7 research outputs found

    Dependency Schemes in QBF Calculi: Semantics and Soundness

    Get PDF
    We study the parametrisation of QBF resolution calculi by dependency schemes. One of the main problems in this area is to understand for which dependency schemes the resulting calculi are sound. Towards this end we propose a semantic framework for variable independence based on ‘exhibition’ by QBF models, and use it to express a property of dependency schemes called full exhibition that is known to be sufficient for soundness in Q-resolution. Introducing a generalised form of the long-distance resolution rule, we propose a complete parametrisation of classical long-distance Q-resolution, and show that full exhibition remains sufficient for soundness. We demonstrate that our approach applies to the current research frontiers by proving that the reflexive resolution path dependency scheme is fully exhibited

    QBF with Soft Variables

    Get PDF
    QBF formulae are usually considered in prenex form, i.e. the quantifierblock is completely separated from the propositional part of the QBF.Among others, the semantics of the QBF is defined by the sequence ofthe variables within the prefix, where existentially quantifiedvariables depend on all universally quantified variables stated to theleft.In this paper we extend that classical definition and consider a newquantification type which we call soft variable. The idea is toallow a flexible position and quantifier type for these variables.Hence the type of quantifier of the soft variable can also bealtered. Based on this concept, we present an optimization problemseeking an optimal prefix as defined by user-given preferences. We statean algorithm based on MaxQBF, and present several applications – mainlyfrom verification area – which can be naturally translated into theoptimization problem for QBF with soft variables. We further implementeda prototype solver for this formalism, and compare our approach toprevious work, that differently from ours does not guarantee optimalityand completeness

    Reinterpreting Dependency Schemes: Soundness Meets Incompleteness in DQBF

    No full text
    Dependency quantified Boolean formulas (DQBF) and QBF dependency schemes have been treated separately in the literature, even though both treatments extend QBF by replacing the linear order of the quantifier prefix with a partial order. We propose to merge the two, by reinterpreting a dependency scheme as a mapping from QBF into DQBF. Our approach offers a fresh insight on the nature of soundness in proof systems for QBF with dependency schemes, in which a natural property called ‘full exhibition’ is central. We apply our approach to QBF proof systems from two distinct paradigms, termed ‘universal reduction’ and ‘universal expansion’. We show that full exhibition is sufficient (but not necessary) for soundness in universal reduction systems for QBF with dependency schemes, whereas for expansion systems the same property characterises soundness exactly. We prove our results by investigating DQBF proof systems, and then employing our reinterpretation of dependency schemes. Finally, we show that the reflexive resolution path dependency scheme is fully exhibited, thereby proving a conjecture of Slivovsky

    Quantified Boolean Formulas: Proof Complexity and Models of Solving

    Get PDF
    Quantified Boolean formulas (QBF), which form the canonical PSPACE-complete decision problem, are a decidable fragment of first-order logic. Any problem that can be solved within a polynomial-size space can be encoded succinctly as a QBF, including many concrete problems in computer science from domains such as verification, synthesis and planning. Automated solvers for QBF are now reaching the point of industrial applicability. In this thesis, we focus on dependency awareness, a dedicated solving paradigm for QBF. We show that dependency schemes can be envisaged in terms of dependency quantified Boolean formulas (DQBF), exposing strong connections between these two previously disparate entities. By introducing new lower-bound techniques for QBF proof systems, we study the relative strengths of models of dependency-aware solving, including the proposal of new, stronger models. Proof Complexity: Using the strategy extraction paradigm, we introduce new lower-bound techniques that apply to resolution-based QBF proof systems. In particular, we use the technique to prove exponential lower bounds for a new family of QBFs called the equality formulas. Our technique also affords considerably simpler, more intuitive proofs of some existing QBF proof-size lower bounds. Models of Solving: We apply our lower bound techniques to show new separations for QBF proof systems parametrised by dependency schemes. We also propose new models of dynamic dependency-aware solving and prove that they are exponentially stronger than the existing static models. Finally, we introduce Merge Resolution, a proof system modelling CDCL-style solving for DQBF, which is the first of its kind

    Decidable fragments of first-order logic and of first-order linear arithmetic with uninterpreted predicates

    Get PDF
    First-order logic is one of the most prominent formalisms in computer science and mathematics. Since there is no algorithm capable of solving its satisfiability problem, first-order logic is said to be undecidable. The classical decision problem is the quest for a delineation between the decidable and the undecidable parts. The results presented in this thesis shed more light on the boundary and open new perspectives on the landscape of known decidable fragments. In the first part we focus on the new concept of separateness of variables and explore its applicability to the classical decision problem and beyond. Two disjoint sets of first-order variables are separated in a given formula if none of its atoms contains variables from both sets. This notion facilitates the definition of decidable extensions of many well-known decidable first-order fragments. We demonstrate this for several prefix fragments, several guarded fragments, the two-variable fragment, and for the fluted fragment. Although the extensions exhibit the same expressive power as the respective originals, certain logical properties can be expressed much more succinctly. In two cases the succinctness gap cannot be bounded using elementary functions. This fact already hints at computationally hard satisfiability problems. Indeed, we derive non-elementary lower bounds for the separated fragment, an extension of the Bernays-Schönfinkel-Ramsey fragment (E*A*-prefix sentences). On the semantic level, separateness of quantified variables may lead to weaker dependences than we encounter in general. We investigate this property in the context of model-checking games. The focus of the second part of the thesis is on linear arithmetic with uninterpreted predicates. Two novel decidable fragments are presented, both based on the Bernays-Schönfinkel-Ramsey fragment. On the negative side, we identify several small fragments of the language for which satisfiability is undecidable.Untersuchungen der Logik erster Stufe blicken auf eine lange Tradition zurĂŒck. Es ist allgemein bekannt, dass das zugehörige ErfĂŒllbarkeitsproblem im Allgemeinen nicht algorithmisch gelöst werden kann - man spricht daher von einer unentscheidbaren Logik. Diese Beobachtung wirft ein Schlaglicht auf die prinzipiellen Grenzen der FĂ€higkeiten von Computern im Allgemeinen aber auch des automatischen Schließens im Besonderen. Das Hilbertsche Entscheidungsproblem wird heute als die Erforschung der Grenze zwischen entscheidbaren und unentscheidbaren Teilen der Logik erster Stufe verstanden, wobei die untersuchten Fragmente der Logik mithilfe klar zu erfassender und berechenbarer syntaktischer Eigenschaften beschrieben werden. Viele Forscher haben bereits zu dieser Untersuchung beigetragen und zahlreiche entscheidbare und unentscheidbare Fragmente entdeckt und erforscht. Die vorliegende Dissertation setzt diese Tradition mit einer Reihe vornehmlich positiver Resultate fort und eröffnet neue Blickwinkel auf eine Reihe von Fragmenten, die im Laufe der letzten einhundert Jahre untersucht wurden. Im ersten Teil der Arbeit steht das syntaktische Konzept der Separiertheit von Variablen im Mittelpunkt, und dessen Anwendbarkeit auf das Entscheidungsproblem und darĂŒber hinaus wird erforscht. Zwei Mengen von Individuenvariablen gelten bezĂŒglich einer gegebenen Formel als separiert, falls in jedem Atom der Formel die Variablen aus höchstens einer der beiden Mengen vorkommen. Mithilfe dieses leicht verstĂ€ndlichen Begriffs lassen sich viele wohlbekannte entscheidbare Fragmente der Logik erster Stufe zu grĂ¶ĂŸeren Klassen von Formeln erweitern, die dennoch entscheidbar sind. Dieser Ansatz wird fĂŒr neun Fragmente im Detail dargelegt, darunter mehrere PrĂ€fix-Fragmente, das Zwei-Variablen-Fragment und sogenannte "guarded" und " uted" Fragmente. Dabei stellt sich heraus, dass alle erweiterten Fragmente ebenfalls das monadische Fragment erster Stufe ohne Gleichheit enthalten. Obwohl die erweiterte Syntax in den betrachteten FĂ€llen nicht mit einer erhöhten AusdrucksstĂ€rke einhergeht, können bestimmte ZusammenhĂ€nge mithilfe der erweiterten Syntax deutlich kĂŒrzer formuliert werden. Zumindest in zwei FĂ€llen ist diese Diskrepanz nicht durch eine elementare Funktion zu beschrĂ€nken. Dies liefert einen ersten Hinweis darauf, dass die algorithmische Lösung des ErfĂŒllbarkeitsproblems fĂŒr die erweiterten Fragmente mit sehr hohem Rechenaufwand verbunden ist. TatsĂ€chlich wird eine nicht-elementare untere Schranke fĂŒr den entsprechenden Zeitbedarf beim sogenannten separierten Fragment, einer Erweiterung des bekannten Bernays-Schönfinkel-Ramsey-Fragments, abgeleitet. DarĂŒber hinaus wird der Ein uss der Separiertheit von Individuenvariablen auf der semantischen Ebene untersucht, wo AbhĂ€ngigkeiten zwischen quantifizierten Variablen durch deren Separiertheit stark abgeschwĂ€cht werden können. FĂŒr die genauere formale Betrachtung solcher als schwach bezeichneten AbhĂ€ngigkeiten wird auf sogenannte Hintikka-Spiele zurĂŒckgegriffen. Den Schwerpunkt des zweiten Teils der vorliegenden Arbeit bildet das Entscheidungsproblem fĂŒr die lineare Arithmetik ĂŒber den rationalen Zahlen in Verbindung mit uninterpretierten PrĂ€dikaten. Es werden zwei bislang unbekannte entscheidbare Fragmente dieser Sprache vorgestellt, die beide auf dem Bernays-Schönfinkel-Ramsey-Fragment aufbauen. Ferner werden neue negative Resultate entwickelt und mehrere unentscheidbare Fragmente vorgestellt, die lediglich einen sehr eingeschrĂ€nkten Teil der Sprache benötigen
    corecore