l$"Data"[1:(length(l$"Data")*l$"ES/TS")]

7 X<-lag(x,n)

8 a<-l$"Optimal parameter vector"

9 f1<-l$"f1"

10

11 ##Number of paramters

12 m<-ifelse(n==1,1,(fak(n+3)/(fak(3)*fak(n))-n-1))

13

14 ##Preparation of the input for the polynomial term

15 Y<-lag(x,4)

16 Y[4,]<-switch(n,0,0,0,Y[4,])

17 Y[3,]<-switch(n,0,0,Y[3,],Y[3,])

18 Y[2,]<-switch(n,0,Y[2,],Y[2,],Y[2,])

19

20 ##Residuals of the restricted function

21 r1<-x-f1(a)

22

23 ##Residuals of the unrestricted function

24 f2<-(r1~jacobian(f1,a)+Y[1,]*Y[2,]*Y[3,]+Y[4,])

25 r2<-lm(f2)

26

27 ##The test statistics

28 T1<-length(x)*(sum(fitted(r2))^2

29 /sum((r1)^2))

30 T2<-((sum((r1)^2)-sum((residuals(r2))^2))/m)/
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31 (sum((residuals(r2))^2)/(length(x)-n-m))

32

33 ##Return

34 return(list("Chi-square statistic"=

35 c("Test statistic"=T1,"df"=m, "Critical value"

36 =qchisq(0.95,m)),"F statistic"=c("Test statistic"

37 =T2,"df1"=m,"df2"=(length(x)-n-m),"Critical

38 value"=qf(0.95,df1=m,df2=(length(x)-n-m)))))

39 }

Example

The Lee-White-Granger test statstic for the object ARNN1 is calculated by

LWG.test(ARNN1)
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B.10 Estimation of the NN-VEC

This function estimates for each variable separately the parts of a three dimensional

NN-VEC.

1 estimate.NNVEC

2 <-function(nr,X,cv,n,h,iter,lambda,tau,init,ab)

3 ##nr:=Number of the equation (varaible) to display

4 ##X:=Data matrix with 3 variables in rows

5 ##cv:=Cointegration vector

6 ##h:=Number of hidden neurons

7 ##n:=Number of lags

8 ##iter:=Number of iterations

9 ##lambda:=Parameter

10 ##tau:=Parameter

11 ##init:=Initial paramter vector

12 ##ab:=(1xh) vector with beta weights

13 {

14 ##Initialization of input variables

15 x1<-X[1,]

16 x2<-X[2,]

17 x3<-X[3,]

18

19 z1<-diff(x1)

20 z2<-diff(x2)

21 z3<-diff(x3)

22

23 y1<-x1[1:(length(x1)-1)]

24 y2<-x2[1:(length(x2)-1)]

25 y3<-x3[1:(length(x3)-1)]

26

27 Z1<-lag(z1,n)

28 Z2<-lag(z2,n)

29 Z3<-lag(z3,n)

30
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31 b<-rbind(Z1,Z2,Z3)

32 bb<-rbind(y1,y2,y3)

33

34 b2<-diff(X[nr,])

35

36 ##Number of parameters

37 r=2*h+2+n*3

38

39 ##Initialization parameter vector

40 a<-t(matrix(init,1,r))

41 neu<-a

42

43 ##Initialization internal constructs

44 s<-c(1,3,5,7)

45 ak<-c(ab[1],0,ab[2],0,ab[3],0,ab[4])

46

47 ##Basics for network functions

48 e1<-expression(

49 t(b)%*%a[1:(n*3),]+

50 a[n*3+1,]+t(a[n*3+2,]%*%(cv%*%bb))+

51 for(i in 1:s[h])

52 {

53 +tanh(a[n*3+2+i,]+

54 t(a[n*3+3+i,]%*%(cv%*%bb)))*ak[i]

55 })

56

57 e2<-expression(

58 t(b)%*%a[1:(n*3),]+

59 a[n*3+1,]+t(a[n*3+2,]%*%(cv%*%bb)))

60

61 e<-ifelse(h>0,e1,e2)

62

63 ##Definition network function respective the weights

64 f1<-function(a) eval(e)
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65

66 ##Difference between real and estimated values

67 f2<-function(a) b2-f1(a)

68

69 ##Performance function

70 f3<-function(a) sum((f2(a))^2)

71

72 ##Execution of the algorithm

73 for(i in 1:(iter+1))

74 {

75 i=i+1

76 t<-ifelse(f3(neu)>=f3(a),tau,(1/tau))

77 a<-neu

78 neu<-a-crossprod(t(solve((crossprod

79 (jacobian(f2,a))+(lambda*t)*diag(r)))),

80 crossprod((jacobian(f2,a)),f2(a)))

81 }

82

83 ##Return

84 return(list("Minimal RSS"=f3(neu),

85 "Optimal parameter vector"=neu,

86 "f"=function(a,b,bb,g) eval(e),"Cointegration relationship"

87 =cv,"Beta vector"=ak,"DiffData"=b,"LevelData"=bb,

88 "Lags"=n,"Support variable"=s,"Residuals"=f2(neu)))

89 }

Example

Again the TS contains 120 values. Let the cointegration vector be (1;�1:1515; 0:1867)>
and the �-values �1 ==6, �2=3, �3 = 1:5, �4 = 0:1. Objects NNVEC1, NNVEC2

and NNVEC3 for the three series using separate equations (like equation (4.2.15) and

(4.2.16)) with n=2, h=4, � = 0:0001, � = 100, the maximal number of iteration

imax = 11, and initial values uniformly 0.05 are calculated by

X<-rbind(ind[1:120],sal[1:120],exc[1:120])
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cv<-c(1,-1.1515,0.1867)

ab<-c(6,3,1.5,0.1)

NNVEC1<-estimate.NNVEC(1,X,cv,2,4,100,0.0001,100,0.05,ab)

NNVEC2<-estimate.NNVEC(2,X,cv,2,4,100,0.0001,100,0.05,ab)

NNVEC3<-estimate.NNVEC(3,X,cv,2,4,100,0.0001,100,0.05,ab)
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B.11 Prediction with the NN-VEC

This function can be used with three separate models from the previous section to

calculate predictions out of a joint multivariate model.

1 predict.NNVEC<-function(l1,l2,l3,k)

2 ##l1,l2,l3:=Results generated by estimate.NNVEC

3 ##k:=Steps to predict

4 {

5 ##Initialization of input variables

6 n<-l1$"Lags"

7 b<-l1$"DiffData"

8 bb<-l1$"LevelData"

9 ak<-l1$"Beta vector"

10 f<-l1$"f"

11

12 a<-t(rbind(t(l1$"Optimal parameter vector"),

13 t(l2$"Optimal parameter vector"),

14 t(l3$"Optimal parameter vector")))

15 g<-t(matrix(0,3,1))

16

17 ##Initialization internal constructs

18 t=0

19 pv<-rep(NA,k,3)

20 c<-rep(NA,length(b[,1]))

21 cc<-rep(NA,3)

22 l=0

23 s<-l1$"Support variable"

24

25 ##Prediction algorithm

26 m1<-matrix(NA,3,k)

27 m2<-b[,length(b[1,])]

28 m3<-bb[,length(bb[1,])]

29 for(j in 1:k)

30 {
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31 m1[,j]<-f(a,m2,m3,g)

32 m2[4:length(m2)]<-m2[1:(length(m2)-3)]

33 m2[1:3]<-m1[,j]

34 m3<-m3+m1[,j]

35 }

36

37 ##Return predicted values

38 return(m1,a)

39 }

Example

For forecasting a joint model is used. The basis are the three objects from the previous

section. For example a two step forecast is calculated by:

predict.NNVEC(NNVEC1,NNVEC2,NNVEC3,2)
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